JP2008044082A - Running-in process of rolling bearing device - Google Patents

Running-in process of rolling bearing device Download PDF

Info

Publication number
JP2008044082A
JP2008044082A JP2006223452A JP2006223452A JP2008044082A JP 2008044082 A JP2008044082 A JP 2008044082A JP 2006223452 A JP2006223452 A JP 2006223452A JP 2006223452 A JP2006223452 A JP 2006223452A JP 2008044082 A JP2008044082 A JP 2008044082A
Authority
JP
Japan
Prior art keywords
rpm
rotational speed
stage
bearing device
running
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006223452A
Other languages
Japanese (ja)
Inventor
Tadaaki Maeda
忠昭 前田
Futoshi Kosugi
太 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006223452A priority Critical patent/JP2008044082A/en
Publication of JP2008044082A publication Critical patent/JP2008044082A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a running-in process of a rolling bearing device free to operate in a stable state in a short period of time without increasing motor capacity excessively. <P>SOLUTION: A rapid raising process to drive at rotating speed of less than working rotating speed Nn is provided in the middle of a gradual raising process to drive while gradually increasing the rotating speed of the rolling bearing device to the working rotating speed Nn. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、工作機械の主軸軸受装置等に用いられ、高速回転下で運転される転がり軸受装置の慣らし運転方法に関する。   The present invention relates to a running-in method of a rolling bearing device that is used in a spindle bearing device of a machine tool or the like and is operated under high-speed rotation.

周知のように、マシニングセンタ、CNC旋盤、フライス盤等の工作機械の主軸軸受装置は、ワークの加工効率を高めるために高速回転で運転される場合が多く、特に最近は主軸回転速度の高速化の傾向が顕著である。   As is well known, spindle bearing devices for machine tools such as machining centers, CNC lathes, and milling machines are often operated at high speeds to increase the machining efficiency of workpieces. Is remarkable.

工作機械の主軸軸受装置において、主軸はハウジングに対して転がり軸受で回転自在に支持されるのが通例であり、転がり軸受は、使用条件等に応じて、オイルミスト潤滑、エアオイル潤滑、ジェット潤滑、グリース潤滑などの潤滑方式によって潤滑される。このうち、グリース潤滑方式を採用した主軸軸受装置では、使用回転速度まで立ち上げる際、グリースの攪拌抵抗や、再巻き込み現象(軸受内部の転がり接触部から排出されたグリースが再び転がり接触部に戻る現象)によって急速な温度上昇が生じる場合がある。この急速な温度上昇は回転速度が高くなるほど大きくなり、かかる温度上昇は軸受寿命を低下させる一因となる。そこで、かかる弊害を防止するため、主軸軸受装置の運転開始時には、軸受の回転速度を使用回転速度まで段階的に上げて運転する、いわゆる慣らし運転を行うのが通例である。   In a spindle bearing device of a machine tool, the spindle is usually rotatably supported by a rolling bearing with respect to the housing. The rolling bearing is oil mist lubricated, air-oil lubricated, jet lubricated, depending on usage conditions, etc. It is lubricated by a lubrication system such as grease lubrication. Among them, in spindle bearing devices that employ a grease lubrication system, when starting up to the operating rotational speed, the grease agitation resistance and re-rolling phenomenon (grease discharged from the rolling contact portion inside the bearing returns to the rolling contact portion again. Phenomenon) may cause a rapid temperature rise. This rapid temperature increase increases as the rotational speed increases, and this temperature increase contributes to a decrease in bearing life. Therefore, in order to prevent such an adverse effect, at the start of operation of the spindle bearing device, a so-called running-in operation is generally performed in which the rotation speed of the bearing is increased stepwise to the use rotation speed.

例えば使用回転速度が6000rpmの場合、1000rpmから500rpm刻みで6000rpmまで回転速度を段階的に上げ、各段階で各回転速度を保持しながら一定時間運転を行う慣らし運転方法が一般的である。この慣らし運転方法は、一定間隔で回転速度を上げていくためプログラムが容易であり、また粘度の低いグリースを用いる軸受装置ではグリースの粘性抵抗を徐々に低減できるため好適である。しかしながら、各段階における運転時間を比較的多く取る必要があるため、慣らし運転が完了するまでに長い時間を要し、生産性を悪化させる一因となっていた。   For example, when the rotation speed used is 6000 rpm, a running-in operation method is generally used in which the rotation speed is increased stepwise from 1000 rpm to 6000 rpm in increments of 500 rpm, and the operation is performed for a certain period of time while maintaining each rotation speed. This break-in operation method is suitable because the rotational speed is increased at regular intervals, and therefore the program is easy. In addition, a bearing device using grease with low viscosity can be used because the viscosity resistance of grease can be gradually reduced. However, since it is necessary to take a relatively large amount of operation time in each stage, it takes a long time to complete the break-in operation, which is a cause of deterioration in productivity.

かかる問題点を解消すべく、本願出願人は、特開2003−227525号公報(特許文献1)にて、段階的に回転速度を上げる漸次立ち上げ工程の途中に、転がり軸受装置の使用回転速度よりも大きな回転速度で運転する急速立ち上げ工程を設けた慣らし運転方法を提案している。
特開2003−227525号公報
In order to solve such a problem, the applicant of the present application disclosed in Japanese Patent Application Laid-Open No. 2003-227525 (Patent Document 1) during the gradual start-up process in which the rotational speed is increased stepwise, the rotational speed of use of the rolling bearing device. A break-in operation method with a rapid start-up process that operates at a higher rotational speed is proposed.
JP 2003-227525 A

特許文献1に開示された慣らし運転方法であれば、一定ピッチで段階的に回転速度を上げる慣らし運転方法に比べ、慣らし運転時間を大幅に短縮でき、生産性の向上に寄与することができる。その理由としては、軸受内部の余分なグリースが急速立ち上げ工程で強制的に軸受外部へ排出され、これにより、短時間でグリースの攪拌抵抗が低減し、また、グリースのいわゆる再巻き込み現象が回避されることにあると考えられる。   The break-in operation method disclosed in Patent Document 1 can greatly reduce the break-in operation time compared to the break-in operation method in which the rotational speed is increased stepwise at a constant pitch, which can contribute to improvement in productivity. The reason for this is that excess grease inside the bearing is forcibly discharged to the outside of the bearing during the rapid start-up process, which reduces grease stirring resistance in a short time and avoids the so-called re-rolling phenomenon of grease. It is thought that there is to be done.

しかしながら、使用回転速度Nnよりも大きな回転速度Nm(使用回転速度Nnの110%程度の回転速度)での運転を必要とするためにモータへの負担が大きく、かかる負担の増大はモータの低寿命化を招く恐れがある。そのため、必要以上に容量の大きなモータを用いていたが、装置の大型化や高コスト化の問題が生じていた。   However, since it requires operation at a rotational speed Nm larger than the used rotational speed Nn (a rotational speed of about 110% of the used rotational speed Nn), the burden on the motor is large, and the increase in the burden is a short life of the motor. There is a risk that For this reason, a motor having a larger capacity than necessary has been used, but there has been a problem of increasing the size and cost of the apparatus.

本発明の課題は、モータ容量を過大化することなく、短時間に安定した状態で行うことができる慣らし運転方法を提供することにある。   An object of the present invention is to provide a break-in operation method that can be performed in a stable state in a short time without increasing the motor capacity.

上記課題を解決するため、本発明は、回転軸を転がり軸受で回転自在に支持する転がり軸受装置の慣らし運転方法であって、転がり軸受装置の回転速度を使用回転速度Nnまで段階的に上げながら運転を行う漸次立ち上げ工程の途中に、使用回転速度Nn以下の回転速度で運転する急速立ち上げ工程を設けたことを特徴とするものである。   In order to solve the above problems, the present invention is a running-in method of a rolling bearing device in which a rotating shaft is rotatably supported by a rolling bearing, while gradually increasing the rotational speed of the rolling bearing device to a working rotational speed Nn. In the middle of the gradual start-up process in which the operation is performed, a rapid start-up process is provided in which the operation is performed at a rotational speed equal to or lower than the operating rotational speed Nn.

上記のように、本発明における急速立ち上げ工程は、転がり軸受装置の使用回転速度以下で行われるため、過大容量のモータを必要としない。従って、装置の大型化や高コスト化の問題を回避しつつも、短時間に安定した状態で慣らし運転を行うことができる。   As described above, since the rapid start-up process in the present invention is performed at a speed lower than the use rotational speed of the rolling bearing device, an excessive capacity motor is not required. Accordingly, the break-in operation can be performed in a stable state in a short time while avoiding the problem of the increase in size and cost of the apparatus.

上記構成において、急激な温度上昇を効果的に抑制するため、急速立ち上げ工程は3回以上行うことが望ましい。   In the above configuration, it is desirable to perform the rapid start-up process three times or more in order to effectively suppress a rapid temperature rise.

特に、急速立ち上げ工程の回転速度を、N1(Nn×50%)、N2(Nn×75%)、N3(Nn)の順序で段階的に上げるようにすれば、温度変化の幅を抑制しつつ、慣らし運転を短時間でかつ安定した状態で行うことができる。   In particular, if the rotational speed of the rapid start-up process is increased stepwise in the order of N1 (Nn × 50%), N2 (Nn × 75%), and N3 (Nn), the width of the temperature change is suppressed. However, the break-in operation can be performed in a short time and in a stable state.

本発明によれば、モータ容量を過大化することなく、短時間に安定した状態で行うことができる慣らし運転方法を提供することできる。これにより、装置の低コスト化を図りつつ、生産性の向上を図ることができる。   According to the present invention, it is possible to provide a break-in operation method that can be performed in a stable state in a short time without excessively increasing the motor capacity. Thereby, productivity can be improved while reducing the cost of the apparatus.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、マシニングセンタ、CNC旋盤、フライス盤等の工作機械における主軸軸受装置の一構成例を示している。同図に示す軸受装置において、主軸10は軸線回りに高速回転し、ハウジング11に対して複列円筒ころ軸受12、組合せアンギュラ玉軸受(一対のアンギュラ玉軸受)13、および単列円筒ころ軸受14で回転自在に支持される。各軸受は、それぞれ、内部に給脂されたグリースによって潤滑される。   FIG. 1 shows a configuration example of a spindle bearing device in a machine tool such as a machining center, a CNC lathe, or a milling machine. In the bearing device shown in the figure, the main shaft 10 rotates at high speed around the axis, and a double-row cylindrical roller bearing 12, a combined angular ball bearing (a pair of angular ball bearings) 13, and a single-row cylindrical roller bearing 14 with respect to the housing 11. Is supported in a freely rotatable manner. Each bearing is lubricated by grease supplied to the inside.

この主軸軸受装置は、立ち上げ時に慣らし運転が行われる。慣らし運転は、主軸軸受装置の回転速度を使用回転速度まで段階的に上げながら運転を行う漸次立ち上げ工程の途中に、使用回転速度以下の回転速度で運転する急速立ち上げ工程を設けたものである。   This spindle bearing device is subjected to a running-in operation at the time of start-up. In the running-in operation, a rapid start-up process is performed in the middle of the gradual start-up process in which operation is performed while gradually increasing the rotation speed of the spindle bearing device to the use rotation speed. is there.

まず、漸次立ち上げ工程は、例えば主軸軸受装置の使用回転速度がNn[rpm]の場合、回転速度をN1(>0)、N2(>N1)、N3(>N2)、・・・、Nn(>Nn−1)のように段階的に上げ、各段階でその回転速度を保持しながら所定時間運転を行うものである。   First, in the gradual start-up process, for example, when the rotational speed of the spindle bearing device is Nn [rpm], the rotational speed is N1 (> 0), N2 (> N1), N3 (> N2),. (> Nn-1), and the operation is performed for a predetermined time while maintaining the rotation speed at each step.

一方、急速立ち上げ工程は、漸次立ち上げ工程の各段階間に設けられ、使用回転速度Nn以下の回転速度Nmで所定時間運転を行うものである。急速立ち上げ工程は3回以上行うのが望ましいことが後述する試験結果から確認されている。また、急速立ち上げ工程の各回における回転速度Nmは、上記の条件を満たすものであれば別段の制約はないが、後述する試験結果から、使用回転速度Nnの50%(Nn×50%)、使用回転速度Nnの75%(Nn×75%)、使用回転速度Nnの順序で段階的に上げるのが望ましいことが確認されている。急速立ち上げ工程では、一時的に急速な温度上昇が生じるため、その運転時間は各々1〜2分程度とするのが望ましい。   On the other hand, the rapid start-up process is provided between each stage of the start-up process, and is operated for a predetermined time at a rotation speed Nm that is equal to or lower than the use rotation speed Nn. It has been confirmed from the test results described later that the rapid start-up process is desirably performed three times or more. Further, the rotational speed Nm in each round of the rapid start-up process is not particularly limited as long as the above conditions are satisfied. From the test results described later, 50% of the rotational speed Nn used (Nn × 50%), It has been confirmed that it is desirable to increase in steps in the order of 75% (Nn × 75%) of the use rotation speed Nn and use rotation speed Nn. In the rapid start-up process, since a rapid temperature rise occurs temporarily, the operation time is preferably about 1 to 2 minutes each.

なお、漸次立ち上げ工程は、急速立ち上げ工程を間に入れて、前後で同じ回転速度の段階を繰り返してもよい(例えば、N1→Nm→N1→Nm→N2→・・・)。   In the gradual startup process, the same rotational speed steps may be repeated before and after the rapid startup process (for example, N1 → Nm → N1 → Nm → N2 →...).

下記仕様の試験軸受を試験機に組み込み、図2(a)、図3(a)に示す運転パターン(従来例)、図4(a)、図5(a)、および図6(a)に示す運転パターン(実施例)で運転して、試験軸受の外輪温度を測定した。従来例および実施例は、何れも使用回転速度20000rpmの主軸軸受装置を想定したものである。   Test bearings of the following specifications are incorporated in the testing machine, and the operation patterns shown in FIGS. 2 (a) and 3 (a) (conventional example), FIGS. 4 (a), 5 (a), and 6 (a) are shown. The outer ring temperature of the test bearing was measured by operating with the operation pattern shown (Example). Both the conventional example and the example are assumed to be a spindle bearing device having a rotational speed of 20000 rpm.

[試験軸受]
アンギュラ玉軸受:BNS010LLB(内径50mm)
軸受予圧量 :98N
グリース封入量 :空間容積の25%
封入グリース :「MP−1」
[Test bearing]
Angular contact ball bearings: BNS010LLB (inner diameter 50 mm)
Bearing preload amount: 98N
Grease filling amount: 25% of space volume
Enclosed grease: “MP-1”

(1)従来例1
従来例1は、急速立ち上げ工程を設けず、漸次立ち上げ工程のみで慣らし運転を行ったものである。図2(a)(b)を参照して詳述すると、運転の第1段階(2000rpm)〜第4段階(8000rpm)にかけて外輪の温度が段階的に上昇し、第5段階(10000rpm)に移行したところでピーク値が60℃を越えたため軸受を一旦停止させた。その後、軸受が冷えた状態から8000rpmで再運転したところ、第7段階(12000rpm)および第9段階(16000rpm)で急激な温度上昇を示したが、ピーク値が60℃を越えることはなかった。慣らし運転に要した時間は計11時間であった。
(1) Conventional example 1
Conventional Example 1 does not include a rapid start-up process, and performs a break-in operation only in a gradual start-up process. Referring to FIGS. 2 (a) and 2 (b), the outer ring temperature gradually increases from the first stage (2000 rpm) to the fourth stage (8000 rpm) of the operation, and shifts to the fifth stage (10000 rpm). At this point, the peak value exceeded 60 ° C., so the bearing was temporarily stopped. Thereafter, when the bearing was re-started at 8000 rpm from the cold state, a rapid temperature increase was shown in the seventh stage (12000 rpm) and the ninth stage (16000 rpm), but the peak value did not exceed 60 ° C. The total time required for the break-in operation was 11 hours.

(2)従来例2
従来例2は、本願にかかる方法と特許文献1にかかる方法との対比を行うため、急速立ち上げ工程の回転速度を、使用回転速度20000rpmの110%、すなわち22000rpmに設定したものである。急速立ち上げ工程は、図3(a)に示すように、漸次立ち上げ工程の第1段階(2000rpm)と第2段階(2000rpm)との間、第2段階(2000rpm)と第3段階(4000rpm)との間、第3段階(4000rpm)と第4段階(6000rpm)との間にそれぞれ設けている。各回の急速立ち上げ工程の運転時間はそれぞれ1分である。なお、漸次立ち上げ工程の第1段階と第2段階の回転速度は同じにしてある。
(2) Conventional example 2
In Conventional Example 2, in order to compare the method according to the present application and the method according to Patent Document 1, the rotational speed of the rapid start-up process is set to 110% of the used rotational speed of 20000 rpm, that is, 22000 rpm. As shown in FIG. 3A, the rapid start-up process is performed between the first stage (2000 rpm) and the second stage (2000 rpm), the second stage (2000 rpm) and the third stage (4000 rpm). ) Between the third stage (4000 rpm) and the fourth stage (6000 rpm). The operation time of each rapid start-up process is 1 minute. Note that the rotational speeds of the first stage and the second stage of the gradual start-up process are the same.

図3(b)に示すように、各回の急速立ち上げ工程(22000rpm)において、外輪の温度は一時的に上昇したが、そのピーク値は50℃程度と比較的低かった。3回目の急速立ち上げ工程の後、外輪の温度は35〜45℃程度に安定し、最終段階(使用回転速度20000rpm)に移行した後も急激な温度上昇は見られなかった。従来例2では、計130分で慣らし運転を完了することができ、従来例1の約1/5まで慣らし運転時間を短縮することができた。   As shown in FIG. 3B, in each rapid start-up process (22000 rpm), the temperature of the outer ring temporarily increased, but its peak value was relatively low at about 50 ° C. After the third rapid start-up step, the temperature of the outer ring was stabilized at about 35 to 45 ° C., and no rapid temperature increase was observed after the final stage (usual rotation speed 20000 rpm). In Conventional Example 2, the break-in operation was completed in 130 minutes in total, and the break-in operation time could be shortened to about 1/5 of Conventional Example 1.

(3)実施例1
実施例1は、急速立ち上げ工程を使用回転速度と同一の回転速度(20000rpm)で2回行ったものである。図4(a)に示すように、急速立ち上げ工程は、漸次立ち上げ工程の第1段階(2000rpm)と第2段階(2000rpm)との間、第2段階(2000rpm)と第3段階(4000rpm)との間にそれぞれ設けている。各回の急速立ち上げ工程の運転時間はそれぞれ1分である。なお、漸次立ち上げ工程の第1段階と第2段階の回転速度は同じにしてある。
(3) Example 1
In Example 1, the rapid start-up process is performed twice at the same rotational speed (20000 rpm) as the operating rotational speed. As shown in FIG. 4 (a), the rapid start-up process is performed between the first stage (2000 rpm) and the second stage (2000 rpm) of the gradual start-up process, and between the second stage (2000 rpm) and the third stage (4000 rpm). ) Between each. The operation time of each rapid start-up process is 1 minute. Note that the rotational speeds of the first stage and the second stage of the gradual start-up process are the same.

図4(b)に示すように、各回の急速立ち上げ工程(20000rpm)において、外輪の温度は一時的に上昇したが、そのピーク値は45℃程度と比較的低かった。漸次立ち上げ工程の第6段階(10000rpm)に移行したところでピーク値が60℃を超えたため軸受を一旦停止させた。その後、軸受が冷えた状態から10000rpmで再運転したところ急激な温度上昇はなく、外輪温度は30〜35℃程度に安定し、最終段階(使用回転速度20000rpm)に移行した後も温度上昇は見られなかった。この実施例1では、計140分で慣らし運転を完了することができ、従来例1の約1/4まで慣らし運転時間を短縮することができたものの、従来例2に比べ慣らし運転時間が長大化した。   As shown in FIG. 4B, in each rapid start-up process (20000 rpm), the temperature of the outer ring temporarily increased, but the peak value was relatively low at about 45 ° C. Since the peak value exceeded 60 ° C. when the stage gradually shifted to the sixth stage (10000 rpm) of the start-up process, the bearing was temporarily stopped. After that, when the bearing was re-started at 10000 rpm from the cold state, there was no sudden temperature rise, the outer ring temperature was stabilized at about 30 to 35 ° C., and the temperature rise was observed even after the final stage (usage rotation speed 20000 rpm) was shifted to. I couldn't. In this Example 1, the running-in operation was completed in 140 minutes in total, and the running-in time was shortened to about 1/4 of that in Conventional Example 1, but the running-in time was longer than that in Conventional Example 2. Turned into.

(4)実施例2
実施例2は、急速立ち上げ工程を同一の回転速度(20000rpm)で3回行ったものである。図5(a)に示すように、急速立ち上げ工程は、漸次立ち上げ工程の第1段階(2000rpm)と第2段階(2000rpm)との間、第2段階(2000rpm)と第3段階(4000rpm)との間、第3段階(4000rpm)と第4段階(6000rpm)との間にそれぞれ設けている。各回の急速立ち上げ工程の運転時間はそれぞれ1分である。なお、実施例1と同様に、漸次立ち上げ工程の第1段階と第2段階の回転速度は同じにしてある。
(4) Example 2
In Example 2, the rapid start-up process was performed three times at the same rotational speed (20000 rpm). As shown in FIG. 5A, the rapid start-up process is performed between the first stage (2000 rpm) and the second stage (2000 rpm) of the gradual start-up process, and between the second stage (2000 rpm) and the third stage (4000 rpm). ) Between the third stage (4000 rpm) and the fourth stage (6000 rpm). The operation time of each rapid start-up process is 1 minute. As in the first embodiment, the rotational speeds in the first stage and the second stage of the gradual start-up process are the same.

図5(b)に示すように、各回の急速立ち上げ工程(20000rpm)において、外輪の温度は一時的に上昇したが、そのピーク値は40〜45℃程度と比較的低かった。3回目の急速立ち上げ工程の後、外輪の温度は30〜35℃程度に安定し、最終段階(使用回転速度20000rpm)に移行した後も温度上昇は見られなかった。この実施例2では、計130分で慣らし運転を完了することができた。すなわち、従来例1の約1/5まで慣らし運転時間を短縮することができ、また、従来例2と同時間で慣らし運転を完了することができた。   As shown in FIG. 5B, in each rapid start-up process (20000 rpm), the temperature of the outer ring temporarily increased, but its peak value was relatively low at about 40 to 45 ° C. After the third rapid start-up process, the temperature of the outer ring was stabilized at about 30 to 35 ° C., and no temperature increase was observed even after the final stage (usual rotation speed 20000 rpm) was entered. In Example 2, the break-in operation was completed in a total of 130 minutes. That is, the running-in time can be shortened to about 1/5 that of Conventional Example 1, and the running-in operation can be completed in the same time as in Conventional Example 2.

(5)実施例3
実施例3は、急速立ち上げ工程を、回転速度を段階的に上げながら3回行ったものである。図6(a)に示すように、急速立ち上げ工程の第1段階(10000rpm)は漸次立ち上げ工程の第1段階(2000rpm)と第2段階(2000rpm)との間、急速立ち上げ工程の第2段階(15000rpm)は漸次立ち上げ工程の第2段階(2000rpm)と第3段階(4000rpm)との間、急速立ち上げ工程の第3段階(20000rpm)は漸次立ち上げ工程の第3段階(4000rpm)と第4段階(6000rpm)との間にそれぞれ設けている。各回の急速立ち上げ工程の運転時間はそれぞれ1分である。なお、実施例1、2と同様、漸次立ち上げ工程の第1段階と第2段階の回転速度は同じにしてある。
(5) Example 3
In Example 3, the rapid start-up process was performed three times while increasing the rotation speed stepwise. As shown in FIG. 6A, the first stage (10000 rpm) of the rapid start-up process is gradually performed between the first stage (2000 rpm) and the second stage (2000 rpm) of the rapid start-up process. The second stage (15000 rpm) is between the second stage (2000 rpm) and the third stage (4000 rpm) of the gradual startup process, and the third stage (20000 rpm) of the rapid startup process is the third stage (4000 rpm). ) And the fourth stage (6000 rpm). The operation time of each rapid start-up process is 1 minute. As in Examples 1 and 2, the rotational speeds of the first and second stages of the gradual start-up process are the same.

図6(b)に示すように、各回の急速立ち上げ工程(10000rpm、15000rpm、20000rpm)において、外輪の温度は一時的に上昇したが、そのピーク値は33〜42℃程度であり、上述した何れの実施例1、2と比べても低かった。3回目の急速立ち上げ工程の後、外輪の温度は27〜33℃程度に安定し、最終段階(使用回転速度20000rpm)に移行した後も温度上昇は見られなかった。この実施例3では、計130分で慣らし運転を完了することができた。すなわち、実施例2と同様に、従来例1の約1/5まで慣らし運転時間を短縮することができ、また、従来例2と同時間で慣らし運転を完了することができた。   As shown in FIG. 6B, in each rapid start-up process (10000 rpm, 15000 rpm, 20000 rpm), the temperature of the outer ring temporarily increased, but the peak value was about 33 to 42 ° C. It was low compared with any Example 1,2. After the third rapid start-up process, the temperature of the outer ring was stabilized at about 27 to 33 ° C., and no temperature increase was observed even after the final stage (usage rotation speed 20000 rpm). In Example 3, the break-in operation was completed in a total of 130 minutes. That is, as in Example 2, the running-in time can be shortened to about 1/5 that of Conventional Example 1, and the running-in operation can be completed in the same time as in Conventional Example 2.

以上の試験結果から明らかなように、漸次立ち上げ工程の途中に、使用回転速度Nn以下の回転速度Nmで運転する急速立ち上げ工程を設けることにより、好ましくは当該急速立ち上げ工程を3回以上設けることにより、モータ容量を過大化することなく、慣らし運転を短時間でかつ安定した状態で行うことが可能となる。特に急速立ち上げ工程の回転速度Nmを、N1(Nn×50%)、N2(Nn×75%)、N3(Nn)の順序で段階的に引き上げることで、更に温度上昇を抑制し、安定した状態で慣らし運転を行うことができる。   As is clear from the above test results, it is preferable that the rapid start-up process be performed three times or more by providing a quick start-up process that operates at a rotational speed Nm that is equal to or lower than the operating rotational speed Nn in the middle of the progressive start-up process. By providing, it becomes possible to perform the break-in operation in a short time and in a stable state without increasing the motor capacity. In particular, by increasing the rotational speed Nm in the rapid start-up process stepwise in the order of N1 (Nn × 50%), N2 (Nn × 75%), N3 (Nn), the temperature rise is further suppressed and stabilized. Running-in can be performed in the state.

なお、上述した実施例では、使用回転速度Nn以下の回転速度で運転する急速立ち上げ工程を2又は3回設ける場合について説明を行い、特に急速立ち上げ工程を3回設ける場合が望ましいことを実証したが、急速立ち上げ工程は4回あるいは5回設けてもよい。その場合、各回の急速立ち上げ工程の回転速度Nmは、同一の回転速度に設定する他、段階的に引き上げてもよい。   In the above-described embodiment, the case where the rapid start-up process that operates at a rotational speed equal to or lower than the use rotational speed Nn is provided two or three times will be described. However, the rapid start-up process may be provided four times or five times. In that case, the rotational speed Nm of each rapid start-up process may be set stepwise in addition to being set to the same rotational speed.

また、以上では、アンギュラ玉軸受に本発明にかかる慣らし運転方法を適用した形態について説明を行ったが、本発明にかかる慣らし運転方法は、アンギュラ玉軸受に限らずその他の玉軸受、さらには円筒ころ軸受や円錐ころ軸受を用いた転がり軸受装置にも好適に用いることができる。   Further, in the above description, the form in which the running-in method according to the present invention is applied to the angular ball bearing has been described. However, the running-in method according to the present invention is not limited to the angular ball bearing, but other ball bearings, and further to the cylindrical It can also be suitably used for a rolling bearing device using a roller bearing or a tapered roller bearing.

工作機械の主軸軸受装置の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the spindle bearing apparatus of a machine tool. (a)図は、従来例1の試験工程を示す図、(b)図は従来例1の試験結果を示す図である。(A) is a figure which shows the test process of the prior art example 1, (b) figure is a figure which shows the test result of the prior art example 1. FIG. (a)図は、従来例2の試験工程を示す図、(b)図は従来例2の試験結果を示す図である。(A) A figure is a figure which shows the test process of the prior art example 2, (b) A figure is a figure which shows the test result of the prior art example 2. (a)図は、実施例1の試験工程を示す図、(b)図は実施例1の試験結果を示す図である。(A) The figure shows the test process of Example 1, (b) The figure shows the test result of Example 1. (a)図は、実施例2の試験工程を示す図、(b)図は実施例2の試験結果を示す図である。(A) The figure shows the test process of Example 2, (b) The figure shows the test result of Example 2. (a)図は、実施例3の試験工程を示す図、(b)図は実施例3の試験結果を示す図である。(A) The figure shows the test process of Example 3, (b) The figure shows the test result of Example 3.

符号の説明Explanation of symbols

10 主軸
11 ハウジング
12 複列円筒ころ軸受
13 アンギュラ玉軸受
14 単列円筒ころ軸受
Nn 使用回転速度
Nm 急速立ち上げ工程の回転速度
DESCRIPTION OF SYMBOLS 10 Main shaft 11 Housing 12 Double row cylindrical roller bearing 13 Angular contact ball bearing 14 Single row cylindrical roller bearing Nn Use rotational speed Nm Rotational speed of rapid start-up process

Claims (3)

回転軸を転がり軸受で回転自在に支持する転がり軸受装置の慣らし運転方法であって、
転がり軸受装置の回転速度を使用回転速度Nnまで段階的に上げながら運転を行う漸次立ち上げ工程の途中に、使用回転速度Nn以下の回転速度で運転する急速立ち上げ工程を設けたことを特徴とする転がり軸受装置の慣らし運転方法。
A running-in method of a rolling bearing device that rotatably supports a rotating shaft with a rolling bearing,
It is characterized in that a rapid start-up step of operating at a rotational speed equal to or lower than the use rotational speed Nn is provided in the middle of the progressive start-up step of operating while gradually increasing the rotational speed of the rolling bearing device to the use rotational speed Nn. The running-in method of the rolling bearing device.
急速立ち上げ工程を3回以上設けた請求項1記載の転がり軸受装置の慣らし運転方法。   2. The running-in method of the rolling bearing device according to claim 1, wherein the rapid start-up process is provided three times or more. 急速立ち上げ工程の回転速度を、N1(Nn×50%)、N2(Nn×75%)、N3(Nn)の順序で段階的に上げる請求項1又は2の何れかに記載の転がり軸受装置の慣らし運転方法。   The rolling bearing device according to claim 1, wherein the rotational speed of the rapid start-up process is increased stepwise in the order of N1 (Nn × 50%), N2 (Nn × 75%), and N3 (Nn). Running-in method.
JP2006223452A 2006-08-18 2006-08-18 Running-in process of rolling bearing device Withdrawn JP2008044082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006223452A JP2008044082A (en) 2006-08-18 2006-08-18 Running-in process of rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223452A JP2008044082A (en) 2006-08-18 2006-08-18 Running-in process of rolling bearing device

Publications (1)

Publication Number Publication Date
JP2008044082A true JP2008044082A (en) 2008-02-28

Family

ID=39178300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223452A Withdrawn JP2008044082A (en) 2006-08-18 2006-08-18 Running-in process of rolling bearing device

Country Status (1)

Country Link
JP (1) JP2008044082A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141474A (en) * 2011-01-06 2011-08-03 无锡市第二轴承有限公司 Bearing running-in testing machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141474A (en) * 2011-01-06 2011-08-03 无锡市第二轴承有限公司 Bearing running-in testing machine
CN102141474B (en) * 2011-01-06 2012-11-14 无锡市第二轴承有限公司 Bearing running-in testing machine

Similar Documents

Publication Publication Date Title
US5704718A (en) Sintered oil-impregnated bearing and method for manufacturing same
JP6527721B2 (en) Spindle device
CN109563879B (en) Ball bearing, spindle device, and machine tool
JP2010164122A (en) Angular ball bearing
CN107249816A (en) Main shaft device
US4844625A (en) Structure of journal bearing for motor operating at high revolutionary speeds
EP3211258B1 (en) Combination ball bearing and main shaft device for machine tool
JP5589419B2 (en) Bearing device and spindle device for machine tool
JP5776753B2 (en) Bearing device and spindle device for machine tool
JP2008044082A (en) Running-in process of rolling bearing device
JP2008019943A (en) Combination bearing
JP2005106234A (en) Conical roller bearing and method for working conical roller bearing
JP2014059060A (en) Multi-row combination angular contact ball bearing
JP2009185826A (en) Roller gear cam speed reducer
JP2008240946A (en) Lubricating device for rolling bearing
JP2003227525A (en) Running-in method of roller bearing
TWI719234B (en) Ball bearing and spindle device for machine tool
JP2007120767A (en) Machine tool
US20030190104A1 (en) Ball bearing and lubricating method thereof
JP2008008416A (en) Running-in operation method of rolling bearing
CN203656063U (en) Multi-shaft device middle transmission shaft structure
JP2007120698A (en) Rolling bearing
EP3492760B1 (en) Ball bearing
JP2011052714A (en) Multi-row combination angular ball bearing
JP2005180669A (en) Roller bearing and bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110