JP2008043356A - Blood pressure monitoring system - Google Patents

Blood pressure monitoring system Download PDF

Info

Publication number
JP2008043356A
JP2008043356A JP2006218734A JP2006218734A JP2008043356A JP 2008043356 A JP2008043356 A JP 2008043356A JP 2006218734 A JP2006218734 A JP 2006218734A JP 2006218734 A JP2006218734 A JP 2006218734A JP 2008043356 A JP2008043356 A JP 2008043356A
Authority
JP
Japan
Prior art keywords
blood pressure
cuff
living body
frequency
pulse wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006218734A
Other languages
Japanese (ja)
Inventor
Tsuneo Nakagawa
常雄 中川
Kazuhiko Niwano
和彦 庭野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Holon Holdings Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP2006218734A priority Critical patent/JP2008043356A/en
Publication of JP2008043356A publication Critical patent/JP2008043356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cuff type blood pressure monitoring system which enables the automatic start of the measurement of blood pressures without imposing burden on a living body so much by achieving a handy application on the living body. <P>SOLUTION: The pressure monitoring system starts the measurement of blood pressures in a cuff type sphygmomanometer based on an excess of over a preset criterion range by changes in the frequency component analysis values determined by analyzing into frequency components the heartbeat cycle given as the cycle of continuous beating of a heart with a photoelectric pulse wave sensor or a cardiographic electrode handily applicable on a skin of the living body or without an accessory sensor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生体の血圧値を比較的長期にわたって監視する血圧監視装置において患者負担を軽減する血圧監視装置に関する。   The present invention relates to a blood pressure monitoring apparatus that reduces a patient burden in a blood pressure monitoring apparatus that monitors a blood pressure value of a living body over a relatively long period of time.

生体の血圧値を比較的長期にわたって監視する血圧監視装置には、生体の一部に巻回されるカフを有して、そのカフによる圧迫圧力を変化させることによりその生体の血圧値を測定するカフ式間欠血圧測定方法で血圧計を所定の周期で自動的に起動して測定をするのが一般的である。 A blood pressure monitoring apparatus that monitors a blood pressure value of a living body over a relatively long period of time has a cuff wound around a part of the living body, and measures the blood pressure value of the living body by changing the pressure applied by the cuff. In general, measurement is performed by automatically starting a blood pressure monitor at a predetermined cycle by a cuff type intermittent blood pressure measurement method.

しかしながら、このような自動血圧監視装置による測定では、血圧監視の監視頻度を多くしようとして自動起動周期を短くすると、カフの生体に対する圧迫頻度が高くなるので大きな負担を生体に強いる欠点がある。例えば夜間睡眠中に血圧測定が起動されると患者が覚醒することがあるし、また、カフによる圧迫頻度が極端に高くなると、鬱血が生じて正確な血圧値が得られなくなる場合もある。 However, in such a measurement by the automatic blood pressure monitoring device, if the automatic activation cycle is shortened in order to increase the monitoring frequency of blood pressure monitoring, the frequency of cuff compression against the living body increases, and there is a disadvantage that a heavy burden is imposed on the living body. For example, if blood pressure measurement is activated during nighttime sleep, the patient may wake up, and if the cuff compression frequency becomes extremely high, congestion may occur and an accurate blood pressure value may not be obtained.

また、測定された血圧値は患者の生体現象を把握するための重要な指標とされるために、過去日常的に用いられてきたカフ式血圧計が生体の血圧値を測定する方法としては測定値の過去データとの連続性、および測定値の信頼性から、他の血圧測定方法で代替することは現実的でないとされている。 In addition, since the measured blood pressure value is an important index for grasping a patient's biological phenomenon, a cuff sphygmomanometer that has been used in the past is used as a method for measuring the blood pressure value of a living body. It is considered impractical to substitute other blood pressure measurement methods because of the continuity of the values with past data and the reliability of the measurement values.

このために、24時間携帯型血圧計、とかベッドサイド監視血圧計においては、カフ式間欠血圧測定方式で夜間睡眠時間中の血圧測定のためのカフによる圧迫圧力を避ける為に自動起動周期を1時間とか2時間と長くして用いられている。 For this reason, in a 24-hour portable sphygmomanometer or a bedside monitoring sphygmomanometer, the cuff-type intermittent blood pressure measurement method has an automatic start cycle of 1 to avoid the pressure pressure due to the cuff for blood pressure measurement during nighttime sleep. It is used for a long time of 2 hours.

しかし、生体の血圧値は刻々変化していて、自動起動周期を長くすると、血圧値から生体現象を充分に把握することが出来なくなる場合が生じる。したがってカフ式間欠血圧計の起動を患者負担を軽減し、かつ生体現象を充分に把握できる時間間隔で起動することは極めて重要なことになる。また24時間携帯型血圧計においては、通常軽便性から電池による血圧監視装置の電源を供給していることからも、省電力化のためにカフによる圧迫圧力のためのポンプ等の加圧頻度は出来るだけ少なくすることが望まれている。 However, the blood pressure value of the living body changes every moment, and if the automatic start cycle is lengthened, there may be a case where the biological phenomenon cannot be sufficiently grasped from the blood pressure value. Therefore, it is extremely important to start up the cuff type intermittent blood pressure monitor at a time interval that reduces the burden on the patient and sufficiently grasps the biological phenomenon. In addition, since a 24-hour portable sphygmomanometer normally supplies battery-powered blood pressure monitoring devices because of its lightness, the pressurization frequency of pumps and the like for compression pressure by cuffs is low for power saving. It is desirable to reduce as much as possible.

そこで、血圧変動を患者負担を軽減し、かつ血圧の監視頻度を多くする方法として、カフ式間欠血圧計にセンサを追加してセンサからの生体情報をもとに血圧変動を測定、もしくは推定してカフ式間欠血圧計の起動を行なう方法が用いられている。 Therefore, as a method of reducing blood pressure fluctuation and reducing the burden on patients and increasing the blood pressure monitoring frequency, a sensor is added to the cuff intermittent blood pressure monitor, and blood pressure fluctuation is measured or estimated based on biological information from the sensor. A method of starting up a cuff type intermittent blood pressure monitor is used.

例えば、特許文献1によれば、カフ式間欠血圧計以外のセンサとして心電電極、および脈波センサを用いて、それらのセンサから得られる立ち上がり成分の時間差から脈波伝播速度を求め、脈波伝播速度の変動分からその変化成分が所定の閾値を越えたが場合にカフ式間欠血圧計の起動を行なう方法が用いられている。 For example, according to Patent Document 1, an electrocardiogram electrode and a pulse wave sensor are used as sensors other than the cuff type intermittent blood pressure monitor, and the pulse wave propagation velocity is obtained from the time difference between the rising components obtained from these sensors. A method is used in which the cuff type intermittent blood pressure monitor is activated when the change component exceeds a predetermined threshold value due to the fluctuation of the propagation speed.

また、特許文献2によれば、カフ式間欠血圧計以外のセンサとして心電電極、および脈波センサを用いて、それらのセンサから得られる立ち上がり成分の時間差から脈波伝播速度を求め、さらに心電波形の拍動周期、および脈波センサからの容積脈波波形の面積と合わせて血圧値を推定し、その変化成分が所定の閾値を越えたが場合にカフ式間欠血圧計の起動を行なう方法が用いられている。 According to Patent Document 2, an electrocardiographic electrode and a pulse wave sensor are used as sensors other than the cuff type intermittent blood pressure monitor, the pulse wave propagation velocity is obtained from the time difference between the rising components obtained from these sensors, and the heart rate is further increased. Estimate the blood pressure value together with the pulsation cycle of the radio wave type and the area of the volume pulse wave waveform from the pulse wave sensor, and activate the cuff type intermittent sphygmomanometer when the change component exceeds a predetermined threshold The method is used.

これらの、方法は何れも、カフ式間欠血圧計以外のセンサとして心電電極、および脈波センサの二種類のセンサを用いておりセンサ装着、およびセンサから血圧計への信号線の増加し、煩雑化する欠点を有していた。 Both of these methods use two types of sensors, an electrocardiogram electrode and a pulse wave sensor, as sensors other than the cuff-type intermittent sphygmomanometer, increasing the number of signal lines from the sensor to the sphygmomanometer, It had the disadvantage of becoming complicated.

また、カフ式間欠血圧計以外のセンサの煩雑さを低減する方法として、特許文献3による容積脈波センサの容積脈波の立ち上がり波形の角度を検出し、その変化成分が所定の閾値を越えたが場合にカフ式間欠血圧計の起動を行なう方法が提案されている。 In addition, as a method of reducing the complexity of sensors other than the cuff type intermittent blood pressure monitor, the angle of the rising waveform of the volume pulse wave of the volume pulse wave sensor according to Patent Document 3 is detected, and the change component exceeds a predetermined threshold value. In this case, a method of starting up a cuff type intermittent blood pressure monitor has been proposed.

これらの特許文献の方法では、血圧値の変化を検出する時間領域が容積脈波の立ち上がり波形の部分の数100ミリ秒に限定され、心臓拍動にともなう一拍ごとの脈波形の特徴分析による方法であり、比較的応答が遅い、例えば生体の血圧調節機構に寄与するとされている交感・副交感神経系の2秒〜20秒の現象は捉えていない欠点を有していた。 In the methods of these patent documents, the time region for detecting a change in blood pressure value is limited to several hundred milliseconds of the rising waveform portion of the volume pulse wave, and is based on a pulse waveform characteristic analysis for each heartbeat. This method has a drawback that the response is relatively slow, for example, the phenomenon of 2 to 20 seconds of the sympathetic / parasympathetic nervous system, which is considered to contribute to the blood pressure regulation mechanism of the living body, is not captured.

特許第3259082号公報Japanese Patent No. 3259082 特許第3330079号公報Japanese Patent No. 3330079 特開平11−309120号公報JP-A-11-309120

本発明は、以上の点に鑑み、一般的に血圧計として測定値が正確さ、信頼性、および過去の患者データとの連続性を有しているカフ間欠血圧計の測定方法を生かしながら、カフ間欠血圧計以外のセンサ数を最小限でカフ間欠血圧計の起動を可能とする方法を提供するもので、血圧変動を患者負担を軽減しながら、かつ血圧の監視頻度を多くする方法として、カフ式間欠血圧計に最小限のセンサを追加してセンサからの生体情報をもとに血圧変動の生じ得ることを推定してカフ式間欠血圧計の起動を行なうものであり、血圧値の変動値を推定するものとは方法を異とするものである。 In view of the above points, the present invention generally takes advantage of the measurement method of a cuff intermittent sphygmomanometer whose measurement value is accurate, reliable, and continuous with past patient data as a sphygmomanometer, As a method to enable the activation of the cuff intermittent sphygmomanometer with a minimum number of sensors other than the cuff intermittent sphygmomanometer, as a method of increasing the blood pressure monitoring frequency while reducing the patient burden of blood pressure fluctuations, A minimum sensor is added to the cuff intermittent sphygmomanometer, and the cuff intermittent sphygmomanometer is activated by estimating the possibility of blood pressure fluctuations based on biological information from the sensor. The method is different from that for estimating the value.

本発明でのカフ式間欠血圧計は生体の一部に巻回されるカフを有して、そのカフによる圧迫圧力を変化させることによりその生体の血圧値を測定する血圧計であり、カフの加圧値を生体の血圧値より30〜40mmHg高い圧力をかける必要があり、生体に負担をかけ、かつカフ圧のポンプによる加圧、血圧測定、及び排気などの測定補助時間も含め、1回の血圧測定に30〜40秒程度の時間を必要としていることからカフ式間欠血圧計の用語を用いた。また、カフ式間欠血圧計は、生体負担、鬱血、夜間睡眠の覚醒等から繰返し血圧測定の時間間隔は10〜15分以上の時間間隔を設けることが望ましいととされている。 A cuff-type intermittent sphygmomanometer according to the present invention is a sphygmomanometer that has a cuff wound around a part of a living body and measures the blood pressure value of the living body by changing the pressure applied by the cuff. It is necessary to apply a pressure 30 to 40 mmHg higher than the blood pressure value of the living body, burden the living body, and include measurement auxiliary time such as pressurization with a cuff pressure pump, blood pressure measurement, and exhaustion. The term of cuff type intermittent sphygmomanometer was used because it takes about 30 to 40 seconds for blood pressure measurement. In addition, it is said that it is desirable for the cuff-type intermittent sphygmomanometer to provide a time interval of 10 to 15 minutes or more for repeated blood pressure measurement due to a burden on the living body, congestion, awakening of nighttime sleep, and the like.

本発明によると、カフ式間欠血圧計以外のセンサとしては、容積脈波センサ、または心電電極からの生体信号を心臓拍動周期成分を検出し、その心拍周期成分を周波数成分分析することにより生体信号の周波数成分を選択抽出して、血圧変動が生じることを推定し、その変化成分が所定の閾値を越えたが場合にカフ間欠血圧計の起動を行なうものである。 According to the present invention, as a sensor other than the cuff type intermittent blood pressure monitor, a volume pulse wave sensor or a biological signal from an electrocardiogram electrode is detected by detecting a heartbeat period component and analyzing the frequency component of the heartbeat period component. The frequency component of the biological signal is selectively extracted to estimate that the blood pressure fluctuation occurs, and the cuff intermittent sphygmomanometer is activated when the change component exceeds a predetermined threshold value.

また、血圧変動が生じることを推定には、血圧変動値を推定するのではなく、生体の血圧調節機構に寄与するとされている交感・副交感神経系の2秒〜20秒の比較的ゆっくりとして現象をとらえ、交感・副交感神経系の変動により生体に何らかの変化があることを認識し、その情報でカフ間欠血圧計を起動するものである。 In addition, in order to estimate the occurrence of blood pressure fluctuation, rather than estimating the blood pressure fluctuation value, a relatively slow phenomenon of 2 to 20 seconds in the sympathetic / parasympathetic nervous system that is supposed to contribute to the blood pressure regulation mechanism of the living body. The system recognizes that there is some change in the living body due to fluctuations in the sympathetic / parasympathetic nervous system, and activates the cuff intermittent sphygmomanometer with that information.

この、生体の血圧調節機構に寄与するとされている交感・副交感神経系の分析には、センサからの検出信号から心臓拍動周期の時系列心拍周期信号を抽出し、この心拍周期信号の周波数成分分析を行ない、その大きさの時系列の変化成分から生体変化を検出する方法を用いている。 For the analysis of the sympathetic / parasympathetic nervous system that is considered to contribute to the blood pressure regulation mechanism of the living body, a time-series heartbeat period signal of the heartbeat period is extracted from the detection signal from the sensor, and the frequency component of the heartbeat period signal Analysis is performed, and a method of detecting a biological change from a time-series change component of the magnitude is used.

この生体の血圧調節機構に寄与するとされている交感・副交感神経系の分析の過去の文献によると、心臓拍動周期の周波数分析で、交感神経活動は0.1Hz中心に分散された変動が出現し、副交感神経系活動は0.25Hz中心に分散された変動が出現するとされている。 According to the past literature of sympathetic / parasympathetic nervous system analysis that is considered to contribute to the blood pressure regulation mechanism of the living body, the sympathetic nerve activity appears to be distributed in the center of 0.1 Hz in the frequency analysis of the cardiac cycle. However, the parasympathetic nervous system activity is said to show fluctuations dispersed around 0.25 Hz.

本発明によると、カフ間欠血圧測定法以外の検出手段により時系列的な心臓拍動周期を求め、その心拍周期を周波数成分分析し、あらかじめ設定した周波数分析帯域内の周期信号成分の大きさの時系列的な変動を求め、その変動があらかじめ設定された閾値を越えた場合に、生体変動が生じたと判断して、カフ間欠血圧計を起動するものである。 According to the present invention, a time-series heartbeat cycle is obtained by a detection means other than the cuff intermittent blood pressure measurement method, the heartbeat cycle is analyzed for frequency components, and the magnitude of the periodic signal component within a preset frequency analysis band is determined. A time-series variation is obtained, and when the variation exceeds a preset threshold, it is determined that a biological variation has occurred, and the cuff intermittent blood pressure monitor is activated.

この方法によると生体の血圧変動の基となる血圧調節機構に寄与するとされている交感・副交感神経系の解析による生体変動を判断の根拠としている為に、血圧変動も含めての生体変動を捉えることが出来るために、カフ式間欠血圧計で血圧測定間隔が10〜15分以上の時間間隔を設ける制約のもとに、血圧測定を生体変動の推定点で行なうことにより、血圧測定の最良化する方法提供するものと言える。 According to this method, biological fluctuations based on analysis of sympathetic and parasympathetic nervous systems, which are considered to contribute to the blood pressure regulation mechanism that is the basis of blood pressure fluctuations in the body, are used as the basis for judgment, so biological fluctuations including blood pressure fluctuations are captured. Therefore, it is possible to optimize blood pressure measurement by performing blood pressure measurement at an estimated point of biological fluctuation under the restriction that a blood pressure measurement interval is set to 10-15 minutes or more with a cuff type intermittent blood pressure monitor. It can be said that it provides a way to.

本発明によると、カフ式間欠血圧計以外のセンサとしては、容積脈波センサ、または心電電極センサ、もしくはこれらのセンサも用い無くても良い方法を提供するものである。 According to the present invention, as a sensor other than the cuff type intermittent blood pressure monitor, a volume pulse wave sensor, an electrocardiographic electrode sensor, or a method that does not require the use of these sensors is provided.

本発明は以上のような事情を背景として為されたものであり、その目的とするところは、生体に簡易に装着でき、生体にそれほど負担を強いることなく、正確な血圧監視が可能なカフ間欠血圧装置を提供することにある。 The present invention has been made against the background of the above circumstances, and the purpose of the present invention is to provide a cuff intermittently that can be easily attached to a living body and can accurately monitor blood pressure without imposing a burden on the living body. The object is to provide a blood pressure device.

本発明者は、カフ式間欠血圧計と光電脈波検出器、および心電電極による脈波周期情報測定機能を有した24時間携帯型血圧計を背景として種々研究を重ねるうち、血圧値の長時間変動と生体の脈波周期変動が密接に関連して変化する事実を見いだした知見に基づいて為されたものであり、煩わしいセンサの追加を極力避け生体の血圧値の変化を上記脈波周期変動の変化に基づいて監視し、患者負担を軽減し、かつ血圧の監視頻度を多くする方法を実現したものである。 The present inventor has conducted research on cuff-type intermittent sphygmomanometers, photoelectric pulse wave detectors, and 24-hour portable sphygmomanometers having a pulse wave period information measurement function using electrocardiographic electrodes. It was based on the finding of the fact that time fluctuations and biological pulse wave cycle fluctuations were closely related and changed, avoiding the addition of annoying sensors as much as possible, and changing the blood pressure value of the living body to the above pulse wave cycle This is a method for monitoring based on changes in fluctuation, reducing the burden on the patient, and increasing the monitoring frequency of blood pressure.

すなわち本発明の要旨とするところは、生体の血圧を監視する血圧監視装置であって、(a) 前記生体の一部への圧迫圧力を変化させるカフを用いてその生体の血圧値を測定する血圧測定手段と、(b) 前記生体の容積脈波を逐次検出する容積脈波検出装置、と、または前記生体の心電波形を逐次検出する心電波形検出装置をそなえ、(c) その検出装置により心臓拍動周期を算出する心拍周期算出手段、(d) その得られた心拍周期情報を周波数成分に分解する周波数成分分析手段と、(e) その周波数成分分析値の変動値が予め設定された判断基準範囲を越えたことに基づいて前記血圧測定手段による血圧測定を起動させる血圧測定起動手段とを、含むことにある。 That is, the gist of the present invention is a blood pressure monitoring device that monitors the blood pressure of a living body, and (a) measures the blood pressure value of the living body using a cuff that changes the pressure applied to a part of the living body. Blood pressure measuring means; and (b) a volume pulse wave detecting device that sequentially detects the volume pulse wave of the living body, or an electrocardiographic waveform detecting device that sequentially detects the electrocardiographic waveform of the living body, and (c) the detection thereof. Heart rate cycle calculating means for calculating a heart beat cycle by the device, (d) frequency component analyzing means for decomposing the obtained heart cycle information into frequency components, and (e) a variation value of the frequency component analysis value is preset. Blood pressure measurement activation means for activating blood pressure measurement by the blood pressure measurement means based on exceeding the determined judgment reference range.

このようにすれば、心拍周期情報を周波数成分に分解する周波数成分分析手段によりその周波数成分分析値が予め設定された判断基準範囲を越えたことに基づいて前記血圧測定手段による血圧測定が起動される。
従って、その周波数成分分析値により血圧変動の起こり得る可能性が推定されて、カフ式間欠血圧計を起動し血圧値を実行することから、血圧測定が短い周期で不要に実行されることが解消されるので、カフを用いた血圧値測定頻度が低減され、生体に対する負担が軽減されて、正確な血圧監視ができる。
In this way, the blood pressure measurement by the blood pressure measurement means is activated based on the fact that the frequency component analysis value exceeds the preset judgment reference range by the frequency component analysis means for decomposing the heartbeat period information into frequency components. The
Therefore, the possibility of blood pressure fluctuation is estimated from the frequency component analysis value, and the cuff type intermittent sphygmomanometer is activated and the blood pressure value is executed, so that the blood pressure measurement is not executed unnecessarily in a short cycle. Therefore, the blood pressure value measurement frequency using the cuff is reduced, the burden on the living body is reduced, and accurate blood pressure monitoring can be performed.

また、生体の血圧変動の基本となる生体の血圧調節機構に寄与するとされている交感・副交感神経系の寄与を求めるには周波数帯域毎の心臓拍動周期の成分の変動の大きさで判断することが出来るので、時系列的な心臓拍動周期をFFT周波数分析方法、またはバンドパスフイルタ(BPF)で周波数帯域毎の成分を取りだし、その変動の時系列変化を解析することにより実現できる。 In addition, in order to determine the contribution of the sympathetic / parasympathetic nervous system that is supposed to contribute to the blood pressure regulation mechanism of the living body, which is the basis of the blood pressure fluctuation of the living body, the determination is made based on the magnitude of the fluctuation of the component of the heart beat cycle for each frequency band. Therefore, it is possible to realize a time-series heart beat cycle by extracting components for each frequency band using an FFT frequency analysis method or a band-pass filter (BPF) and analyzing the time-series change of the fluctuation.

また、本発明では、前記周波数帯域毎の成分を取り出す為の周波数帯域は、生体の血圧調節機構に寄与するとされている交感・副交感神経系の変動成分が信号として現われる周波数帯域は0.05Hz〜0.15Hzの低周波成分LF、また、呼吸調整機構に寄与される周波数帯域は0.2Hz〜0.4Hzの高周波成分HFとしている。 In the present invention, the frequency band for extracting the component for each frequency band is 0.05 Hz to a frequency band in which a fluctuation component of the sympathetic / parasympathetic nervous system which is supposed to contribute to the blood pressure regulation mechanism of the living body appears as a signal. The low frequency component LF of 0.15 Hz and the frequency band that contributes to the respiratory adjustment mechanism are the high frequency component HF of 0.2 Hz to 0.4 Hz.

前記周波数帯域は血圧を測定する生体に応じて、応用時の目的、要求などにより適宜の値を設定しても良い。 The frequency band may be set to an appropriate value according to the purpose and demand at the time of application according to the living body for measuring blood pressure.

このようにすれば、心拍周期情報を周波数成分に分解する周波数成分分析手段によりその周波数成分分析値の変動値が予め設定された判断基準範囲を越えたことに基づいて前記血圧測定手段による血圧測定が起動される。
従って、その周波数成分分析値により血圧変動の起こり得る可能性が推定されて、カフ式間欠血圧計を起動し血圧値を実行することから、血圧測定が短い周期で不要に実行されることが解消されるので、カフを用いた血圧値測定頻度が低減され、生体に対する負担が軽減されて、正確な血圧監視ができる。
In this way, the blood pressure measurement by the blood pressure measurement means based on the fact that the fluctuation value of the frequency component analysis value exceeds the preset judgment reference range by the frequency component analysis means for decomposing the heartbeat period information into frequency components. Is activated.
Therefore, the possibility of blood pressure fluctuation is estimated from the frequency component analysis value, and the cuff type intermittent sphygmomanometer is activated and the blood pressure value is executed, so that the blood pressure measurement is not executed unnecessarily in a short cycle. Therefore, the blood pressure value measurement frequency using the cuff is reduced, the burden on the living body is reduced, and accurate blood pressure monitoring can be performed.

本発明では、心拍周期情報を生体の容積脈波を逐次検出する容積脈波検出装置、と、または前記生体の心電波形を逐次検出する心電波形検出装置から検出しているが、心臓拍動に応じた心拍周期情報を得るものであれば、例えば血管部位の生体表面に圧力センサを押し付ける、および間欠血圧計のカフの生体側に脈圧検出用の圧力センサを挿入する等の、他の方法の検出器を用いても実現できる。 In the present invention, the cardiac cycle information is detected from the volume pulse wave detection device that sequentially detects the volume pulse wave of the living body, or the electrocardiogram waveform detection device that sequentially detects the electrocardiogram waveform of the living body. As long as the heart cycle information corresponding to the movement can be obtained, for example, a pressure sensor is pressed against the living body surface of the blood vessel site, and a pressure sensor for detecting the pulse pressure is inserted on the living body side of the cuff of the intermittent blood pressure monitor. This can also be realized using a detector of the above method.

また、前記目的を達成するための第2発明の要旨とするところは、生体の血圧を監視する血圧監視装置であって、(a) 前記生体の一部への圧迫圧力を変化させるカフを用いてその生体の血圧値を測定する血圧測定手段と、(b) 前記圧迫圧力を変化させるカフの圧力を血圧測定以外の時間に所定の圧力を印加する脈波検出カフ圧発生手段をなえ、(c) 前記脈波検出カフ圧発生手段で圧力を印加したカフから心臓拍動周期を算出する心拍周期算出手段、(d) 得られた心拍周期情報を周波数成分に分解する周波数成分分析手段、(e)および周波数成分分析値の変動値が予め設定された判断基準範囲を越えたことに基づいて前記血圧測定手段による血圧測定を起動させる血圧計測定起動手段とを、含むことにある。 In addition, the gist of the second invention for achieving the above object is a blood pressure monitoring apparatus for monitoring blood pressure of a living body, and (a) using a cuff that changes the pressure applied to a part of the living body. Blood pressure measuring means for measuring the blood pressure value of the living body, and (b) pulse wave detection cuff pressure generating means for applying a predetermined pressure to the cuff pressure for changing the compression pressure at a time other than blood pressure measurement, (c) Heart rate cycle calculating means for calculating a heart beat cycle from the cuff applied with pressure by the pulse wave detection cuff pressure generating means, (d) Frequency component analyzing means for decomposing the obtained heart cycle information into frequency components, and (e) and a sphygmomanometer measurement activation unit that activates the blood pressure measurement by the blood pressure measurement unit based on the fact that the fluctuation value of the frequency component analysis value exceeds a preset criterion range.

このようにすれば、心拍周期情報をカフ式間欠血圧測定に使用するカフを用いて、血圧測定値以外の時間に得ることでき、その心拍周期情報を周波数成分に分解する周波数成分分析手段によりその周波数成分分析値の変動値が予め設定された判断基準範囲を越えたことに基づいて前記血圧測定手段による血圧測定が起動される。この方法によると、間欠血圧計以外にセンサ、および追加回路を付加することなく、本発明の課題が解決される。 In this way, the heart cycle information can be obtained at a time other than the blood pressure measurement value by using the cuff used for the cuff type intermittent blood pressure measurement, and the heart rate cycle information can be obtained by the frequency component analyzing means for decomposing the heart cycle information into frequency components. Based on the fact that the fluctuation value of the frequency component analysis value exceeds a preset criterion range, blood pressure measurement by the blood pressure measurement means is started. According to this method, the problem of the present invention is solved without adding a sensor and an additional circuit other than the intermittent blood pressure monitor.

また、生体の血圧変動の基本となる生体の血圧調節機構に寄与するとされている交感・副交感神経系の寄与を求めるには周波数帯域毎の心臓拍動周期の成分の変動の大きさで判断することが出来るので、時系列的な心臓拍動周期をFFT周波数分析方法、またはBPFで周波数帯域毎の成分を取りだし、その変動の時系列変化を解析することにより実現できる。 In addition, in order to determine the contribution of the sympathetic / parasympathetic nervous system that is supposed to contribute to the blood pressure regulation mechanism of the living body, which is the basis of the blood pressure fluctuation of the living body, the determination is made based on the magnitude of the fluctuation of the component of the heart beat cycle for each frequency band. Therefore, it is possible to realize a time-series heart beat cycle by extracting a component for each frequency band using the FFT frequency analysis method or BPF and analyzing the time-series change of the fluctuation.

また、本発明では、前記周波数帯域毎の成分を取り出す為の周波数帯域は、生体の血圧調節機構に寄与するとされている交感・副交感神経系の変動成分が信号として現われる周波数帯域は0.05Hz〜0.15Hzの低周波成分LF、また、呼吸調整機構に寄与される周波数帯域は0.2Hz〜0.4Hzの高周波成分HFとしている。 In the present invention, the frequency band for extracting the component for each frequency band is 0.05 Hz to a frequency band in which a fluctuation component of the sympathetic / parasympathetic nervous system which is supposed to contribute to the blood pressure regulation mechanism of the living body appears as a signal. The low frequency component LF of 0.15 Hz and the frequency band that contributes to the respiratory adjustment mechanism are the high frequency component HF of 0.2 Hz to 0.4 Hz.

また、好適には、心臓拍動周期としての周期変動情報を同時に算出している為にこの測定値を利用することにより血圧値の変動を解析する補助情報として患者の状態の推定が出来る利点がある。 Further, preferably, since the period fluctuation information as the heart beat period is calculated at the same time, there is an advantage that the patient state can be estimated as auxiliary information for analyzing the fluctuation of the blood pressure value by using this measurement value. is there.

本発明によると、容積脈波もしくは心電の心臓拍動の周期の変動を周波数分析することにより、また周波数帯域を所定の周波数範囲に設定することにより、生体変動の変化を推定することにより、カフ式間欠血圧計が有する最小繰返し血圧測定時間間隔の制約内で、患者負担を軽減するとともに、間欠血圧計に付属センサ、回路、結線を少ない方式で血圧測定起動を行い、カフ式間欠血圧計での測定値を生体現象把握のために有効活用するものである。   According to the present invention, by analyzing the frequency fluctuation of the period of the volume pulse wave or the heartbeat of the electrocardiogram, and by estimating the change of the biological fluctuation by setting the frequency band to a predetermined frequency range, The cuff-type intermittent sphygmomanometer is designed to reduce the burden on the patient within the constraints of the minimum repeated blood pressure measurement time interval of the cuff-type intermittent sphygmomanometer, and to start blood pressure measurement with fewer sensors, circuits, and connections with the intermittent sphygmomanometer. The measured value at the center is effectively used for grasping biological phenomena.

以下、本発明の一実施例を図面に基づいて詳細に説明する。図1は、実施例である血圧監視装置の要部を説明する機能ブロック線図である。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram illustrating a main part of a blood pressure monitoring apparatus according to an embodiment.

図1において、血圧監視装置は、ゴム製袋を布製帯状袋内に有してたとえば患者の上腕部に巻回されるカフ11と、このカフ11に配管を介してそれぞれ接続された圧力センサ110、排気弁131、および加圧用空気ポンプ130とを備えている。この排気弁131は、カフ11内への圧力の供給を許容する圧力供給状態、カフ10内を徐々に排圧する徐速排圧状態、およびカフ10内を急速に排圧する急速排圧状態の3つの状態に切り換えられるように構成されている。 In FIG. 1, the blood pressure monitoring apparatus includes a cuff 11 having a rubber bag in a cloth belt-like bag and wound around, for example, a patient's upper arm, and a pressure sensor 110 connected to the cuff 11 via a pipe. And an exhaust valve 131 and a pressurizing air pump 130. The exhaust valve 131 includes a pressure supply state that allows the supply of pressure into the cuff 11, a slow exhaust pressure state that gradually exhausts the cuff 10, and a quick exhaust pressure state that rapidly exhausts the cuff 10. It is configured to be switched to one state.

図2(a) に、本発明に係わる血圧測定方法の全体のフローチャートを示す。また図2(b)は間欠血圧計起動判定S530、及び図2(c)は間欠血圧計起動調整S540のフローチャートを示している。
以下、図1の機能ブロック線図、および図2のフローチャートにより、本発明の概要を説明する。
FIG. 2 (a) shows an overall flowchart of the blood pressure measurement method according to the present invention. FIG. 2B shows a flowchart of the intermittent sphygmomanometer activation determination S530, and FIG. 2C shows a flowchart of the intermittent sphygmomanometer activation adjustment S540.
The outline of the present invention will be described below with reference to the functional block diagram of FIG. 1 and the flowchart of FIG.

まず、図2(a) に初期処理S510で血圧監視装置での生体での測定開始にあたり、測定条件を設定する。
設定は図示はしてないが、通常のあらかじめ定められている設定内容を表示器、およびキイボードを用いて対話型手動設定方法で、容易に設定でき、設定された条件は図1の血圧測定手段19、および血圧計起動判定手段41の制御条件として記憶される。
First, in FIG. 2A, in the initial process S510, the measurement conditions are set at the start of measurement in the living body by the blood pressure monitoring apparatus.
Although the setting is not shown in the drawing, normal predetermined setting contents can be easily set by an interactive manual setting method using a display and a keyboard, and the set conditions are the blood pressure measuring means of FIG. 19 and the control conditions of the sphygmomanometer activation determination means 41 are stored.

設定条件としてはカフ式間欠血圧計の測定周期、心臓拍動周期成分の周波数分析帯域、周波数分析値の変動値の血圧計起動判定閾値、最小カフ式間欠血圧計起動時間間隔がある。この最小カフ式間欠血圧計起動時間間隔はカフ式血圧計の繰返し測定間隔の最小間隔時間を設定するもので、生体の昼夜、行動パターンを加味して時間帯毎の最小カフ式間欠血圧計起動時間間隔を設定しても良い。 The setting conditions include a measurement cycle of the cuff type intermittent blood pressure monitor, a frequency analysis band of the heartbeat period component, a blood pressure meter activation determination threshold value of a fluctuation value of the frequency analysis value, and a minimum cuff type intermittent blood pressure meter activation time interval. This minimum cuff type intermittent sphygmomanometer activation time interval sets the minimum interval time of the repeated measurement interval of the cuff type sphygmomanometer, and the minimum cuff type intermittent sphygmomanometer activation for each time zone taking into account the behavior pattern of the living body day and night A time interval may be set.

測定が開始されると、まず、心臓拍動周期信号を得る為に光電容積脈波センサ31により脈波を求める。 When the measurement is started, first, a pulse wave is obtained by the photoelectric volume pulse wave sensor 31 in order to obtain a heart beat period signal.

容積脈波検出装置として機能する図1の光電脈波センサ31は、たとえば脈拍検出などに用いるものと同様に構成されており、図3に示す様に生体の末梢部位に図示しないクリップ、装着バンド等により装着され、生体314の一部を収容可能なハウジング313内に、ヘモグロビンによって反射可能な波長帯の赤色光或いは赤外光を生体の表皮に向かって照射する光源である発光素子315と、表皮内からの散乱光を検出する光検出素子316とを備え、毛細血管内の血液容積に対応する光電脈波信号を出力し、A/D変換器を介して図1の全波形記憶手段33に供給する。
この容積脈波信号は、心臓拍動の一拍毎に対応する脈動信号であって、表皮内の毛細血管内のヘモグロビンの量すなわち血液容積に対応している。
The photoelectric pulse wave sensor 31 of FIG. 1 that functions as a volume pulse wave detection device is configured in the same manner as that used for pulse detection, for example, and as shown in FIG. A light-emitting element 315 that is a light source that irradiates red light or infrared light in a wavelength band that can be reflected by hemoglobin toward the epidermis of the living body, in a housing 313 that is mounted by the And a photodetection element 316 that detects scattered light from within the epidermis, outputs a photoelectric pulse wave signal corresponding to the blood volume in the capillary, and stores the entire waveform storage means 33 of FIG. 1 via the A / D converter. To supply.
This plethysmogram signal is a pulsation signal corresponding to each heart beat, and corresponds to the amount of hemoglobin in the capillaries in the epidermis, that is, the blood volume.

図3の例の容積脈波検出装置は透過型の例であるが、反射型でも良い。また、脈波検出部位は本例のような指先、上腕に先回される、またはカフと生体表面間に配置されるセンサでも良い。 The volume pulse wave detection device in the example of FIG. 3 is a transmission type example, but may be a reflection type. Further, the pulse wave detection site may be a sensor that is advanced around the fingertip, upper arm, or disposed between the cuff and the living body surface as in this example.

次に、間欠血圧計起動の判定は図2(b)に示す様に容積脈波信号は図1の脈波特徴点検出手段35により、個別拍動毎の脈波の特徴部分を抽出し、脈波周期算出手段38により脈波毎の特徴部分の経過時間を測定して脈波周期が算出される。この、脈波特徴点検出手段35は時系列的に連続した脈波信号を微分しその正、または負のピークの時間位置を求めることにより行なわれる。脈波特徴点検出手段35の実現方法は連続した脈波信号の一個の脈波の特徴点を検出できる方法であれば他の方法でも良い。 Next, as shown in FIG. 2B, the intermittent sphygmomanometer activation is determined by extracting the characteristic portion of the pulse wave for each individual pulse from the volume pulse wave signal by the pulse wave feature point detecting means 35 of FIG. The pulse wave period is calculated by measuring the elapsed time of the characteristic portion for each pulse wave by the pulse wave period calculating means 38. The pulse wave feature point detecting means 35 is performed by differentiating the pulse wave signal continuous in time series and obtaining the time position of the positive or negative peak. The realization method of the pulse wave feature point detecting means 35 may be another method as long as it can detect the feature point of one pulse wave of a continuous pulse wave signal.

この、脈波周期算出手段38では、脈波特徴点検出手段35により特徴点を検出された時系列信号は脈波周期算出手段38で得られた、時間軸に対して不等間隔な連続的なディスクリートな周期信号を時間軸に対し等間隔な周期信号に変換する為に、不等間隔な連続的なディスクリートな周期信号のラグランジェ補間を行い、さらに所定の例えば0.5秒毎にサンプリングを行い時間軸に対し等間隔な周期信号に変換することも行なわれる。これは、周波数成分分析では時間軸に対し等間隔な時系列信号の解析を行なえるための変換である。 In this pulse wave cycle calculation means 38, the time series signal whose feature points have been detected by the pulse wave feature point detection means 35 is obtained by the pulse wave cycle calculation means 38 and is continuously distributed at unequal intervals. In order to convert a discrete periodic signal into a periodic signal that is equally spaced with respect to the time axis, Lagrangian interpolation of continuous discrete periodic signals with unequal spacing is performed, and sampling is performed every predetermined 0.5 seconds, for example To convert the signal into periodic signals that are equally spaced with respect to the time axis. This is a conversion for performing analysis of time series signals that are equally spaced with respect to the time axis in the frequency component analysis.

本発明では、脈波周期算出手段38で5msec程度のサンプリング信号で128、又は256の連続した脈波を時間軸に対して不等間隔な連続的なディスクリートな周期信号として求め、個別データが大きくずれた場合にデータを省く離れ値処理をし、ラグランジェ補間を行ったあと、2Hz信号でリサンプリングすることにより時間軸に対し等間隔な周期信号に変換している。
次に、この時間軸に対し等間隔な周期信号に対し脈波周期周波数分析手段39により周波数成分分析を行なう。
In the present invention, the pulse wave period calculating means 38 obtains 128 or 256 continuous pulse waves with a sampling signal of about 5 msec as continuous discrete periodic signals with unequal intervals with respect to the time axis, and the individual data is large. In the case of deviation, data is omitted, data is processed, Lagrangian interpolation is performed, and then re-sampling is performed with a 2 Hz signal to convert the signal into a periodic signal that is equally spaced with respect to the time axis.
Next, the frequency component analysis is performed by the pulse wave period frequency analysis means 39 on the periodic signal at equal intervals with respect to the time axis.

周波数成分解析は、高速フーリエ変換法を利用した周波数分析をあらかじめ設定された所定の時間区間毎に施すことにより、周波数分析される。
周波数分析方法は高速フーリエ変換、連続ウエーブレット変換、最大エントロピー法等が利用できるが、本発明では周波数分解能は比較的必要としないために簡便な高速フーリエ変換法を用いている。
The frequency component analysis is performed by performing frequency analysis using a fast Fourier transform method for each predetermined time interval set in advance.
As a frequency analysis method, a fast Fourier transform, a continuous wavelet transform, a maximum entropy method, or the like can be used. However, since a frequency resolution is relatively unnecessary in the present invention, a simple fast Fourier transform method is used.

脈波周期周波数分析手段39では時間軸に対し等間隔な周期信号の自己相関関数を求め、そのフーリエ変換によりパワースペクトルを求めている。脈波周期周波数分析手段39での高速フーリエ変換は、時間軸に対し等間隔な周期信号に対する高速フーリエ変換であり、最近のマイクロプロセッサーでのデジタル信号処理技術により容易に実現できるので、説明からは省く。 The pulse wave periodic frequency analysis means 39 obtains an autocorrelation function of periodic signals that are equally spaced with respect to the time axis, and obtains a power spectrum by Fourier transform thereof. The fast Fourier transform in the pulse wave periodic frequency analysis means 39 is a fast Fourier transform with respect to a periodic signal that is equally spaced with respect to the time axis, and can be easily realized by a digital signal processing technique in a recent microprocessor. Omit.

図4に、周波数分析結果の例を示す。図4の例では最右縦軸の示す24時間の経時時刻に従って脈波周期信号のパワースペクトル分析値を最左のグラフに、その周波数分析結果を周波数帯域0.05Hz〜0.15HzのLF帯域の信号成分の大きさを破線で、周波数帯域0.2Hz〜0.4HzのHF帯域の信号成分の大きさを実線として図4の中央のグラフとして示し、またLF/HFを最右のグラフに示している。図4では、図の煩雑性を避けるために30分毎のグラフを示している。実際の脈波周期周波数分析手段39からは2〜5分後とにパワースペクトルが出力される。 FIG. 4 shows an example of the frequency analysis result. In the example of FIG. 4, the power spectrum analysis value of the pulse wave periodic signal is shown in the leftmost graph according to the time of 24 hours indicated by the rightmost vertical axis, and the frequency analysis result is shown in the LF band of the frequency band 0.05 Hz to 0.15 Hz. 4 is shown as a central graph in FIG. 4 with a broken line, a signal component in the HF band of the frequency band 0.2 Hz to 0.4 Hz as a solid line, and LF / HF in the rightmost graph. Show. FIG. 4 shows a graph every 30 minutes in order to avoid the complexity of the figure. A power spectrum is output from the actual pulse wave frequency analysis means 39 after 2 to 5 minutes.

脈波周期周波数分析手段39で得られた例では、1日24時間の経時時刻について夜間就寝時22時から2時にかけて周波数帯域0.05Hz〜0.15HzのLF帯域の信号成分が減少し、日昼の大きく時間帯では周波数帯域は0.2Hz〜0.4Hzの高周波成分HF成分は低値を示している。 In the example obtained by the pulse wave period frequency analysis means 39, the signal component of the LF band of the frequency band 0.05 Hz to 0.15 Hz decreases from 22:00 to 2 o'clock at bedtime for 24 hours a day, In daytime and large time zones, the high frequency component HF component in the frequency band of 0.2 Hz to 0.4 Hz shows a low value.

この脈波周期信号のHF、LF、LF/HFの各帯域に周波数分析された値は、患者の血圧値を決める自律神経活動と密接に関係し血圧調整機構、および呼吸調整機構の影響を受けた成分と解釈されている。周波数成分的には血圧調整機構と低周波成分LFが関係し、その周波数帯域は0.05Hz〜0.15Hzであり、自律神経活動としては交感神経、および副交感神経が調節に寄与しているとされ、また、呼吸調整機構は高周波成分HFが関係し、その周波数帯域は0.2Hz〜0.4Hzであり、自律神経活動としては副交感神経が調節に寄与しているとされている。
また低周波成分LF と高周波成分HFの比のLF/HFは交感神経活動指標とされている。
The frequency-analyzed values of this pulse wave periodic signal in each of the HF, LF, and LF / HF bands are closely related to the autonomic nerve activity that determines the blood pressure value of the patient, and are affected by the blood pressure adjustment mechanism and the respiratory adjustment mechanism. Component. In terms of frequency components, the blood pressure adjustment mechanism and the low frequency component LF are related, and the frequency band is 0.05 Hz to 0.15 Hz. As the autonomic nerve activity, the sympathetic nerve and the parasympathetic nerve contribute to the adjustment. In addition, the respiratory adjustment mechanism is related to the high frequency component HF, the frequency band is 0.2 Hz to 0.4 Hz, and the parasympathetic nerve is considered to contribute to the regulation as the autonomic nerve activity.
The ratio LF / HF of the ratio of the low frequency component LF to the high frequency component HF is used as a sympathetic nerve activity index.

この、血圧駆動の判断はLF、HF、及びLF/HFで判断されるが、本発明では交感神経活動指標とされるLF/HFで判断するのが一番好ましいとされ、図4の最右のLF/HFグラフの変動特性を示す時間を、血圧変動も含めての生体変動を捉える生体変動が生じた所と推定している。 This determination of blood pressure drive is determined by LF, HF, and LF / HF, but in the present invention, it is most preferable to determine by LF / HF, which is a sympathetic nerve activity index, and the rightmost in FIG. The time indicating the fluctuation characteristics of the LF / HF graph is estimated as the place where the biological fluctuation that captures the biological fluctuation including the blood pressure fluctuation has occurred.

この周波数分析結果を基にした、LF/HFグラフの変動特性を血圧起動判定手段41によって、所定の変化幅、例えば10%、もしくは20%のような閾値と比較して生体変動を推定している。
この、生体変動を推定は実際応用時の目的、要求などにより、LF、HF、及びLF/HFの組合せで、かつ判定閾値も適宜の値を用いることが出来る。
Based on this frequency analysis result, the fluctuation characteristics of the LF / HF graph are compared with a predetermined change width, for example, a threshold value such as 10% or 20%, by the blood pressure activation determination means 41 to estimate the biological fluctuation. Yes.
The estimation of the biological variation can be performed using a combination of LF, HF, and LF / HF, and an appropriate value for the determination threshold depending on the purpose and demand at the time of actual application.

さらに血圧起動判定手段41では周波数分析手段39により、脈波周期信号をHF、LF、LF/HFの各帯域に周波数分析された結果に基づいて血圧変動が生じることを推定することにより、間欠血圧計の起動が必要か否かの判定を行い、さらに間欠血圧測定が適度の時間間隔で起動することを決定する。
これは、間欠血圧測定では、カフの生体に対する圧迫頻度が高くなるので大きな負担を生体に強いる欠点があり、例えば夜間睡眠中に血圧測定が起動されると患者が覚醒することがあるし、また、カフによる圧迫頻度が極端に高くなると、鬱血が生じて正確な血圧値が得られなくなる場合を考慮して、間欠血圧測定でのカフの圧迫頻度をある時間、例えば15分以内に起動することを避ける為である。
Further, the blood pressure activation determination means 41 estimates the occurrence of blood pressure fluctuations based on the result of frequency analysis of the pulse wave period signal in each of the HF, LF, and LF / HF bands by the frequency analysis means 39, thereby causing intermittent blood pressure. It is determined whether or not the meter needs to be activated, and it is further determined that intermittent blood pressure measurement is activated at appropriate time intervals.
This is because intermittent blood pressure measurement has a drawback that the frequency of cuff compression against the living body is high, so there is a disadvantage that it imposes a heavy burden on the living body.For example, if blood pressure measurement is activated during nighttime sleep, the patient may wake up. Trigger cuff compression frequency in intermittent blood pressure measurement within a certain period of time, for example, 15 minutes, taking into account the occurrence of congestion and the inability to obtain accurate blood pressure values when cuff pressure is extremely high Is to avoid.

血圧計起動判定手段41では、図2(c)に示す様に前回のカフ式血圧測定時刻と生体変動を推定された信号との時間間隔と、最小カフ式間欠血圧計起動時間間隔とを比較し、カフ式間欠血圧計起動間隔に制限を設けている。この間欠血圧計起動調整で判定された条件でカフ式血圧計の血圧測定開始信号が図1の血圧測定手段19におくられ血圧測定が開始される。 As shown in FIG. 2 (c), the sphygmomanometer start determining means 41 compares the time interval between the previous cuff blood pressure measurement time and the estimated biological fluctuation with the minimum cuff intermittent sphygmomanometer start time interval. In addition, the cuff type intermittent blood pressure monitor activation interval is limited. The blood pressure measurement start signal of the cuff sphygmomanometer is sent to the blood pressure measurement means 19 in FIG.

図1の上部には間欠血圧計が示されていて、カフ圧制御手段13は、予め設定された所定の周期で起動させられる血圧測定手段19の測定期間において、カフ11の圧迫圧力をよく知られた測定手順に従って変化させる。たとえば、カフ圧制御手段13は、生体の最高血圧より高い180mmHg程度に設定された昇圧目標値までカフ11を昇圧させた後に、血圧測定アルゴリズムが実行される測定区間では3mmHg/sec程度の速度で緩やかに降圧させ、血圧測定が終了すると排気弁131と開放し、カフ11の圧力を解放させる。血圧測定手段19は、カフ11の圧迫圧力の緩やかな変化過程においてカフ11の圧力振動として得られた脈波の大きさの変化に基づいてよく知られたオシロメトリック法により患者の最高血圧値、平均血圧値、および最低血圧値をそれぞれ測定し、血圧表示手段23に表示させる。 An intermittent sphygmomanometer is shown in the upper part of FIG. 1, and the cuff pressure control means 13 knows the compression pressure of the cuff 11 well during the measurement period of the blood pressure measurement means 19 that is activated at a predetermined cycle set in advance. Change according to the measurement procedure specified. For example, the cuff pressure control means 13 boosts the cuff 11 to a boost target value set to about 180 mmHg, which is higher than the maximum blood pressure of the living body, and then at a speed of about 3 mmHg / sec in the measurement section in which the blood pressure measurement algorithm is executed. When the blood pressure measurement is completed, the exhaust valve 131 is opened and the pressure of the cuff 11 is released. The blood pressure measurement means 19 is configured to detect the patient's maximum blood pressure value by an oscillometric method, which is well-known based on a change in the magnitude of the pulse wave obtained as the pressure vibration of the cuff 11 in the gradual change process of the compression pressure of the cuff 11. The average blood pressure value and the minimum blood pressure value are measured and displayed on the blood pressure display means 23.

また、好適には、図1のSPO2表示手段45のような、容積脈波センサ31を利用して経皮血管内酸素飽和度を求めて表示することによる補助情報として患者の状態の推定が出来る利点がある。 Preferably, the patient's condition can be estimated as auxiliary information by obtaining and displaying the percutaneous oxygen saturation using the volume pulse wave sensor 31 such as the SPO2 display means 45 of FIG. There are advantages.

ここの説明では周波数分析方法について高速フーリエ変換法を利用した周波数分析方法で行なわれているが、この機能の実現することは、図5に示すバンドパスフィルタ法でも実現できる。 In this description, the frequency analysis method is performed by the frequency analysis method using the fast Fourier transform method. However, this function can be realized by the band-pass filter method shown in FIG.

バンドパスフイルタで実現するには脈波周期算出手段38で算出された時間軸に対し等間隔な周期信号を、図5に示す様にHF、LFに区分されたデジタル信号処理方式の各々のBPF HF、及びBPF LFにより周波数分析が行なわれる。 In order to realize with a band pass filter, periodic signals that are equally spaced with respect to the time axis calculated by the pulse wave period calculating means 38 are converted into BPFs of digital signal processing methods divided into HF and LF as shown in FIG. Frequency analysis is performed by HF and BPF LF.

バンドパスフィルタの所定のハイカット、及びローカットの周波数パラメータ、あらかじめ設定された値、もしくは使用目的に合わせて設定しても良い。 A predetermined high-cut and low-cut frequency parameter of the bandpass filter, a preset value, or a use purpose may be set.

得られるHF、LF信号の振幅を求めることにより、各々のHF、LF、及びLF/HF成分が得られる。血圧計起動判定手段41以降の方法は前述の周波数分析方法と同じである。
これらの値は、実際応用時の目的、要求などにより適宜の値を用いることが出来る。
By obtaining the amplitudes of the obtained HF and LF signals, the respective HF, LF, and LF / HF components are obtained. The method after the sphygmomanometer activation determination means 41 is the same as the frequency analysis method described above.
As these values, appropriate values can be used depending on the purpose and demand of actual application.

次に、本発明の第2の実施例について図面に基づいて詳細に説明する。尚、上記実施例と同一の構成を有する部分には同一の符号を付して説明を省略する。 Next, a second embodiment of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the part which has the same structure as the said Example, and description is abbreviate | omitted.

図6は、本発明の他の実施例である血圧監視装置の要部を説明する機能ブロック線図である。本実施例の血圧監視装置では、脈波周期の検出方法が図1の光電脈波センサと異なり、心電電極センサ32となっていることで、これに伴い全波形記憶手段34、特徴点検出手段36が心電電極からの信号からの特徴波形の検出となり異なるが、その他の装置の機構および回路構成は前述の図1の実施例と共通している。以下、その相違点を中心に説明する。 FIG. 6 is a functional block diagram for explaining a main part of a blood pressure monitoring apparatus according to another embodiment of the present invention. In the blood pressure monitoring apparatus of the present embodiment, the pulse wave cycle detection method differs from the photoelectric pulse wave sensor of FIG. 1 in that it is an electrocardiogram electrode sensor 32. Accordingly, all waveform storage means 34, feature point detection is performed. Although the means 36 is different from the detection of the characteristic waveform from the signal from the electrocardiogram electrode, the mechanism and circuit configuration of other devices are the same as those in the embodiment shown in FIG. Hereinafter, the difference will be mainly described.

心電電極センサ32は、胸部の心電電極の装着位置に配置され逐次検出された心電信号を、図示しないが心臓拍動に同期した信号として、増幅され、A/D変換され全波形記憶手段に送られる。次に、心電信号は脈波特徴点検出手段36により、個別拍動毎の心電信号の特徴部分を抽出し、心電周期算出手段38により特徴部分の経過時間を測定して心電周期が算出される。 The electrocardiographic electrode sensor 32 amplifies, A / D-converts, and stores all waveform signals of an electrocardiographic signal, which is arranged at the mounting position of the electrocardiographic electrode on the chest and sequentially detected, as a signal synchronized with the heart beat (not shown). Sent to the means. Next, the electrocardiogram signal is extracted by the pulse wave feature point detection means 36, and the characteristic portion of the electrocardiogram signal for each individual pulsation is extracted. Is calculated.

この、心電電極からの信号は特徴点検出手段36で時系列的に連続した脈波信号を微分しその正、または負のピークの時間位置を求めることにより行なわれる。通常は心電波形の特徴としてR波のピークを求めることが一般的である。 The signal from the electrocardiogram electrode is obtained by differentiating a pulse wave signal continuous in time series by the feature point detection means 36 and obtaining the time position of the positive or negative peak. Usually, it is common to obtain the peak of the R wave as a characteristic of the electrocardiographic waveform.

心電周期信号は、その後は、実施例1と同様に周波数分析手段39に送られ、高速フーリエ変換法を利用した周波数分析をあらかじめ設定された所定の時間区間毎に施すことにより、周波数分析される。 Thereafter, the ECG periodic signal is sent to the frequency analysis means 39 in the same manner as in the first embodiment, and is subjected to frequency analysis by performing frequency analysis using a fast Fourier transform method for each predetermined time interval. The

図6の周波数分析手段39以降の血圧計起動判定手段41、および間欠血圧計の起動の決定方法は第一に実施例の図2のフローチャ−トと同じ方法で実現できるので説明は省略する。 The sphygmomanometer start determining means 41 after the frequency analyzing means 39 in FIG. 6 and the method for determining the start of the intermittent sphygmomanometer can be realized by the same method as the flowchart of FIG.

また、好適には、図6の心電波形表示手段56のような、心電電極センサ32を利用して心電波形を表示することによる補助情報として患者の状態の推定が出来る利点がある。 Further, preferably, there is an advantage that the patient's state can be estimated as auxiliary information by displaying the electrocardiographic waveform using the electrocardiographic electrode sensor 32 such as the electrocardiographic waveform display means 56 of FIG.

次に、本発明の第3の実施例について図面に基づいて詳細に説明する。尚、上記実施例と同一の構成を有する部分には同一の符号を付して説明を省略する。 Next, a third embodiment of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the part which has the same structure as the said Example, and description is abbreviate | omitted.

図7は、本発明の第3の実施例である血圧監視装置の要部を説明する機能ブロック線図である。本実施例の血圧監視装置では、脈波周期の検出方法が図1の光電脈波センサ31と異なり、カフ間欠血圧測定に使用するカフ11から検出される脈波信号で行なわれる。これに伴い、特徴波形検出手段37が心電電極からの信号からの特徴波形の検出となり異なるが、その他の装置の機構および回路構成は前述の図1の実施例と共通している。以下、その相違点を中心に説明する。 FIG. 7 is a functional block diagram for explaining a main part of the blood pressure monitoring apparatus according to the third embodiment of the present invention. In the blood pressure monitoring apparatus of the present embodiment, the pulse wave cycle detection method is different from the photoelectric pulse wave sensor 31 of FIG. 1 and is performed with a pulse wave signal detected from the cuff 11 used for cuff intermittent blood pressure measurement. Along with this, the feature waveform detecting means 37 detects the feature waveform from the signal from the electrocardiographic electrode, but the mechanism and circuit configuration of other devices are the same as those in the embodiment of FIG. Hereinafter, the difference will be mainly described.

この脈波周期の検出は、間欠血圧計の圧迫圧力を変化させるカフを用いてその生体の血圧値を測定する血圧測定値以外の時間に、カフに、生体の血流に影響を与えない、またカフが所定の位置にとどまり、心臓拍動に同期した脈波周期の検出ができる所定の圧力を印加することにより実現している。この所定の圧力は20〜30mmHgを用いている。
さらに、本発明の第3の実施例を間欠血圧計の血圧値を測定する時間、および血圧測定値以外の時間との関係を図8で説明する。
This detection of the pulse wave period does not affect the blood flow of the living body at the time other than the blood pressure measurement value for measuring the blood pressure value of the living body using the cuff that changes the compression pressure of the intermittent sphygmomanometer, Further, it is realized by applying a predetermined pressure that can detect the pulse wave period synchronized with the heart beat while the cuff stays at a predetermined position. This predetermined pressure is 20 to 30 mmHg.
Further, the relationship between the time for measuring the blood pressure value of the intermittent sphygmomanometer and the time other than the blood pressure measurement value will be described with reference to FIG.

図8は横軸をカフ式間欠血圧計での血圧測定をする際の経過時間、縦軸は上図が間欠血圧測定ルーチンでカフに加えられる圧迫圧力を変化、下の図がカフから検出される圧力を示している。
図8の上図の破線は通常の間欠血圧測定ルーチンでのカフに加えられる圧迫圧力を変化を示しており、間欠血圧計での測定が開始されると,カフ加圧開始時刻から、0mmHgカフ内圧力は図7の加圧ポンプ130でカフ内の圧力を加圧し、生体の最大血圧より高い圧力まで上昇させ、加圧ポンプ130を停止し、排気弁131から徐々に排気することによりカフ内圧力を降圧する。この降圧途中に血圧測定を行い、血圧測定が終了すると、排気弁をさらに大きく開口し、カフ内圧力を0mmHgまで急激に降圧する。
FIG. 8 shows the elapsed time when the blood pressure is measured with a cuff intermittent blood pressure monitor on the horizontal axis, the vertical axis shows the pressure applied to the cuff in the intermittent blood pressure measurement routine, and the lower figure is detected from the cuff. Pressure.
The broken line in the upper diagram of FIG. 8 shows a change in the compression pressure applied to the cuff in the normal intermittent blood pressure measurement routine. When measurement with the intermittent blood pressure monitor is started, the 0 mmHg cuff is measured from the cuff pressurization start time. The internal pressure is increased within the cuff by pressurizing the pressure in the cuff with the pressurizing pump 130 of FIG. 7, raising the pressure to a pressure higher than the maximum blood pressure of the living body, stopping the pressurizing pump 130, and gradually exhausting from the exhaust valve 131. Decrease pressure. The blood pressure is measured during the pressure reduction, and when the blood pressure measurement is completed, the exhaust valve is further opened to rapidly reduce the pressure in the cuff to 0 mmHg.

図8の下図の中央部はこのときカフから検出される脈圧波形の様子を示している。カフ間欠血圧測定は、このカフから検出される脈圧波形をオシロメトリック法により図7の脈波検出手段17および血圧測定手段19で血圧測定を行なうが、血圧測定については間欠的に血圧測定が実施できれば良く、本発明の主要部ではないので説明を省く。 The lower center of FIG. 8 shows the state of the pulse pressure waveform detected from the cuff at this time. In the cuff intermittent blood pressure measurement, the pulse pressure waveform detected from the cuff is measured by the pulse wave detection means 17 and the blood pressure measurement means 19 of FIG. 7 by the oscillometric method. As long as it can be implemented, it is not the main part of the present invention, so the description is omitted.

本発明の第3の実施例では、上記カフ間欠測定が行なわれる図8に示すカフ加圧開始時間からカフ排気開始時間以外の時間に、図8の上図実線で示すようにカフに、生体の血流に影響を与えない、またカフが所定の位置にとどまり、心臓拍動に同期した脈波周期の検出ができる所定の圧力を印加している。図8の下図の左右には、間欠血圧測定時間以外の時間にカフから連続的に検出される脈圧波形を示している。 In the third embodiment of the present invention, the cuff is measured on the cuff as shown by the solid line in the upper diagram of FIG. 8 from the cuff pressurization start time to the cuff exhaust start time shown in FIG. The cuff stays at a predetermined position, and a predetermined pressure that can detect the pulse wave period synchronized with the heart beat is applied. The left and right sides of the lower diagram of FIG. 8 show pulse pressure waveforms continuously detected from the cuff at times other than the intermittent blood pressure measurement time.

この実施例3では間欠血圧計の血圧値を測定する血圧測定値以外の時間に、カフから検出される脈波を心臓拍動に伴う脈波の周期信号として用いる。 In the third embodiment, the pulse wave detected from the cuff is used as a periodic signal of a pulse wave accompanying the heart beat at a time other than the blood pressure measurement value for measuring the blood pressure value of the intermittent sphygmomanometer.

次に、脈波信号は図7の脈波特徴点検出手段37により、個別拍動毎の脈波の特徴部分を抽出し、脈波周期算出手段38により特徴部分の経過時間を測定して脈波周期が算出される。この、脈波特徴点検出手段37は時系列的に連続した脈波信号を微分しその正、または負のピークの時間位置を求めることにより行なわれる。脈波特徴点検出手段37の実現方法は連続した脈波信号の一個の脈波の特徴点を検出できる方法であれば他の方法でも良い。 Next, the pulse wave signal is extracted by the pulse wave feature point detecting means 37 of FIG. 7 to extract the characteristic portion of the pulse wave for each individual pulsation, and the pulse wave period calculating means 38 measures the elapsed time of the characteristic portion to measure the pulse wave. The wave period is calculated. The pulse wave feature point detecting means 37 is performed by differentiating a pulse wave signal continuous in time series and obtaining the time position of the positive or negative peak. The pulse wave feature point detecting means 37 may be implemented by another method as long as it can detect the feature point of one pulse wave of a continuous pulse wave signal.

脈波周期信号は、その後は、実施例1と同様に周波数分析手段39に送られ、高速フーリエ変換法を利用した周波数分析をあらかじめ設定された所定の時間区間毎に施すことにより、周波数分析される。 Thereafter, the pulse wave periodic signal is sent to the frequency analysis means 39 in the same manner as in the first embodiment, and is subjected to frequency analysis by performing frequency analysis using the fast Fourier transform method for each predetermined time interval. The

図7の周波数分析手段39以降の血圧計起動判定手段41、およびカフ式間欠血圧計の起動の決定方法は第1実施例の図2のフローチャ−トと同じ方法で実現できるので説明は省略する。 The sphygmomanometer start determination unit 41 after the frequency analysis unit 39 in FIG. 7 and the method for determining the start of the cuff type intermittent sphygmomanometer can be realized by the same method as the flow chart of FIG. .

また、前述の血圧測定手段19では、カフ圧が徐々に降下させられる過程のカフ脈波の変化に基づいて生体の血圧値が決定されていたが、徐々に昇圧させる過程のカフ脈波の変化に基づいて生体の血圧値を決定するものであってもよい。 Further, in the blood pressure measurement means 19 described above, the blood pressure value of the living body is determined based on the change in the cuff pulse wave in the process of gradually decreasing the cuff pressure, but the change in the cuff pulse wave in the process of gradually increasing the pressure. The blood pressure value of the living body may be determined based on the above.

本発明の血圧監視装置の概略接続構成を示す図である。It is a figure which shows schematic connection structure of the blood-pressure monitoring apparatus of this invention. 図1の血圧監視装置の作動概要を示すフローチャートである。2 is a flowchart showing an outline of the operation of the blood pressure monitoring apparatus in FIG. 本発明の血圧監視装置の光電脈波センサ31の概略接続構成を示す図である。It is a figure which shows schematic connection structure of the photoelectric pulse wave sensor 31 of the blood-pressure monitoring apparatus of this invention. 本発明の脈波周期の周波数分析結果の例である。It is an example of the frequency analysis result of the pulse wave period of this invention. 本発明のバンドパスフイルタによる周波数分析の実施例の概略接続構成を示す図である。It is a figure which shows schematic connection structure of the Example of the frequency analysis by the band pass filter of this invention. 本発明の血圧監視装置の第2の実施例の概略接続構成を示す図である。It is a figure which shows schematic connection structure of the 2nd Example of the blood-pressure monitoring apparatus of this invention. 本発明の血圧監視装置の第3の実施例の概略接続構成を示す図である。It is a figure which shows schematic connection structure of the 3rd Example of the blood-pressure monitoring apparatus of this invention. 本発明の血圧監視装置の第3の実施例の概略経時動作説明図である。It is a schematic operation | movement explanatory drawing of the temporal passage of the 3rd Example of the blood-pressure monitoring apparatus of this invention.

符号の説明Explanation of symbols

11 カフ
13 カフ圧制御手段
15 カフ圧全波形記憶手段
17 カフ圧の脈波検出手段
19 カフ間欠血圧測定手段
23 血圧表示手段
31 光電脈波センサ
32 心電電極センサ
33 光電脈波全波形記憶手段
34 心電電極検出全波形記憶手段
35 光電脈波の脈波特徴点検出手段
36 心電電極検出信号の特徴点検出手段
37 カフ脈波特徴点検出手段
38 周期算出手段
39 周期周波数分析手段
41 血圧計起動判定手段
45 SPO2表示手段
56 心電波計表示手段
110 圧力センサ
130 加圧ポンプ
131 排気弁
11 Cuff 13 Cuff pressure control means 15 Cuff pressure full waveform storage means
17 Cuff pressure pulse wave detection means 19 Cuff intermittent blood pressure measurement means 23 Blood pressure display means 31 Photoelectric pulse wave sensor 32 Electrocardiogram electrode sensor 33 Photoelectric pulse wave full waveform storage means 34 Electrocardiogram electrode detection full waveform storage means 35 Photoelectric pulse wave Pulse wave feature point detection means 36 Feature point detection means 37 for electrocardiographic electrode detection signal Cuff pulse wave feature point detection means 38 Period calculation means 39 Period frequency analysis means 41 Blood pressure monitor activation determination means 45 SPO2 display means 56 Cardiac radiometer display means 110 Pressure sensor 130 Pressure pump 131 Exhaust valve

Claims (6)

生体の血圧を監視する血圧監視装置であって、前記生体の一部への圧迫圧力を変化させるカフを用いて該生体の血圧値を測定する血圧測定手段と、前記生体の容積脈波を逐次検出する容積脈波検出装置と、または前記生体の心電波形を逐次検出する心電波形検出装置をそなえ、前記検出装置から心臓拍動周期を算出する心拍周期算出手段、得られた心拍周期情報を周波数成分に分解する周波数成分分析手段、および周波数成分分析値の変動値が予め設定された判断基準範囲を越えたことに基づいて前記血圧測定手段による血圧測定を起動させる血圧計測定起動手段とを、含むことを特徴とする血圧監視装置。   A blood pressure monitoring apparatus for monitoring blood pressure of a living body, wherein blood pressure measuring means for measuring a blood pressure value of the living body using a cuff that changes the pressure applied to a part of the living body, and volume pulse waves of the living body are sequentially A heartbeat cycle calculating means for calculating a heartbeat period from the detection device, comprising a volume pulse wave detection device for detection or an electrocardiogram waveform detection device for sequentially detecting the electrocardiogram waveform of the living body, and obtained heartbeat cycle information A frequency component analysis means for decomposing the blood pressure into frequency components, and a sphygmomanometer measurement activation means for activating the blood pressure measurement by the blood pressure measurement means based on the fact that the variation value of the frequency component analysis value exceeds a preset criterion range; A blood pressure monitoring apparatus comprising: 前記周波数成分分析手段は分析周波数帯域を設定できるFFT周波数分析方法、またはBPFで分析する方法を含むことを特徴とする請求項1に記載の血圧監視装置。  The blood pressure monitoring apparatus according to claim 1, wherein the frequency component analysis means includes an FFT frequency analysis method capable of setting an analysis frequency band, or a method of analyzing by BPF. 前記周波数成分解析手段の分析周波数帯域は少なくとも、0.05〜0.15Hz、および0.2〜0.4Hzの分析周波数を有することを特徴とする請求項2に記載の血圧監視装置。 The blood pressure monitoring apparatus according to claim 2, wherein the analysis frequency band of the frequency component analysis means has an analysis frequency of at least 0.05 to 0.15 Hz and 0.2 to 0.4 Hz. 生体の血圧を監視する血圧監視装置であって、前記生体の一部への圧迫圧力を変化させるカフを用いて該生体の血圧値を測定する血圧測定手段と、前記圧迫圧力を変化させるカフの圧力を血圧測定以外の時間に所定の圧力を印加する脈波検出カフ圧発生手段をなえ、前記脈波検出カフ圧発生手段で圧力を印加したカフから心臓拍動周期を算出する心拍周期算出手段、得られた心拍周期情報を周波数成分に分解する周波数成分分析手段、および周波数成分分析値が予め設定された判断基準範囲を越えたことに基づいて前記血圧測定手段による血圧測定を起動させる血圧計測定起動手段とを、含むことを特徴とする血圧監視装置。 A blood pressure monitoring device for monitoring blood pressure of a living body, comprising: a blood pressure measuring means for measuring a blood pressure value of the living body using a cuff that changes the compression pressure applied to a part of the living body; and a cuff for changing the compression pressure. A heartbeat cycle calculation that includes a pulse wave detection cuff pressure generating means for applying a predetermined pressure at a time other than blood pressure measurement, and calculating a heart beat cycle from the cuff applied with the pulse wave detection cuff pressure generating means Means for decomposing the obtained heartbeat period information into frequency components, and blood pressure for starting blood pressure measurement by the blood pressure measuring means based on the fact that the frequency component analysis value exceeds a preset criterion range A blood pressure monitoring apparatus comprising: a meter measurement starting means. 前記周波数成分分析手段は分析周波数帯域を設定できるFFT周波数分析方法、またはBPFで分析する方法を含むことを特徴とする請求項4に記載の血圧監視装置。 5. The blood pressure monitoring apparatus according to claim 4, wherein the frequency component analyzing means includes an FFT frequency analyzing method capable of setting an analysis frequency band, or a method of analyzing by BPF. 前記周波数成分分析手段の分析周波数帯域は少なくとも、0.05〜0.15Hz、および0.2〜0.4Hzの分析周波数を有することを特徴とする請求項5に記載の血圧監視装置。 6. The blood pressure monitoring apparatus according to claim 5, wherein the analysis frequency band of the frequency component analysis means has an analysis frequency of at least 0.05 to 0.15 Hz and 0.2 to 0.4 Hz.
JP2006218734A 2006-08-10 2006-08-10 Blood pressure monitoring system Pending JP2008043356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218734A JP2008043356A (en) 2006-08-10 2006-08-10 Blood pressure monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218734A JP2008043356A (en) 2006-08-10 2006-08-10 Blood pressure monitoring system

Publications (1)

Publication Number Publication Date
JP2008043356A true JP2008043356A (en) 2008-02-28

Family

ID=39177700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218734A Pending JP2008043356A (en) 2006-08-10 2006-08-10 Blood pressure monitoring system

Country Status (1)

Country Link
JP (1) JP2008043356A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530577A (en) * 2009-06-26 2012-12-06 ガンブロ・ルンディア・エービー Apparatus, computer program product, and method for data extraction
JP2014147486A (en) * 2013-01-31 2014-08-21 Minato Ikagaku Kk Blood pressure measuring device
WO2016047494A1 (en) * 2014-09-22 2016-03-31 株式会社 東芝 Device and system for measuring biological information
JP2016059765A (en) * 2014-09-22 2016-04-25 株式会社東芝 Sound information processing device and system
JP2016059736A (en) * 2014-09-22 2016-04-25 株式会社東芝 Biological information measurement apparatus and program
JP2016112049A (en) * 2014-12-11 2016-06-23 国立大学法人広島大学 Pulse wave analyzer
JP2017176833A (en) * 2016-03-29 2017-10-05 豪展醫療科技股▲分▼有限公司 Measurement device and method for measuring both mental stress indicator and blood pressure
WO2019131610A1 (en) * 2017-12-26 2019-07-04 株式会社タニタ Sphygmomanometer
CN110446460A (en) * 2017-03-14 2019-11-12 欧姆龙株式会社 Information processing unit and message handling program
CN111246795A (en) * 2017-10-12 2020-06-05 欧姆龙株式会社 Biological information measurement device, blood pressure measurement device, biological information measurement method, and blood pressure measurement method
JP2021506509A (en) * 2017-12-20 2021-02-22 エドワーズ ライフサイエンシーズ コーポレイションEdwards Lifesciences Corporation Self-regulatory system and method using tissue oximetry and blood pressure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08238224A (en) * 1995-03-06 1996-09-17 Nippon Colin Co Ltd Myocardial ischemia evaluator
JPH11206725A (en) * 1998-01-27 1999-08-03 Nippon Colin Co Ltd Blood pressure monitoring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08238224A (en) * 1995-03-06 1996-09-17 Nippon Colin Co Ltd Myocardial ischemia evaluator
JPH11206725A (en) * 1998-01-27 1999-08-03 Nippon Colin Co Ltd Blood pressure monitoring device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530577A (en) * 2009-06-26 2012-12-06 ガンブロ・ルンディア・エービー Apparatus, computer program product, and method for data extraction
JP2014147486A (en) * 2013-01-31 2014-08-21 Minato Ikagaku Kk Blood pressure measuring device
US10849569B2 (en) 2014-09-22 2020-12-01 Kabushiki Kaisha Toshiba Biological information measurement device and system
WO2016047494A1 (en) * 2014-09-22 2016-03-31 株式会社 東芝 Device and system for measuring biological information
JP2016059765A (en) * 2014-09-22 2016-04-25 株式会社東芝 Sound information processing device and system
JP2016059736A (en) * 2014-09-22 2016-04-25 株式会社東芝 Biological information measurement apparatus and program
JP2016112049A (en) * 2014-12-11 2016-06-23 国立大学法人広島大学 Pulse wave analyzer
JP2017176833A (en) * 2016-03-29 2017-10-05 豪展醫療科技股▲分▼有限公司 Measurement device and method for measuring both mental stress indicator and blood pressure
CN110446460A (en) * 2017-03-14 2019-11-12 欧姆龙株式会社 Information processing unit and message handling program
CN111246795A (en) * 2017-10-12 2020-06-05 欧姆龙株式会社 Biological information measurement device, blood pressure measurement device, biological information measurement method, and blood pressure measurement method
CN111246795B (en) * 2017-10-12 2023-11-24 欧姆龙株式会社 Biological information measuring device, blood pressure measuring device, apparatus, biological information measuring method, and blood pressure measuring method
JP2021506509A (en) * 2017-12-20 2021-02-22 エドワーズ ライフサイエンシーズ コーポレイションEdwards Lifesciences Corporation Self-regulatory system and method using tissue oximetry and blood pressure
JP7195323B2 (en) 2017-12-20 2022-12-23 エドワーズ ライフサイエンシーズ コーポレイション Autoregulatory system and method using tissue oximetry and blood pressure
WO2019131610A1 (en) * 2017-12-26 2019-07-04 株式会社タニタ Sphygmomanometer

Similar Documents

Publication Publication Date Title
JP2008043356A (en) Blood pressure monitoring system
EP3430989B1 (en) Biological information analysis device, system, program, and biological information analysis method
US10034612B2 (en) Biological state eliminating apparatus and method
EP3334337B1 (en) Monitoring of sleep phenomena
KR20180029072A (en) Biological data processing
US8290730B2 (en) Systems and methods for assessing measurements in physiological monitoring devices
US7270636B2 (en) Apparatus and method for pulse detection
CN106793964B (en) Non-invasive blood pressure monitor, method of operating a non-invasive blood pressure monitor and computer program product
KR20210005644A (en) Method for estimating blood pressure and arterial stiffness based on light volumetric variability recording (PPG) signal
US20060264771A1 (en) Apparatus for evaluating cardiovascular functions
WO2012033232A1 (en) Arm insertion type sphygmomanometer
CN106793965B (en) Non-invasive blood pressure monitor, method of operating the same, and computer program implementing the method
JP5196323B2 (en) Blood oxygen saturation measuring device
WO2017092020A1 (en) Blood pressure measurement method and apparatus
CN106999071B (en) Pulse wave analyzer
KR20190113543A (en) Noninvasive blood pressure measurement method and device
US20120029366A1 (en) Blood pressure detection apparatus and blood pressure detection method
Tanaka et al. Accuracy assessment of a noninvasive device for monitoring beat-by-beat blood pressure in the radial artery using the volume-compensation method
JP2018149183A (en) Blood pressure data processing device, blood pressure data processing method, and program
JP2011194217A (en) Use of frequency spectrum of artifact in oscillometry
US10736521B2 (en) Device and method for monitoring and diagnosing the autoregular mechanism of the blood pressure of a living being
JP3921775B2 (en) Blood pressure monitoring device
EP1127538B1 (en) Automated blood pressure monitoring
Manimegalai et al. Estimation of cardiovascular parameters from ECG and PPG signals
US20180055427A1 (en) Method and Apparatus to Enhance Peripheral Venous Oxygen Measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417