JP2008041255A - Organic electroluminescent element and its manufacturing method - Google Patents

Organic electroluminescent element and its manufacturing method Download PDF

Info

Publication number
JP2008041255A
JP2008041255A JP2006209568A JP2006209568A JP2008041255A JP 2008041255 A JP2008041255 A JP 2008041255A JP 2006209568 A JP2006209568 A JP 2006209568A JP 2006209568 A JP2006209568 A JP 2006209568A JP 2008041255 A JP2008041255 A JP 2008041255A
Authority
JP
Japan
Prior art keywords
organic
substrate
layer
electrode
organic electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006209568A
Other languages
Japanese (ja)
Inventor
Yoshiki Koshiyama
良樹 越山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006209568A priority Critical patent/JP2008041255A/en
Publication of JP2008041255A publication Critical patent/JP2008041255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an organic EL element 100 and the organic EL element, wherein the organic EL element 100 is formed by adhering an organic EL element base material 10 including a plurality of light emitting regions having a first electrode 21, a function layer 31 including a light emitting layer, and a second electrode 41 formed on a substrate 11, and barrier ribs 51, and a sealing base material 70 with an adhering layer 72 formed thereon, the adhesion of the organic EL element substrate 11 and the sealing base material 71 is improved, and an influence of water penetrating from an end is suppressed for a long period of time. <P>SOLUTION: Before a process for adhering the organic EL element base material 10 and the sealing base material 70, surface cleaning treatment including at least UV ozone treatment and plasma treatment is applied to the organic EL element base material 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、情報表示端末などのディスプレイや面発光光源として幅広い用途が期待される有機エレクトロルミネッセンス素子(以下、有機EL素子と称す)及びその製造方法に関する。   The present invention relates to an organic electroluminescence element (hereinafter referred to as an organic EL element) that is expected to be widely used as a display such as an information display terminal or a surface-emitting light source, and a manufacturing method thereof.

従来より、携帯電話やPDA等の携帯機器やパーソナルコンピューター等の表示部に、エレクトロルミネッセンス(以下、単にELともいう)表示装置を用いたものが開発されている。
EL表示装置は、EL層(発光層)を有する発光部を基板面内に複数備えて構成され、各発光部を独立に駆動することで所望の表示を行っている。
2. Description of the Related Art Conventionally, a display using an electroluminescence (hereinafter simply referred to as EL) display device has been developed for a display unit of a mobile device such as a mobile phone or a PDA, or a personal computer.
An EL display device includes a plurality of light emitting units having an EL layer (light emitting layer) in a substrate surface, and performs desired display by independently driving each light emitting unit.

有機EL素子は、どちらか一方が透光性を有する2枚の電極(陽極と陰極)の間に、有機発光媒体層を挟持した構造であり、両電極間に電流を流すことにより有機発光媒体層で発光が生じる自発光型の表示素子である。
有機発光媒体層は、通常機能分離された複数の層から構成され、その典型的な例としては、正孔注入層に銅フタロシアニン、正孔輸送層にN、N’−ジ(1−ナフチル)−N、N’−ジフェニル−1、1’−ビフェニル−4、4’−ジアミン、蛍光体層にトリス(8−キノリノール)アルミニウムをそれぞれ積層した低分子型EL素子や、正孔輸送層にポリチオフェン誘導体、発光層にポリアルキルフルオレン誘導体を積層した高分子型EL素子がある。
An organic EL element has a structure in which an organic light emitting medium layer is sandwiched between two electrodes (anode and cathode), one of which has translucency. A self-luminous display element that emits light in a layer.
The organic light emitting medium layer is usually composed of a plurality of layers separated in function, and typical examples thereof include copper phthalocyanine for the hole injection layer and N, N′-di (1-naphthyl) for the hole transport layer. -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine, low molecular EL element in which tris (8-quinolinol) aluminum is laminated on the phosphor layer, and polythiophene in the hole transport layer There is a polymer EL element in which a polyalkylfluorene derivative is laminated on a derivative and a light emitting layer.

有機EL素子は、発光媒体層や陰極層を大気暴露させた状態で放置すると、大気中の水分や酸素により劣化することが知られている。具体的な代表例として、ダークスポットと呼ばれる非発光領域が発生し、時間の経過と共に拡大するといった現象がある。有機EL素子を外気から遮断するには、乾燥窒素雰囲気下で有機EL素子を金属製もしくはガラス製の封止基材により、接着剤を介して被覆封止する方法が提案されている(例えば、特許文献1参照)。しかし、接着剤を介しても接着剤中及び有機EL素子基板/接着剤/封止基材の界面を透過した水分によって素子は劣化してしまう。   It is known that an organic EL element is deteriorated by moisture and oxygen in the atmosphere when the light emitting medium layer and the cathode layer are left exposed to the atmosphere. As a specific representative example, there is a phenomenon in which a non-light emitting region called a dark spot occurs and expands with time. In order to block the organic EL element from the outside air, a method of covering and sealing the organic EL element with a metal or glass sealing substrate under a dry nitrogen atmosphere via an adhesive has been proposed (for example, Patent Document 1). However, even if an adhesive is used, the element deteriorates due to moisture that has passed through the adhesive and the interface of the organic EL element substrate / adhesive / sealing substrate.

そこで封止寿命を延ばすために、接着剤は低透湿かつ高接着性のものが求められる。封止基材は有機EL素子基板と封止基材の接着を向上させるため、UVオゾン処理、コロナ処理、プラズマ処理等からなる表面洗浄処理が施されている。有機EL素子基板もホール注入電極成膜後、上記のような表面洗浄処理を施している。ホール注入電極表面が汚れていると、その後成膜された有機層に対するホール注入効率が低下し、発光効率が低下したり、ダークスポットを生じたり、これを拡大させたりするからである。また、封止基材との接合面が汚れていると、有機EL素子基板と封止基材の接着が弱くなってしまう。そのため、有機EL素子基板及び封止基材に表面洗浄処理を施してから、即座に貼りあわせるのが望ましい。しかし、高分子型EL素子の場合、ウエット法で素子作製するため乾燥工程は不可欠であり、有機EL素子基板の表面処理から貼り合わせまでの時間を特に要してしまう。その結果、有機EL素子基板と接着剤との界面での接着性が劣り、剥離しやすくなる。   Therefore, in order to extend the sealing life, the adhesive is required to have low moisture permeability and high adhesion. In order to improve the adhesion between the organic EL element substrate and the sealing substrate, the sealing substrate is subjected to a surface cleaning treatment including UV ozone treatment, corona treatment, plasma treatment and the like. The organic EL element substrate is also subjected to the surface cleaning treatment as described above after forming the hole injection electrode. This is because if the surface of the hole injection electrode is contaminated, the hole injection efficiency for the organic layer formed thereafter is lowered, the light emission efficiency is lowered, a dark spot is generated, or this is enlarged. Moreover, when the joint surface with a sealing base material is dirty, adhesion | attachment of an organic EL element substrate and a sealing base material will become weak. For this reason, it is desirable that the organic EL element substrate and the sealing base material are bonded together immediately after being subjected to a surface cleaning treatment. However, in the case of a polymer EL element, a drying process is indispensable because the element is manufactured by a wet method, and a time from surface treatment to bonding of the organic EL element substrate is particularly required. As a result, the adhesiveness at the interface between the organic EL element substrate and the adhesive is inferior, and is easily peeled off.

以下に公知文献を記す。
特開平5−36475号公報
The known literature is described below.
JP-A-5-36475

本発明は、上記問題点に鑑み考案されたもので、有機EL素子基板と封止基材の接着を向上させ、端部から侵入する水分の影響を長期にわたり抑制した有機EL素子の製造方法および有機EL素子を提供することを目的とする。   The present invention has been devised in view of the above problems, and improves the adhesion between an organic EL element substrate and a sealing substrate, and suppresses the influence of moisture entering from the end portion over a long period of time. An object is to provide an organic EL element.

本発明は、上記課題を達成するために、まず請求項1においては、基板上に第1電極と発光層を含む機能層と第2電極とからなる発光領域と、隔壁とが複数形成された有機エレクトロルミネッセンス素子基材と、接着層が形成された封止基材とを貼り合わせてなる有機エレクトロルミネッセンス素子の製造方法であって、有機エレクトロルミネッセンス素子基材と封止基材とを貼りあわせる工程の前に、有機エレクトロルミネッセンス素子基材に対して、少なくともUVオゾン処理、プラズマ処理からなる表面洗浄処理を施すことを特徴とする有機エレクトロルミネッセンス素子の製造方法としたものである。
また、請求項2においては、該有機エレクトロルミネッセンス素子基材の発光領域は、乾燥シートで全て覆われていることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法としたものである。
In order to achieve the above object, according to the first aspect of the present invention, in claim 1, a plurality of light emitting regions including a first electrode, a functional layer including a light emitting layer, and a second electrode, and a plurality of partition walls are formed on the substrate. A method for producing an organic electroluminescent element, comprising an organic electroluminescent element substrate and a sealing substrate on which an adhesive layer is formed, wherein the organic electroluminescent element substrate and the sealing substrate are bonded together Before the process, the organic electroluminescence element substrate is subjected to a surface cleaning treatment comprising at least UV ozone treatment and plasma treatment, and the method for producing an organic electroluminescence element is provided.
Moreover, in Claim 2, all the light emission area | regions of this organic electroluminescent element base material are covered with the dry sheet, It is set as the manufacturing method of the organic electroluminescent element of Claim 1 characterized by the above-mentioned. is there.

また、請求項3においては、請求項1または2記載の有機エレクトロルミネッセンス素子の製造方法を用いて製造されたことを特徴とする有機エレクトロルミネッセンス素子としたものである。   According to a third aspect of the present invention, there is provided an organic electroluminescent element manufactured using the method for manufacturing an organic electroluminescent element according to the first or second aspect.

本発明の有機EL素子の製造方法および有機EL素子では、有機EL素子基材の表面処理を有機EL素子基材と封止基材の貼り合わせを行う直前にも行うことで、有機EL素子基材上表面は再び高活性となり、有機EL素子基材と接着剤の接着性を向上させ、端部から侵入する水分の影響を長期にわたり抑制することができる。さらに、表面処理の際、有機EL素子機材の発光領域は全て乾燥シートで覆われているので、UV光、酸素、プラズマ等による素子劣化はほとんどない。   In the method for producing an organic EL element and the organic EL element of the present invention, the surface treatment of the organic EL element substrate is performed immediately before the organic EL element substrate and the sealing substrate are bonded together. The surface on the material becomes highly active again, the adhesion between the organic EL element substrate and the adhesive is improved, and the influence of moisture entering from the end can be suppressed over a long period of time. Furthermore, since the light emitting region of the organic EL element material is entirely covered with a dry sheet during the surface treatment, there is almost no element deterioration due to UV light, oxygen, plasma, or the like.

以下に、本発明の実施の形態を詳細に説明する。
図1は本発明の有機EL素子の一実施例を示す部分構成模式断面図である。図1(a)は有機EL素子100を、図1(b)は有機EL素子基材10を示し、基板11上に第1電極21と、発光層含む機能層31と、第2電極41とからなる発光部と、隔壁51と、水分を吸着または除去する乾燥シート61とが全ての発光部を覆い隠すように形成されている。図1(c)は封止基材70を示し、封止板71の縁に接着層72が形成されている。有機EL素子基材10と封止基材70を貼り合わせ、有機EL素子100を得られる。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a partial cross-sectional schematic sectional view showing an embodiment of the organic EL device of the present invention. 1A shows the organic EL element 100, and FIG. 1B shows the organic EL element substrate 10. The first electrode 21, the functional layer 31 including the light emitting layer, the second electrode 41, and the like are formed on the substrate 11. A light-emitting portion, a partition wall 51, and a dry sheet 61 that adsorbs or removes moisture are formed so as to cover all the light-emitting portions. FIG. 1C shows a sealing substrate 70, and an adhesive layer 72 is formed on the edge of the sealing plate 71. The organic EL element substrate 10 and the sealing substrate 70 are bonded to obtain the organic EL element 100.

以下、有機EL素子基材10の作製法について説明する。
まず、基板11上にITO(インジウムスズ複合酸化物)やインジウム亜鉛複合酸化物、亜鉛アルミニウム複合酸化物などの金属複合酸化物や、金、白金などの金属材料等を抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法などの乾式成膜法で成膜してパターニング処理するか、金属酸化物や金属材料の微粒子をエポキシ樹脂やアクリル樹脂などに分散した微粒子分散液をグラビア印刷法、スクリーン印刷法などの湿式成膜法などを用いてパターン印刷して第1電極21を形成する。
Hereinafter, a method for producing the organic EL element substrate 10 will be described.
First, a metal complex oxide such as ITO (indium tin complex oxide), indium zinc complex oxide, zinc aluminum complex oxide, or a metal material such as gold or platinum is deposited on the substrate 11 by resistance heating vapor deposition, electron beam Fine particles formed by patterning with a dry film formation method such as vapor deposition, reactive vapor deposition, ion plating, or sputtering, or fine particles of metal oxide or metal material dispersed in epoxy resin or acrylic resin The first electrode 21 is formed by pattern-printing the dispersion using a wet film formation method such as a gravure printing method or a screen printing method.

基板11は、ガラスや石英、プラスチックシート等の透光性基材の他に、アルミニウムやステンレスなどの金属箔やシート、シリコン基板、前記プラスチックフィルムやシートにアルミニウム、銅、ニッケル、ステンレスなどの金属膜を積層させた非透光性基材など
を用いることができる。
また、基板11上には必要に応じて、薄膜トランジスタ(TFT)を形成し、駆動用基板として用いても良い。該TFTの材料としては、ポリチオフェンやポリアニリン、銅フタロシアニンやペリレン誘導体等の有機TFTを用いてもよく、アモルファスシリコンやポリシリコンTFTを用いても良い。
The substrate 11 is made of a transparent substrate such as glass, quartz, or a plastic sheet, a metal foil or sheet such as aluminum or stainless steel, a silicon substrate, or a metal such as aluminum, copper, nickel, or stainless steel on the plastic film or sheet. A non-light-transmitting substrate having a laminated film can be used.
Further, a thin film transistor (TFT) may be formed on the substrate 11 as necessary, and used as a driving substrate. As a material of the TFT, an organic TFT such as polythiophene, polyaniline, copper phthalocyanine, or perylene derivative may be used, or amorphous silicon or polysilicon TFT may be used.

第1電極形成後の機能層31成膜時に、第1電極が汚れていると、その後成膜された機能層31に対するホール注入効率が低下し、発光効率が低下したり、ダークスポットと称する非発光領域を生じたり、これを拡大させたりする。そのため、UVオゾン処理・コロナ処理・プラズマ処理等の基板洗浄処理を行う。又、第1電極形成後の有機EL素子基板10が汚いと、封止基材70との接着が悪くなる。洗浄は表面の接触角が10°以下になるまで行うのが望ましい。より好ましくは5°以下が望ましい。機能層31成膜までの時間は短いほど良く、好ましくは60分以内、より好ましくは30分以内が望ましい。   If the first electrode is contaminated during the formation of the functional layer 31 after the first electrode is formed, the hole injection efficiency for the functional layer 31 formed thereafter is lowered, the light emission efficiency is lowered, or a non-dark spot is called. A light emitting area is generated or enlarged. Therefore, substrate cleaning processing such as UV ozone processing, corona processing, and plasma processing is performed. Further, if the organic EL element substrate 10 after the first electrode is formed is dirty, the adhesion with the sealing substrate 70 is deteriorated. Cleaning is preferably performed until the contact angle of the surface becomes 10 ° or less. More preferably, it is 5 ° or less. The shorter the time until the functional layer 31 is formed, the better, preferably within 60 minutes, more preferably within 30 minutes.

なお封止基材に対する表面の接触角は、封止基材表面と水のなす角である。   In addition, the contact angle of the surface with respect to a sealing base material is an angle which the sealing base material surface and water make.

次に、第1電極21が形成された基板11上にアクリル樹脂あるいはポリイミド樹脂をベース樹脂とした感光性樹脂溶液をロールコート、スピンコート、スクリーン印刷、スプレーコート等のコーティング法を用いて、所定厚の感光層を形成し、パターン露光、現像等のパターニング処理を行って、第1電極21間の所定位置に隔壁51を形成する。ここで、隔壁51の高さは1μm前後である。   Next, a photosensitive resin solution based on acrylic resin or polyimide resin is applied onto the substrate 11 on which the first electrode 21 is formed using a coating method such as roll coating, spin coating, screen printing, spray coating, or the like. A thick photosensitive layer is formed, and patterning processing such as pattern exposure and development is performed to form partition walls 51 at predetermined positions between the first electrodes 21. Here, the height of the partition wall 51 is around 1 μm.

次に、発光物質を含む単層膜、あるいは多層膜を形成して機能層31を形成する。
機能層31を多層膜で形成する場合の構成例としては、正孔注入輸送層、電子輸送性発光層または正孔輸送性発光層、電子輸送層からなる2層構成や正孔注入輸送層、発光層、電子注入輸送層からなる3層構成、さらには、注入層と輸送層を分けたり、電子ブロック層や正孔ブロック層などを挿入することにより、さらに多層で形成することも可能である。
Next, the functional layer 31 is formed by forming a single layer film or a multilayer film containing a light emitting substance.
As a configuration example when the functional layer 31 is formed of a multilayer film, a hole injection transport layer, an electron transport light emitting layer or a hole transport light emitting layer, a two-layer structure including an electron transport layer, a hole injection transport layer, A three-layer structure comprising a light emitting layer and an electron injecting and transporting layer, and further, it is possible to form a multilayer by separating the injecting layer and the transporting layer, or inserting an electron blocking layer, a hole blocking layer, etc. .

さらに、機能層31上に第2電極41を形成する。
第2電極41の材料としては、機能層31への電子注入効率の高い物質を用いる。具体的にはMg、Al、Yb等の金属単体を用いたり、機能層と接する界面にLiや酸化Li、LiF等の化合物を1nm程度挟んで、安定性・導電性の高いAlやCuを積層して用いてもよい。また、電子注入効率と安定性を両立させるため、仕事関数が低いLi、Mg、Ca、Sr、La、Ce、Er、Eu、Sc、Y、Yb等の金属1種類以上と、安定なAg、Al、Cu等の金属元素との合金系を用いてもよい。具体的にはMgAg、AlLi、CuLi等の合金が使用できる。第2電極41を透光性電極層として利用する場合には、仕事関数が低いLi、Caを薄く設けた後に、ITO(インジウムスズ複合酸化物)やインジウム亜鉛複合酸化物、亜鉛アルミニウム複合酸化物などの金属複合酸化物を積層してもよく、前記機能層31に、仕事関数が低いLi、Caなどの金属を少量ドーピングして、ITOなどの金属酸化物を積層しても良い。
Further, the second electrode 41 is formed on the functional layer 31.
As the material of the second electrode 41, a substance having a high electron injection efficiency into the functional layer 31 is used. Specifically, a single metal such as Mg, Al, or Yb is used, or a compound such as Li, oxidized Li, or LiF is sandwiched by about 1 nm at the interface in contact with the functional layer, and Al or Cu having high stability and conductivity is laminated. May be used. Further, in order to achieve both electron injection efficiency and stability, one or more kinds of metals such as Li, Mg, Ca, Sr, La, Ce, Er, Eu, Sc, Y, and Yb having a low work function and stable Ag, An alloy system with a metal element such as Al or Cu may be used. Specifically, alloys such as MgAg, AlLi, and CuLi can be used. When the second electrode 41 is used as a translucent electrode layer, a thin work piece of Li or Ca having a low work function is provided, and then ITO (indium tin composite oxide), indium zinc composite oxide, or zinc aluminum composite oxide is used. A metal complex oxide such as ITO may be laminated, and the functional layer 31 may be doped with a small amount of a metal such as Li or Ca having a low work function, and a metal oxide such as ITO may be laminated.

第2電極41の形成方法は、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法を用いることができる。第2電極41の厚さは、特に制限はないが10nm〜1000nm程度が望ましい。また、第2電極41を透光性電極層として利用する場合、CaやLiなどの金属材料を用いる場合の膜厚は0.1〜10nm程度が望ましい。   As a method for forming the second electrode 41, a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, or a sputtering method can be used depending on the material. The thickness of the second electrode 41 is not particularly limited, but is preferably about 10 nm to 1000 nm. Moreover, when using the 2nd electrode 41 as a translucent electrode layer, about 0.1-10 nm is desirable for the film thickness in the case of using metal materials, such as Ca and Li.

さらに第2電極形成後、全ての発光部を覆い隠すように乾燥シート61を貼る。乾燥シート61は両面粘着テープとバインダーに吸湿性のある物質を練り込んだものの積層シートである。吸湿性のある物質は固定用の有機化合物等と容易に反応しないようなものであ
れば特に限定されるものではないが、例えば、水素化カルシウム(CaH2)、水素化ストロンチウム(SrH2)、水素化バリウム(BaH2)、水素化アルミニウムリチウム(AlLiH4)、酸化ナトリウム(Na2O)、酸化カリウム(K2O)、酸化カルシウム(CaO)、酸化バリウム(BaO)、酸化マグネシウム(MgO)等を挙げることが出来る。具体的には、ジャパンゴアテックス製dessicant−Aやダイニック製HDの市販されている乾燥シートなどが利用できる。厚みは、少なくとも500μm以上であることが望ましい。乾燥シートの貼る工程は、真空中もしくは不活性ガス雰囲気下で行う必要がある。
Further, after forming the second electrode, a dry sheet 61 is pasted so as to cover all the light emitting portions. The dry sheet 61 is a laminated sheet in which a hygroscopic substance is kneaded into a double-sided adhesive tape and a binder. The hygroscopic substance is not particularly limited as long as it does not easily react with the fixing organic compound or the like. For example, calcium hydride (CaH 2 ), strontium hydride (SrH 2 ), Barium hydride (BaH 2 ), lithium aluminum hydride (AlLiH 4 ), sodium oxide (Na 2 O), potassium oxide (K 2 O), calcium oxide (CaO), barium oxide (BaO), magnesium oxide (MgO) Etc. can be mentioned. Specifically, a desiccant-A manufactured by Japan Gore-Tex, a dried sheet commercially available from Dynic HD, and the like can be used. The thickness is desirably at least 500 μm. The step of attaching the dry sheet needs to be performed in a vacuum or in an inert gas atmosphere.

さらに乾燥シート形成後の有機EL素子基板に対して、基板表面洗浄を行う。状況に応じて、UVオゾン処理法・プラズマ処理法を用いることが出来る。基板洗浄効果が、封止基板との密着部に相当する箇所の接触角が、再度、10°以下になるまで行うのが望ましい。より好ましくは5°以下が望ましい。   Further, the substrate surface is cleaned with respect to the organic EL element substrate after the dry sheet is formed. Depending on the situation, a UV ozone treatment method or a plasma treatment method can be used. It is desirable that the substrate cleaning effect be performed until the contact angle of the portion corresponding to the close contact portion with the sealing substrate becomes 10 ° or less again. More preferably, it is 5 ° or less.

以下、封止基材70の作製法について説明する。
封止板71の材料としては、封止板として気密状態を維持し、所定の強度を有するものであれば特に限定されるものではない。封止板に用いられる材料としては、例えばソーダ石灰ガラス、鉛アルカリガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス、シリカガラス等のガラス板等の無機材料、または金属等を用いることができる。
Hereinafter, a method for producing the sealing substrate 70 will be described.
The material of the sealing plate 71 is not particularly limited as long as the sealing plate maintains an airtight state and has a predetermined strength. As a material used for the sealing plate, for example, an inorganic material such as a glass plate such as soda lime glass, lead alkali glass, borosilicate glass, aluminosilicate glass, or silica glass, or a metal can be used.

次に接着層72を形成する材料としては、エステルアクリレート、ウレタンアクリレート、エポキシアクリレート、メラミンアクリレート、アクリル樹脂アクリレート等のアクリレート、ウレタンポリエステル等の樹脂を用いたラジカル系接着剤や、エポキシ、ビニルエーテル等の樹脂を用いたカチオン系接着剤、チオール・エン付加型樹脂系接着剤等の光硬化型樹脂、または熱硬化型樹脂を用いることが出来る。接着層72内部の含有水分を除去するために、酸化バリウムや酸化カルシウムなどの乾燥剤を混入したり、接着層の厚みをコントロールするために数%程度の無機フィラーを混入しても良い。接着層72の形成方法としては、従来より行われている方法により形成することができ、例えば、インクジェット法、ディスペンサー法等が利用できる。接着層72の形成箇所は、封止板の密着部とし、例えば封止板の端部等、有機EL素子基板と封止基材とを接着剤により封止する際の、封止板側の密着部分をいうこととする。   Next, as a material for forming the adhesive layer 72, radical adhesives using resins such as acrylates such as ester acrylate, urethane acrylate, epoxy acrylate, melamine acrylate, and acrylic resin acrylate, urethane polyester, epoxy, vinyl ether, etc. A photo-curing resin such as a cationic adhesive using a resin, a thiol / ene addition resin-based adhesive, or a thermosetting resin can be used. In order to remove moisture contained in the adhesive layer 72, a desiccant such as barium oxide or calcium oxide may be mixed, or an inorganic filler of about several percent may be mixed in order to control the thickness of the adhesive layer. As a method for forming the adhesive layer 72, it can be formed by a conventionally performed method, and for example, an inkjet method, a dispenser method, or the like can be used. The formation location of the adhesive layer 72 is a close contact portion of the sealing plate. For example, when sealing the organic EL element substrate and the sealing substrate with an adhesive, such as an end portion of the sealing plate, It shall be the close contact part.

最後に有機EL素子基材10と封止基材70を貼り合わせる。貼り合せは、乾燥シート61を貼った有機EL素子基板の表面基板洗浄を行ってから、10分以下が望ましい。より好ましくは5分以下が望ましい。   Finally, the organic EL element substrate 10 and the sealing substrate 70 are bonded together. The pasting is preferably performed for 10 minutes or less after the surface substrate cleaning of the organic EL element substrate on which the dry sheet 61 is pasted. More preferably, 5 minutes or less is desirable.

まず、ガラスからなる基板11上にインジウム・錫合金酸化物をスパッタリングして150nm厚のITO膜を成膜し、パターニング処理して第1電極を形成した。その後、基板11の接触角が5°以下になるようUV・オゾン処理を行った。
次に、第1電極21が形成された基板11上にポリイミド樹脂からなる感光性樹脂溶液をスピンコーターにて塗布して感光層を形成し、パターン露光、現像等の1連のパターニング処理を行って、1μm厚の隔壁51を形成した。
First, an indium / tin alloy oxide was sputtered on a substrate 11 made of glass to form an ITO film having a thickness of 150 nm, and a first electrode was formed by patterning. Thereafter, UV / ozone treatment was performed so that the contact angle of the substrate 11 was 5 ° or less.
Next, a photosensitive resin solution made of polyimide resin is applied onto the substrate 11 on which the first electrode 21 is formed by a spin coater to form a photosensitive layer, and a series of patterning processes such as pattern exposure and development are performed. Thus, a partition wall 51 having a thickness of 1 μm was formed.

次に、第1電極21上にポリ(3、4−エチレンジオキシチオフェン)とポリスチレンスルホン酸との混合物からなる40nmの正孔輸送層と、ポリ[2−メトキシ−5−(2’−エチルヘキシロキシ)−1、4−フェニレンビニレン](MEHPPV)からなる80nm厚の発光体層とからなる2層構成の120nm厚の機能層31を形成した。   Next, a 40 nm hole transport layer made of a mixture of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid on the first electrode 21, and poly [2-methoxy-5- (2′-ethyl). A functional layer 31 having a thickness of 120 nm having a two-layer structure including a light-emitting layer having a thickness of 80 nm made of (hexyloxy) -1,4-phenylenevinylene] (MEHPPV) was formed.

次に、機能層31上にカルシウム10nm、アルミニウム150nmを順次パターニン
グ蒸着し、第2電極41を形成し、発光領域全てを覆い隠すようにDESICCANT−A(ジャパンゴアテックス社製)の乾燥シート61を貼り、有機EL素子基材10を作製した(図1(b)参照)。
Next, 10 nm of calcium and 150 nm of aluminum are sequentially patterned and deposited on the functional layer 31 to form the second electrode 41, and a dry sheet 61 of DESICCANT-A (manufactured by Japan Gore-Tex Co., Ltd.) so as to cover the entire light emitting region. The organic EL element base material 10 was produced by pasting (see FIG. 1B).

次に、有機EL素子基材10に再度UV・オゾン処理を施し、接触角が5°以下になるようにした。   Next, the organic EL element substrate 10 was again subjected to UV / ozone treatment so that the contact angle was 5 ° or less.

次に、ガラス製封止キャップ71の縁にディスペンサーロボットを利用して紫外線硬化型エポキシ系接着剤72を塗布した(図1(c)参照)。   Next, an ultraviolet curable epoxy adhesive 72 was applied to the edge of the glass sealing cap 71 using a dispenser robot (see FIG. 1C).

次に有機EL素子基板と接着層を形成した封止基材70とを貼り合わせ、UV硬化及び熱キュアで接着封止して、有機エレクトロルミネッセンス素子100を得た(図1(a)参照)。   Next, the organic EL element substrate and the sealing base material 70 on which the adhesive layer was formed were bonded together and bonded and sealed with UV curing and thermal curing to obtain an organic electroluminescence element 100 (see FIG. 1A). .

本発明に係る有機EL素子の一実施例を示す模式図で、(a)は有機EL素子の一実施例を部分断面で示す模式図、(b)は有機EL素子基板の一実施例を断面で示す模式図および部分拡大図、(c)は、封止基材の一実施例を断面で示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows one Example of the organic EL element which concerns on this invention, (a) is a schematic diagram which shows one Example of an organic EL element in a partial cross section, (b) is a cross section of one Example of an organic EL element board | substrate. The schematic diagram and partial enlarged view shown by (c) are the schematic diagrams which show one Example of a sealing base material in a cross section.

符号の説明Explanation of symbols

10……有機EL素子基材
11……基板
21……第1電極
31……機能層
41……第2電極
51……隔壁
61……乾燥シート
70……封止基材
71……封止板
72……接着剤
100……有機エレクトロルミネッセンス素子
10 ... Organic EL element base material 11 ... Substrate 21 ... First electrode 31 ... Functional layer 41 ... Second electrode 51 ... Partition wall 61 ... Dry sheet 70 ... Sealing base material 71 ... Sealing Plate 72 ... Adhesive 100 ... Organic electroluminescence element

Claims (3)

基板上に第1電極と発光層を含む機能層と第2電極とからなる発光領域と、隔壁とが複数形成された有機エレクトロルミネッセンス素子基材と、接着層が形成された封止基材とを貼り合わせてなる有機エレクトロルミネッセンス素子の製造方法であって、有機エレクトロルミネッセンス素子基材と封止基材とを貼りあわせる工程の前に、有機エレクトロルミネッセンス素子基材に対して、少なくともUVオゾン処理、プラズマ処理からなる表面洗浄処理を施すことを特徴とする有機エレクトロルミネッセンス素子の製造方法。   An organic electroluminescence element substrate in which a plurality of light-emitting regions each including a functional layer including a first electrode and a light-emitting layer and a second electrode on a substrate; and a plurality of partition walls; and a sealing substrate in which an adhesive layer is formed; Is a method for producing an organic electroluminescent element, wherein at least UV ozone treatment is performed on the organic electroluminescent element substrate before the step of laminating the organic electroluminescent element substrate and the sealing substrate. A method for producing an organic electroluminescence element, comprising performing a surface cleaning treatment comprising plasma treatment. 該有機エレクトロルミネッセンス素子基材の発光領域は、乾燥シートで全て覆われていることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。   The method for producing an organic electroluminescent element according to claim 1, wherein the light emitting region of the organic electroluminescent element substrate is entirely covered with a dry sheet. 請求項1または2記載の有機エレクトロルミネッセンス素子の製造方法を用いて製造されたことを特徴とする有機エレクトロルミネッセンス素子。   An organic electroluminescent device manufactured using the method for manufacturing an organic electroluminescent device according to claim 1.
JP2006209568A 2006-08-01 2006-08-01 Organic electroluminescent element and its manufacturing method Pending JP2008041255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006209568A JP2008041255A (en) 2006-08-01 2006-08-01 Organic electroluminescent element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006209568A JP2008041255A (en) 2006-08-01 2006-08-01 Organic electroluminescent element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008041255A true JP2008041255A (en) 2008-02-21

Family

ID=39176063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209568A Pending JP2008041255A (en) 2006-08-01 2006-08-01 Organic electroluminescent element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008041255A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170776A (en) * 2009-01-21 2010-08-05 Konica Minolta Holdings Inc Organic electroluminescent element and its manufacturing method
US8927912B2 (en) 2011-06-10 2015-01-06 Samsung Display Co., Ltd. Sealant curing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170776A (en) * 2009-01-21 2010-08-05 Konica Minolta Holdings Inc Organic electroluminescent element and its manufacturing method
US8927912B2 (en) 2011-06-10 2015-01-06 Samsung Display Co., Ltd. Sealant curing apparatus

Similar Documents

Publication Publication Date Title
JP4776393B2 (en) Organic EL display device
US8029684B2 (en) Self-emission panel and method of manufacturing the same
JP6074149B2 (en) Light emitting device
KR20010039723A (en) Organic electroluminescent device and method for fabricating same
JP2007242436A (en) Manufacturing method of organic electroluminescent device, and organic electroluminescent device
JP2009259732A (en) Organic electroluminescent device
JP2002151252A (en) Organic el display device
JP2011034682A (en) Organic el display device
JP2007103164A (en) Self-luminous panel and method of manufacturing self-luminous panel
JP4178887B2 (en) Organic electroluminescence device
JP2007273400A (en) Method of manufacturing optical device, and optical device
JP2010103082A (en) Organic electroluminescent device and method for manufacturing the same
JP4325248B2 (en) Method for manufacturing organic electroluminescence element
JP2005150100A (en) Organic el display device
JP2008041255A (en) Organic electroluminescent element and its manufacturing method
JP2006172837A (en) Sealing member, selfluminous panel and manufacturing method for selfluminous panel
JP2007200801A (en) Top-emission type organic electroluminescent element
JP2007250251A (en) Optical device and manufacturing method of optical device
JP2006054147A (en) Organic electroluminescent element
CN210136893U (en) Display panel and display device
JP4399202B2 (en) Manufacturing method of flat panel display device
JP2006228493A (en) Organic electroluminescent element and its manufacturing method
JP2007095414A (en) Manufacturing method of top-emission type organic electroluminescent element
JP2008130312A (en) Manufacturing method and encapsulated base board for electroluminescence element panel
WO2010113727A1 (en) Organic el element and manufacturing method therefor