JP2008032346A - Hot water supply apparatus - Google Patents

Hot water supply apparatus Download PDF

Info

Publication number
JP2008032346A
JP2008032346A JP2006208146A JP2006208146A JP2008032346A JP 2008032346 A JP2008032346 A JP 2008032346A JP 2006208146 A JP2006208146 A JP 2006208146A JP 2006208146 A JP2006208146 A JP 2006208146A JP 2008032346 A JP2008032346 A JP 2008032346A
Authority
JP
Japan
Prior art keywords
heat
hot water
heating
heat exchanger
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006208146A
Other languages
Japanese (ja)
Other versions
JP4856489B2 (en
Inventor
Hideyasu Kamioka
秀康 上岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006208146A priority Critical patent/JP4856489B2/en
Priority to PCT/JP2007/061802 priority patent/WO2008015843A1/en
Priority to EP07745089.8A priority patent/EP2048451A4/en
Publication of JP2008032346A publication Critical patent/JP2008032346A/en
Application granted granted Critical
Publication of JP4856489B2 publication Critical patent/JP4856489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/12Removing frost by hot-fluid circulating system separate from the refrigerant system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water supply apparatus capable of improving the operation efficiency of a heat pump at a low outside temperature in winter or the like. <P>SOLUTION: This hot water supply apparatus includes: a heating heat exchanger 31 in which a water passage is connected to a hot water storing tank 21 through pipelines P15 to P17 with a first pump 32 interposed therebetween, and a heating water passage is connected to a hot water heater through pipelines P18 and P19 with a second pump 33 interposed therebetween; a radiating heat exchanger 35 enabling a heat pump HP to exchange heat with an evaporator 17; and a passage switching circuit (a three-way switching valve 34 and pipelines P20, P21) for feeding water which is already subjected to heat exchange and delivered from the water passage of the heating heat exchanger 31 into the radiating heat exchanger 25 at need. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプを熱源とした給湯装置に関する。   The present invention relates to a hot water supply apparatus using a heat pump as a heat source.

この種の給湯装置は、圧縮機,湯沸かし用熱交換器,膨張弁及び蒸発器を有するヒートポンプと、貯湯タンクと、湯沸かし用熱交換器の水通路と貯湯タンクとを接続するポンプ介装の管路とを備える。   This type of hot water supply apparatus includes a heat pump having a compressor, a water heater, an expansion valve and an evaporator, a hot water storage tank, and a pump-interposed pipe connecting the water passage of the water heater and the hot water storage tank. Road.

ヒートポンプ運転時にはポンプの運転によって貯湯タンク内の下層の低温水が湯沸かし用熱交換器の水通路に送り込まれ、該湯沸かし用熱交換器の水通路に送り込まれた低温水は冷媒との熱交換によって加熱された高温水と成り、該高温水は貯湯タンク内の上層に送り込まれる。
特開2004−211986
During the heat pump operation, the low temperature water in the lower layer in the hot water storage tank is sent to the water passage of the water heater by the operation of the pump, and the low temperature water sent to the water passage of the water heater is exchanged by heat exchange with the refrigerant. It becomes the heated hot water, and this hot water is sent into the upper layer in the hot water storage tank.
JP2004-211986

前記の給湯装置はヒートポンプを熱源とするものであるため、外気温度等を含む設置環境に応じてヒートポンプの運転効率が変化する。特に外気温度が低い冬期等では送風を利用しても蒸発器で所期の熱回収(冷媒蒸発)を行うことが難しくなるため、外気温度が高い夏期等に比べて蒸発能力が低下してヒートポンプの運転効率が低下してしまう。   Since the hot water supply apparatus uses a heat pump as a heat source, the operating efficiency of the heat pump changes according to the installation environment including the outside air temperature and the like. Especially in winter when the outside air temperature is low, it is difficult to perform the desired heat recovery (refrigerant evaporation) with an evaporator even if using air blowing. The driving efficiency will be reduced.

本発明は前記事情に鑑みて創作されたもので、その目的とするところは、外気温度が低い冬期等においてヒートポンプの運転効率を向上させることができる給湯装置を提供することにある。   The present invention has been created in view of the above circumstances, and an object thereof is to provide a hot water supply apparatus capable of improving the operation efficiency of a heat pump in winter or the like when the outside air temperature is low.

前記目的を達成するため、本発明は、圧縮機,湯沸かし用熱交換器,膨張弁及び蒸発器を有するヒートポンプと、貯湯タンクと、湯沸かし用熱交換器の水通路と貯湯タンクとを接続するポンプ介装の管路とを備えた給湯装置において、水通路をポンプ介装の管路を通じて貯湯タンクに接続され且つ暖房水通路をポンプ介装の管路を通じて温水暖房機に接続された暖房用熱交換器と、ヒートポンプの蒸発器との相互熱交換を可能とした放熱用熱交換器と、暖房用熱交換器の水通路から送出された熱交換後水を必要に応じて放熱用熱交換器に送り込むための流路切換回路を備える、ことをその特徴とする。   To achieve the above object, the present invention relates to a heat pump having a compressor, a water heater, an expansion valve and an evaporator, a hot water storage tank, and a pump for connecting a water passage of the water heater and a hot water storage tank. In a hot water supply apparatus comprising an intervening pipeline, the heat for heating is connected to the hot water storage tank through the water passage through the pump intervening conduit and to the hot water heater through the heating passage through the pump intervening pipeline Heat exchanger for heat dissipation that enables mutual heat exchange between the heat exchanger and the evaporator of the heat pump, and heat exchanger for heat dissipation as necessary after the heat exchange water sent from the water passage of the heat exchanger for heating It is characterized in that it is provided with a flow path switching circuit for feeding into the air.

この給湯装置によれば、ヒートポンプ運転中で且つ暖房運転中のときに暖房用熱交換器の水通路から送出された熱交換後水を放熱用熱交換器に送り込むことにより、該熱交換後水の熱によって蒸発器を流れる冷媒の蒸発(熱回収)を促進させ且つ該蒸発器への着霜を抑制して、特に外気温度が低い冬期等においてヒートポンプの運転効率を向上させることができる。   According to this hot water supply apparatus, the water after heat exchange is sent to the heat exchanger for heat dissipation by sending the water after heat exchange sent from the water passage of the heat exchanger for heating during the heat pump operation and the heating operation. It is possible to promote the evaporation (heat recovery) of the refrigerant flowing through the evaporator with the heat and to suppress the frost formation on the evaporator, thereby improving the operation efficiency of the heat pump, especially in the winter season when the outside air temperature is low.

また、本発明は、圧縮機,湯沸かし用熱交換器,膨張弁及び蒸発器を有するヒートポンプと、貯湯タンクと、湯沸かし用熱交換器の水通路と貯湯タンクとを接続するポンプ介装の管路とを備えた給湯装置において、水通路をポンプ介装の管路を通じて貯湯タンクに接続され且つ暖房水通路をポンプ介装の管路を通じて温水暖房機に接続された暖房用熱交換器と、ヒートポンプの蒸発器との相互熱交換を可能とした放熱用熱交換器と、温水暖房機から戻された暖房水を必要に応じて放熱用熱交換器に送り込むための流路切換回路を備える、ことをその特徴とする。   The present invention also provides a heat pump having a compressor, a water heater, an expansion valve and an evaporator, a hot water storage tank, and a pump-incorporated pipe connecting the water passage and the hot water storage tank of the water heater. A heating heat exchanger having a water passage connected to a hot water storage tank through a pump-equipped conduit and a heating water passage connected to a hot water heater through a pump-equipped conduit, and a heat pump A heat dissipating heat exchanger capable of mutual heat exchange with the evaporator, and a flow path switching circuit for sending the heating water returned from the hot water heater to the heat dissipating heat exchanger as necessary Is the feature.

この給湯装置によれば、ヒートポンプ運転中で且つ暖房運転中のときに温水暖房機から戻された暖房水を放熱用熱交換器に送り込むことにより、該戻り暖房水の熱によって蒸発器を流れる冷媒の蒸発(熱回収)を促進させ且つ該蒸発器への着霜を抑制して、特に外気温度が低い冬期等においてヒートポンプの運転効率を向上させることができる。   According to this hot water supply apparatus, the refrigerant that flows through the evaporator by the heat of the returned heating water by sending the heating water returned from the hot water heater to the heat radiating heat exchanger during the heat pump operation and the heating operation. The evaporation (heat recovery) of the heat pump is promoted and frost formation on the evaporator is suppressed, so that the operation efficiency of the heat pump can be improved particularly in winter when the outside air temperature is low.

本発明によれば、暖房用熱交換器からの熱交換後水または戻り暖房水の熱を利用して蒸発器を流れる冷媒の蒸発(熱回収)を促進させ且つ該蒸発器への着霜を抑制して、特に外気温度が低い冬期等においてヒートポンプの運転効率を向上させることができる。   According to the present invention, the heat (heat recovery) of the refrigerant flowing through the evaporator is promoted by utilizing the heat of the water after the heat exchange from the heat exchanger for heating or the return heating water, and frost formation on the evaporator is prevented. In particular, the operation efficiency of the heat pump can be improved particularly in winter when the outside air temperature is low.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

[第1実施形態]
図1〜図3は本発明(給湯装置)の第1実施形態を示す。図1は給湯装置の全体構成図、図2は図1に示した給湯装置のコントロールシステム、図3は図1に示した給湯装置の流路切り換えに係るフローチャートである。
[First Embodiment]
1 to 3 show a first embodiment of the present invention (a hot water supply device). FIG. 1 is an overall configuration diagram of the hot water supply apparatus, FIG. 2 is a control system of the hot water supply apparatus shown in FIG. 1, and FIG. 3 is a flowchart relating to channel switching of the hot water supply apparatus shown in FIG.

まず、図1を参照して、給湯装置の全体構成について説明する。   First, the overall configuration of the hot water supply apparatus will be described with reference to FIG.

図1に示した給湯装置は、ヒートポンプユニット10と、タンクユニット20と、暖房ユニット30とを備えている。   The hot water supply apparatus shown in FIG. 1 includes a heat pump unit 10, a tank unit 20, and a heating unit 30.

ヒートポンプユニット10は、圧縮機11と、湯沸かし用熱交換器12と、膨張弁13と、蒸発器14と、これら機器を接続する冷媒管路とから構成されたヒートポンプHPと、蒸発器用の送風機15とを含んでいる。湯沸かし用熱交換器12は互いに分離した冷媒通路と水通路を相互伝熱可能な状態で内部に有していて、冷媒管路は冷媒通路の入口及び出口に接続されている。圧縮機11には回転数制御可能な能力可変型のものが好ましく用いられ、膨張弁13には開度制御可能な電子式のものが好ましく用いられている。また、ヒートポンプHPには冷媒として二酸化炭素(CO2 )が好ましく用いられている。 The heat pump unit 10 includes a compressor 11, a water heater 12, an expansion valve 13, an evaporator 14, and a refrigerant pipe connecting these devices, and an evaporator fan 15. Including. The water heater 12 has a refrigerant passage and a water passage which are separated from each other in a state where heat can be transferred between them, and the refrigerant pipe is connected to the inlet and outlet of the refrigerant passage. The compressor 11 is preferably a variable capacity type that can control the rotational speed, and the expansion valve 13 is preferably an electronic type that can control the opening. In addition, carbon dioxide (CO 2 ) is preferably used as a refrigerant in the heat pump HP.

タンクユニット20は、所定量の湯或いは湯及び水を満水状態で貯留可能な貯湯タンク21と、貯湯タンク21内の下層の低温水を湯沸かし用熱交換器12に送り込むための第1ポンプ22とを含んでいる。貯湯タンク21の下部とヒートポンプHPの湯沸かし用熱交換器12の水通路の入口とは第1ポンプ22を介装した第1管路P11によって接続され、貯湯タンク21の上部と湯沸かし用熱交換器12の水通路の出口とは第2管路P12によって接続されている。また、貯湯タンク21の上部には該貯湯タンク21内の上層の高温水を台所や洗面所や風呂場等に送出するための第3管路P13の一端が接続され、該貯湯タンク21の下部には該貯湯タンク21内に消費分の水を取り込むための水道管等の第4管路P14の一端が接続されている。また、第1ポンプ22には回転制御可能なものが好ましく用いられている。   The tank unit 20 includes a hot water storage tank 21 capable of storing a predetermined amount of hot water or hot water and water in a full state, and a first pump 22 for sending low temperature water in the lower layer in the hot water storage tank 21 to the hot water heat exchanger 12. Is included. The lower part of the hot water storage tank 21 and the inlet of the water passage of the hot water heater 12 of the heat pump HP are connected by a first pipe P11 having a first pump 22 interposed therebetween, and the upper part of the hot water tank 21 and the hot water heater for hot water are connected. The outlet of the 12 water passages is connected by the second pipe P12. In addition, one end of a third pipe P13 is connected to the upper part of the hot water storage tank 21 for sending the upper layer high temperature water in the hot water storage tank 21 to a kitchen, a washroom, a bathroom, etc. Is connected to one end of a fourth pipe P14 such as a water pipe for taking in water for consumption into the hot water storage tank 21. The first pump 22 is preferably one that can be rotationally controlled.

暖房ユニット30は、互いに分離した水通路と暖房水通路を相互伝熱可能な状態で内部に有する暖房用熱交換器31と、貯湯タンク21内の上層の高温水を暖房用熱交換器31の水通路に送り込むための第2ポンプ32と、暖房用熱交換器31の暖房水通路と床暖房機等の温水暖房機(図示省略)との間で暖房水を循環させるための第3ポンプ33と、戻り暖房水の流路を切り換えるための電磁式の三方切換弁34と、放熱用熱交換器35とを含んでいる。   The heating unit 30 includes a heating heat exchanger 31 having a water passage and a heating water passage separated from each other in a state in which heat can be mutually transferred, and high-temperature water in the upper layer of the hot water storage tank 21 in the heating heat exchanger 31. A second pump 32 for feeding into the water passage and a third pump 33 for circulating the heating water between the heating water passage of the heating heat exchanger 31 and a hot water heater (not shown) such as a floor heater. And an electromagnetic three-way switching valve 34 for switching the flow path of the return heating water, and a heat exchanger 35 for heat dissipation.

放熱用熱交換器35はヒートポンプHPの蒸発器14との相互熱交換を可能としている。具体的には、蒸発器14に熱交換器を熱的に結合させて該熱交換器を放熱用熱交換器35とする形態の他、2つの管路と両管路に接触配置された共有のフィンとを有する1台の熱交換器の一方の管路側を蒸発器14とし他方の管路側を放熱用熱交換器35とする形態等が採用できる。   The heat dissipation heat exchanger 35 enables mutual heat exchange with the evaporator 14 of the heat pump HP. Specifically, in addition to a mode in which a heat exchanger is thermally coupled to the evaporator 14 to make the heat exchanger a heat-dissipating heat exchanger 35, two pipes and a shared arrangement disposed in contact with both pipes are used. A configuration in which one pipe side of one heat exchanger having the fins is the evaporator 14 and the other pipe side is the heat dissipation heat exchanger 35 can be adopted.

暖房用熱交換器31の水通路の入口と貯湯タンク21の上部とは第5管路P15によって接続され、水通路の出口と三方切換弁34の1つのポートとは第6管路P16によって接続されている。また、暖房用熱交換器31の暖房水通路の入口は第3ポンプ33を介装した第8管路P18を通じて床暖房機等の温水暖房機(図示省略)の出口側に接続され、暖房水通路の出口は第9管路P19を通じて床暖房機等の温水暖房機(図示省略)の入口側に接続されている。   The inlet of the water passage of the heating heat exchanger 31 and the upper part of the hot water storage tank 21 are connected by a fifth pipe P15, and the outlet of the water passage and one port of the three-way switching valve 34 are connected by a sixth pipe P16. Has been. The inlet of the heating water passage of the heating heat exchanger 31 is connected to the outlet side of a hot water heater (not shown) such as a floor heater through an eighth pipe P18 with a third pump 33 interposed therebetween. The outlet of the passage is connected to the inlet side of a hot water heater (not shown) such as a floor heater through a ninth pipe P19.

三方切換弁34の他の1つのポートと放熱用熱交換器35の入口とは第10管路P20によって接続され、放熱用熱交換器35の出口と三方切換弁34の残り1つのポートとは第11管路P21によって接続されている。   The other port of the three-way switching valve 34 and the inlet of the heat dissipation heat exchanger 35 are connected by the tenth pipe P20, and the outlet of the heat dissipation heat exchanger 35 and the remaining one port of the three-way switching valve 34 are It is connected by the 11th pipe line P21.

第2ポンプ32は第7管路P17に介装されていて、該第7管路P17の一端は第11管路P21の途中に接続され、該第7管路P17の他端は貯湯タンク21の中間部よりもやや下側位置に接続されている。また、第2ポンプ32と第3ポンプ33には回転制御可能なものが好ましく用いられている。   The second pump 32 is interposed in the seventh pipe P17, one end of the seventh pipe P17 is connected to the middle of the eleventh pipe P21, and the other end of the seventh pipe P17 is the hot water storage tank 21. It is connected to a position slightly below the middle part. The second pump 32 and the third pump 33 are preferably those that can be rotationally controlled.

因みに、図1に示した給湯装置にあっては、三方切換弁34,第10管路20及び第11管路21が請求項1で言うところの「流路切換回路」に相当する。   Incidentally, in the hot water supply apparatus shown in FIG. 1, the three-way switching valve 34, the tenth pipe line 20, and the eleventh pipe line 21 correspond to the “flow path switching circuit” referred to in claim 1.

次に、図2を参照して、図1に示した給湯装置のコントロールシステムについて説明する。   Next, a control system for the hot water supply apparatus shown in FIG. 1 will be described with reference to FIG.

図2に示したシステムは、マイクロコンピュータを内蔵したコントローラ51と、ヒートポンプ用ドライバ52と、ポンプ用ドライバ53と、三方切換弁用ドライバ54と、運転設定器55とを備えている。コントローラ52のメモリには、運転設定器55を通じて設定された事項に基づいて貯湯並びに温水暖房を行うためのプログラムの他に図3に示す三方切換弁の切り換えに係るプログラム等をこれらに必要なデータと共に格納している。   The system shown in FIG. 2 includes a controller 51 incorporating a microcomputer, a heat pump driver 52, a pump driver 53, a three-way switching valve driver 54, and an operation setting device 55. In the memory of the controller 52, in addition to a program for performing hot water storage and hot water heating based on the items set through the operation setting unit 55, a program for switching the three-way switching valve shown in FIG. It is stored with.

ヒートポンプ用ドライバ52には圧縮機11と膨張弁13と送風機15が接続されていて、該ドライバ52はコントローラ51からの制御信号に基づいて圧縮機11と膨張弁13と送風機15のそれぞれに駆動信号を送出する。   The compressor 11, the expansion valve 13, and the blower 15 are connected to the heat pump driver 52, and the driver 52 drives each of the compressor 11, the expansion valve 13, and the blower 15 based on a control signal from the controller 51. Is sent out.

ポンプ用ドライバ53には第1ポンプ22,第2ポンプ32及び第3ポンプ33が接続されていて、該ドライバ53はコントローラ51からの制御信号に基づいて第1ポンプ22,第2ポンプ32及び第3ポンプ33のそれぞれに駆動信号を送出する。   The pump driver 53 is connected to the first pump 22, the second pump 32, and the third pump 33, and the driver 53 is connected to the first pump 22, the second pump 32, and the second pump 53 based on a control signal from the controller 51. A drive signal is sent to each of the three pumps 33.

三方切換弁用ドライバ54には三方切換弁35が接続されていて、該ドライバ54はコントローラ51からの制御信号に基づいて三方切換弁34に駆動信号を送出する。   A three-way switching valve 35 is connected to the three-way switching valve driver 54, and the driver 54 sends a drive signal to the three-way switching valve 34 based on a control signal from the controller 51.

次に、図3を参照して、図1に示した給湯装置の運転方法について説明する。   Next, with reference to FIG. 3, the operation method of the hot water supply apparatus shown in FIG. 1 will be described.

ヒートポンプ運転時には第1ポンプ32の運転によって貯湯タンク21内の下層の低温水が第1管路P11を通じて湯沸かし用熱交換器12の水通路に送り込まれる。湯沸かし用熱交換器12の水通路に送り込まれた低温水は冷媒との熱交換によって加熱された高温水と成り、該高温水は第2管路P12を通じて貯湯タンク21内の上層に送り込まれる。ヒートポンプHPは、基本的には、予め設定された所定量の高温水が貯湯タンク21内に貯まったところで運転を一時的に停止し、除霜運転中にも運転を一時的に停止する。   During the heat pump operation, the low temperature water in the lower layer in the hot water storage tank 21 is sent to the water passage of the water heater 12 through the first pipe P11 by the operation of the first pump 32. The low-temperature water sent to the water passage of the water heater 12 is turned into high-temperature water heated by heat exchange with the refrigerant, and the high-temperature water is sent to the upper layer in the hot water storage tank 21 through the second pipe P12. The heat pump HP basically stops operation when a predetermined amount of high-temperature water set in advance is stored in the hot water storage tank 21, and temporarily stops operation even during the defrosting operation.

また、暖房運転時には第2ポンプ32の運転によって貯湯タンク21内の上層の高温水が第5管路P15を通じて暖房用熱交換器31の水通路に送り込まれると共に、第3ポンプ33の運転によって温水暖房機から戻された暖房水が暖房用熱交換器31の暖房水通路に送り込まれ、該戻り暖房水は高温水との熱交換によって加熱されて高温の暖房水と成り、該高温の暖房水は第9管路P19を通じて温水暖房機に送り込まれる。   During the heating operation, the hot water in the upper layer in the hot water storage tank 21 is sent to the water passage of the heating heat exchanger 31 through the fifth pipe P15 by the operation of the second pump 32 and the hot water is operated by the operation of the third pump 33. The heating water returned from the heater is sent to the heating water passage of the heating heat exchanger 31, and the return heating water is heated by heat exchange with the high temperature water to become high temperature heating water. Is sent to the hot water heater through the ninth pipe P19.

三方切換弁34は通常は第6管路P16と第11管路P21(第7管路P17)とが連通する位置に切り換えられているが、ヒートポンプ運転中で且つ暖房運転中のとき、または、除霜運転中で且つ暖房運転中のときは、第6管路P16と第10管路P20とが連通する位置に切り換えられる(図3のステップSP1〜SP5参照)。   The three-way switching valve 34 is normally switched to a position where the sixth pipe P16 and the eleventh pipe P21 (seventh pipe P17) communicate with each other, but during the heat pump operation and the heating operation, or During the defrosting operation and the heating operation, the position is switched to a position where the sixth pipeline P16 and the tenth pipeline P20 communicate (see steps SP1 to SP5 in FIG. 3).

つまり、ヒートポンプ運転中で且つ暖房運転中のとき、または、除霜運転中で且つ暖房運転中のときには、暖房用熱交換器31の水通路から送出された熱交換後水(熱交換によって熱を奪われて温度低下した例えば40〜50℃程度の湯)は第6管路P16を通じて三方切換弁34に送り込まれ、該三方切換弁34から第10管路P20を通じて放熱用熱交換器35に送り込まれる。   That is, during heat pump operation and heating operation, or during defrosting operation and heating operation, the water after heat exchange sent from the water passage of the heating heat exchanger 31 (heat is exchanged by heat exchange). The hot water having a temperature of 40 to 50 ° C., which has been taken away, is sent to the three-way switching valve 34 through the sixth pipe P16, and is sent from the three-way switching valve 34 to the heat dissipation heat exchanger 35 through the tenth pipe P20. It is.

放熱用熱交換器35はヒートポンプHPの蒸発器14との相互熱交換を可能としているため、ヒートポンプ運転中には放熱用熱交換器35に送り込まれる熱交換後水の熱によって蒸発器14を流れる冷媒の蒸発(熱回収)が促進され且つ該蒸発器14への着霜が抑制され、ヒートポンプHPの運転効率が向上する。また、除霜運転中には放熱用熱交換器35に送り込まれる熱交換後水の熱によって蒸発器14の除霜が促進され、除霜時間の短縮等による除霜の効率化が図られる。   Since the heat dissipation heat exchanger 35 enables mutual heat exchange with the evaporator 14 of the heat pump HP, the heat flows through the evaporator 14 by the heat of the water after heat exchange sent to the heat dissipation heat exchanger 35 during the heat pump operation. Evaporation (heat recovery) of the refrigerant is promoted, frost formation on the evaporator 14 is suppressed, and the operation efficiency of the heat pump HP is improved. Further, during the defrosting operation, the defrosting of the evaporator 14 is promoted by the heat of the water after heat exchange sent to the heat radiating heat exchanger 35, and the defrosting efficiency is improved by shortening the defrosting time.

第10管路P20を通じて放熱用熱交換器35に送り込まれた熱交換後水は前記の熱交換によって熱を奪われて温度低下して低温水となり、該低温水は第7管路P17を通じて貯湯タンク21に送り込まれる。   The heat-exchanged water sent to the heat radiating heat exchanger 35 through the tenth pipe P20 is deprived of heat by the heat exchange and the temperature is lowered to become low-temperature water, and the low-temperature water is stored in hot water through the seventh pipe P17. It is sent to the tank 21.

ヒートポンプ運転中で且つ暖房運転中の状態でヒートポンプ運転が停止したとき、また、除霜運転中で且つ暖房運転中の状態で除霜運転が停止したときには、三方切換弁34は第6管路P16と第11管路P21(第7管路P17)とが連通する位置に切り換えられる(図3のステップSP1〜SP4,SP6参照)。   When the heat pump operation is stopped during the heat pump operation and the heating operation, or when the defrost operation is stopped during the defrost operation and the heating operation, the three-way switching valve 34 is connected to the sixth pipe P16. And the eleventh pipeline P21 (seventh pipeline P17) are switched to a position where they communicate (see steps SP1 to SP4 and SP6 in FIG. 3).

つまり、ヒートポンプ運転が停止中で且つ暖房運転中のとき、または、除霜運転が停止中で且つ暖房運転中のときには、暖房用熱交換器31の水通路から送出された熱交換後水は放熱用熱交換器35に送り込まれずにそのまま三方切換弁34,第11管路P21の一部及び第7管路P17を通じて貯湯タンク21に送り込まれる。   That is, when the heat pump operation is stopped and the heating operation is performed, or when the defrosting operation is stopped and the heating operation is performed, the water after heat exchange sent from the water passage of the heat exchanger 31 for heating is dissipated. Instead of being sent to the heat exchanger 35, the hot water tank 21 is fed directly through the three-way switching valve 34, a part of the eleventh pipe P21 and the seventh pipe P17.

このように第1実施形態によれば、ヒートポンプ運転中で且つ暖房運転中のときには、暖房用熱交換器31の水通路から送出された熱交換後水を放熱用熱交換器35に送り込んで、該熱交換後水の熱によって蒸発器14を流れる冷媒の蒸発(熱回収)を促進させ且つ該蒸発器14への着霜を抑制して、特に外気温度が低い冬期等においてヒートポンプHPの運転効率を向上させることができる。   Thus, according to the first embodiment, during the heat pump operation and the heating operation, the water after heat exchange sent from the water passage of the heating heat exchanger 31 is sent to the heat dissipation heat exchanger 35, The operation efficiency of the heat pump HP is enhanced particularly in winter when the outside air temperature is low, by promoting the evaporation (heat recovery) of the refrigerant flowing through the evaporator 14 by the heat of the water after the heat exchange and suppressing the frost formation on the evaporator 14. Can be improved.

また、除霜運転中で且つ暖房運転中のときには、暖房用熱交換器31の水通路から送出された熱交換後水を放熱用熱交換器35に送り込んで、該熱交換後水の熱によって蒸発器14の除霜を促進して、除霜時間の短縮等による除霜の効率化を図ることができる。   Further, during the defrosting operation and the heating operation, the heat-exchanged water sent from the water passage of the heating heat exchanger 31 is sent to the heat-dissipation heat exchanger 35, and the heat-exchanged water is heated. The defrosting of the evaporator 14 can be promoted to improve the efficiency of defrosting by shortening the defrosting time.

尚、前述の第1実施形態では、放熱用熱交換器35への熱交換後水を送り込みを選択的に行うために三方切換弁34を用いたが、複数の電磁式開閉弁を利用して同様の流路切換を行うようにしてもよい。   In the first embodiment described above, the three-way selector valve 34 is used to selectively feed water after heat exchange to the heat-dissipating heat exchanger 35, but a plurality of electromagnetic on-off valves are used. You may make it perform the same flow-path switching.

[第2実施形態]
図4は本発明(給湯装置)の第2実施形態を示す、給湯装置の全体構成図である。
[Second Embodiment]
FIG. 4 is an overall configuration diagram of a hot water supply apparatus showing a second embodiment of the present invention (hot water supply apparatus).

まず、第2実施形態が前述の第1実施形態と異なる点について説明する。   First, differences between the second embodiment and the first embodiment will be described.

第2実施形態が前述の第1実施形態と異なるところは、暖房ユニット30’における暖房用熱交換器31の水通路の出口にその一端を接続された第6管路P16に第2ポンプ32を介装してその他端を貯湯タンク21の中間部よりもやや下側位置に接続した点と、第3ポンプ33が介装された第8管路P18を三方切換弁34の1つのポートに接続した点と、三方切換弁34の他の1つのポートと暖房用熱交換器31の暖房水通路の入口を第12管路P22によって接続した点と、三方切換弁34の残りの1つのポートと放熱用熱交換器35の入口とを第13管路P23によって接続した点と、放熱用熱交換器35の出口と暖房用熱交換器31の暖房水通路の入口を第14管路P24によって接続した点にある。尚、暖房用熱交換器31に対する第14管路P24の接続位置は必ずしも暖房水通路の入口である必要はなく、該入口近傍に設けた他の入口に接続してもよい。   The second embodiment differs from the first embodiment described above in that the second pump 32 is connected to a sixth pipe P16 having one end connected to the outlet of the water passage of the heating heat exchanger 31 in the heating unit 30 ′. The other end is connected to a position slightly lower than the middle part of the hot water storage tank 21 and the eighth pipe P18 in which the third pump 33 is interposed is connected to one port of the three-way switching valve 34. The other one port of the three-way switching valve 34 and the inlet of the heating water passage of the heating heat exchanger 31 are connected by the twelfth pipe P22, and the remaining one port of the three-way switching valve 34 A point where the inlet of the heat dissipation heat exchanger 35 is connected by the thirteenth line P23, and an outlet of the heat dissipation heat exchanger 35 and the inlet of the heating water passage of the heating heat exchanger 31 are connected by the fourteenth line P24. It is in the point. In addition, the connection position of the 14th pipe line P24 with respect to the heat exchanger 31 for a heating does not necessarily need to be an inlet of a heating water path, and may connect with the other inlet provided in the vicinity of this inlet.

他の構成は前述の第1実施形態と同じであるので、同一符号を用いてその説明を省略する。因みに、図4に示した給湯装置にあっては、三方切換弁34,第12管路22,第13管路23及び第14管路24が請求項3で言うところの「流路切換回路」に相当する。   Since other configurations are the same as those of the first embodiment, the same reference numerals are used and description thereof is omitted. Incidentally, in the hot water supply apparatus shown in FIG. 4, the three-way switching valve 34, the twelfth pipeline 22, the thirteenth pipeline 23, and the fourteenth pipeline 24 are "flow path switching circuits" as defined in claim 3. It corresponds to.

次に、図3を参照して、図4に示した給湯装置の運転方法について説明する。   Next, with reference to FIG. 3, the operation method of the hot water supply apparatus shown in FIG. 4 will be described.

ヒートポンプ運転時には第1ポンプ32の運転によって貯湯タンク21内の下層の低温水が第1管路P11を通じて湯沸かし用熱交換器12の水通路に送り込まれる。湯沸かし用熱交換器12の水通路に送り込まれた低温水は冷媒との熱交換によって加熱された高温水と成り、該高温水は第2管路P12を通じて貯湯タンク21内の上層に送り込まれる。ヒートポンプHPは、基本的には、予め設定された所定量の高温水が貯湯タンク21内に常に貯まったところで運転を一時的に停止し、除霜運転中にも運転を一時的に停止する。   During the heat pump operation, the low temperature water in the lower layer in the hot water storage tank 21 is sent to the water passage of the water heater 12 through the first pipe P11 by the operation of the first pump 32. The low-temperature water sent to the water passage of the water heater 12 is turned into high-temperature water heated by heat exchange with the refrigerant, and the high-temperature water is sent to the upper layer in the hot water storage tank 21 through the second pipe P12. The heat pump HP basically stops operation when a predetermined amount of high-temperature water that has been set in the hot water storage tank 21 is constantly stored, and temporarily stops operation even during the defrosting operation.

また、暖房運転時には第2ポンプ32の運転によって貯湯タンク21内の上層の高温水が第5管路P15を通じて暖房用熱交換器31の水通路に送り込まれると共に、第3ポンプ33の運転によって温水暖房機から戻された暖房水が暖房用熱交換器31の暖房水通路に送り込まれ、該戻り暖房水は高温水との熱交換によって加熱されて高温の暖房水と成り、該高温の暖房水は第9管路P19を通じて温水暖房機に送り込まれる。   During the heating operation, the hot water in the upper layer in the hot water storage tank 21 is sent to the water passage of the heating heat exchanger 31 through the fifth pipe P15 by the operation of the second pump 32 and the hot water is operated by the operation of the third pump 33. The heating water returned from the heater is sent to the heating water passage of the heating heat exchanger 31, and the return heating water is heated by heat exchange with the high temperature water to become high temperature heating water. Is sent to the hot water heater through the ninth pipe P19.

三方切換弁34は通常は第8管路P18と第12管路P22とが連通する位置に切り換えられているが、ヒートポンプ運転中で且つ暖房運転中のとき、または、除霜運転中で且つ暖房運転中のときは、第8管路P18と第13管路P23とが連通する位置に切り換えられる(図3のステップSP1〜SP5参照)。   The three-way switching valve 34 is normally switched to a position where the eighth pipe P18 and the twelfth pipe P22 communicate with each other, but during the heat pump operation and the heating operation, or during the defrosting operation and the heating. During operation, the operation is switched to a position where the eighth pipe P18 and the thirteenth pipe P23 communicate (see steps SP1 to SP5 in FIG. 3).

つまり、ヒートポンプ運転中で且つ暖房運転中のとき、または、除霜運転中で且つ暖房運転中のときには、温水暖房機から戻された暖房水が三方切換弁34から第13管路P23を通じて放熱用熱交換器35に送り込まれる。   That is, during heat pump operation and heating operation, or during defrosting operation and heating operation, the heating water returned from the hot water heater is radiated from the three-way switching valve 34 through the thirteenth line P23. It is sent to the heat exchanger 35.

放熱用熱交換器35はヒートポンプHPの蒸発器14との相互熱交換を可能としているため、ヒートポンプ運転中には放熱用熱交換器35に送り込まれる戻り暖房水の熱によって蒸発器14を流れる冷媒の蒸発(熱回収)が促進され且つ該蒸発器14への着霜が抑制され、ヒートポンプHPの運転効率が向上する。また、除霜運転中には放熱用熱交換器35に送り込まれる戻り暖房水の熱によって蒸発器14の除霜が促進され、除霜時間の短縮等による除霜の効率化が図られる。   Since the heat dissipating heat exchanger 35 enables mutual heat exchange with the evaporator 14 of the heat pump HP, the refrigerant that flows through the evaporator 14 by the heat of the return heating water sent to the heat dissipating heat exchanger 35 during the heat pump operation. Evaporation (heat recovery) is promoted and frost formation on the evaporator 14 is suppressed, so that the operation efficiency of the heat pump HP is improved. Further, during the defrosting operation, the defrosting of the evaporator 14 is promoted by the heat of the return heating water sent to the heat radiating heat exchanger 35, and the defrosting efficiency is improved by shortening the defrosting time.

第13管路P23を通じて放熱用熱交換器35に送り込まれた戻り暖房水は前記の熱交換によって熱を奪われて温度低下し、該戻り暖房水は第14管路P24を通じて暖房用熱交換器31の暖房水通路に送り込まれる。   The return heating water sent to the heat radiating heat exchanger 35 through the thirteenth line P23 is deprived of heat by the heat exchange and the temperature is lowered, and the return heating water is heated through the fourteenth line P24. It is sent to 31 heating water passages.

ヒートポンプ運転中で且つ暖房運転中の状態でヒートポンプ運転が停止したとき、また、除霜運転中で且つ暖房運転中の状態で除霜運転が停止したときには、三方切換弁34は第8管路P18と第12管路P22とが連通する位置に切り換えられる(図3のステップSP1〜SP4,SP6参照)。   When the heat pump operation is stopped during the heat pump operation and the heating operation, or when the defrost operation is stopped during the defrost operation and the heating operation, the three-way switching valve 34 is connected to the eighth pipe P18. And the twelfth pipe line P22 are switched to a position where they communicate (see steps SP1 to SP4 and SP6 in FIG. 3).

つまり、ヒートポンプ運転が停止中で且つ暖房運転中のとき、または、除霜運転が停止中で且つ暖房運転中のときには、第8管路P18を通じて温水暖房機から戻された暖房水は放熱用熱交換器35に送り込まれずにそのまま三方切換弁34及び第12管路P22を通じて暖房用熱交換器31の暖房水通路に送り込まれる。   That is, when the heat pump operation is stopped and the heating operation is being performed, or when the defrosting operation is stopped and the heating operation is being performed, the heating water returned from the hot water heater through the eighth pipe P18 is the heat for heat dissipation. Without being sent to the exchanger 35, it is sent as it is to the heating water passage of the heating heat exchanger 31 through the three-way switching valve 34 and the twelfth pipe P <b> 22.

このように第2実施形態によれば、ヒートポンプ運転中で且つ暖房運転中のときには、温水暖房機から戻された暖房水を放熱用熱交換器35に送り込んで、該戻り暖房水の熱によって蒸発器14を流れる冷媒の蒸発(熱回収)を促進させ且つ該蒸発器14への着霜を抑制して、特に外気温度が低い冬期等においてヒートポンプHPの運転効率を向上させることができる。   As described above, according to the second embodiment, during the heat pump operation and the heating operation, the heating water returned from the hot water heater is sent to the heat dissipation heat exchanger 35 and evaporated by the heat of the returned heating water. The evaporation (heat recovery) of the refrigerant flowing through the evaporator 14 is promoted and frost formation on the evaporator 14 is suppressed, so that the operation efficiency of the heat pump HP can be improved particularly in winter when the outside air temperature is low.

また、除霜運転中で且つ暖房運転中のときには、温水暖房機から戻された暖房水を放熱用熱交換器35に送り込んで、該戻り暖房水の熱によって蒸発器14の除霜を促進して、除霜時間の短縮等による除霜の効率化を図ることができる。   Further, during the defrosting operation and the heating operation, the heating water returned from the hot water heater is sent to the heat-dissipating heat exchanger 35, and the defrosting of the evaporator 14 is promoted by the heat of the returned heating water. Thus, defrosting efficiency can be improved by shortening the defrosting time.

尚、前述の第2実施形態では、放熱用熱交換器35への戻り暖房水の送り込みを選択的に行うために三方切換弁34を用いたが、複数の電磁式開閉弁を利用して同様の流路切換を行うようにしてもよい。   In the second embodiment described above, the three-way switching valve 34 is used for selectively feeding the return heating water to the heat-dissipating heat exchanger 35, but the same is achieved by using a plurality of electromagnetic on-off valves. The flow path may be switched.

[他の実施形態]
図5と図6は図3に示した流路切り換えに係るフローチャートの変形例をそれぞれ示す。
[Other Embodiments]
5 and 6 show modifications of the flowchart relating to the flow path switching shown in FIG.

図5に示したフローチャートが図3に示したフローチャートと異なるところは、ステップSP5の前段に外気温度を判断するステップSP7を挿入した点にある。つまり、ヒートポンプ運転中で且つ暖房運転中のとき、または、除霜運転中で且つ暖房運転中のときには、今現在の外気温度Toが予め設定した基準温度Tosよりも低いか否かが判別され、外気温度To<基準温度TosのときにはステップSP5に移行し、また、外気温度To≧基準温度TosのときにはステップSP6に移行する。   The flowchart shown in FIG. 5 differs from the flowchart shown in FIG. 3 in that step SP7 for determining the outside air temperature is inserted before step SP5. That is, when the heat pump is operating and the heating operation is being performed, or when the defrosting operation is being performed and the heating operation is being performed, it is determined whether or not the current outside air temperature To is lower than a preset reference temperature Tos, When the outside air temperature To <the reference temperature Tos, the process proceeds to step SP5, and when the outside air temperature To ≧ the reference temperature Tos, the process proceeds to step SP6.

図5に示したフローチャートは図1に示した給湯装置と図4に示した給湯装置に利用することができる。図5に示したフローチャートを図1に示した給湯装置に利用した場合には、ヒートポンプ運転中で且つ暖房運転中のとき、または、除霜運転中で且つ暖房運転中のときでも、外気温度To≧基準温度Tosで外気温度Toとの関係で送風のみでも蒸発器14の熱回収(冷媒蒸発)がある程度以上満足して行えるときには、暖房中であっても暖房用熱交換器31の水通路から送出された熱交換後水は放熱用熱交換器35に送り込まれない。つまり、外気温度Toを判断条件とした付加することにより、暖房用熱交換器31の水通路から送出された熱交換後水の放熱用熱交換器35への送り込みを適切に行える。   The flowchart shown in FIG. 5 can be used for the hot water supply apparatus shown in FIG. 1 and the hot water supply apparatus shown in FIG. When the flowchart shown in FIG. 5 is used in the hot water supply apparatus shown in FIG. 1, the outside air temperature To can be obtained even during the heat pump operation and the heating operation, or during the defrosting operation and the heating operation. ≧ When the heat recovery (refrigerant evaporation) of the evaporator 14 can be satisfied with a certain degree or more even with only blowing air in relation to the outside air temperature To at the reference temperature Tos, the water passage of the heating heat exchanger 31 can be used even during heating. The sent water after heat exchange is not sent to the heat exchanger 35 for heat radiation. That is, by adding the outside air temperature To as a determination condition, it is possible to appropriately feed the water after heat exchange sent from the water passage of the heating heat exchanger 31 to the heat dissipation heat exchanger 35.

また、図5に示したフローチャートを図4に示した給湯装置に利用した場合には、ヒートポンプ運転中で且つ暖房運転中のとき、または、除霜運転中で且つ暖房運転中のときでも、外気温度To≧基準温度Tosで外気温度Toとの関係で送風のみでも蒸発器14の熱回収(冷媒蒸発)がある程度以上満足して行えるときには、暖房中であっても温水暖房機から戻された暖房水は放熱用熱交換器35に送り込まれない。つまり、外気温度Toを判断条件とした付加することにより、温水暖房機から戻された暖房水の放熱用熱交換器35への送り込みを適切に行える。   Further, when the flow chart shown in FIG. 5 is used for the hot water supply apparatus shown in FIG. 4, the outside air can be used even during the heat pump operation and the heating operation, or during the defrosting operation and the heating operation. When the temperature To ≧ the reference temperature Tos and the outside air temperature To, the heat recovery (refrigerant evaporation) of the evaporator 14 can be performed to a certain degree even if only air is blown, the heating returned from the hot water heater even during heating Water is not sent to the heat dissipation heat exchanger 35. That is, by adding the outside air temperature To as a determination condition, the heating water returned from the hot water heater can be appropriately fed to the heat dissipation heat exchanger 35.

一方、図6に示したフローチャートが図3に示したフローチャートと異なるところは、ステップSP5の前段に戻り暖房水温度(温水暖房機から戻された暖房水の温度)を判断するステップSP8を挿入した点にある。つまり、つまり、ヒートポンプ運転中で且つ暖房運転中のとき、または、除霜運転中で且つ暖房運転中のときには、戻り暖房水温度Twiが予め設定した基準温度Twisよりも高いが否かが判別され、戻り暖房水温度Twi>基準温度TwisのときにはステップSP5に移行し、また、戻り暖房水温度Twi≦基準温度TwisのときにはステップSP6に移行する。   On the other hand, the flowchart shown in FIG. 6 differs from the flowchart shown in FIG. 3 in that step SP8 for returning to the previous stage of step SP5 and determining the heating water temperature (the temperature of the heating water returned from the hot water heater) is inserted. In the point. That is, when the heat pump operation and the heating operation are performed, or when the defrost operation and the heating operation are performed, it is determined whether or not the return heating water temperature Twi is higher than a preset reference temperature Twis. When the return heating water temperature Twi> the reference temperature Twis, the process proceeds to step SP5. When the return heating water temperature Twi ≦ the reference temperature Twis, the process proceeds to step SP6.

図6に示したフローチャートは図4に示した給湯装置に利用することができる。図5に示したフローチャートを図4に示した給湯装置に利用した場合には、ヒートポンプ運転中で且つ暖房運転中のとき、または、除霜運転中で且つ暖房運転中のときでも、戻り暖房水温度Twi≦基準温度Twisで戻り暖房水を放熱用熱交換器35に送り込んでも蒸発器14の熱回収(冷媒蒸発)が促進されないとき或いは促進され難いときには、暖房中であっても温水暖房機から戻された暖房水は放熱用熱交換器35に送り込まれない。つまり、戻り暖房水温度Twiを判断条件とした付加することにより、温水暖房機から戻された暖房水の放熱用熱交換器35への送り込みを適切に行える。   The flowchart shown in FIG. 6 can be used for the hot water supply apparatus shown in FIG. When the flow chart shown in FIG. 5 is used in the hot water supply apparatus shown in FIG. 4, the return heating water can be used even during the heat pump operation and the heating operation, or during the defrosting operation and the heating operation. When the temperature recovery is not promoted or is difficult to be promoted even if the heating water is returned to the heat exchanger 35 for radiating heat and the heat recovery (refrigerant evaporation) is not promoted even if the heating water is returned to the heat exchanger 35 for heat radiation at the temperature Twi ≦ the reference temperature Twis, The returned heating water is not sent to the heat dissipation heat exchanger 35. That is, by adding the return heating water temperature Twi as a determination condition, the heating water returned from the hot water heater can be appropriately fed to the heat dissipation heat exchanger 35.

図6に示したフローチャートには図5に示した外気温度判断のステップSP7をステップSP8の前段または後段に挿入することもでき、この場合には、戻り暖房水温度Twiと外気温度Toの両方を判断条件とした付加することにより、温水暖房機から戻された暖房水の放熱用熱交換器35への送り込みをより適切に行える。   In the flowchart shown in FIG. 6, step SP7 for determining the outside air temperature shown in FIG. 5 can be inserted before or after step SP8. In this case, both the return heating water temperature Twi and the outside air temperature To are calculated. By adding as a determination condition, the heating water returned from the hot water heater can be more appropriately fed to the heat exchanger 35 for heat radiation.

本発明の第1実施形態を示す、給湯装置の全体構成図である。1 is an overall configuration diagram of a hot water supply device showing a first embodiment of the present invention. 図1に示した給湯装置のコントロールシステムを示す図である。It is a figure which shows the control system of the hot-water supply apparatus shown in FIG. 図1に示した給湯装置の流路切り換えに係るフローチャートである。It is a flowchart which concerns on flow-path switching of the hot water supply apparatus shown in FIG. 本発明の第2実施形態を示す、給湯装置の全体構成図である。It is a whole block diagram of the hot-water supply apparatus which shows 2nd Embodiment of this invention. 図3に示した流路切り換えに係るフローチャートの変形例である。It is a modification of the flowchart which concerns on the flow-path switching shown in FIG. 図3に示した流路切り換えに係るフローチャートの他の変形例である。It is another modification of the flowchart which concerns on the flow-path switching shown in FIG.

符号の説明Explanation of symbols

10…ヒートポンプユニット、HP…ヒートポンプ、11…圧縮機、12…湯沸かし用熱交換器、13…膨張弁、14…蒸発器、20…タンクユニット、21…貯湯タンク、22…第1ポンプ、30,30’…暖房ユニット、31…暖房用熱交換器、32…第2ポンプ、33…第3ポンプ、34…三方切換弁、35…放熱用熱交換器、P11〜P24…管路。   DESCRIPTION OF SYMBOLS 10 ... Heat pump unit, HP ... Heat pump, 11 ... Compressor, 12 ... Heat exchanger for boiling water, 13 ... Expansion valve, 14 ... Evaporator, 20 ... Tank unit, 21 ... Hot water storage tank, 22 ... First pump, 30, 30 '... Heating unit, 31 ... Heat exchanger for heating, 32 ... Second pump, 33 ... Third pump, 34 ... Three-way switching valve, 35 ... Heat exchanger for heat dissipation, P11-P24 ... Pipe line.

Claims (4)

圧縮機,湯沸かし用熱交換器,膨張弁及び蒸発器を有するヒートポンプと、貯湯タンクと、湯沸かし用熱交換器の水通路と貯湯タンクとを接続するポンプ介装の管路とを備えた給湯装置において、
水通路をポンプ介装の管路を通じて貯湯タンクに接続され且つ暖房水通路をポンプ介装の管路を通じて温水暖房機に接続された暖房用熱交換器と、
ヒートポンプの蒸発器との相互熱交換を可能とした放熱用熱交換器と、
暖房用熱交換器の水通路から送出された熱交換後水を必要に応じて放熱用熱交換器に送り込むための流路切換回路を備える、
ことを特徴とする給湯装置。
A hot water supply device comprising a compressor, a heat exchanger having a water heater, an expansion valve and an evaporator, a hot water storage tank, and a pump-equipped pipe line connecting the water passage and the hot water storage tank of the water heater. In
A heat exchanger for heating, wherein the water passage is connected to the hot water storage tank through a pump-incorporated pipe line, and the heating water path is connected to the hot water heater through the pump-incorporated pipe line;
A heat exchanger for heat dissipation that enables mutual heat exchange with the evaporator of the heat pump;
It comprises a flow path switching circuit for sending water after heat exchange sent from the water passage of the heat exchanger for heating to the heat exchanger for heat dissipation as necessary.
A water heater characterized by that.
流路切換回路は、暖房用熱交換器の水通路と貯湯タンクとを接続する管路途中に放熱用熱交換器の入口及び出口を接続する管路と、該管路に介装され暖房用熱交換器の水通路からの熱交換後水を貯湯タンクと放熱用熱交換器の何れか一方に送り込む切換弁を有する、
ことを特徴とする請求項1に記載の給湯装置。
The flow path switching circuit includes a pipe line connecting the inlet and the outlet of the heat dissipating heat exchanger in the middle of the pipe line connecting the water passage and the hot water storage tank of the heating heat exchanger, Having a switching valve that feeds water after heat exchange from the water passage of the heat exchanger into one of the hot water storage tank and the heat exchanger for heat radiation,
The hot water supply apparatus according to claim 1.
圧縮機,湯沸かし用熱交換器,膨張弁及び蒸発器を有するヒートポンプと、貯湯タンクと、湯沸かし用熱交換器の水通路と貯湯タンクとを接続するポンプ介装の管路とを備えた給湯装置において、
水通路をポンプ介装の管路を通じて貯湯タンクに接続され且つ暖房水通路をポンプ介装の管路を通じて温水暖房機に接続された暖房用熱交換器と、
ヒートポンプの蒸発器との相互熱交換を可能とした放熱用熱交換器と、
温水暖房機から戻された暖房水を必要に応じて放熱用熱交換器に送り込むための流路切換回路を備える、
ことを特徴とする給湯装置。
A hot water supply device comprising a compressor, a heat exchanger having a water heater, an expansion valve and an evaporator, a hot water storage tank, and a pump-equipped pipe line connecting the water passage and the hot water storage tank of the water heater. In
A heat exchanger for heating, wherein the water passage is connected to the hot water storage tank through a pump-incorporated pipe line, and the heating water path is connected to the hot water heater through the pump-incorporated pipe line;
A heat exchanger for heat dissipation that enables mutual heat exchange with the evaporator of the heat pump;
Provided with a flow path switching circuit for sending the heating water returned from the hot water heater to the heat exchanger for heat dissipation as necessary,
A water heater characterized by that.
流路切換回路は、暖房用熱交換器の暖房水通路の入口側に放熱用熱交換器の入口及び出口を接続する管路と、該管路に介装され温水暖房機から戻された暖房水を暖房用熱交換器の暖房水通路と放熱用熱交換器の何れか一方に送り込む切換弁を有する、
ことを特徴とする請求項3に記載の給湯装置。
The flow path switching circuit includes a pipe line connecting the inlet and outlet of the heat dissipating heat exchanger to the inlet side of the heating water passage of the heating heat exchanger, and heating returned from the hot water heater interposed in the pipe line A switching valve that feeds water to either the heating water passage of the heating heat exchanger or the heat dissipation heat exchanger;
The hot water supply apparatus according to claim 3.
JP2006208146A 2006-07-31 2006-07-31 Water heater Expired - Fee Related JP4856489B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006208146A JP4856489B2 (en) 2006-07-31 2006-07-31 Water heater
PCT/JP2007/061802 WO2008015843A1 (en) 2006-07-31 2007-06-12 Hot water supply device
EP07745089.8A EP2048451A4 (en) 2006-07-31 2007-06-12 Hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208146A JP4856489B2 (en) 2006-07-31 2006-07-31 Water heater

Publications (2)

Publication Number Publication Date
JP2008032346A true JP2008032346A (en) 2008-02-14
JP4856489B2 JP4856489B2 (en) 2012-01-18

Family

ID=38997027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208146A Expired - Fee Related JP4856489B2 (en) 2006-07-31 2006-07-31 Water heater

Country Status (3)

Country Link
EP (1) EP2048451A4 (en)
JP (1) JP4856489B2 (en)
WO (1) WO2008015843A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175151A (en) * 2009-01-29 2010-08-12 Rinnai Corp Heating device
JP2010216784A (en) * 2009-03-19 2010-09-30 Toshiba Carrier Corp Air conditioning system
WO2017163337A1 (en) * 2016-03-23 2017-09-28 三菱電機株式会社 Heat-pump-type heating apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970870B1 (en) * 2008-08-26 2010-07-16 진금수 Heat pump system
JP5713536B2 (en) * 2009-01-05 2015-05-07 三菱電機株式会社 Heat pump water heater
EP2489964A1 (en) * 2011-02-21 2012-08-22 Digofin SRL System and method for optimized defrosting
FR2979976B1 (en) * 2011-09-08 2015-02-06 Aldes Aeraulique DEVICE FOR PRODUCING HOT WATER FROM A THERMODYNAMIC WATER HEATER AND METHODS OF OPERATION
WO2014014432A1 (en) * 2012-07-20 2014-01-23 Pidenko Petro Fedotovych Independent heat and hot water supply system
ITUB20153364A1 (en) * 2015-09-03 2017-03-03 Begafrost S R L DEFROSTING SYSTEM FOR EXTERNAL EVAPORATOR IN A HEAT PUMP SYSTEM.
KR20210108242A (en) * 2020-02-25 2021-09-02 엘지전자 주식회사 Heat pump air-conditioner
CN111853910B (en) * 2020-07-29 2022-03-29 江苏西墅新能源科技有限公司 Water-cooling multi-connected heat recovery floor heating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222397A (en) * 2001-04-04 2003-08-08 Denso Corp Multi-functional water heater
JP2004108597A (en) * 2002-09-13 2004-04-08 Mitsubishi Electric Corp Heat pump system
JP2005030758A (en) * 2004-09-24 2005-02-03 Matsushita Electric Ind Co Ltd Heat pump type bath hot-water supply system
JP2005233444A (en) * 2004-02-17 2005-09-02 Matsushita Electric Ind Co Ltd Heat pump hot-water supply device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953846A (en) * 1995-08-10 1997-02-25 Sanyo Electric Co Ltd Heat pump type cooling and heating device
KR100720165B1 (en) * 1999-05-20 2007-05-18 사이엔스 가부시기가이샤 Heating System comprised of Refrigerating Cycle
JP4078034B2 (en) * 2001-02-06 2008-04-23 東芝キヤリア株式会社 Heat pump water heater
AT412911B (en) * 2002-03-07 2005-08-25 Thermo System Kaelte Klima Und DEVICE FOR HEATING A HEAT CARRIER
JP4019943B2 (en) 2003-01-06 2007-12-12 松下電器産業株式会社 Heat pump water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222397A (en) * 2001-04-04 2003-08-08 Denso Corp Multi-functional water heater
JP2004108597A (en) * 2002-09-13 2004-04-08 Mitsubishi Electric Corp Heat pump system
JP2005233444A (en) * 2004-02-17 2005-09-02 Matsushita Electric Ind Co Ltd Heat pump hot-water supply device
JP2005030758A (en) * 2004-09-24 2005-02-03 Matsushita Electric Ind Co Ltd Heat pump type bath hot-water supply system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175151A (en) * 2009-01-29 2010-08-12 Rinnai Corp Heating device
JP2010216784A (en) * 2009-03-19 2010-09-30 Toshiba Carrier Corp Air conditioning system
WO2017163337A1 (en) * 2016-03-23 2017-09-28 三菱電機株式会社 Heat-pump-type heating apparatus
GB2563511A (en) * 2016-03-23 2018-12-19 Mitsubishi Electric Corp Heat-pump-type heating apparatus
GB2563511B (en) * 2016-03-23 2020-06-03 Mitsubishi Electric Corp Heat pump type heater

Also Published As

Publication number Publication date
JP4856489B2 (en) 2012-01-18
EP2048451A1 (en) 2009-04-15
EP2048451A4 (en) 2013-12-25
WO2008015843A1 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4856489B2 (en) Water heater
US8661840B2 (en) Liquid circulation heating system
JP6320633B2 (en) Heat pump equipment
JP5920251B2 (en) Heating and hot water supply equipment
JP2006258343A (en) Air conditioning system
JP5573757B2 (en) Hot water heater
JP6301684B2 (en) CO2 water heater
JP4058696B2 (en) Heat pump hot water supply system
JP2010025503A (en) Heat pump air conditioning system
JP2015048987A (en) Air conditioner
JP2006226627A (en) Water cooled heat pump type subterranean heat- utilizing air conditioning system
JP4503630B2 (en) Air conditioning system and control method thereof
JP2018063090A (en) Heat pump water heater with cooling/heating function
JP2018066515A (en) Method of controlling heat pump hot water heating system
JP4088790B2 (en) Heat pump type water heater and its operating method
JP6907653B2 (en) Air conditioning system
JP4033788B2 (en) Heat pump equipment
JP7183645B2 (en) Heat pump hot water supply air conditioner
JP2006003077A (en) Heat pump type hot water supply apparatus
JP6583217B2 (en) Control module
JP2009092321A (en) Cooling/heating hot water supply system and its operating method
WO2018008108A1 (en) Refrigeration cycle system
JP4275570B2 (en) Heating tower defrosting method and water-cooled heat pump system
JP5843630B2 (en) Cooling system
JP6948135B2 (en) Vehicle air conditioning system, defrost processing method and program for vehicle air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees