JP2008035632A - Power generating device - Google Patents

Power generating device Download PDF

Info

Publication number
JP2008035632A
JP2008035632A JP2006206616A JP2006206616A JP2008035632A JP 2008035632 A JP2008035632 A JP 2008035632A JP 2006206616 A JP2006206616 A JP 2006206616A JP 2006206616 A JP2006206616 A JP 2006206616A JP 2008035632 A JP2008035632 A JP 2008035632A
Authority
JP
Japan
Prior art keywords
exhaust gas
thermoelectric conversion
core
gas passage
cooling flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006206616A
Other languages
Japanese (ja)
Inventor
Hidetaka Kobayashi
英貴 小林
Takashi Fuse
隆司 布施
Masatake Niihama
正剛 新濱
Ryoichi Hori
亮一 堀
Toshiharu Watanabe
年春 渡辺
Satoshi Kimura
敏 木村
Shinji Araki
伸二 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2006206616A priority Critical patent/JP2008035632A/en
Publication of JP2008035632A publication Critical patent/JP2008035632A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power generating device that makes it possible to enhance power generation efficiency and make a core compact. <P>SOLUTION: The power generating device is installed in an exhaust system path. It is so constructed that an exhaust gas passage 5 is disposed on one side of a thermoelectric conversion unit 6, and a cooling medium passage 7 is disposed on the other side. The power generating device is provided with the core 4 formed by laminating the exhaust gas passages 5 and the cooling medium passages 7 as common members of adjoining thermoelectric conversion units 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発電装置に関する。   The present invention relates to a power generator.

従来、排気系経路内に設置され、熱電変換部の一方側に排気ガス通路部を配置する一方、他方側に冷却流通媒体通路部を配置した発電装置の技術が公知になっている(特許文献1参照)。
特開平10−191669号公報
2. Description of the Related Art Conventionally, a technology of a power generator that is installed in an exhaust system path and has an exhaust gas passage portion disposed on one side of a thermoelectric conversion portion and a cooling flow medium passage portion disposed on the other side has been publicly known (Patent Document). 1).
JP-A-10-191669

しかしながら、従来の発明にあっては、排気ガス通路部、熱電変換部、冷却流通媒体通路部をユニット化して個々に連結して構成しているため、部品点数及び組み付け工数が増えてコストアップになる上、これらを積層すると排気ガス通路部(フィン)が隣接した状態となり、コア部の単位面積当たりに設置できる熱電変換部の数が少なくなって発電効率が悪いという問題点があった。   However, in the conventional invention, the exhaust gas passage portion, the thermoelectric conversion portion, and the cooling flow medium passage portion are unitized and connected individually, which increases the number of parts and the number of assembling steps, thereby increasing the cost. In addition, when these layers are stacked, the exhaust gas passage portions (fins) are adjacent to each other, and the number of thermoelectric conversion portions that can be installed per unit area of the core portion is reduced, resulting in poor power generation efficiency.

さらに、隣接する排気ガス通路部(フィン)同士はろう付けにより接合できないため、これら両者間には所定のクリアランスが必要となり、コア部の大型化を招いてしまう。   Furthermore, since the adjacent exhaust gas passage portions (fins) cannot be joined together by brazing, a predetermined clearance is required between them, leading to an increase in the size of the core portion.

本発明は上記課題を解決するためになされたものであって、その目的とするところは、発電効率の向上とコア部のコンパクト化を達成できる発電装置を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power generation device capable of achieving improvement in power generation efficiency and downsizing of the core portion.

本発明の請求項1記載の発明では、排気系経路内に設置され、熱電変換部の一方側に排気ガス通路部を配置する一方、他方側に冷却流通媒体通路部を配置した発電装置において、前記排気ガス通路部及び冷却流通媒体通路部を隣接する熱電変換部同士の共用部材として積層して成るコア部を備えることを特徴とする。   In the invention according to claim 1 of the present invention, in the power generator installed in the exhaust system path, the exhaust gas passage part is disposed on one side of the thermoelectric conversion part, and the cooling flow medium passage part is disposed on the other side. It has a core part formed by laminating the exhaust gas passage part and the cooling flow medium passage part as a common member of adjacent thermoelectric conversion parts.

本発明の請求項1記載の発明にあっては、排気系経路内に設置され、熱電変換部の一方側に排気ガス通路部を配置する一方、他方側に冷却流通媒体通路部を配置した発電装置において、前記排気ガス通路部及び冷却流通媒体通路部を隣接する熱電変換部同士の共用部材として積層して成るコア部を備えるため、発電効率の向上とコア部のコンパクト化を達成できる。   In the invention according to claim 1 of the present invention, the power generation is arranged in the exhaust system path, the exhaust gas passage part is arranged on one side of the thermoelectric conversion part, and the cooling flow medium passage part is arranged on the other side. Since the apparatus includes a core portion formed by laminating the exhaust gas passage portion and the cooling flow medium passage portion as a common member between adjacent thermoelectric conversion portions, it is possible to improve power generation efficiency and make the core portion compact.

以下、この発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、実施例1を説明する。
なお、本実施例1では発電装置が設置された排気系経路をEGR装置の排気系経路に適用した場合について説明する。
図1は本発明の実施例1の発電装置を示す全体斜視図、図2は同平面図、図3は図2のS3−S3線におけるコア部の断面図、図4は本実施例1のコア部の分解斜視図(一部のみ)、図5は本実施例1のケースの分解図(a)と組み付け図(b)である。
Example 1 will be described below.
In the first embodiment, the case where the exhaust system path in which the power generation apparatus is installed is applied to the exhaust system path of the EGR device will be described.
1 is an overall perspective view showing a power generator according to a first embodiment of the present invention, FIG. 2 is a plan view thereof, FIG. 3 is a cross-sectional view of a core portion taken along line S3-S3 in FIG. FIG. 5 is an exploded perspective view (only a part) of the core portion, and FIG. 5 is an exploded view (a) and an assembled view (b) of the case of the first embodiment.

図6は本実施例1の熱電素子部の斜視図、図7は冷却媒体通路部の分解図(a)と組み付け図(b)、図8は本実施例1の発電装置が設置されたEGR装置の排気系経路を説明する図である。   6 is a perspective view of the thermoelectric element portion of the first embodiment, FIG. 7 is an exploded view (a) and an assembled view (b) of the cooling medium passage portion, and FIG. 8 is an EGR in which the power generator of the first embodiment is installed. It is a figure explaining the exhaust system path | route of an apparatus.

先ず、全体構成を説明する。
図1、2に示すように、本実施例1の排気ガスを用いた発電装置1では、後述する接続管26gに接続するためのフランジ部2aを備える接続管2と、後述する接続管26fに接続するためのフランジ部3aを備える接続管3と、これら両接続管2,3の間に傾斜した状態で連通接続されたコア部4が備えられている。
First, the overall configuration will be described.
As shown in FIGS. 1 and 2, in the power generation apparatus 1 using the exhaust gas of the first embodiment, a connection pipe 2 having a flange portion 2a for connecting to a connection pipe 26g described later, and a connection pipe 26f described later. A connecting pipe 3 having a flange part 3a for connection and a core part 4 connected in an inclined state between the connecting pipes 2 and 3 are provided.

図3、4に示すように、コア部4は、排気ガス通路部5、熱電変換部6、冷却流通媒体通路部7が積層されて構成されている。   As shown in FIGS. 3 and 4, the core portion 4 is configured by stacking an exhaust gas passage portion 5, a thermoelectric conversion portion 6, and a cooling flow medium passage portion 7.

図4に示すように、排気ガス通路部5は、波板状のフィン5aで構成される他、該波板状の頂部と谷部との間に一対のルーバ5bが設けられている。なお、ルーバ5bの形成位置、形成数、形状等については適宜設定できる。   As shown in FIG. 4, the exhaust gas passage portion 5 includes corrugated fins 5a, and a pair of louvers 5b are provided between the corrugated top portion and the trough portion. In addition, about the formation position, formation number, shape, etc. of the louver 5b, it can set suitably.

図4、5に示すように、熱電変換部6は、それぞれ左右両端部に側方に開口した上下一対の分割部材9a,9bを重ね合わせて筒状に形成されるケース9と、このケース9内に収容される熱電素子部10で構成されている。
また、各分割部材9a,9bの両端部には、上下方向に開口した円形状の開口部9cがそれぞれ形成され、これによってケース9の両端部には上下方向に開口した貫通孔9dが設けられている。
なお、ケース9は、分割部材9a,9bで分割して構成する必要はなく、1枚のアルミ製板材を筒状に形成しても良い。
As shown in FIGS. 4 and 5, the thermoelectric conversion unit 6 includes a case 9 formed in a cylindrical shape by overlapping a pair of upper and lower divided members 9 a and 9 b opened laterally at both left and right ends, respectively. It is comprised by the thermoelectric element part 10 accommodated in.
In addition, circular openings 9c that open in the vertical direction are formed at both ends of each of the divided members 9a and 9b, and thereby through holes 9d that open in the vertical direction are provided at both ends of the case 9. ing.
Note that the case 9 does not have to be divided by the dividing members 9a and 9b, and a single aluminum plate may be formed in a cylindrical shape.

図6に示すように、熱電素子部10は、上下面のいずれか一方側が高温化され、他方側が低温化されることによりゼーベック作用を利用して発電を行うものであり、複数の熱電素子10aが基盤10bにより略U字型の帯状に連結される他、その両端部には結線端子部10cがそれぞれ設けられている。   As shown in FIG. 6, the thermoelectric element unit 10 generates power using the Seebeck action by increasing the temperature of one of the upper and lower surfaces and decreasing the temperature of the other side, and includes a plurality of thermoelectric elements 10 a. Are connected in a substantially U-shaped band shape by the base 10b, and connection terminal portions 10c are provided at both ends thereof.

図7に示すように、冷却流通媒体通路部7は、略皿状の上下一対の分割部材7a,7bを最中状に重ね合わせて形成される他、各分割部材7a,7bの左右両端部にはバーリング加工により上下方向に突出して形成された環状突起部7cがそれぞれ設けられている。   As shown in FIG. 7, the cooling flow medium passage portion 7 is formed by superposing a pair of upper and lower divided members 7a and 7b in the middle of each other, and the left and right end portions of each divided member 7a and 7b. Are respectively provided with annular projections 7c formed so as to protrude in the vertical direction by burring.

また、各分割部材7a,7bには、エンボス加工により内側に突出して形成されたディンプル部7dが形成される他、これら両分割部材7a,7bの内側には冷却流通媒体通路7eに設けられている。
なお、ディンプル部7dの形成数、形成位置、形状等は適宜設定できる。また、冷却流通媒体通路7e内にインナーフィンを設けても良い。
Each of the divided members 7a and 7b is formed with a dimple portion 7d formed to protrude inward by embossing, and provided inside the divided members 7a and 7b in the cooling flow medium passage 7e. Yes.
Note that the number, position, shape, etc. of the dimple portions 7d can be set as appropriate. Further, an inner fin may be provided in the cooling flow medium passage 7e.

そして、図3に示すように、コア部4は、各熱電変換部6の一方側に排気ガス通路部5を配置する一方、他方側に冷却流通媒体通路部7を配置した状態で、これら排気ガス通路部5及び冷却流通媒体通路部7を隣接する熱電変換部同士6の上述したゼーベック作用を得るのに必要な共用部材として積層されている。   As shown in FIG. 3, the core portion 4 is configured such that the exhaust gas passage portion 5 is disposed on one side of each thermoelectric conversion portion 6 and the cooling flow medium passage portion 7 is disposed on the other side. The gas passage portion 5 and the cooling flow medium passage portion 7 are laminated as a common member necessary for obtaining the above-described Seebeck action of the adjacent thermoelectric conversion portions 6.

また、コア部4の左右両端部において、円筒状のカラー部材11がケース9の貫通孔9dを貫通して隣接する冷却流通媒体通路部7の環状突起部7c同士を連通状態にしており、これによって、各冷却流通媒体通路部7の冷却流通媒体通路7eに連通した一対の連通路R1,R2が形成されている。   In addition, at both left and right end portions of the core portion 4, the cylindrical collar member 11 passes through the through hole 9d of the case 9 so that the annular projections 7c of the adjacent cooling flow medium passage portion 7 are in communication with each other. As a result, a pair of communication passages R1 and R2 communicating with the cooling flow medium passage 7e of each cooling flow medium passage portion 7 is formed.

また、各熱電素子部6,7のケース9の一方側はそれぞれ対応する排気ガス通路部5(フィン5a)の頂部と谷部に当接される一方、他方側はそれぞれ対応する冷却流通媒体通路部7に当接されている。   Further, one side of the case 9 of each thermoelectric element portion 6 and 7 is brought into contact with the top and valley of the corresponding exhaust gas passage portion 5 (fin 5a), while the other side is respectively corresponding to the cooling flow medium passage. It is in contact with the part 7.

また、コア部4の最外端には、排気ガス通路部5(フィン5a)が配置される他、各排気ガス通路部5(フィン5a)の頂部は板状の補剛部材12,13に当接されると共に、これら両補剛部材12,13の左右両端部は閉塞部材14,15で連結補強されている。   Further, an exhaust gas passage portion 5 (fin 5a) is disposed at the outermost end of the core portion 4, and the top portion of each exhaust gas passage portion 5 (fin 5a) is formed by plate-like stiffening members 12,13. At the same time, the left and right ends of both stiffening members 12 and 13 are connected and reinforced by blocking members 14 and 15.

また、補剛部材12の一方側に設けられた円形状の開口部12aには、カラー部材11aを介して連通路R1に連通した略円筒状の入出力ポートP1が挿入し固定される一方、補剛部材13の他方側に設けられた円形状の開口部13aには、カラー部材11bを介して連通路R2に連通した略円筒状の入出力ポートP2が挿入し固定されている。   In addition, a substantially cylindrical input / output port P1 communicating with the communication path R1 through the collar member 11a is inserted into and fixed to the circular opening 12a provided on one side of the stiffening member 12. In a circular opening 13a provided on the other side of the stiffening member 13, a substantially cylindrical input / output port P2 communicating with the communication path R2 through the collar member 11b is inserted and fixed.

さらに、各ケース9の両端部はそれぞれ対応する閉塞部材14,15の貫通孔14a,15aを貫通した状態で配置される他、各ケース内9に収容された熱電素子部10の結線端子部10cは、閉塞部材14に図外の固定手段にて装着された接続コネクタ部16と電気的に接続されている。   Further, both end portions of each case 9 are arranged in a state of penetrating through holes 14a, 15a of corresponding blocking members 14, 15, respectively, and connection terminal portions 10c of thermoelectric element portions 10 accommodated in the respective cases 9 are provided. Is electrically connected to the connecting connector portion 16 mounted on the closing member 14 by fixing means (not shown).

従って、コア部4は、全ての熱電変換部6の一方側に排気ガス通路部5が配置される一方、他方側に冷却流通媒体通路部7が隣接した状態で一体的に積層されることとなる。   Accordingly, the core portion 4 is integrally laminated with the exhaust gas passage portion 5 disposed on one side of all the thermoelectric conversion portions 6 and the cooling flow medium passage portion 7 adjacent to the other side. Become.

その他、本実施例1のコア部4は、熱電変換部6の熱電素子部10、接続コネクタ16を除く全ての構成部材がアルミ製であり、各構成部材の接合部のうちの少なくとも一方側にはろう材からなるクラッド層(ブレージングシート)が設けられている。   In addition, as for the core part 4 of the present Example 1, all the structural members except the thermoelectric element part 10 and the connection connector 16 of the thermoelectric conversion part 6 are made of aluminum, and at least one side of the joint parts of the respective structural members A clad layer (brazing sheet) made of brazing material is provided.

なお、前述したコア部4の各構成部材の詳細な部位の構造については適宜設定でき、例えば、カラー部材11を省略して隣接する環状突起部7c同士を嵌合させるようにしても良い。   In addition, about the structure of the detailed site | part of each structural member of the core part 4 mentioned above, it can set suitably, For example, the collar member 11 may be abbreviate | omitted and the adjacent annular projection parts 7c may be fitted.

次に、作用を説明する。
このように構成された発電装置1を製造する際は、先ず、熱電変換部6の熱電素子部10、接続コネクタ16を除くコア部4の各構成部材を仮組みして図外の加熱炉に搬送した後、熱処理することにより一体的に形成する。
Next, the operation will be described.
When manufacturing the power generation device 1 configured as described above, first, the respective constituent members of the core portion 4 excluding the thermoelectric element portion 10 and the connection connector 16 of the thermoelectric conversion portion 6 are temporarily assembled into a heating furnace (not shown). After carrying, it forms integrally by heat-processing.

次に、各ケース9の一方側端部(図3中右側)の開口からそれぞれ対応する熱電素子部10の結線端子部10cを挿入して他方側端部(図3中左側)の開口から突出させた状態とした後、接続コネクタ部16を装着して結線端子部10cと接続する。
この際、予め結線端子部10cのみが長尺に形成された熱電素子部10を用意しておき、結線端子部10cのみをケース9内に挿通して、他方側端部(図3中左側)の開口から突出した結線端子部10cを引っ張って熱電素子部10を所定の位置に配置した後、該結線端子部10cの端部を所定の長さにカットするようにすれば挿入性を向上することができる。
Next, the connection terminal portion 10c of the corresponding thermoelectric element portion 10 is inserted from the opening at one end portion (right side in FIG. 3) of each case 9, and protrudes from the opening at the other end portion (left side in FIG. 3). After making it into the state made into the state, the connecting connector part 16 is mounted | worn and it connects with the connection terminal part 10c.
At this time, a thermoelectric element portion 10 in which only the connection terminal portion 10c is formed in advance is prepared in advance, and only the connection terminal portion 10c is inserted into the case 9, and the other end (left side in FIG. 3). After inserting the thermocouple element portion 10 at a predetermined position by pulling the connection terminal portion 10c protruding from the opening, the end of the connection terminal portion 10c is cut to a predetermined length to improve the insertability. be able to.

最後に、図1、2に示すように、コア部4の厚み方向の外周を囲うように一方側には接続管2が図外の溶接で固定される一方、他方側には接続管3が図外の溶接で固定される。   Finally, as shown in FIGS. 1 and 2, the connecting pipe 2 is fixed to one side by welding outside the figure so as to surround the outer periphery in the thickness direction of the core portion 4, while the connecting pipe 3 is fixed to the other side. It is fixed by welding outside the figure.

このように構成された発電装置1は、図8に示すEGR装置20の排気系経路内に設置される。
EGR装置20は、ディーゼル機関であるエンジン21と、ターボチャージャー22と、インタークーラ23と、発電装置1と、ラジエータ24と、DPF装置25が備えられている。
The power generator 1 configured as described above is installed in the exhaust system path of the EGR device 20 shown in FIG.
The EGR device 20 includes an engine 21 that is a diesel engine, a turbocharger 22, an intercooler 23, a power generation device 1, a radiator 24, and a DPF device 25.

また、図示を省略するエアクリーナから導いた吸気を、吸気管26aを介してターボチャージャー22のコンプレッサ22aへ導入して加圧し、さらに、接続管26bを介してインタークーラ23に導入して冷却した後、インテークマニホールド26cを介してエンジン21の各気筒(図示せず)に分配するようにしている。   Also, after intake air introduced from an air cleaner (not shown) is introduced into the compressor 22a of the turbocharger 22 through the intake pipe 26a and pressurized, and further introduced into the intercooler 23 through the connection pipe 26b and cooled. The engine 21 is distributed to each cylinder (not shown) of the engine 21 via the intake manifold 26c.

また、エンジン21から排出された排気ガスを、エキゾーストマニホールド26dを介してターボチャージャー22のタービン22bへ導入して駆動した後、DPF装置25を介して車外へ排出するようにしている。   Further, exhaust gas discharged from the engine 21 is introduced into the turbine 22b of the turbocharger 22 via the exhaust manifold 26d and driven, and then discharged outside the vehicle via the DPF device 25.

そして、発電装置1の接続管2のフランジ部2aは、エキゾーストマニホールド26dに接続された接続管26eに接続される一方、接続管3のフランジ部3aは、インテークマニホールド26cに接続された接続管26fに接続されている。   The flange portion 2a of the connection pipe 2 of the power generator 1 is connected to the connection pipe 26e connected to the exhaust manifold 26d, while the flange portion 3a of the connection pipe 3 is connected to the intake manifold 26c. It is connected to the.

一方、発電装置1の入出力ポートP1,P2は、エンジン21とラジエータ24との間で、これらエンジン21、ラジエータ24、発電装置1を環状に繋ぐ接続管26g,26hと接続されている。   On the other hand, the input / output ports P1 and P2 of the power generator 1 are connected between the engine 21 and the radiator 24 with connection pipes 26g and 26h that connect the engine 21, the radiator 24, and the power generator 1 in an annular shape.

従って、発電装置1のコア部4は、接続管26eから接続管2を介してエキゾーストマニホールド26dの高温な排気ガスの一部を導入し、接続管3を介して接続管26fへ排出するようになっている。
また、接続管26gから入出力ポートP1を介してラジエータ6で冷却された低温な冷却流通媒体を導入し、入出力ポートP2を介して接続管26hへ排出するようになっている。
Therefore, the core portion 4 of the power generator 1 introduces a part of the hot exhaust gas of the exhaust manifold 26d from the connection pipe 26e via the connection pipe 2 and discharges it to the connection pipe 26f via the connection pipe 3. It has become.
Further, a low-temperature cooling flow medium cooled by the radiator 6 is introduced from the connection pipe 26g via the input / output port P1, and is discharged to the connection pipe 26h via the input / output port P2.

この際、コア部4に導入された排気ガスは、各排気ガス通路部5を通過し、熱電素子部10の一方側を高温化させる一方、コア部4に導入された冷却流通媒体(図3の一点鎖線矢印で図示)は、入出力ポートP1から連通路R1に流入した後、各冷却流通媒体通路7eを流通して入出力ポートP2に流入する間に熱電素子部10の他方側を低温化させることにより、熱電素子部10がゼーベック作用を得て発電し、発電装置として機能する。   At this time, the exhaust gas introduced into the core portion 4 passes through each exhaust gas passage portion 5 to raise the temperature of one side of the thermoelectric element portion 10, while the cooling flow medium introduced into the core portion 4 (FIG. 3). (Indicated by a one-dot chain line arrow) flows from the input / output port P1 to the communication path R1, and then flows through the respective cooling flow medium passages 7e and flows into the input / output port P2, while the other side of the thermoelectric element section 10 is kept at a low temperature. As a result, the thermoelectric element unit 10 obtains Seebeck action to generate electric power and functions as a power generation device.

なお、上記得られた電力は接続コネクタ16を介して図外のバッテリに充電される、または電子部品へ送電されるようになっている。   The obtained electric power is charged in a battery (not shown) via the connector 16 or transmitted to an electronic component.

この際、1つの排気ガス通路部5(冷却流通媒体通路部7)が隣り合う熱電変換部6のゼーベック作用に必要な共用部材として機能し、好適となる。
また、コア部4は接続管2,3を流通する排気ガス(図1、2の破線矢印で図示)の流れに対して傾斜した状態で配置されるため、高速・高温な排気ガスをコア部4に十分に当てることができると共に、発電装置1の形状を小さくできる。
At this time, one exhaust gas passage portion 5 (cooling flow medium passage portion 7) functions as a common member necessary for the Seebeck action of the adjacent thermoelectric conversion portions 6 and is suitable.
In addition, since the core part 4 is disposed in an inclined state with respect to the flow of the exhaust gas (shown by broken arrows in FIGS. 1 and 2) flowing through the connecting pipes 2 and 3, high-speed and high-temperature exhaust gas is supplied 4 and the shape of the power generator 1 can be reduced.

また、コア部4の各排気ガス通路部5を通過する排気ガスは、上述した冷却流通媒体と熱交換して冷却され、これによって発電装置1はEGRクーラとして機能する。   Further, the exhaust gas that passes through each exhaust gas passage portion 5 of the core portion 4 is cooled by exchanging heat with the above-described cooling flow medium, whereby the power generator 1 functions as an EGR cooler.

ここで、従来の発明にあっては、排気ガス通路部、熱電変換部、冷却流通媒体通路部をユニット化して個々に連結して構成しているため、部品点数及び組み付け工数が増えてコストアップになる上、これらを積層すると排気ガス通路部(フィン5a)が隣接した状態となり、コア部の単位面積当たりに設置できる熱電変換部の数が少なくなって発電効率が悪いという問題点があった。   Here, in the conventional invention, the exhaust gas passage portion, the thermoelectric conversion portion, and the cooling flow medium passage portion are united and individually connected, so the number of parts and assembly man-hours increase and the cost increases. In addition, when these are stacked, the exhaust gas passage portions (fins 5a) are adjacent to each other, and the number of thermoelectric conversion portions that can be installed per unit area of the core portion is reduced, resulting in poor power generation efficiency. .

これに対し、本実施例1では、前述したように、全ての熱電変換部6の一方側に排気ガス通路部5が配置される一方、他方側に冷却流通媒体通路部7が隣接した状態で一体的に積層されるため、コア部4の単位面積当たりに配置できる熱電変換部6の数を多くできる。   In contrast, in the first embodiment, as described above, the exhaust gas passage portion 5 is disposed on one side of all the thermoelectric conversion portions 6, while the cooling flow medium passage portion 7 is adjacent to the other side. Since they are laminated integrally, the number of thermoelectric conversion parts 6 that can be arranged per unit area of the core part 4 can be increased.

従って、従来の発明に比べて小さなコアサイズで同等の発電性能を発揮でき、コア部4をコンパクト化できる。あるいは、従来の発明と同等のコアサイズで発電性能の向上を実現できる。
さらに、部品点数及び組み付け工数を削減してコストダウンを図れる。
Therefore, it is possible to exhibit the same power generation performance with a small core size compared to the conventional invention, and the core portion 4 can be made compact. Alternatively, the power generation performance can be improved with a core size equivalent to that of the conventional invention.
Furthermore, the number of parts and assembly man-hours can be reduced to reduce costs.

次に、効果を説明する。
以上、説明したように、本実施例1の発電装置1にあっては、排気系経路内に設置され、熱電変換部6の一方側に排気ガス通路部5を配置する一方、他方側に冷却流通媒体通路部7を配置した発電装置において、排気ガス通路部5及び冷却流通媒体通路部7を隣接する熱電変換部同士6の共用部材として積層して成るコア部4を備えるため、発電効率の向上とコア部4のコンパクト化を達成できる。
Next, the effect will be described.
As described above, in the power generation apparatus 1 according to the first embodiment, the exhaust gas passage unit 5 is disposed in one side of the thermoelectric conversion unit 6 while being cooled in the other side. In the power generation device in which the circulation medium passage portion 7 is disposed, the exhaust gas passage portion 5 and the cooling circulation medium passage portion 7 are provided with the core portion 4 that is laminated as a common member of the adjacent thermoelectric conversion portions 6. Improvement and downsizing of the core part 4 can be achieved.

また、コア部4を、排気系経路の排気ガスの流れに対して傾斜させた状態で配置したため、高速・高温な排気ガスをコア部4に十分に当てることができ、発電性能を向上できると共に、発電装置1の形状を小さくできる。   In addition, since the core part 4 is disposed in a state inclined with respect to the flow of exhaust gas in the exhaust system path, high-speed and high-temperature exhaust gas can be sufficiently applied to the core part 4 and power generation performance can be improved. The shape of the power generator 1 can be reduced.

また、コア部4の最外端に排気ガス通路部5を配置したため、排気ガスが当たるコア部4の面積を広くでき、発電性能を向上できる。   Further, since the exhaust gas passage portion 5 is disposed at the outermost end of the core portion 4, the area of the core portion 4 that the exhaust gas hits can be increased, and the power generation performance can be improved.

また、排気系経路をEGR装置20の排気系経路としたため、発電装置1をEGRクーラとして兼用できる。   Further, since the exhaust system path is the exhaust system path of the EGR device 20, the power generation device 1 can also be used as an EGR cooler.

以上、本実施例を説明してきたが、本発明は上述の実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
例えば、排気ガス通路部5、熱電変換部6、冷却流通媒体通路部7を積層する段数については適宜設定できる。
Although the present embodiment has been described above, the present invention is not limited to the above-described embodiment, and design changes and the like within a scope not departing from the gist of the present invention are included in the present invention.
For example, the number of stages in which the exhaust gas passage portion 5, the thermoelectric conversion portion 6, and the cooling flow medium passage portion 7 are stacked can be appropriately set.

また、発電装置1が設けられる排気系経路はEGR装置の排気系経路に限らない。   Moreover, the exhaust system path | route in which the electric power generating apparatus 1 is provided is not restricted to the exhaust system path | route of an EGR apparatus.

本発明の実施例1の発電装置を示す全体斜視図である。It is a whole perspective view which shows the electric power generating apparatus of Example 1 of this invention. 本発明の実施例1の発電装置を示す平面図である。It is a top view which shows the electric power generating apparatus of Example 1 of this invention. 図2のS3−S3線におけるコア部の断面図である。It is sectional drawing of the core part in the S3-S3 line | wire of FIG. 本実施例1のコア部の分解斜視図(一部のみ)である。It is a disassembled perspective view (only a part) of the core part of the present Example 1. FIG. 本実施例1のケースの分解図(a)と組み付け図(b)である。It is the exploded view (a) and assembly | attachment figure (b) of the case of the present Example 1. FIG. 本実施例1の熱電素子部の斜視図である。It is a perspective view of the thermoelectric element part of the present Example 1. FIG. 冷却媒体通路部の分解図(a)と組み付け図(b)である。It is the exploded view (a) and assembly | attachment figure (b) of a cooling-medium channel | path part. 本実施例1の発電装置が設置されたEGR装置の排気系経路を説明する図である。It is a figure explaining the exhaust system path | route of the EGR apparatus in which the electric power generating apparatus of the present Example 1 was installed.

符号の説明Explanation of symbols

R1、R2 連通路
P1、P2 入出力ポート
1 発電装置
2a、3a フランジ部
2、3 接続管
4 コア部
5 排気ガス通路部
5a フィン
5b ルーバ
6 熱電変換部
7 冷却流通媒体通路部
7a、7b 分割部材
7c 管状突起部
7d ディンプル部
7e 冷却流通媒体通路
9 ケース
9a、9b 分割部材
9c 開口部
9d 貫通孔
10 熱電素子部
10a 熱電素子
10b 基盤
10c 結線端子部
11、11a、11b カラー部材
12、13 補剛部材
12a、13a 開口部
14、15 閉塞部材
14a、15a 貫通孔
16 接続コネクタ
20 EGR装置
21 エンジン
22 ターボチャージャー
22a コンプレッサ
22b タービン
23 インタークーラ
24 ラジエータ
25 DPF装置
26a 吸気管
26b、26e、26f、26g、26h 接続管
26c インテークマニホールド
26d エキゾーストマニホールド
R1, R2 Communication path P1, P2 Input / output port 1 Power generation device 2a, 3a Flange part 2, 3 Connection pipe 4 Core part 5 Exhaust gas passage part 5a Fin 5b Louver 6 Thermoelectric conversion part 7 Cooling flow medium passage part 7a, 7b Division Member 7c Tubular projection 7d Dimple 7e Cooling flow medium passage 9 Case 9a, 9b Dividing member 9c Opening 9d Through hole 10 Thermoelectric element 10a Thermoelectric element 10b Base 10c Connection terminal parts 11, 11a, 11b Collar members 12, 13 Rigid members 12a, 13a Openings 14, 15 Closure members 14a, 15a Through hole 16 Connector 20 EGR device 21 Engine 22 Turbocharger 22a Compressor 22b Turbine 23 Intercooler 24 Radiator 25 DPF device 26a Intake pipes 26b, 26e, 26f, 26g 26h Connecting pipe 26c Manifold 26d exhaust manifold

Claims (4)

排気系経路内に設置され、熱電変換部の一方側に排気ガス通路部を配置する一方、他方側に冷却流通媒体通路部を配置した発電装置において、
前記排気ガス通路部及び冷却流通媒体通路部を隣接する熱電変換部同士の共用部材として積層して成るコア部を備えることを特徴とする発電装置。
In the power generator installed in the exhaust system path, the exhaust gas passage part is arranged on one side of the thermoelectric conversion part, and the cooling flow medium passage part is arranged on the other side,
A power generator comprising: a core portion formed by laminating the exhaust gas passage portion and the cooling flow medium passage portion as a shared member of adjacent thermoelectric conversion portions.
請求項1記載の発電装置において、
前記コア部を、排気系経路の排気ガスの流れに対して傾斜させた状態で配置したことを特徴とする発電装置。
The power generator according to claim 1, wherein
The power generator according to claim 1, wherein the core portion is disposed in a state of being inclined with respect to a flow of exhaust gas in an exhaust system path.
請求項1または2記載の発電装置において、
前記コア部の最外端に排気ガス通路部を配置したことを特徴とする発電装置。
The power generator according to claim 1 or 2,
An electric power generation apparatus characterized in that an exhaust gas passage portion is disposed at an outermost end of the core portion.
請求項1〜3のいずれかに記載の発電装置において、
前記排気系経路をEGR装置の排気系経路としたことを特徴とする発電装置。
In the electric power generating apparatus in any one of Claims 1-3,
The power generation apparatus according to claim 1, wherein the exhaust system path is an exhaust system path of an EGR device.
JP2006206616A 2006-07-28 2006-07-28 Power generating device Withdrawn JP2008035632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006206616A JP2008035632A (en) 2006-07-28 2006-07-28 Power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006206616A JP2008035632A (en) 2006-07-28 2006-07-28 Power generating device

Publications (1)

Publication Number Publication Date
JP2008035632A true JP2008035632A (en) 2008-02-14

Family

ID=39124465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006206616A Withdrawn JP2008035632A (en) 2006-07-28 2006-07-28 Power generating device

Country Status (1)

Country Link
JP (1) JP2008035632A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106755A (en) * 2008-10-30 2010-05-13 Honda Motor Co Ltd Thermoelectric power generation device for automobile
JP2011526141A (en) * 2008-06-24 2011-09-29 ヴァレオ システム テルミク Device for generating electric energy, heat exchange tube bundle provided with this device, and heat exchanger provided with this tube bundle
US8076862B2 (en) 2009-02-09 2011-12-13 Novar Ed&S Limited Dimmer protection
KR20120024157A (en) * 2010-09-06 2012-03-14 한라공조주식회사 Thermoelectric element module for vehicles
DE102010042603A1 (en) * 2010-10-19 2012-04-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Thermoelectric generator device comprises a fluid-tight first housing, a fluid-tight second housing, which is arranged in first housing, a fluid-tight third housing, which is arranged in second housing, and thermoelectric module
JP2012512983A (en) * 2008-12-19 2012-06-07 ベール ゲーエムベーハー ウント コー カーゲー Exhaust gas cooler for internal combustion engine
US8350487B2 (en) 2010-06-01 2013-01-08 Novar Ed&S Limited Switch circuit
CN103166527A (en) * 2011-12-15 2013-06-19 现代自动车株式会社 Thermoelectric generator of vehicle
JP2014131458A (en) * 2012-12-31 2014-07-10 Hyundai Motor Company Co Ltd Accumulated type thermoelectric generator for vehicle
JP2015523489A (en) * 2012-05-08 2015-08-13 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー Heat exchanger with thermoelectric generator
USD769759S1 (en) 2014-12-15 2016-10-25 Novar Ed&S Limited Door chime with illumination
USD795115S1 (en) 2015-09-16 2017-08-22 Novar Ed&S Limited Door chime
US9818267B2 (en) 2014-12-15 2017-11-14 Novar Ed&S Limited Doorbell system and doorbell chime

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526141A (en) * 2008-06-24 2011-09-29 ヴァレオ システム テルミク Device for generating electric energy, heat exchange tube bundle provided with this device, and heat exchanger provided with this tube bundle
JP2010106755A (en) * 2008-10-30 2010-05-13 Honda Motor Co Ltd Thermoelectric power generation device for automobile
JP2012512983A (en) * 2008-12-19 2012-06-07 ベール ゲーエムベーハー ウント コー カーゲー Exhaust gas cooler for internal combustion engine
US8076862B2 (en) 2009-02-09 2011-12-13 Novar Ed&S Limited Dimmer protection
US8350487B2 (en) 2010-06-01 2013-01-08 Novar Ed&S Limited Switch circuit
KR101676882B1 (en) * 2010-09-06 2016-11-16 한온시스템 주식회사 Thermoelectric element module for vehicles
KR20120024157A (en) * 2010-09-06 2012-03-14 한라공조주식회사 Thermoelectric element module for vehicles
DE102010042603A1 (en) * 2010-10-19 2012-04-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Thermoelectric generator device comprises a fluid-tight first housing, a fluid-tight second housing, which is arranged in first housing, a fluid-tight third housing, which is arranged in second housing, and thermoelectric module
CN103166527A (en) * 2011-12-15 2013-06-19 现代自动车株式会社 Thermoelectric generator of vehicle
JP2015523489A (en) * 2012-05-08 2015-08-13 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー Heat exchanger with thermoelectric generator
US9574481B2 (en) 2012-05-08 2017-02-21 Eberspächer Exhaust Technology GmbH & Co. KG Heat exchanger having a thermoelectric generator
JP2014131458A (en) * 2012-12-31 2014-07-10 Hyundai Motor Company Co Ltd Accumulated type thermoelectric generator for vehicle
USD769759S1 (en) 2014-12-15 2016-10-25 Novar Ed&S Limited Door chime with illumination
USD770318S1 (en) 2014-12-15 2016-11-01 Novar Ed&S Limited Door chime
USD772749S1 (en) 2014-12-15 2016-11-29 Novar Ed&S Limited Door chime
USD772748S1 (en) 2014-12-15 2016-11-29 Novar Ed&S Limited Door chime
US9818267B2 (en) 2014-12-15 2017-11-14 Novar Ed&S Limited Doorbell system and doorbell chime
USD795115S1 (en) 2015-09-16 2017-08-22 Novar Ed&S Limited Door chime
USD795728S1 (en) 2015-09-16 2017-08-29 Novar Ed&S Limited Door chime

Similar Documents

Publication Publication Date Title
JP2008035632A (en) Power generating device
JP4719747B2 (en) EGR gas power generator
US20190170455A1 (en) Heat exchanger bell mouth inlet
KR101341469B1 (en) Egr cooler with dual coolant loop
CN105026871B (en) Heat exchanger
US20090050302A1 (en) Cooling device for an internal combustion engine
JP2006207948A (en) Air-cooled oil cooler
JP6397411B2 (en) Improved exhaust gas recirculation device and method for forming the same
US20110240270A1 (en) Heat exchanger
JP6601384B2 (en) Intercooler
JP2009002239A (en) Egr cooler
US20090260775A1 (en) Heat exchanger, in particular an exhaust gas evaporator of a motor vehicle
JP2008121658A (en) Exhaust gas recirculation device
JP2009068809A (en) Hybrid heat exchanger
US20130133866A1 (en) Heat Exchanger Plates with Integral Bypass Blocking Tabs
JP2018169073A (en) Heat exchanger
JP2009228930A (en) Heat exchanger
US20040083712A1 (en) Heat transfer apparatus
WO2013078530A1 (en) Heat exchanger plates with integral bypass blocking tabs
JPS62293086A (en) Laminated type heat exchanger
JPH11303689A (en) Egr heat exchanger
JP2010112201A (en) U-turn type egr cooler
JP4451319B2 (en) Double tube heat exchanger
JP5213941B2 (en) Heat exchanger
JP6341530B2 (en) Multi-tube heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090713

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100805