JP2008038829A - Piezoelectric pump and piezoelectric vibrator - Google Patents

Piezoelectric pump and piezoelectric vibrator Download PDF

Info

Publication number
JP2008038829A
JP2008038829A JP2006216772A JP2006216772A JP2008038829A JP 2008038829 A JP2008038829 A JP 2008038829A JP 2006216772 A JP2006216772 A JP 2006216772A JP 2006216772 A JP2006216772 A JP 2006216772A JP 2008038829 A JP2008038829 A JP 2008038829A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric vibrator
pump
shim
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006216772A
Other languages
Japanese (ja)
Inventor
Hitoshi Onishi
人司 大西
Eiichi Komai
栄一 駒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2006216772A priority Critical patent/JP2008038829A/en
Priority to TW096123115A priority patent/TW200819631A/en
Priority to US11/880,737 priority patent/US20080038125A1/en
Publication of JP2008038829A publication Critical patent/JP2008038829A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/023Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms double acting plate-like flexible member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric pump having highly reliable liquid-tight construction around a piezoelectric vibrator, comprising the piezoelectric vibrator having a piezoelectric body laminated on at least one of the surface and the reverse of a shim consisting of a conductive metal thin plate, and a housing for keeping the peripheral edge of the piezoelectric vibrator liquid-tight to form a pump chamber, wherein an alternating current is applied between the piezoelectric vibrator and the shim for vibrating the piezoelectric vibrator to produce pumping operation. <P>SOLUTION: In the piezoelectric pump, a cylindrical bent part is formed at the peripheral edge of the shim of the piezoelectric vibrator and a liquid-tight seal member is laid between the cylindrical bent part and the housing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、圧電振動子を用いた圧電ポンプ及び圧電振動子に関する。   The present invention relates to a piezoelectric pump using a piezoelectric vibrator and a piezoelectric vibrator.

薄板状の圧電振動子を振動させることによりポンプ作用を得る圧電ポンプは、圧電振動子とハウジングとによってポンプ室を形成し、このポンプ室に連なる一対の流路に、流れ方向の異なる一対の逆止弁(ポンプ室への流体流を許す逆止弁とポンプ室からの流体流を許す逆止弁)を設けている。圧電振動子を振動させると、ポンプ室の容積が変化し、この容積変化に伴い一対の逆止弁の一方が閉じて他方が開く動作を繰り返すことから、ポンプ作用が得られる。このような圧電ポンプは、薄型にでき、例えば水冷ノート型パソコンの冷却水循環ポンプとして用いられている。   A piezoelectric pump that obtains a pump action by vibrating a thin plate-like piezoelectric vibrator forms a pump chamber with the piezoelectric vibrator and a housing, and a pair of opposite flowers having different flow directions are formed in a pair of flow paths connected to the pump chamber. Stop valves (a check valve that allows fluid flow to the pump chamber and a check valve that allows fluid flow from the pump chamber) are provided. When the piezoelectric vibrator is vibrated, the volume of the pump chamber changes, and as the volume changes, one of the pair of check valves closes and the other opens repeatedly, thereby obtaining a pump action. Such a piezoelectric pump can be made thin, and is used, for example, as a cooling water circulation pump of a water-cooled notebook personal computer.

圧電振動子は、圧電体を、シム(導電性金属薄板)の表裏の少なくとも一方に積層してなっている。圧電体はその表裏方向に分極特性が与えられていて、表裏間に、この分極方向と同一方向または逆方向の正負極性を与えると、一方の表面積が拡大し他方の表面積が縮小する性質がある。このため、圧電体の表裏に与える正負極性を交互に反転させると、表裏の一方が延びて他方が縮むサイクルが繰り返され、シムが振動する。   The piezoelectric vibrator is formed by laminating a piezoelectric body on at least one of the front and back surfaces of a shim (conductive metal thin plate). The piezoelectric body has a polarization characteristic in the front and back directions, and when the positive and negative polarities in the same direction or in the opposite direction to the polarization direction are given between the front and back surfaces, the surface area of one side is enlarged and the surface area of the other side is reduced. . For this reason, when the positive and negative polarities applied to the front and back sides of the piezoelectric body are alternately reversed, a cycle in which one of the front and back sides extends and the other shrinks is repeated, and the shim vibrates.

登録実用新案第2510590公報Registered Utility Model No. 2510590 実開平3-8679号公報Japanese Utility Model Publication No. 3-8679 特開2004-257337号公報JP 2004-257337 A

このような圧電ポンプに用いられる圧電振動子は従来、平板状(円板状)をなしており、その周縁部に当接させたOリング(液密シール部材)をハウジングとの間で圧縮することで、液密構造としている。圧縮されたOリングは、圧電振動子とハウジングとの間に離間させる方向の力を与える。この力は、短期的に液密構造に影響を与えることはないが、長期のスパンで考えると、液密構造に悪影響を与えるおそれがある。上述の水冷ノート型パソコンの冷却水循環ポンプのような用途では、液密構造を万全にしておくことが望ましい。   Conventionally, a piezoelectric vibrator used in such a piezoelectric pump has a flat plate shape (disk shape), and compresses an O-ring (liquid tight seal member) brought into contact with a peripheral portion thereof with a housing. Therefore, it has a liquid-tight structure. The compressed O-ring gives a force in a direction of separating between the piezoelectric vibrator and the housing. This force does not affect the liquid-tight structure in the short term, but there is a possibility of adversely affecting the liquid-tight structure when considered over a long span. In applications such as the cooling water circulation pump of the above-mentioned water-cooled notebook personal computer, it is desirable that the liquid-tight structure is made perfect.

本発明は、以上の問題意識に基づき、圧電振動子回りの液密構造の信頼性が高い圧電ポンプを得ることを目的とする。
また、本発明は、信頼性の高い液密構造が容易に得られる圧電振動子を得ることを目的とする。
An object of the present invention is to obtain a piezoelectric pump with high reliability of a liquid-tight structure around a piezoelectric vibrator based on the above problem awareness.
It is another object of the present invention to obtain a piezoelectric vibrator that can easily obtain a highly reliable liquid-tight structure.

本発明は、従来の平板状(円板状)の圧電振動子では、液密シール部材を該振動子の平面方向と直交する方向に圧縮せざるを得ず、この圧縮構造が長期に渡る液密構造についての不安要因であるとの認識に基づき、圧縮方向を該振動子の径方向とすれば、信頼性が向上するとの着眼に基づいてなされたものである。   According to the present invention, in a conventional plate-shaped (disc-shaped) piezoelectric vibrator, the liquid-tight seal member must be compressed in a direction orthogonal to the plane direction of the vibrator, and this compression structure is a long-term liquid. Based on the recognition that this is an anxiety factor for the dense structure, the improvement was made based on the viewpoint that the reliability would be improved if the compression direction was the radial direction of the vibrator.

すなわち、本発明による圧電ポンプは、導電性金属薄板からなるシムの表裏の少なくとも一方に圧電体を積層してなる圧電振動子と、この圧電振動子の周縁を液密にしてポンプ室を形成するハウジングとを有し、この圧電振動子のシムと圧電体との間に交番電流を印加し該圧電振動子を振動させてポンプ作用を得る圧電ポンプにおいて、圧電振動子のシムの周縁部に、円筒状曲折部を形成し、この円筒状曲折部とハウジングとの間に、液密シール部材を介在させたことを特徴としている。   That is, the piezoelectric pump according to the present invention forms a pump chamber with a piezoelectric vibrator formed by laminating a piezoelectric body on at least one of the front and back sides of a shim made of a conductive metal thin plate, and the periphery of the piezoelectric vibrator being liquid-tight. In a piezoelectric pump that has a housing and applies an alternating current between the shim of the piezoelectric vibrator and the piezoelectric body to vibrate the piezoelectric vibrator to obtain a pump action, in the peripheral portion of the shim of the piezoelectric vibrator, A cylindrical bent portion is formed, and a liquid-tight seal member is interposed between the cylindrical bent portion and the housing.

ポンプ室は圧電振動子の表裏の一方に形成するタイプと、表裏の双方に形成するタイプが可能である。表裏の一方に形成するタイプでは、液密シール部材は、該圧電振動子のシムの円筒状曲折部の内周面または外周面の一方に位置させればよい。   The pump chamber can be of a type formed on one of the front and back sides of the piezoelectric vibrator and a type formed on both the front and back sides. In the type formed on one of the front and back surfaces, the liquid-tight seal member may be positioned on one of the inner peripheral surface or the outer peripheral surface of the cylindrical bent portion of the shim of the piezoelectric vibrator.

一方、表裏の双方に形成するタイプでは、該圧電振動子のシムの円筒状曲折部の内周面と外周面にそれぞれ液密シール部材を位置させることが望ましい。   On the other hand, in the type formed on both the front and back sides, it is desirable to place liquid-tight seal members on the inner and outer peripheral surfaces of the cylindrical bent portion of the shim of the piezoelectric vibrator.

また、シムには、その円筒状曲折部の端部に外方に曲折された外方フランジ部を形成することが好ましい。   Moreover, it is preferable to form the outward flange part bent outward at the edge part of the cylindrical bending part in the shim.

本発明は、導電性金属薄板からなるシムの表裏の少なくとも一方に圧電体を積層してなる圧電振動子の態様では、シムの周縁部に、円筒状曲折部を形成したことを特徴としている。   The present invention is characterized in that a cylindrical bent portion is formed at the periphery of the shim in the aspect of the piezoelectric vibrator in which a piezoelectric body is laminated on at least one of the front and back sides of the shim made of a conductive metal thin plate.

本発明によれば、圧電振動子の周縁部に位置させて液密構造とする液密シール部材を、シムに形成した曲折円筒状部とハウジングとの間で圧縮するため、液密シール部材の反発力がハウジングと圧電振動子を離間させる方向の力として作用することがない。このため、長期に渡り高い液密信頼性を得ることができる。   According to the present invention, a liquid-tight seal member having a liquid-tight structure positioned at the peripheral portion of the piezoelectric vibrator is compressed between the bent cylindrical portion formed in the shim and the housing. The repulsive force does not act as a force in the direction separating the housing and the piezoelectric vibrator. For this reason, high liquid-tight reliability can be obtained over a long period of time.

図7は、2バルブ型圧電ポンプの概念構成の一例を模式的に示している。圧電振動子10は、ハウジング20を構成するアッパハウジング20Uとロアハウジング20Lの間に挟着支持されていて、アッパハウジング20Uとの間にポンプ室Aを構成している。   FIG. 7 schematically shows an example of a conceptual configuration of a two-valve piezoelectric pump. The piezoelectric vibrator 10 is sandwiched and supported between an upper housing 20U and a lower housing 20L constituting the housing 20, and constitutes a pump chamber A between the upper housing 20U.

ハウジング20(アッパハウジング20U)には、冷却水(液体)の入口ポート21と出口ポート22が開口しており、入口ポート21とポンプ室Aとの間、及びポンプ室Aと出口ポート22との間にそれぞれ、逆止弁11、12が設けられている。逆止弁11は、入口ポート21からポンプ室Aへの流体流を許してその逆の流体流を許さない吸入側逆止弁であり、逆止弁12は、ポンプ室Aから出口ポート22への流体流を許してその逆の流体流を許さない吐出側逆止弁である。   In the housing 20 (upper housing 20U), an inlet port 21 and an outlet port 22 for cooling water (liquid) are opened, and between the inlet port 21 and the pump chamber A and between the pump chamber A and the outlet port 22. Check valves 11 and 12 are provided in between. The check valve 11 is a suction-side check valve that allows a fluid flow from the inlet port 21 to the pump chamber A and does not allow the reverse fluid flow. The check valve 12 passes from the pump chamber A to the outlet port 22. This is a discharge-side check valve that allows the fluid flow of the fluid but does not permit the reverse fluid flow.

以上の圧電ポンプは、圧電振動子10が正逆に弾性変形すると、ポンプ室Aの容積が拡大する行程では、吸入側逆止弁11が開いて吐出側逆止弁12が閉じるため、入口ポート21からポンプ室A内に液体が流入する(図7(B))。一方、ポンプ室Aの容積が縮小する行程では、吐出側逆止弁12が開いて吸入側逆止弁11が閉じるため、ポンプ室Aから出口ポート22に液体が流出する(同(A))。したがって、圧電振動子10を正逆に連続させて弾性変形させる(振動させる)ことで、ポンプ作用が得られる。   In the above piezoelectric pump, when the piezoelectric vibrator 10 is elastically deformed in the forward and reverse directions, the suction-side check valve 11 is opened and the discharge-side check valve 12 is closed in the stroke in which the volume of the pump chamber A is expanded. The liquid flows into the pump chamber A from 21 (FIG. 7B). On the other hand, in the process of reducing the volume of the pump chamber A, the discharge side check valve 12 is opened and the suction side check valve 11 is closed, so that the liquid flows out from the pump chamber A to the outlet port 22 ((A)). . Accordingly, the pump action can be obtained by elastically deforming (vibrating) the piezoelectric vibrator 10 continuously in the forward and reverse directions.

図1ないし図3は、例えば以上のような基本構成を有する圧電ポンプに本発明を適用した第一の実施形態を示している。圧電振動子10は、この実施形態では、中心部のシム101と、シム101の表裏の一面(図の下面)に積層形成した圧電体102とを有するユニモルフタイプを図示している。シム101は、導電性の金属薄板材料、例えば厚さ0.2mm程度のステンレス薄板からプレス成型など周知な方法により一体に構成されており、中心円形部101aの周縁に図の上方に曲折形成された円筒状曲折部101bを有し、この円筒状曲折部101bの上端部にはさらに外方に曲折形成されたフランジ部101cが形成されている。圧電体102は、例えば厚さ0.3mm程度のPZT(Pb(Zr、Ti)O3)から構成されるもので、その表裏方向に分極処理が施されている。圧電体102は、シム101の中心円形部101aに対応する円形をなしており、該中心円形部101aの裏面に導電性接着剤を介して接着され、圧電体102の表面は、透明電極で覆われる。 1 to 3 show, for example, a first embodiment in which the present invention is applied to a piezoelectric pump having the above basic configuration. In this embodiment, the piezoelectric vibrator 10 is shown as a unimorph type having a shim 101 at the center and a piezoelectric body 102 formed on one surface of the front and back of the shim 101 (the lower surface in the figure). The shim 101 is integrally formed from a conductive metal thin plate material, for example, a stainless thin plate having a thickness of about 0.2 mm, by a known method such as press molding, and is bent at the periphery of the central circular portion 101a upward in the drawing. A cylindrical bent portion 101b is formed, and a flange portion 101c that is further bent outward is formed at the upper end of the cylindrical bent portion 101b. The piezoelectric body 102 is made of, for example, PZT (Pb (Zr, Ti) O 3 ) having a thickness of about 0.3 mm, and is polarized in the front and back directions. The piezoelectric body 102 has a circular shape corresponding to the central circular portion 101a of the shim 101, and is adhered to the back surface of the central circular portion 101a via a conductive adhesive. The surface of the piezoelectric body 102 is covered with a transparent electrode. Is called.

アッパハウジング20Uには、圧電振動子10(シム101)の円筒状曲折部101bとフランジ部101cとOリング(液密シール部材)24を挿入する環状溝25が形成されており、ロアハウジング20Lには、シム101のフランジ部101cを挿入する段凹部26が形成されている。この段凹部26により、圧電振動子10の軸方向の位置が定まる。Oリング24は、円筒状曲折部101bの内周面と環状溝25との間において、圧電振動子10の平面方向と平行な方向に圧縮され液密が保持されている。図2、図3では、逆止弁11、12としてアンブレラを図示しているが、基本構成は図1と同様である。シム101のフランジ部101cは、省略することが可能であるが、存在することで、圧電振動子10の位置精度を高めることができる。また、シム101が中心円形部101a、円筒状曲折部101bとフランジ部101cとを含め、ステンレス薄板により一体に構成されているために、高い液密性を確保することができる。さらに、Oリング24の圧縮方向が平面方向であることから、アッパハウジング20U及びロアハウジング20Lは、薄くても剛性を確保できるため、圧電ポンプの薄型化にも対応が容易である。   The upper housing 20U is formed with an annular groove 25 into which the cylindrical bent portion 101b, flange portion 101c and O-ring (liquid-tight seal member) 24 of the piezoelectric vibrator 10 (shim 101) are inserted. Is formed with a step recess 26 into which the flange 101c of the shim 101 is inserted. The step recess 26 determines the axial position of the piezoelectric vibrator 10. The O-ring 24 is compressed in a direction parallel to the planar direction of the piezoelectric vibrator 10 between the inner peripheral surface of the cylindrical bent portion 101b and the annular groove 25, and liquid tightness is maintained. 2 and 3, umbrellas are illustrated as the check valves 11 and 12, but the basic configuration is the same as that in FIG. The flange portion 101c of the shim 101 can be omitted, but the presence of the flange portion 101c can increase the positional accuracy of the piezoelectric vibrator 10. Moreover, since the shim 101 is integrally formed of a stainless steel thin plate including the central circular portion 101a, the cylindrical bent portion 101b, and the flange portion 101c, high liquid tightness can be ensured. Furthermore, since the compression direction of the O-ring 24 is a planar direction, the upper housing 20U and the lower housing 20L can ensure rigidity even if they are thin, and thus it is easy to cope with the thinning of the piezoelectric pump.

上記構成の本圧電ポンプは、シム101と圧電体102の間に交番電流を印加することで、圧電振動子10が振動し、図7で説明したのと同様のポンプ作用が得られる。そして、Oリング24は圧電振動子10の平面方向と平行な方向に圧縮され平面方向と直交する力を受けることがない。つまり、Oリング24がアッパハウジング20Uとロアハウジング20Lに、両者を離間させる方向の力を及ぼすことがないため、長期に渡る液密性を保証することができる。   In the piezoelectric pump configured as described above, when an alternating current is applied between the shim 101 and the piezoelectric body 102, the piezoelectric vibrator 10 vibrates, and the same pumping action as described in FIG. 7 is obtained. The O-ring 24 is compressed in a direction parallel to the plane direction of the piezoelectric vibrator 10 and does not receive a force orthogonal to the plane direction. That is, since the O-ring 24 does not exert a force in the direction in which the upper housing 20U and the lower housing 20L are separated from each other, liquid-tightness over a long period of time can be ensured.

図4は、シム101の円筒状曲折部101bの外周側にOリング24を位置させた本発明の別の実施形態を示している。この実施形態では、アッパハウジング20Uの環状溝25だけで、シム101(圧電振動子10)を支持しており、アッパハウジング20Uのみを示してロアハウジング20Lの図示を省略している。   FIG. 4 shows another embodiment of the present invention in which an O-ring 24 is positioned on the outer peripheral side of the cylindrical bent portion 101 b of the shim 101. In this embodiment, the shim 101 (piezoelectric vibrator 10) is supported only by the annular groove 25 of the upper housing 20U, and only the upper housing 20U is shown, and the lower housing 20L is not shown.

以上の実施形態のユニモルフ型の圧電振動子10は、ポンプ室Aとは反対の面に圧電体102を積層しているが、原理的にはポンプ室A側に圧電体102を積層してもよい。しかし、ポンプ室Aとは反対の面に圧電体102を積層すると、圧電体102に液体が触れるおそれがないため、例えば腐食性液体や水溶液等の液送用に好ましい。また、ポンプ室A側に圧電体102を積層する場合、保護フィルム等で圧電体102を覆い、液体と圧電体102が直接接するのを防止することはできるが、長期間の使用により保護フィルムを液体が透湿する場合があり、この観点からもポンプ室Aと反対側に圧電体102を積層するのが好ましい。   The unimorph type piezoelectric vibrator 10 of the above embodiment has the piezoelectric body 102 laminated on the surface opposite to the pump chamber A. However, in principle, the piezoelectric body 102 may be laminated on the pump chamber A side. Good. However, if the piezoelectric body 102 is laminated on the surface opposite to the pump chamber A, there is no risk of the liquid touching the piezoelectric body 102, which is preferable for feeding liquid such as corrosive liquid or aqueous solution. When the piezoelectric body 102 is laminated on the pump chamber A side, the piezoelectric body 102 can be covered with a protective film or the like to prevent the liquid and the piezoelectric body 102 from coming into direct contact with each other. The liquid may be permeable to moisture. From this viewpoint, it is preferable to stack the piezoelectric body 102 on the side opposite to the pump chamber A.

図8は、本発明を適用する4バルブ型圧電ポンプの動作原理を示している。この4バルブ圧電ポンプは、圧電振動子10とアッパハウジング20Uの間、及び圧電振動子10とロアハウジング20Lの間にそれぞれポンプ室A及びBを形成する一方、ハウジング20に単一の入口ポート21と単一の出口ポート22を設け、一対のポンプ室A、Bと入口ポート21との間にそれぞれ該入口ポート21から該一対のポンプ室A、Bへの流体流を許容しその逆方向の流体流を許さない第一、第二の吸入側逆止弁11U、11Lを設け、一対のポンプ室A、Bと出口ポート22との間にそれぞれ該一対のポンプ室A、Bから出口ポート22への流体流を許容しその逆方向の流体流を許さない第一、第二の吐出側逆止弁12U、12Lを設けている。   FIG. 8 shows the operating principle of a four-valve piezoelectric pump to which the present invention is applied. This four-valve piezoelectric pump forms pump chambers A and B between the piezoelectric vibrator 10 and the upper housing 20U, and between the piezoelectric vibrator 10 and the lower housing 20L, respectively, while the housing 20 has a single inlet port 21. And a single outlet port 22 between the pair of pump chambers A and B and the inlet port 21 to allow fluid flow from the inlet port 21 to the pair of pump chambers A and B, respectively, in the opposite direction. First and second suction-side check valves 11U, 11L that do not allow fluid flow are provided, and a pair of pump chambers A, B and an outlet port 22 are respectively provided between the pair of pump chambers A, B and the outlet port 22. The first and second discharge-side check valves 12U and 12L are provided, which allow fluid flow to and not allow fluid flow in the opposite direction.

この4バルブ型圧電ポンプでは、圧電振動子10を正逆に弾性変形(振動)させると、ポンプ室AとBのいずれか一方の容積が増大し他方の容積が減少する行程が繰り返される。ポンプ室Aの容積が増大する(ポンプ室Bの容積が減少する)行程では、逆止弁11Uが開いて入口ポート21からポンプ室A内に流体が流入し、ポンプ室B内の流体が逆止弁12Uを開いて出口ポート22に流出する(図8(B))。逆にポンプ室Aの容積が減少する(ポンプ室Bの容積が増大する)行程では、吸入側逆止弁28Lが開いて入口ポート21からポンプ室B内に流体が流入し、ポンプ室A内の流体が吐出側逆止弁29Uを開いて出口ポート22に流出する(同(A))。従って、出口ポート22における脈動の周期を短くする(圧電振動子10の上下の一方のみにポンプ室が形成される場合に比して半分にする)ことができる。   In this four-valve piezoelectric pump, when the piezoelectric vibrator 10 is elastically deformed (vibrated) in the forward and reverse directions, the process of increasing the volume of one of the pump chambers A and B and decreasing the volume of the other is repeated. In the process of increasing the volume of the pump chamber A (decreasing the volume of the pump chamber B), the check valve 11U opens, the fluid flows into the pump chamber A from the inlet port 21, and the fluid in the pump chamber B is reversed. The stop valve 12U is opened and flows out to the outlet port 22 (FIG. 8B). On the other hand, in the stroke in which the volume of the pump chamber A decreases (the volume of the pump chamber B increases), the suction side check valve 28L opens, and the fluid flows into the pump chamber B from the inlet port 21. Opens the discharge-side check valve 29U and flows out to the outlet port 22 ((A)). Therefore, the pulsation cycle at the outlet port 22 can be shortened (halved compared to the case where the pump chamber is formed only on one of the upper and lower sides of the piezoelectric vibrator 10).

図5、図6は、以上の動作原理の4バルブ型圧電ポンプに本発明を適用した実施形態を示している。この実施形態では、圧電振動子10は、中心円形部101aの両面に圧電体102を積層したバイモルフタイプとして構成されており、アッパハウジング20Uとロアハウジング20Lとの間には、シム101の円筒状曲折部101bとOリング24を挿入する環状溝27が形成されている。すなわち、アッパハウジング20Uの円柱状凸部27aと、ロアハウジング20Lの円筒状凹部27bとによって環状溝27が形成されている。この環状溝27には、円筒状曲折部101bと、その内周面と外周面にそれぞれ位置するOリング24が挿入され、圧電振動子10の平面方向と平行な方向に圧縮されて液密が保持されている。図5、図6では、逆止弁11U、11L、12U、12Lとしてアンブレラを図示しているが、基本構成は図8と同様である。   5 and 6 show an embodiment in which the present invention is applied to a four-valve piezoelectric pump having the above operation principle. In this embodiment, the piezoelectric vibrator 10 is configured as a bimorph type in which the piezoelectric bodies 102 are laminated on both surfaces of the central circular portion 101a, and the cylindrical shape of the shim 101 is provided between the upper housing 20U and the lower housing 20L. An annular groove 27 for inserting the bent portion 101b and the O-ring 24 is formed. That is, the annular groove 27 is formed by the columnar convex portion 27a of the upper housing 20U and the cylindrical concave portion 27b of the lower housing 20L. The annular groove 27 is inserted with a cylindrical bent portion 101b and O-rings 24 positioned on the inner and outer peripheral surfaces thereof, and is compressed in a direction parallel to the plane direction of the piezoelectric vibrator 10 to be liquid-tight. Is retained. 5 and 6, umbrellas are illustrated as check valves 11U, 11L, 12U, and 12L, but the basic configuration is the same as that in FIG.

この4バルブ型の実施形態においても、同電位とした表裏の圧電体102とシム101との間に交番電流を与えることで圧電振動子10を振動させ、ポンプ作用を得ることができる。バイモルフタイプの圧電振動子10によれば、ユニモルフ型に比べ振動の振幅を大きくすることができ、ポンプ効率を高めることができる。そして、シム101の円筒状曲折部101bの内周面と外周面にそれぞれ位置するOリング24は圧電振動子10の平面方向と平行な方向に圧縮され、平面方向と直交する方向には圧縮されることがない。よって、アッパハウジング20Uとロアハウジング20Lに離間する方向の力は加わらず、長期に渡る液密構造を保証することができる。   Also in this four-valve type embodiment, by applying an alternating current between the front and back piezoelectric bodies 102 and shims 101 having the same potential, the piezoelectric vibrator 10 can be vibrated to obtain a pump action. According to the bimorph type piezoelectric vibrator 10, the amplitude of vibration can be increased as compared with the unimorph type, and the pump efficiency can be increased. The O-rings 24 positioned on the inner and outer peripheral surfaces of the cylindrical bent portion 101b of the shim 101 are compressed in a direction parallel to the plane direction of the piezoelectric vibrator 10 and compressed in a direction orthogonal to the plane direction. There is nothing to do. Therefore, a force in the direction of separating the upper housing 20U and the lower housing 20L is not applied, and a liquid-tight structure over a long period can be ensured.

本発明による圧電振動子の一実施形態を示す模式分解図である。FIG. 3 is a schematic exploded view showing an embodiment of a piezoelectric vibrator according to the present invention. 図1の圧電振動子を用いた圧電ポンプの一実施形態を示す、要部の半断面斜視図である。FIG. 2 is a half sectional perspective view of a main part showing an embodiment of a piezoelectric pump using the piezoelectric vibrator of FIG. 1. 同断面図である。FIG. 図1の圧電振動子を用いた圧電ポンプの別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment of the piezoelectric pump using the piezoelectric vibrator of FIG. 本発明による圧電振動子の他の実施形態を示す模式分解図である。FIG. 6 is a schematic exploded view showing another embodiment of a piezoelectric vibrator according to the present invention. 図5の圧電振動子を用いた圧電ポンプの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the piezoelectric pump using the piezoelectric vibrator of FIG. (A)、(B)は、本発明の適用対象とする2バルブ型圧電ポンプの概念構成の一例を示す模式図である。(A), (B) is a schematic diagram which shows an example of a conceptual structure of the 2 valve type piezoelectric pump made into the application object of this invention. (A)、(B)は、本発明の適用対象とする4バルブ型圧電ポンプの概念構成の一例を示す模式図である。(A), (B) is a schematic diagram which shows an example of a conceptual structure of the 4-valve type piezoelectric pump made into the application object of this invention.

符号の説明Explanation of symbols

10 圧電振動子
101 シム
101a 中心円形部
101b 円筒状曲折部
101c フランジ部
102 圧電体
11 11U 11L 吸入側逆止弁
12 12U 12L 吐出側逆止弁
20 ハウジング
20U アッパハウジング
20L ロアハウジング
21 入口ポート
22 出口ポート
24 Oリング
25 27 環状溝
26 段凹部
A B ポンプ室

DESCRIPTION OF SYMBOLS 10 Piezoelectric vibrator | oscillator 101 Shim 101a Center circular part 101b Cylindrical bent part 101c Flange part 102 Piezoelectric body 11 11U 11L Suction side check valve 12 12U 12L Discharge side check valve 20 Housing 20U Upper housing 20L Lower housing 21 Inlet port 22 Outlet Port 24 O-ring 25 27 Annular groove 26 Step recess A B Pump chamber

Claims (7)

導電性金属薄板からなるシムの表裏の少なくとも一方に圧電体を積層してなる圧電振動子と、この圧電振動子の周縁を液密にしてポンプ室を形成するハウジングとを有し、この圧電振動子のシムと圧電体との間に交番電流を印加し該圧電振動子を振動させてポンプ作用を得る圧電ポンプにおいて、
上記圧電振動子のシムの周縁部に、円筒状曲折部を形成し、この円筒状曲折部とハウジングとの間に、液密シール部材を介在させたことを特徴とする圧電ポンプ。
A piezoelectric vibrator in which a piezoelectric body is laminated on at least one of the front and back sides of a shim made of a conductive metal thin plate, and a housing that forms a pump chamber by making the periphery of the piezoelectric vibrator liquid-tight. In a piezoelectric pump that obtains a pump action by applying an alternating current between a child shim and a piezoelectric body to vibrate the piezoelectric vibrator,
A piezoelectric pump characterized in that a cylindrical bent portion is formed in a peripheral portion of a shim of the piezoelectric vibrator, and a liquid-tight seal member is interposed between the cylindrical bent portion and the housing.
請求項1記載の圧電ポンプにおいて、上記ポンプ室は上記圧電振動子の表裏の一方に形成され、上記液密シール部材は、該圧電振動子のシムの円筒状曲折部の内周面に位置している圧電ポンプ。 2. The piezoelectric pump according to claim 1, wherein the pump chamber is formed on one of front and back sides of the piezoelectric vibrator, and the liquid-tight seal member is located on an inner peripheral surface of a cylindrical bent portion of a shim of the piezoelectric vibrator. Piezoelectric pump. 請求項1記載の圧電ポンプにおいて、上記ポンプ室は上記圧電振動子の表裏の一方に形成され、上記液密シール部材は、該圧電振動子のシムの円筒状曲折部の外周面に位置している圧電ポンプ。 2. The piezoelectric pump according to claim 1, wherein the pump chamber is formed on one of the front and back sides of the piezoelectric vibrator, and the liquid-tight seal member is located on an outer peripheral surface of a cylindrical bent portion of the shim of the piezoelectric vibrator. Piezoelectric pump. 請求項1記載の圧電ポンプにおいて、上記ポンプ室は上記圧電振動子の表裏にそれぞれ形成され、上記液密シール部材は、該圧電振動子のシムの円筒状曲折部の内周面と外周面にそれぞれ位置している圧電ポンプ。 2. The piezoelectric pump according to claim 1, wherein the pump chambers are respectively formed on the front and back sides of the piezoelectric vibrator, and the liquid-tight seal members are provided on an inner peripheral surface and an outer peripheral surface of a cylindrical bent portion of the shim of the piezoelectric vibrator. Each piezoelectric pump is located. 請求項1ないし4のいずれか1項記載の圧電ポンプにおいて、圧電振動子の上記シムは、その円筒状曲折部の端部に外方に曲折された外方フランジ部を有する圧電ポンプ。 5. The piezoelectric pump according to claim 1, wherein the shim of the piezoelectric vibrator has an outer flange portion bent outward at an end portion of the cylindrical bent portion. 6. 導電性金属薄板からなるシムの表裏の少なくとも一方に圧電体を積層してなる圧電振動子において、上記シムの周縁部に、円筒状曲折部を形成したことを特徴とする圧電振動子。 A piezoelectric vibrator in which a piezoelectric body is laminated on at least one of the front and back sides of a shim made of a conductive metal thin plate, wherein a cylindrical bent portion is formed at the peripheral edge of the shim. 請求項6記載の圧電振動子において、圧電振動子の上記シムは、その円筒状曲折部の端部に外方に曲折された外方フランジ部を有する圧電振動子。


7. The piezoelectric vibrator according to claim 6, wherein the shim of the piezoelectric vibrator has an outer flange portion bent outward at an end portion of the cylindrical bent portion.


JP2006216772A 2006-08-09 2006-08-09 Piezoelectric pump and piezoelectric vibrator Withdrawn JP2008038829A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006216772A JP2008038829A (en) 2006-08-09 2006-08-09 Piezoelectric pump and piezoelectric vibrator
TW096123115A TW200819631A (en) 2006-08-09 2007-06-26 Piezoelectric pump and piezoelectric vibrator
US11/880,737 US20080038125A1 (en) 2006-08-09 2007-07-24 Piezoelectric pump and piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216772A JP2008038829A (en) 2006-08-09 2006-08-09 Piezoelectric pump and piezoelectric vibrator

Publications (1)

Publication Number Publication Date
JP2008038829A true JP2008038829A (en) 2008-02-21

Family

ID=39050983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216772A Withdrawn JP2008038829A (en) 2006-08-09 2006-08-09 Piezoelectric pump and piezoelectric vibrator

Country Status (3)

Country Link
US (1) US20080038125A1 (en)
JP (1) JP2008038829A (en)
TW (1) TW200819631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143623A (en) * 2018-02-09 2019-08-29 研能科技股▲ふん▼有限公司 Micro fluid control device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748272A (en) * 2011-04-18 2012-10-24 林淑媛 Piezoelectric pump and valve block thereof
CN102338072B (en) * 2011-08-31 2016-05-11 胡军 Piezoelectric ceramic driven ultra-micro air pump
GB201202346D0 (en) * 2012-02-10 2012-03-28 The Technology Partnership Plc Disc pump with advanced actuator
AU2013230494B2 (en) * 2012-03-07 2016-11-24 Solventum Intellectual Properties Company Disc pump with advanced actuator
CN102691693B (en) * 2012-05-23 2015-02-04 浙江师范大学 Precision stepping hydraulic cylinder driven by piezo-electricity wafer
CN102678528A (en) * 2012-05-23 2012-09-19 浙江师范大学 Series-parallel hybrid-driven piezoelectric pump
CN102678527A (en) * 2012-05-23 2012-09-19 浙江师范大学 Piezoelectric vibrator bilateral fluid driven series connection pump
CN102926979A (en) * 2012-07-30 2013-02-13 赛龙通信技术(深圳)有限公司 Vibrating diaphragm fan, mobile phone applying same and diaphragm vibrating and ventilating method
CN104806488B (en) * 2014-01-24 2018-11-06 胡军 A kind of parallel piezoelectric micropump
LT2930363T (en) * 2014-04-10 2021-01-11 Stichting Nationaal Lucht- En Ruimtevaart Laboratorium Piezoelectric pump assembly and pressurised circuit provided therewith
JP6711349B2 (en) * 2015-03-31 2020-06-17 ソニー株式会社 Force display device
CN105649961A (en) * 2016-01-15 2016-06-08 泰州职业技术学院 Piezoelectric pump with spiral-line-shaped valves
CN105872149A (en) * 2016-06-24 2016-08-17 陈银芳 Efficient heat radiation mobile phone
CN111852829A (en) * 2020-08-26 2020-10-30 长春工程学院 Wafer type multi-vibrator piezoelectric hydraulic stepping driver applied to precise drip irrigation
US20230068420A1 (en) * 2021-08-17 2023-03-02 Facebook Technologies, Llc Fluid pump having a polyvinylidene fluoride membrane

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2654324A (en) * 1949-09-05 1953-10-06 Ryba Anton Electromagnetic pumping device for pumping fluids
US4086036A (en) * 1976-05-17 1978-04-25 Cole-Parmer Instrument Company Diaphragm pump
US7040869B2 (en) * 2000-09-14 2006-05-09 Jan W. Beenker Method and device for conveying media
US7198250B2 (en) * 2000-09-18 2007-04-03 Par Technologies, Llc Piezoelectric actuator and pump using same
JP2004517240A (en) * 2000-09-18 2004-06-10 パー テクノロジーズ エルエルシー. Piezoelectric actuator and pump using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143623A (en) * 2018-02-09 2019-08-29 研能科技股▲ふん▼有限公司 Micro fluid control device
JP7152320B2 (en) 2018-02-09 2022-10-12 研能科技股▲ふん▼有限公司 Microfluidic controller
JP7152320B6 (en) 2018-02-09 2022-10-31 研能科技股▲ふん▼有限公司 Microfluidic controller

Also Published As

Publication number Publication date
US20080038125A1 (en) 2008-02-14
TW200819631A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP2008038829A (en) Piezoelectric pump and piezoelectric vibrator
KR101088943B1 (en) Piezoelectric micro-blower
JP4730437B2 (en) Piezoelectric pump
JP4957480B2 (en) Piezoelectric micro pump
JP4405997B2 (en) Diaphragm pump and low-profile channel structure of diaphragm pump
JP2007071070A (en) Diaphragm pump
JP5429317B2 (en) Piezoelectric micro pump
WO2013046330A1 (en) Microdiaphragm pump
TWM528306U (en) Micro-valve device
WO2007111049A1 (en) Micropump
JP2010242501A (en) Piezoelectric pump
CN114992098A (en) Resonance excitation piezoelectric pump
US20070071615A1 (en) Diaphragm pump
JP2007071099A (en) Diaphragm pump
JP4976202B2 (en) Diaphragm pump
JP2009108715A (en) Piezoelectric pump
CN217976535U (en) Resonance excitation piezoelectric pump
TWI661127B (en) Micro-fluid control device
US20080304983A1 (en) Diaphragm air pump
JP2008101495A (en) Diaphragm pump
JP5107767B2 (en) 4-valve diaphragm pump
JP4966213B2 (en) Combined structure of diaphragm pump and channel plate
JP2009293507A (en) Piezoelectric pump
JP4940042B2 (en) Piezoelectric pump
JP2009024510A (en) Diaphragm pump

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110