JP2008038358A - Disposal method for excavated sediment - Google Patents

Disposal method for excavated sediment Download PDF

Info

Publication number
JP2008038358A
JP2008038358A JP2006210377A JP2006210377A JP2008038358A JP 2008038358 A JP2008038358 A JP 2008038358A JP 2006210377 A JP2006210377 A JP 2006210377A JP 2006210377 A JP2006210377 A JP 2006210377A JP 2008038358 A JP2008038358 A JP 2008038358A
Authority
JP
Japan
Prior art keywords
sand
earth
tunnel
excavated
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006210377A
Other languages
Japanese (ja)
Inventor
Ryoji Watabe
良治 渡部
Atsumasa Sato
敦政 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMUSU KK
WATARYO ENGINEERING KK
Original Assignee
AMUSU KK
WATARYO ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMUSU KK, WATARYO ENGINEERING KK filed Critical AMUSU KK
Priority to JP2006210377A priority Critical patent/JP2008038358A/en
Publication of JP2008038358A publication Critical patent/JP2008038358A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To dispose of excavated sediment containing deleterious material without making it open to the air. <P>SOLUTION: This disposal method for excavated sediment includes: an excavating process of digging a tunnel 1 by an excavator 2; a discharge process including a loader 4, a first conveyer 3, a second conveyer 5, a third conveyer 8 and a carrier 7 for discharging the excavated sediment S from the tunnel 1; and a disposal process for mixing deleterious material processing agent T and the sediment S by a mixer 6 to disposal of the deleterious material of the excavated sediment S. In the disposal process, the mixer 6 is provided between the second conveyer 5 and the third conveyer 8 in the discharge process to thereby dispose of the deleterious material. The deleterious material processing agent T is mainly composed of unburnt peridotite. Thus, the deleterious material contained in the sediment S can be dissolved, made insoluble and purified in the tunnel 1, so that atmospheric release of the deleterious material to the outside of the tunnel 1 can be reduced as much as possible. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、トンネル等の掘削土砂類の処理方法に関するものである。   The present invention relates to a method for treating excavated earth and sand such as a tunnel.

従来、掘削機によって掘削された土砂類をトンネル後方に搬出する排出方法として、掘削機によってトンネルを掘削する場合、カッタ板により掘削した土砂類をカッタ板とその後方に設けている隔壁との間の土砂類取込室内に取り込んだのち、機内に配設しているスクリューコンベアによって土砂類取込室内の掘削土砂類を取り出し、トンネル内を走行するトロ台車に積載して搬送することが行われている(例えば特許文献1)。   Conventionally, when excavating a tunnel with an excavator as a discharging method for carrying out the earth and sand excavated by the excavator between the cutter plate and the partition wall provided behind the cutter plate, After being taken into the earth and sand taking-in chamber, the excavated earth and sand in the earth and sand taking-in chamber is taken out by a screw conveyor installed in the machine, and loaded on a Toro cart that runs in the tunnel. (For example, Patent Document 1).

ところで、トンネル掘削作業において、自然的に有害重金属を含む地盤に遭遇することがある。この重金属は先進ボーリング等の調査で予め掘削前に調査されている。このような地盤中の重金属は土壌汚染対策法に準じて処分を図ることが望ましいとされたことから、従来では掘削工程で掘削した重金属を含んだ土砂類を排出工程によりトンネル外に排出し、そしてトンネル外で前記有害物質を処理するために土砂類を処理していた。   By the way, in tunnel excavation work, the ground that naturally contains harmful heavy metals may be encountered. This heavy metal has been previously investigated prior to excavation by surveys such as advanced boring. Since it was desirable to dispose of such heavy metals in the ground in accordance with the Soil Contamination Countermeasures Law, conventionally, earth and sand containing heavy metals excavated in the excavation process is discharged out of the tunnel by the discharge process, And earth and sand were processed outside the tunnel in order to process the harmful substances.

そして、このような処理した土砂類は埋め戻しなどトンネル工事完成後に最終処分がなされる。
特開平7−82989号公報
And, such treated earth and sand is finally disposed after tunnel construction such as backfilling.
Japanese Patent Laid-Open No. 7-82989

しかしながら、重金属を含んだ土砂類を排出工程によりトンネル外に排出し、そしてトンネル外でこれを処理しようとする場合、有害物質を含んだ土砂類は大気開放状態となって空気や水を汚染してしまうおそれがある。またトンネルの近くに土砂類の仮置き場所があって、該場所を処理場として土砂類を処理する場合にはそのようなおそれは比較的低くなるが、トンネル掘削場所は山間地などが多く、トンネル近くに土砂類の仮置き場所が得られることはまれである。   However, when earth and sand containing heavy metals are discharged out of the tunnel by the discharge process and are to be treated outside the tunnel, the earth and sand containing harmful substances are released into the atmosphere and contaminate air and water. There is a risk that. In addition, there is a temporary storage place for earth and sand near the tunnel, and when such land is used as a treatment plant, such a risk is relatively low. It is rare that a temporary storage place for earth and sand can be obtained nearby.

解決しようとする問題点は、有害物質が含まれている掘削された土砂類を大気開放状態にすることなく処理する掘削土砂類の処理方法を提供する点である。   The problem to be solved is to provide a method for treating excavated earth and sand that treats excavated earth and sand containing harmful substances without opening to the atmosphere.

請求項1の発明は、掘削箇所を掘削する掘削工程と、この掘削された土砂類を前記掘削箇所より排出する排出工程と、前記掘削された土砂類の有害物質を処理する処理工程を備えた掘削土砂類の排出において、前記処理工程を前記排出工程の途中に設けたことを特徴とする掘削土砂類の処理方法である。   The invention of claim 1 comprises an excavation step for excavating a excavation site, a discharge step for discharging the excavated earth and sand from the excavation site, and a treatment step for treating harmful substances in the excavated sediment. In the discharge of excavated earth and sand, the processing method for excavated earth and sand is provided in the middle of the discharge process.

請求項2の発明は、前記掘削箇所はトンネルなどの地下道であり、前記排出工程にミキサーを設けると共に、該ミキサーによって掘削土砂類と前記処理工程用の有害物質処理剤を混合することを特徴とする請求項1記載の掘削土砂類の処理方法である。   The invention of claim 2 is characterized in that the excavation site is an underground passage such as a tunnel, and a mixer is provided in the discharge process, and excavated earth and sand and a hazardous substance treating agent for the treatment process are mixed by the mixer. The method for treating excavated earth and sand according to claim 1.

請求項3の発明は、前記有害物質処理剤は、未焼成カンラン岩を主成分とする有害物質の分解・不溶化・浄化剤であって、有害重金属類、油類、揮発性有機化合物等の有害化学物質に汚染された土砂類の処理に適用されるものであることを特徴とする請求項1又は2記載の掘削土砂類の処理方法である。   According to a third aspect of the present invention, the hazardous substance treating agent is a decomposing / insolubilizing / purifying agent for harmful substances mainly composed of uncalcined peridotite, and harmful substances such as harmful heavy metals, oils, and volatile organic compounds. The method for treating excavated earth and sand according to claim 1 or 2, which is applied to the treatment of earth and sand contaminated with a chemical substance.

請求項1の発明によれば、掘削場所内で土砂類に含まれる湯外物質を処理でき、有害物質の掘削箇所の外への大気放出を可及的に低減することができ、さらに掘削箇所近くで処理用の土砂類の仮置き場所も不要となる。   According to the first aspect of the present invention, the hot water contained in the earth and sand can be treated in the excavation site, and the release of harmful substances to the outside of the excavation site can be reduced as much as possible. There is no need for a temporary storage place for earth and sand for treatment nearby.

請求項2の発明によれば、トンネル内で土砂類に含まれる湯外物質を処理でき、さらにトンネル近くで処理用の土砂類の仮置き場所も不要となる。   According to the second aspect of the present invention, it is possible to treat the hot water contained in the earth and sand in the tunnel, and further, no temporary place for the earth and sand for treatment is required near the tunnel.

請求項3の発明によれば、未焼成のカンラン岩を主成分として使用することで、有害物質を確実に処理することができる。   According to the invention of claim 3, harmful substances can be reliably treated by using unfired peridotite as a main component.

本発明における好適な実施の形態について、添付図面を参照して説明する。尚、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention.

図1は実施例1を示しており、掘削箇所である地下道としてのトンネル1の掘削は掘削孔の先端1Aから入口1Bにかけて、掘削装置2、該掘削装置2によって掘削された土砂類Sを後述する第1のコンベア3へ積み込みする積み込み重機4、始端上方に集積用ホッパー3Aを備えると共に終端下方に排出用ホッパー3Bを備えた前記第1のコンベア3、排出用ホッパー3B側を始端5Aとし後述するミキサー6に終端5Bを接続するように設けられる第2のコンベア5、前記終端5Bに1次側6Aが設けられる混合、混練手段たるミキサー6、ミキサー6の2次側6Bを始端8Aとし後述するトラック等運搬車両7に終端8Bを接続するように設けられる第3のコンベア8が配置されている。そして、ミキサー6には水供給路9が接続している。またミキサー6には有害物質処理剤Tの供給路10が接続している。   FIG. 1 shows Example 1, and excavation of a tunnel 1 serving as an underground passage as an excavation site is performed from the tip 1A of the excavation hole to the entrance 1B. The loading conveyor 4 to be loaded on the first conveyor 3, the stacking hopper 3A above the starting end and the discharging hopper 3B below the end, and the discharging hopper 3B side as the starting end 5A will be described later. The second conveyor 5 provided to connect the end 5B to the mixer 6 to be mixed, the mixer 6 serving as the kneading means, the mixer 6 serving as the kneading means, and the secondary side 6B of the mixer 6 as the start end 8A. A third conveyor 8 provided so as to connect the terminal end 8B to the transporting vehicle 7 such as a truck is disposed. A water supply path 9 is connected to the mixer 6. In addition, a supply path 10 for the hazardous substance treating agent T is connected to the mixer 6.

有害物質処理剤Tは以下のようなものである。未焼成カンラン岩を主成分とする有害物質の分解、不要化・浄化剤であって、例えば(1)未焼成カンラン岩と軽焼マグネサイトを含み、未焼成カンラン岩と軽焼マグネサイトの成分の重量比が1:99〜99:1であるもの、(2)未焼成カンラン岩と軽焼ドロマイトを含み、未焼成カンラン岩と軽焼マグネサイトの成分の重量比が1:99〜99:1であるもの、(3)未焼成カンラン岩と溶性燐肥を含み、未焼成カンラン岩と溶性燐肥の成分の重量比が1:99〜99:1であるもの、(4)未焼成カンラン岩と焼成貝殻粉末を含み、未焼成カンラン岩と焼成貝殻粉末の成分の重量比が1:99〜99:1であるものなどが用いられる。さらに(4)前記(1)〜(3)の有害物質処理剤Tに、遠赤外線放射成分を混合してもよい。   The hazardous substance treating agent T is as follows. Decomposing, eliminating and purifying harmful substances mainly composed of unburned peridotite, including (1) components of unburned peridotite and light-burned magnesite, including unburned peridotite and light-burned magnesite (2) Including unburned peridotite and lightly burned dolomite, the weight ratio of unburned peridotite and lightly burnt magnesite is 1:99 to 99: 1, (3) including unburned peridotite and soluble phosphate, and having a weight ratio of the unburned peridotite to soluble phosphate fertilizer being 1:99 to 99: 1, (4) unburned peridotite A material containing rock and fired shell powder and having a weight ratio of unburned peridotite to fired shell powder of 1:99 to 99: 1 is used. Further, (4) a far-infrared radiation component may be mixed with the hazardous substance treating agent T of (1) to (3).

火成岩の一種であるカンラン岩は、マグネシウムや鉄分を多量に含む天然の無機性鉱物であり、これに有害物質の種類に応じて軽焼マグネサイト、軽焼ドロマイト、溶性燐肥、焼成貝殻粉末を混合、添加することにより、有害物質処理剤Tとしての効率を高め、分離、分解と同時に不溶化及び浄化作用を行うものである。   Peridotite, a type of igneous rock, is a natural inorganic mineral that contains a large amount of magnesium and iron. Depending on the type of harmful substance, light-burned magnesite, light-burned dolomite, soluble phosphorus fertilizer, and burned shell powder are used. By mixing and adding, the efficiency as the hazardous substance treating agent T is increased, and insolubilization and purification are performed simultaneously with separation and decomposition.

次に一般的な未焼成カンラン岩、及びその他の混合・添加剤の成分分析値などについて説明する。   Next, general uncalcined peridotite and other component / additive component analysis values will be described.

未焼成カンラン岩の成分分析値(重量%)は、MgO 48.32%、CaO 1.48%、SiO 39.36%、Fe 9.06%、Al 0.77%、残余である。 The component analysis values (% by weight) of the uncalcined peridotite are: MgO 48.32%, CaO 1.48%, SiO 2 39.36%, Fe 2 O 3 9.06%, Al 2 O 3 0.77%. , The rest.

軽焼マグネサイトの成分分析値(重量%)は、MgO 93.68%、CaO 1.28%、SiO 0.99%、Fe 0.23%、Al 0.21%、残余である。 The component analysis values (weight%) of light-fired magnesite are: MgO 93.68%, CaO 1.28%, SiO 2 0.99%, Fe 2 O 3 0.23%, Al 2 O 3 0.21% , The rest.

軽焼ドロマイトの成分分析値(重量%)は、MgO 40.32%、CaO 55.48%、SiO 1.05%、Fe 0.26%、Al 0.27%、残余である。 The component analysis value (weight%) of lightly burned dolomite is MgO 40.32%, CaO 55.48%, SiO 2 1.05%, Fe 2 O 3 0.26%, Al 2 O 3 0.27%, The rest.

焼成貝殻粉末の成分分析値(重量%)は、MgO 0.35%、CaO 96.28%、SiO 0.32%、Fe 0.12%、Al 0.55%、K0 0.42%、NaO 1.13%、残余である。 The component analysis value (% by weight) of the fired shell powder is as follows: MgO 0.35%, CaO 96.28%, SiO 2 0.32%, Fe 2 O 3 0.12%, Al 2 O 3 0.55%, K 2 0 0.42%, Na 2 O 1.13%, remaining.

溶性燐肥の成分分析値(重量%)は、MgO 12.35%、CaO 44.28%、SiO 21.56%、P 20.00%、残余である。 The component analysis values (% by weight) of soluble phosphorous fertilizer are MgO 12.35%, CaO 44.28%, SiO 2 21.56%, P 2 O 5 20.00%, and the remainder.

そして、前記MgOは水和反応により水酸化イオンを放出し、これが有害物質の元素(例えば鉛Pb2+)を水酸化物(Pb(OH))として沈殿させ、さらに空気中の炭酸ガスと反応し、炭酸マグネシウム(MgCO・3HO)反応を促進する過程でケイ素粒子(SiO)元素の粒子間にマグネシウム炭酸塩結晶が成長して粒子を絡める。これにより有害元素を吸着した鉱物は強固な結晶体となる。 The MgO releases hydroxide ions by a hydration reaction, which precipitates harmful elements (for example, lead Pb 2+ ) as hydroxides (Pb (OH) 2 ), and further adds carbon dioxide in the air. In the process of reacting and accelerating the magnesium carbonate (MgCO 3 .3H 2 O) reaction, a magnesium carbonate crystal grows between the particles of silicon particles (SiO 2 ) and entangles the particles. Thereby, the mineral which adsorb | sucked the harmful element turns into a strong crystal.

MgO+HO→Mg(OH)
Mg(OH)+HO+CO→MgCO+2H
酸化カルシウムは酸性水を中和させる効果があり、さらに以下の反応によって酸性土壌や酸性水に含まれた例えば砒素や鉛など有害物質の元素が固定される。
MgO + H 2 O → Mg (OH) 2
Mg (OH) 2 + H 2 O + CO 2 → MgCO 3 + 2H 2 O
Calcium oxide has the effect of neutralizing acidic water, and the elements of harmful substances such as arsenic and lead contained in acidic soil and acidic water are fixed by the following reaction.

HAsO +Ca2++nHO→CaHAsO・nH
AsO 2−+Ca2++nHO→CaHAsO・nHO+H
酸化鉄は、それが酸化物(Fe)であっても、水酸化物(Fe(OH))であっても、有害物質の元素は表面に吸着される。この反応は次の反応式で示され、赤鉄鉱や針鉄鉱が生成される。
HAsO 4 + Ca 2+ + NH 2 O → CaHAsO 4 .nH 2 O
H 2 AsO 4 2− + Ca 2+ + nH 2 O → CaHAsO 4 .nH 2 O + H +
Whether iron oxide is an oxide (Fe 2 O 3 ) or a hydroxide (Fe (OH) 2 ), harmful elements are adsorbed on the surface. This reaction is represented by the following reaction formula, and hematite and goethite are produced.

FeS+5/2HO+15/4O→2SO 2−+4H+FeOOH
FeS+2HO+15/4O→2SO 2−+4H+Fe
5酸化リン(P)は水酸化マグネシウムや水酸化カルシウムと反応し、リン酸塩の結晶(リン酸マグネシウムやリン酸カルシウム)の強固な結晶体の内部に有害物質の元素を封じ込めて固定化する。
FeS 2 + 5 / 2H 2 O + 15 / 4O 2 → 2SO 4 2− + 4H + + FeOOH
FeS 2 + 2H 2 O + 15 / 4O 2 → 2SO 4 2− + 4H + + Fe 2 O 3
Phosphorus pentoxide (P 2 O 5 ) reacts with magnesium hydroxide and calcium hydroxide to contain and fix the elements of harmful substances inside the strong crystals of phosphate crystals (magnesium phosphate and calcium phosphate) To do.

Ca2++PO 3−+OH→Ca(POOH+Pb2+→Ca2++Pb(POOH
このように、有害物質処理剤Tの主成分である未焼成カンラン岩の酸化マグネシウムや酸化カルシウムが水と出会うと水和反応がおきて、水酸化マグネシウム及び水酸化カルシウムを生成し、吸着及びイオン交換能によって、その針状結晶中又は固溶体中に有害物質を取り込む。その後、空気中の炭酸ガスと反応して炭酸マグネシウム及び炭酸カルシウム反応を進行しながら、先に針状結晶中又は固溶体中に取り込んだ有害物質を結晶化し、固定化する。さらに、リン酸を含有した成分を加えることにより、リン酸マグネシウムとなり、長期的に安定な不溶出の固形物が得られるものである。
Ca 2+ + PO 4 3− + OH → Ca 5 (PO 4 ) 3 OH + Pb 2+ → Ca 2+ + Pb 5 (PO 4 ) 3 OH
In this way, when magnesium oxide or calcium oxide of the uncalcined peridotite, which is the main component of the hazardous substance treating agent T, encounters water, a hydration reaction takes place, producing magnesium hydroxide and calcium hydroxide, adsorbing and ionizing Due to the exchange ability, harmful substances are taken into the needle-like crystal or solid solution. Thereafter, while reacting with carbon dioxide gas in the air and proceeding with the magnesium carbonate and calcium carbonate reaction, the harmful substances previously taken into the needle-like crystals or the solid solution are crystallized and immobilized. Furthermore, by adding a component containing phosphoric acid, it becomes magnesium phosphate, and a long-term stable non-eluting solid can be obtained.

したがって、前記有害物質処理剤Tは、無機性炭酸化合物、水溶性有機物、圭酸塩、鉄塩や原油の成分である炭素と水素からできた炭化水素を含めたものと反応するため、様々な土壌中の成分と固化物を形成し、容易に溶出しない高高度の固化物となる。   Accordingly, the hazardous substance treating agent T reacts with inorganic carbonate compounds, water-soluble organic substances, oxalates, iron salts and those containing hydrocarbons made of carbon and hydrogen, which are components of crude oil. It forms a solidified product with the components in the soil and becomes a high-level solidified product that does not easily elute.

前記遠赤外線放射成分としては(4)結晶化ガラスとして、SiO2 45.0%、Li2CO3 21.5%、KNO3 2.6%、Ca3(PO42 3.0%、石英・長石斑岩 27.9%、(5)他の例としては、SiO2 40.0%、Li2CO3 20.6%、KNO3 2.1%、Ca3(PO42 2.5%、Al23 1.5%、マグネタイト(磁鉄鉱) 33.3%としている。尚、前記成分中、石英・長石斑岩及びマグネタイトは、加熱すると遠赤外線を放射する遠赤外線放射成分である。これらの成分のガラスをそれぞれ溶融し、所定形状に成形して冷却した後、熱処理工程にて、ゆっくりと段階的に昇温させながら結晶化を行うことで、結晶化ガラスが得られる。さらに(5)コーディエライト(2MgO−2Al23−5SiO2) 30%、木節粘土 30%、赤土 10%、石英・長石斑岩 30%、(6)コーディエライト 40%、木節粘土 35%、赤土 5%、マグネタイト(磁鉄鉱) 20%、第3実施例としては、コーディエライト 25%、木節粘土 20%、赤土 5%、石英・長石斑岩 20%、マグネタイト 30%のようなものでもよい。 As the far-infrared radiation component, (4) as crystallized glass, SiO 2 45.0%, Li 2 CO 3 21.5%, KNO 3 2.6%, Ca 3 (PO 4 ) 2 3.0%, Quartz / feldspar porphyry 27.9%, (5) Other examples include SiO 2 40.0%, Li 2 CO 3 20.6%, KNO 3 2.1%, Ca 3 (PO 4 ) 2 2 0.5%, Al 2 O 3 1.5%, magnetite (magnetite) 33.3%. Of the above components, quartz / feldspar porphyry and magnetite are far-infrared radiation components that emit far-infrared radiation when heated. Each of these component glasses is melted, formed into a predetermined shape, cooled, and then crystallized while slowly raising the temperature in a heat treatment step to obtain crystallized glass. And (5) cordierite (2MgO-2Al 2 O 3 -5SiO 2) 30%, 30% kibushi clay, red clay 10%, quartz-feldspar porphyry 30%, (6) cordierite 40%, knots 35% clay, 5% red clay, 20% magnetite (magnetite), the third example is cordierite 25%, Kibetsu clay 20%, red clay 5%, quartz and feldspar porphyry 20%, magnetite 30% Something like that.

次に前記構成についてその作用を説明する。トンネル1の掘削は、掘削装置2により行われる。尚、掘削は発破によって行ってもよく、このような発破作業によって生じた岩石等のずりを含む土砂類Sを処理する場合もある。   Next, the operation of the above configuration will be described. The excavation of the tunnel 1 is performed by the excavator 2. Excavation may be carried out by blasting, and earth and sand S containing shear such as rocks generated by such blasting work may be processed.

掘削された土砂類Sをトンネル1の入口1Bより外部に排出するために、土砂類Sは積み込み重機4により集積用ホッパー3Aに投入され、投入された土砂類Sは第1のコンベア3を介して排出用ホッパー3Bよりミキサー6に投入される。そしてミキサー6においては、水供給路9より水Wが供給されると共に、供給路10から有害物質処理剤Tが供給される。尚、この有害物質処理剤Tの供給は土砂類S中に有害物質が含まれている土砂類Sの場合に行われる。このミキサー6による土砂類Sと水と有害物質処理剤Tとの混合により有害物質は分解、不溶化、浄化される。このように処理された土砂類Sは、第3のコンベア8のコンベアを介して運搬車両7に積み込まれてトンネル1の外部へと搬出される。ミキサー6はバッチ式或いは連続式いずれの形式のものであってもよい。   In order to discharge the excavated earth and sand S from the entrance 1B of the tunnel 1 to the outside, the earth and sand S is thrown into the accumulation hopper 3A by the loading heavy machine 4, and the introduced earth and sand S passes through the first conveyor 3. Then, it is put into the mixer 6 from the discharge hopper 3B. In the mixer 6, water W is supplied from the water supply path 9, and the hazardous substance treating agent T is supplied from the supply path 10. The supply of the harmful substance treating agent T is performed in the case of earth and sand S in which earth and sand S contains harmful substances. By mixing the earth and sand S, water, and the hazardous substance treating agent T by the mixer 6, the harmful substance is decomposed, insolubilized and purified. The earth and sand S thus processed is loaded onto the transport vehicle 7 via the conveyor of the third conveyor 8 and carried out of the tunnel 1. The mixer 6 may be of a batch type or a continuous type.

尚、ミキサー6の混合において、処理すべき有害物質が鉛の場合は、主成分のカンラン岩に、混合剤として、5酸化リン(P)を含む溶成燐肥を加えた処理剤Tを調合し、処理すべき有害物質が砒素の場合は、主成分のカンラン岩に、混合剤として、軽焼マグネサイトや軽焼ドロマイト、貝殻粉末などの酸化カルシウムや鉄分の多い混合剤を加えて処理剤Tを調合する。尚、調合は汚染物質に対応して適宜設定されるもので、重量比で1:99〜99:1までの幅広い調合となる。 In addition, in the mixing of the mixer 6, when the harmful substance to be treated is lead, a treatment agent obtained by adding dissolved phosphorus fertilizer containing phosphorus pentoxide (P 2 O 5 ) as a mixing agent to the main peridotite. When arsenic is the harmful substance to be treated, arsenic is added to the main component peridotite, with a mixture of calcium oxide and iron, such as light-burned magnesite, light-burned dolomite, and shell powder as a mixture. To prepare treatment agent T. In addition, a mixing | blending is suitably set according to a pollutant, and becomes a wide mixing | blending to 1: 99-99: 1 by weight ratio.

そして、混合において、酸化マグネシウムや水酸化カルシウムが水と出会うと、水和反応がおきて、水酸化マグネシウム及び水酸化カルシウムを生成し、有害物質を水酸化物として沈殿させ、吸着及びイオン交換能によって、その針状結晶中又は固溶体中に有害物質を取り込んで固定化し、粒状化物となってミキサー6の2次側6Bより排出される。   In mixing, when magnesium oxide or calcium hydroxide encounters water, a hydration reaction occurs, producing magnesium hydroxide and calcium hydroxide, precipitating harmful substances as hydroxides, adsorption and ion exchange capacity Thus, harmful substances are taken into and fixed in the needle-like crystal or solid solution, and are granulated and discharged from the secondary side 6B of the mixer 6.

さらに、ミキサー6後の第3のコンベア8での移送中や運搬車両7、或いは運搬車両7による土砂類Sの積み下ろし場所においては、土砂類Sは養生されることとなる。この養生中は炭酸マグネシウムや炭酸カルシウムが空気中の炭酸ガスと反応する炭酸ガス反応が進行し、先に針状結晶中又は固溶体中に取り込んだ湯外物質を結晶化し固定化して、これを不溶の固化物として長期に固定可能に処理することができる。   Furthermore, the earth and sand S is cured during the transfer by the third conveyor 8 after the mixer 6 and at the place where the earth and sand S is loaded or unloaded by the carrier vehicle 7 or the carrier vehicle 7. During this curing, a carbon dioxide reaction occurs in which magnesium carbonate or calcium carbonate reacts with carbon dioxide in the air, and the external substance previously taken into the needle-like crystal or solid solution is crystallized and immobilized, and this is insoluble. As a solidified product, it can be treated so as to be fixed for a long time.

以上のように、前記実施例においてはトンネル1を掘削する掘削装置2による掘削工程と、この掘削された土砂類Sを前記トンネル1より排出する積み込み重機4、第1のコンベア3、第2のコンベア5、第3のコンベア8、運搬車両7を備えた排出工程と、前記掘削された土砂類Sの有害物質を処理するため有害物質処理剤Tと土砂類Sをミキサー6により混合する処理工程を備え、前記処理工程を前記排出工程である第2のコンベア5と第3のコンベア8の間にミキサー6を設けて処理したことにより、トンネル1内で土砂類Sに含まれる湯外物質を分解、不溶化、浄化でき、有害物質のトンネル1外への大気放出を可及的に低減することができ、さらにトンネル1近くで処理用の土砂類Sの仮置き場所も不要となり、工事の省スペース化を図ることができる。   As mentioned above, in the said Example, the excavation process by the excavation apparatus 2 which excavates the tunnel 1, the loading heavy machine 4, the 1st conveyor 3, and 2nd which discharge | emit this excavated earth and sand S from the said tunnel 1 is carried out. Discharge process provided with conveyor 5, third conveyor 8, and transport vehicle 7, and a process of mixing hazardous substance treating agent T and earth and sand S by mixer 6 in order to process the harmful substances of excavated earth and sand S And the processing step is performed by providing a mixer 6 between the second conveyor 5 and the third conveyor 8 which are the discharging step, so that the outdoor substance contained in the earth and sand S in the tunnel 1 is removed. It can be decomposed, insolubilized and purified, and the release of harmful substances to the atmosphere outside the tunnel 1 can be reduced as much as possible. Furthermore, there is no need for a temporary storage place for the earth and sand S for treatment near the tunnel 1, saving the construction work. space It can be achieved.

また、前記掘削箇所はトンネル1であり、前記排出工程にミキサー6を設けると共に、該ミキサー6によって掘削土砂類Sと前記処理工程用の有害物質処理剤Tを混合することで、トンネル1掘削工事における有害物質の大気放出や山間地などの土砂類Sの仮置き場所を確保できないような場所でも土砂類Sを処理して排出することができる。   The excavation site is the tunnel 1, and a mixer 6 is provided in the discharge process, and the mixer 6 mixes the excavated earth and sand S and the hazardous substance treating agent T for the treatment process, thereby excavating the tunnel 1. The earth and sand S can be processed and discharged even in places where it is not possible to secure a temporary place for the earth and sand S such as in the mountainous areas such as atmospheric release of harmful substances.

さらに、前記有害物質処理剤Tは、未焼成カンラン岩を主成分とする有害物質の分解・不溶化・浄化剤であって、有害重金属類、油類、揮発性有機化合物等の有害化学物質に汚染された土砂類Sの処理に適用されるものであることにより、原料製造過程に焼成工程を有しない未焼成のカンラン岩を使用することで、有害物質を確実に処理することができる。   Furthermore, the hazardous substance treating agent T is a decomposition / insolubilization / purification agent for harmful substances mainly composed of uncalcined peridotite, and contaminates harmful chemical substances such as harmful heavy metals, oils and volatile organic compounds. By being applied to the treatment of the earth and sand S that has been produced, the use of unfired peridotite that does not have a firing step in the raw material production process makes it possible to reliably treat harmful substances.

以上のように本発明に係る掘削土砂類の処理方法は、地下鉄道、地下道、上水、下水などの水管設置などあらゆる掘削箇所に適用できる。   As described above, the method for treating excavated earth and sand according to the present invention can be applied to any excavation site such as a subway, an underground passage, water pipe installation such as clean water and sewage.

本発明の実施例1を示す説明図である。It is explanatory drawing which shows Example 1 of this invention.

符号の説明Explanation of symbols

1 トンネル(掘削箇所)
2 掘削装置
3 第1のコンベア
4 積み込み重機
5 第2のコンベア
6 ミキサー
7 運搬車両
8 第3のコンベア
9 水供給路
10 有害物質処理剤の供給路
S 土砂類
T 有害物質処理剤

1 Tunnel (Excavation point)
2 Excavator 3 First Conveyor 4 Loading Heavy Machine 5 Second Conveyor 6 Mixer 7 Transport Vehicle 8 Third Conveyor 9 Water Supply Path
10 Hazardous Substance Treatment Channel S Sediment T Hazardous Substance Treatment Agent

Claims (3)

掘削箇所を掘削する掘削工程と、この掘削された土砂類を前記掘削箇所より排出する排出工程と、前記掘削された土砂類の有害物質を処理する処理工程を備えた掘削土砂類の排出において、前記処理工程を前記排出工程の途中に設けたことを特徴とする掘削土砂類の処理方法。   In the excavation step of excavating the excavation site, the discharge step of discharging the excavated earth and sand from the excavation site, and the discharge of excavated sediments including a processing step of processing harmful substances of the excavated sediments, A method for treating excavated earth and sand, wherein the treatment step is provided in the middle of the discharge step. 前記掘削箇所はトンネルなどの地下道であり、前記排出工程にミキサーを設けると共に、該ミキサーによって掘削土砂類と前記処理工程用の有害物質処理剤を混合することを特徴とする請求項1記載の掘削土砂類の処理方法。   2. The excavation according to claim 1, wherein the excavation site is an underground passage such as a tunnel, and a mixer is provided in the discharge process, and the excavated earth and sand and the hazardous substance treating agent for the treatment process are mixed by the mixer. Processing method of earth and sand. 前記有害物質処理剤は、未焼成カンラン岩を主成分とする有害物質の分解・不溶化・浄化剤であって、有害重金属類、油類、揮発性有機化合物等の有害化学物質に汚染された土砂類の処理に適用されるものであることを特徴とする請求項1又は2記載の掘削土砂類の処理方法。

The above hazardous substance treating agent is a decomposition, insolubilization and purification agent for harmful substances mainly composed of uncalcined peridotite, which is contaminated with harmful chemical substances such as harmful heavy metals, oils and volatile organic compounds. The method for treating excavated earth and sand according to claim 1 or 2, characterized by being applied to the treatment of a kind.

JP2006210377A 2006-08-01 2006-08-01 Disposal method for excavated sediment Pending JP2008038358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210377A JP2008038358A (en) 2006-08-01 2006-08-01 Disposal method for excavated sediment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210377A JP2008038358A (en) 2006-08-01 2006-08-01 Disposal method for excavated sediment

Publications (1)

Publication Number Publication Date
JP2008038358A true JP2008038358A (en) 2008-02-21

Family

ID=39173710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210377A Pending JP2008038358A (en) 2006-08-01 2006-08-01 Disposal method for excavated sediment

Country Status (1)

Country Link
JP (1) JP2008038358A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131517A (en) * 2008-12-04 2010-06-17 Taiheiyo Cement Corp Insolubilizing agent
JP2011111617A (en) * 2009-11-24 2011-06-09 Earth Kk Harmful discharge treating agent and treating method using the same
JP2017205701A (en) * 2016-05-18 2017-11-24 大成建設株式会社 Insolubilization method of rock muck, tunnel excavation system, and tunnel construction method
CN113900155A (en) * 2020-06-22 2022-01-07 夏普福山半导体株式会社 Proximity sensor and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131517A (en) * 2008-12-04 2010-06-17 Taiheiyo Cement Corp Insolubilizing agent
JP2011111617A (en) * 2009-11-24 2011-06-09 Earth Kk Harmful discharge treating agent and treating method using the same
JP2017205701A (en) * 2016-05-18 2017-11-24 大成建設株式会社 Insolubilization method of rock muck, tunnel excavation system, and tunnel construction method
CN113900155A (en) * 2020-06-22 2022-01-07 夏普福山半导体株式会社 Proximity sensor and electronic device

Similar Documents

Publication Publication Date Title
Ottosen et al. Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum
US5527982A (en) Fixation and stabilization of metals in contaminated materials
US6309337B1 (en) Method of forming an insoluble phosphate mineral species
EP0695224B1 (en) Methods for waste treatment
US9410386B2 (en) Process for conversion of intractable oil-bearing, drill cutting wastes from deep gas exploration wells to engineering construction materials
JP2008038358A (en) Disposal method for excavated sediment
HUT58216A (en) Method for reutilizing waste originating in the form of dust or sludge
JP2007283279A (en) Pollutant treating agent containing non-calcinated peridotite principal component and method for using the same
US6258018B1 (en) Fixation and stabilization of metals in contaminated soils and materials
KR100903604B1 (en) The soil composition the sludge of waste water treatment for recovering an abandoned stony mountain
JP6021181B2 (en) Phosphate fertilizer manufacturing apparatus and manufacturing method
JP2000343097A (en) Nitrate nitrogen denitrification substrate and its production
JP4985277B2 (en) Method for treating asbestos-containing material using cement production process and method for producing cement
EP3140055B1 (en) A method of disposal and utilisation of dusts from an incineration installation and sludge from flotation enrichment of non-ferrous metal ores containing hazardous substances in the process of light aggregate production for the construction industry
JP2006326446A (en) Construction sludge improvement method and improvement system used for it
JP5946721B2 (en) Method for producing phosphate fertilizer
JP5527688B2 (en) Hazardous waste treatment agent and treatment method using the same.
CN112934906A (en) Method for innocent treatment of phosphorus tailings and phosphogypsum by burning raw materials
KR101313853B1 (en) Method for stabilizing mine waste aggregate yard using coal ash
JP2004292806A (en) Soil renewing agent and method for renewal of soil
AU740990B2 (en) Compositions and methods for waste treatment
JP3971813B2 (en) Method for treating heavy metals and dioxins in incinerated ash at low temperature
JP2006055724A (en) Method for soil restoration
Wang et al. Green and Sustainable Stabilization/Solidification
JP4589571B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20101206