JP2008031536A - Direct plating method - Google Patents

Direct plating method Download PDF

Info

Publication number
JP2008031536A
JP2008031536A JP2006208040A JP2006208040A JP2008031536A JP 2008031536 A JP2008031536 A JP 2008031536A JP 2006208040 A JP2006208040 A JP 2006208040A JP 2006208040 A JP2006208040 A JP 2006208040A JP 2008031536 A JP2008031536 A JP 2008031536A
Authority
JP
Japan
Prior art keywords
plating
copper
plated
catalyst
strike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006208040A
Other languages
Japanese (ja)
Inventor
Yoshinori Kanao
嘉徳 金尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Udylite Co Ltd
Original Assignee
Ebara Udylite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Udylite Co Ltd filed Critical Ebara Udylite Co Ltd
Priority to JP2006208040A priority Critical patent/JP2008031536A/en
Publication of JP2008031536A publication Critical patent/JP2008031536A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent plating method which takes a short period of plating time, forms few unplated spots even when electrolytically plating the whole surface of a plastic article with copper, and does not form a muddy and rough copper plating film even when having formed a plating film inside a through hole of a copper-clad laminate or the like. <P>SOLUTION: The direct plating method comprises the steps of: imparting a catalyst to the article to be plated; subsequently strike-plating the article in a plating bath which contains a copper salt, a complexing agent and an alkaline material, and has a reducing function for the catalyst; and then electrolytically plating the article with copper. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、めっきにかかる時間が従来よりも短く、しかも、確実に被めっき物にめっきすることのできるダイレクトプレーティング方法に関する。   The present invention relates to a direct plating method in which the time required for plating is shorter than that of the prior art and can reliably plate an object to be plated.

現在、プラスチックめっきとしては、ABS樹脂やポリカ−ボネート/ABS樹脂などの非電導体であるプラスチックに導電化処理した後、電気めっきをして自動車部品や家庭電化製品等とする方法や、エポキシ樹脂やポリイミド樹脂に銅を貼り付けた銅貼積層板(CCL)に穴を開け、そこを化学的に導電化した後、電気めっきをおこなってスルーホールプリント配線板等を製造する方法が広く知られている。   Currently, as plastic plating, after conducting conductive treatment on non-conductor plastics such as ABS resin and polycarbonate / ABS resin, electroplating to make automobile parts and home appliances, etc., epoxy resin A method of manufacturing a through-hole printed wiring board, etc. by making a hole in a copper-clad laminate (CCL) in which copper is bonded to polyimide resin and making it chemically conductive, followed by electroplating is widely known. ing.

このプラスチックめっきにおける化学的な導電化処理としては、プラスチックに無電解めっきを行う方法と、無電解めっきを利用しないで直接電気めっきを行うダイレクトプレーティング法が知られている。現状では導電化処理の信頼性が高い無電解めっき(銅またはニッケル)が主流となっているが、無電解めっきは処理時間が長く、排水処理負荷が多いため、トータルの処理時間の短縮による生産性の向上や環境負荷の軽減等のメリットのあるダイレクトプレーティング(DP)法が普及しつつある。   As chemical conductive treatment in plastic plating, a method of performing electroless plating on plastic and a direct plating method of performing direct electroplating without using electroless plating are known. At present, electroless plating (copper or nickel), which has high reliability in conducting treatment, is the mainstream, but electroless plating has a long processing time and a lot of wastewater treatment load, so production by shortening the total processing time The direct plating (DP) method, which has advantages such as improved performance and reduced environmental load, is becoming widespread.

しかしながら、DP法によるめっきにも次のような問題点が知られている。すなわち、プラスチック全面へめっきをする場合は、
・被めっき物の表面積が大きい場合には、硫酸銅めっき皮膜が完全に被覆されるまでに
時間が掛かる。
・治具の接点構造により被めっき物とのコンタクト度合いにばらつきが発生し、各接点
から被めっき物への硫酸銅めっきの初期析出状態もばらつく。そのため硫酸銅めっき
の膜厚がばらつくことがある。また、治具のステンレス材に銅めっきして電導性を高
める工夫をしても接点部は高濃度のクロム酸および硫酸溶液にも耐えるステンレス材
のままにする必要があり、全く効果が無い。
・被めっき物が小さく、ランナーから通電するために差込み式接点を治具として利用し
て1ラックで多量の被めっき物を処理する場合、被めっき物の総面積に対する接点の
面積比率が高くなる。また、接点数の増大により被めっき物と接点のコンタクト状態
のばらつきが比例して増大するため、接点毎で硫酸銅めっきの初期析出状態に大きな
差として現われ、硫酸銅めっき後極端には無めっきの個数が多くなる等の問題点があ
った。
However, the following problems are also known for plating by the DP method. In other words, when plating on the entire plastic surface,
• If the surface area of the object to be plated is large, it takes time until the copper sulfate plating film is completely covered.
・ Depending on the contact structure of the jig, the degree of contact with the object to be plated varies, and the initial deposition state of copper sulfate plating from each contact to the object to be plated varies. Therefore, the film thickness of copper sulfate plating may vary. In addition, even if it is devised to increase the electrical conductivity by copper plating on the stainless steel material of the jig, the contact part must be made of a stainless steel material that can withstand high concentrations of chromic acid and sulfuric acid solutions. No.
・ When a large number of objects to be plated are processed in one rack using plug-in contacts as jigs to energize from the runner, the area ratio of the contacts to the total area of the objects to be plated increases. . In addition, the increase in the number of contacts causes a proportional increase in the contact state between the object to be plated and the contact, so a large difference appears in the initial precipitation state of the copper sulfate plating for each contact. There were problems such as an increase in the number of items.

一方、スルーホールめっきの場合には、
・DP法でスルーホールめっきする場合、プラスチックめっきに比べ、非電導体素材は
穴明けされた部分と端面の樹脂部だけにめっきするだけで目的が果たせるため容易で
あるが、高い触媒濃度で処理された後導電化処理した素材に硫酸銅めっきすると銅素
材表面にも触媒が吸着されているため、泥状の粗雑な皮膜の銅めっきになりやすい
という問題点があった。
On the other hand, in the case of through-hole plating,
・ When through-hole plating is performed using the DP method, compared to plastic plating, the non-conductive material can be achieved simply by plating only the perforated part and the resin part on the end face. After that, when copper sulfate is plated on the conductive material, the catalyst is also adsorbed on the surface of the copper material, so that there is a problem that it tends to be copper plating of a rough mud film.

従って、本発明は、上記問題点を解決することのできる新しいダイレクトプレーティング法の提供をその課題とするものである。   Accordingly, an object of the present invention is to provide a new direct plating method that can solve the above problems.

本発明者らは、上記課題を解決するために鋭意研究した結果、被めっき物に触媒を付与した後、特定のめっき浴を使用し、ストライクめっきを行うと同時に化学的な還元を行うことにより、触媒の還元と同時に銅を共析させて被めっき物の導電性を高めることができること、しかも、この処理により、その後の電気銅めっきの付き回り速度を飛躍的に改善できることを見出し、本発明を完成させた。   As a result of diligent research to solve the above-mentioned problems, the present inventors have applied a catalyst to an object to be plated and then used a specific plating bath to perform strike plating and simultaneously perform chemical reduction. It is found that copper can be co-deposited at the same time as the reduction of the catalyst to increase the conductivity of the object to be plated, and that this treatment can drastically improve the subsequent speed of electrolytic copper plating. Was completed.

すなわち、本発明は被めっき物に触媒を付与し、次いで、銅塩、錯化剤およびアルカリ性物質を含み、前記触媒に対する還元能を有するめっき浴でストライクめっきを行い、その後、電気銅めっきを行うことを特徴とするダイレクトプレーティング方法である。   That is, the present invention provides a catalyst to an object to be plated, and then strike plating is performed in a plating bath containing a copper salt, a complexing agent and an alkaline substance and having a reducing ability for the catalyst, and then electrolytic copper plating is performed. This is a direct plating method.

本発明のダイレクトプレーティング方法によれば、被めっき物に触媒を付与後、特定のめっき浴でストライクめっきを行うだけの簡便な方法で、触媒の還元と同時に銅を共析させることができ、被めっき物の導電性を高めると同時にその後の電気銅めっきの付き回り速度を飛躍的に改善できる。   According to the direct plating method of the present invention, after applying a catalyst to an object to be plated, it is possible to co-deposit copper simultaneously with reduction of the catalyst by a simple method of performing strike plating in a specific plating bath. At the same time as increasing the conductivity of the object to be plated, it is possible to dramatically improve the speed of subsequent copper electroplating.

従って、本発明のダイレクトプレーティング方法は、めっき時間が短縮されるだけでなく、プラスチックの全面に電気銅めっきした場合であっても無めっきの個数が少なく、また、銅張り積層板等のスルーホールにめっきを行った場合であっても、泥状の粗雑な皮膜の銅めっきとならない優れた方法である。   Therefore, the direct plating method according to the present invention not only shortens the plating time, but also reduces the number of unplated even when electrolytic copper plating is applied to the entire surface of the plastic. Even when the hole is plated, it is an excellent method that does not result in copper plating of a rough mud film.

本発明のダイレクトプレーティング方法(以下、「本発明方法」という)は、被めっき物に触媒を付与後、銅塩、錯化剤およびアルカリ性物質を含み、触媒に対する還元作用を有するめっき浴でストライクめっきを行う以外は、従来より公知のダイレクトプレーティング方法と同様にして行うことができる。   The direct plating method of the present invention (hereinafter referred to as “the method of the present invention”), after applying a catalyst to an object to be plated, strikes in a plating bath containing a copper salt, a complexing agent and an alkaline substance and having a reducing action on the catalyst. Except for the plating, the conventional direct plating method can be used.

本発明方法でダイレクトプレーティングされる被めっき物としては、ABS等のプラスチック等を原料とするものが挙げられる。これらプラスチックを原料とする被めっき物としてはプラスチックの成型品や、これらプラスチックに銅を接着剤等により貼り付けた銅張り積層板等が挙げられる。   Examples of the object to be plated directly by the method of the present invention include those using plastics such as ABS as a raw material. Examples of the object to be plated using these plastics include plastic molded products and copper-clad laminates in which copper is bonded to these plastics with an adhesive or the like.

この被めっき物に触媒を付与するには、従来公知の方法に従い、被めっき物を、触媒を含有する溶液に浸漬すればよい。被めっき物に付与する触媒としては還元性金属触媒が挙げられ、これらの中でも特にパラジウム−スズコロイド触媒が好ましい。この触媒を被めっき物に付与する条件としては公知の条件で良い。また、被めっき物に触媒を付与する前に、常法に従い界面活性剤含有のアルカリ溶液等による脱脂、カチオン性を有するアミン類等によるコンディショニング、無水クロム酸と硫酸含有のエッチング液等によるエッチング等の処理を行っても良い。   In order to impart a catalyst to the object to be plated, the object to be plated may be immersed in a solution containing the catalyst according to a conventionally known method. Examples of the catalyst imparted to the object to be plated include a reducible metal catalyst, and among these, a palladium-tin colloidal catalyst is preferable. The conditions for applying the catalyst to the object to be plated may be known conditions. In addition, before applying a catalyst to the object to be plated, degreasing with a surfactant-containing alkaline solution, conditioning with a cationic amine, etching with an etching solution containing chromic anhydride and sulfuric acid, etc. according to conventional methods, etc. You may perform the process of.

上記のようにして触媒が付与された被めっき物は、次に、銅塩、錯化剤およびアルカリ性物質を含み、触媒に対する還元作用を有するめっき浴に浸漬し、ストライクめっきを行う。このストライクめっきにおける通電の条件としては、被めっき物に対して0.1〜2.0A/dmで、好ましくは0.1〜1.0A/dmまたは0.5〜5Vで、好ましくは0.5〜3Vで、1〜10分間、好ましくは3〜6分間めっきする条件が挙げられる。また、この通電は多種の被めっき物に対応させるため初期電流密度を低くし、それから上記時間内まで直線的に電流密度を上昇させるソフトスタートを行ってもよい。なお、被めっき物に対して2.0A/dmを超える電流密度を利用して通電すると、接点からアルカリミストを含んだ水素ガスの発生により銅の電析が阻害されることがある。このような条件でストライクめっきを行うと、接点および接点に装着された被めっき物への電流密度のばらつきが極端となり、銅めっきで被覆された部分とそうでない部分の両方が発生して、硫酸銅めっきの電流分布が1ラック中で大きな差として現れ、最悪の場合無めっきの個数が増えることがあるので好ましくない。また、このストライクめっきに用いる浴(以下、「ストライク浴」という)は、液温を30〜70℃、好ましくは40〜60℃程度にすることが好ましい。 Next, the object to be plated to which the catalyst is applied as described above contains a copper salt, a complexing agent and an alkaline substance, and is immersed in a plating bath having a reducing action on the catalyst to perform strike plating. The conditions for energization in the strike plating are 0.1 to 2.0 A / dm 2 , preferably 0.1 to 1.0 A / dm 2 or 0.5 to 5 V, preferably The conditions include plating at 0.5 to 3 V for 1 to 10 minutes, preferably 3 to 6 minutes. Further, this energization may reduce the initial current density in order to deal with various objects to be plated, and then perform a soft start to linearly increase the current density until the above time. In addition, when it supplies with electricity using the current density exceeding 2.0 A / dm < 2 > with respect to a to-be-plated object, the electrodeposition of copper may be inhibited by generation | occurrence | production of the hydrogen gas containing alkali mist from a contact. When strike plating is performed under such conditions, the variation in current density between the contacts and the object to be plated attached to the contacts becomes extreme, and both the portions coated with copper plating and the portions not covered with copper plating are generated. The current distribution of copper plating appears as a large difference in one rack, which is not preferable because the number of unplated cases may increase in the worst case. The bath used for the strike plating (hereinafter referred to as “strike bath”) has a liquid temperature of 30 to 70 ° C., preferably about 40 to 60 ° C.

上記のストライク浴に含まれる銅塩としては、硫酸銅、酢酸銅、塩化銅等の無機銅塩であれば特に制限されないが、次の工程で硫酸銅めっきを行う場合には、共通塩である硫酸銅を利用するのが経済的および性能上有利なため好ましい。また、ストライク浴は、その銅塩の濃度が1g/L以上から、銅塩が析出するまでの濃度で使用することができるが、浴中の銅塩の濃度に比例して錯化剤の濃度も増加させる必要があること、均一電着性能の保持、くみ出しによる排水処理負担等の環境への影響および経済的理由により、1〜10g/Lが好ましい。   The copper salt contained in the strike bath is not particularly limited as long as it is an inorganic copper salt such as copper sulfate, copper acetate, and copper chloride. The use of copper sulfate is preferred because of its economic and performance advantages. The strike bath can be used at a concentration from 1 g / L or more to a copper salt concentration, but the concentration of the complexing agent is proportional to the concentration of the copper salt in the bath. 1 to 10 g / L is preferable because it is necessary to increase the thickness of the electrode, and it is necessary to maintain uniform electrodeposition performance, the environmental impact such as drainage treatment burden due to the pumping out, and economic reasons.

また、ストライク浴に含まれる錯化剤としては、ロッシェル塩等の酒石酸塩、グルコン酸塩、1−ヒドロキシエチリデン−1,1−ジホスホニックアシド(HEDP)のアルカリ塩等の廃水処理の負担が少なく、しかも入手が容易なものを使用することができる。これら錯化剤の中でも、廃水処理の点から酒石酸塩、グルコン酸塩が好ましい。これら錯化剤のストライク浴中での濃度は10〜50g/Lであり、好ましくは20〜40g/Lである。   Moreover, as a complexing agent contained in the strike bath, there is a burden of wastewater treatment such as tartrate such as Rochelle salt, gluconate, and alkali salt of 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP). A few and easily available ones can be used. Among these complexing agents, tartrate and gluconate are preferable from the viewpoint of wastewater treatment. The concentration of these complexing agents in the strike bath is 10 to 50 g / L, preferably 20 to 40 g / L.

更に、ストライク浴に含まれるアルカリ性物質としては水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム等が挙げられる。これらのアルカリ性物質の中でも水酸化カリウム、水酸化ナトリウム、水酸化リチウムが好ましく、特に水酸化ナトリウム、水酸化リチウムが好ましい。また、上記アルカリ性物質は2種以上を併用してもよく、水酸化ナトリウムおよび水酸化リチウムを併用することが好ましい。更に、水酸化ナトリウムおよび水酸化リチウムを併用する場合にはこれらの配合割合をモル比で1:2程度とすることが好ましい。これらアルカリ性物質のストライク浴での濃度は20〜200g/Lであり、好ましくは50〜100g/Lである。   Furthermore, examples of the alkaline substance contained in the strike bath include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, and potassium carbonate. Among these alkaline substances, potassium hydroxide, sodium hydroxide and lithium hydroxide are preferable, and sodium hydroxide and lithium hydroxide are particularly preferable. In addition, two or more of the above alkaline substances may be used in combination, and sodium hydroxide and lithium hydroxide are preferably used in combination. Furthermore, when sodium hydroxide and lithium hydroxide are used in combination, it is preferable that the blending ratio thereof is about 1: 2. The concentration of these alkaline substances in the strike bath is 20 to 200 g / L, preferably 50 to 100 g / L.

また更に、ストライク浴には、本発明の効果を損なわない範囲で、上記成分の他にノニオン系界面活性剤等を添加しても良い。   Furthermore, a nonionic surfactant or the like may be added to the strike bath in addition to the above components as long as the effects of the present invention are not impaired.

上述のようにストライクめっきが施された被めっき物は、その後、常法に従って電気銅めっきが行なわれる。この電気銅めっきの条件に、特に制約はないが、例えば、装飾用硫酸銅めっき浴で初期段階の電流操作を変形した条件が好ましい。このような条件としては、3A/dm以上の電流密度で行う条件が挙げられる。また、被めっき物が大きい等の場合には、通常の3A/dm以上の電流密度でめっきを行う前に、30秒間程度の弱電解でめっきを行い、電気接点部でコゲが発生しないようにしてもよい。なお、上記のように被めっき物にストライクめっきが施してあれば、従来のように3A/dm以上の電流密度でめっきを行う前に、1A/dm以下の電流密度で全体に銅が被覆するまで2〜5分間程度弱電解でめっきを行う必要はない。 The plated object subjected to strike plating as described above is then subjected to electrolytic copper plating according to a conventional method. Although there is no restriction | limiting in particular in the conditions of this electrolytic copper plating, For example, the conditions which deform | transformed the electric current operation of the initial stage in the copper sulfate plating bath for decoration are preferable. Such conditions include conditions performed at a current density of 3 A / dm 2 or more. Also, when the object to be plated is large, etc., before plating at a current density of 3 A / dm 2 or more, plating is performed by weak electrolysis for about 30 seconds so that no kogation occurs at the electrical contact portion. It may be. In addition, if strike plating is applied to the object to be plated as described above, copper is entirely formed at a current density of 1 A / dm 2 or less before plating at a current density of 3 A / dm 2 or more as in the prior art. It is not necessary to perform plating by weak electrolysis for about 2 to 5 minutes until coating.

また、本発明方法の被めっき物として、スルーホールのある銅張り積層板(CCL)等を使用し、これにダイレクトプレーティングを行う場合には、被めっき物にアクチベーター処理により触媒を付与した後に、本発明のストライク浴でストライクめっきを行う。その後の処理は常法の無電解銅めっき後の処理に従えばよい。   Moreover, when using the copper clad laminated board (CCL) etc. with a through hole as a to-be-plated object of this invention method and performing direct plating on this, the catalyst was provided to the to-be-plated object by the activator process. Later, strike plating is performed in the strike bath of the present invention. Subsequent treatment may follow the usual treatment after electroless copper plating.

以上説明した本発明方法により電気銅めっきが施された被めっき物は、その状態で最終製品となし得るが、必要により、更に、銅めっき層上に他の金属めっきを施すこともできる。具体的に、被めっき物がプラスチックの場合には、電気銅めっきが施された後、更に、ニッケルめっきやクロムめっき等を施せばよい。また、被めっき物がスルーホールのある銅張り積層板の場合には、電気銅めっきが施された後、イメージング、パターニング等の常法の回路形成方法を施せばよい。   The object to be plated that has been subjected to electrolytic copper plating by the method of the present invention described above can be made into a final product in that state, but if necessary, other metal plating can be further applied on the copper plating layer. Specifically, in the case where the object to be plated is plastic, after the electrolytic copper plating is performed, nickel plating, chrome plating, or the like may be further performed. Further, in the case where the object to be plated is a copper-clad laminate having through holes, a conventional circuit forming method such as imaging or patterning may be applied after electrolytic copper plating.

以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated still in detail, this invention is not limited to these Examples at all.

実 施 例 1
プラスチックへのダイレクトプレーティング(1):
試験片として0.2dm/個のランナー付きABS樹脂製成型品を用いた。この試験片8個を差込式接点の治具(ラック)に装着し、表1に示した条件でエッチング、触媒付与、銅ストライクめっき、硫酸銅めっき工程を行った。なお、銅ストライクめっきを行う容器には、陰・陽極の極間距離が200mmにできるポリプロピレン製槽を用いた。また、この工程の間は空気攪拌を行った。更に、陽極材料にはステンレス板に硫酸銅めっきをして通電性を改善させたものを利用した。
Example 1
Direct plating on plastic (1):
An ABS resin molded product with a runner of 0.2 dm 2 / piece was used as a test piece. Eight of these test pieces were mounted on a jig (rack) for plug-in contacts, and etching, catalyst application, copper strike plating, and copper sulfate plating processes were performed under the conditions shown in Table 1. In addition, the tank made from a polypropylene in which the distance between the negative electrode and the positive electrode can be 200 mm was used as a container for copper strike plating. Moreover, air stirring was performed during this process. Furthermore, the anode material used was a stainless plate plated with copper sulfate to improve conductivity.

この工程で、1ラックの試験片8個全てに硫酸銅めっきが析出し、試験片を完全に銅で被覆した。   In this step, copper sulfate plating was deposited on all eight test pieces in one rack, and the test pieces were completely covered with copper.

比 較 例 1
プラスチックへのダイレクトプレーティング:
実施例1と同じ試験片を、実施例1と同様に差込式接点の治具に装着した。これを、実施例1と同様にエッチング、触媒付与まで行った。次いで、銅ストライク浴には通電なしで浸漬を行い、その後硫酸銅めっきを15分間(5分間のソフトスタートを含む)行った。
Comparative Example 1
Direct plating on plastic:
The same test piece as in Example 1 was mounted on a plug-in contact jig in the same manner as in Example 1. This was performed until etching and catalyst application in the same manner as in Example 1. Next, the copper strike bath was immersed without being energized, and then copper sulfate plating was performed for 15 minutes (including 5 minutes of soft start).

この工程では、1ラックの試験片8個のうち6個に硫酸銅めっきが析出しなかった。また、硫酸銅メッキが析出した試験片2個も完全に銅では被覆されていなかった。   In this step, copper sulfate plating did not deposit on 6 of 8 test pieces of 1 rack. Also, two test pieces on which copper sulfate plating was deposited were not completely covered with copper.

実 施 例 2
プラスチックへのダイレクトプレーティング(2):
実施例1と同じ試験片5個を差込式接点の治具(ラック)に装着し、実施例1と同様にエッチング、触媒付与まで行なった。次いで、下記の処理浴2に浸漬し、化学的に導電化処理した後、水洗し、下記の処理浴3中、0.4A/dmで3分間の銅ストライクめっきを行なった。その後硫酸銅めっきを15分間(2分のソフトスタートを含む)行った。
Example 2
Direct plating on plastic (2):
The same five test pieces as in Example 1 were attached to a jig (rack) with a plug-in contact, and etching and catalyst application were performed in the same manner as in Example 1. Next, the substrate was immersed in the following treatment bath 2, chemically conductive, washed with water, and subjected to copper strike plating at 0.4 A / dm 2 in the following treatment bath 3 for 3 minutes. Thereafter, copper sulfate plating was performed for 15 minutes (including a soft start of 2 minutes).

<処理浴2>
硫酸銅5水塩 10g/L
グルコン酸ナトリウム 30g/L
水酸化カリウム 40g/L
水酸化リチウム 30g/L
<処理浴3>
硫酸銅5水和塩 15g/L
ロッシェル塩 30g/L
水酸化ナトリウム 30g/L
炭酸カリウム 150g/L
<Treatment bath 2>
Copper sulfate pentahydrate 10g / L
Sodium gluconate 30g / L
Potassium hydroxide 40g / L
Lithium hydroxide 30g / L
<Treatment bath 3>
Copper sulfate pentahydrate 15g / L
Rochelle salt 30g / L
Sodium hydroxide 30g / L
Potassium carbonate 150g / L

この工程では、試験片5個全てに硫酸銅めっきが析出し、試験片を完全に銅で被覆した。   In this step, copper sulfate plating was deposited on all five test pieces, and the test pieces were completely covered with copper.

実 施 例 3
プラスチックへのダイレクトプレーティング(3):
試験片として2dm/個の三菱レーヨン社製ユーピロンPL−2010のPC/ABS樹脂製自動車用ドアハンドルを使用した。この試験片を1個あたり上下2本ずつピン式接点の治具に取り付け、1ラックに2個装着した。実施例1と同様にエッチング、触媒付与まで行なった後、処理浴2中、1.5Vで4分の銅ストライクめっきを行い、その後、2分のソフトスタートを含め15分間硫酸銅めっきを行った。なお、銅ストライクめっきは、0.5Vでスタートし、4分間かけて1.5Vにまで電流が徐々に上昇させた。
Example 3
Direct plating on plastic (3):
2 dm 2 / piece Iupilon PL-2010 PC / ABS resin door handle made of Mitsubishi Rayon was used as a test piece. Two pieces of this test piece were attached to the jig of the pin type contact point two pieces at the top and bottom, and two pieces were attached to one rack. After performing etching and catalyst application in the same manner as in Example 1, copper strike plating was performed for 4 minutes at 1.5 V in the treatment bath 2, and then copper sulfate plating was performed for 15 minutes including a soft start for 2 minutes. . Copper strike plating started at 0.5 V, and the current was gradually increased to 1.5 V over 4 minutes.

銅ストライク後、ドアハンドルの約50%の面積に銅めっきが析出していた。また、その後の硫酸銅めっきにより全てのドアハンドルにめっきが析出していた。   After the copper strike, copper plating was deposited on an area of about 50% of the door handle. Further, plating was deposited on all door handles by the subsequent copper sulfate plating.

実 施 例 4
スルーホールへのダイレクトプレーティング:
250mm×250mm×1.6mmのFR−4銅貼積層板に、穴径0.3mm、0.6mmおよび0.8mmの穴をそれぞれ640穴ドリリングしたスルーホールめっき用テストパネルを試験片として用いた。この試験片に、表2に示した条件で脱脂・コンディショニング、ソフトエッチ、プレディップ、アクチベータの各処理を施した。次いで、実施例1で用いた処理浴1を用いて1A/dmで3分間銅ストライクめっきを行った。その後、表2に示した条件でスタビライザー、硫酸銅めっき工程を行った。
Example 4
Direct plating on through holes:
A test panel for through-hole plating in which holes of 0.3 mm, 0.6 mm, and 0.8 mm were drilled on a FR-4 copper-clad laminate of 250 mm × 250 mm × 1.6 mm, respectively, was used as a test piece. . This test piece was subjected to degreasing / conditioning, soft etching, pre-dip, and activator treatment under the conditions shown in Table 2. Subsequently, using the treatment bath 1 used in Example 1, copper strike plating was performed at 1 A / dm 2 for 3 minutes. Then, the stabilizer and the copper sulfate plating process were performed on the conditions shown in Table 2.

銅ストライク後、基板の端面および0.8mmの大きな穴が完全に銅めっきされていることが確認された。また、硫酸銅めっき後、小径の穴を検査したが全穴スルーホールボイドは無かった。   After the copper strike, it was confirmed that the end face of the substrate and the large hole of 0.8 mm were completely plated with copper. Moreover, after copper sulfate plating, small-diameter holes were inspected, but there were no through-hole voids in all holes.

本発明のダイレクトプレーティング方法によれば、触媒付与後の被めっき物の導電性を高めると同時にその後の電気銅めっきの付き回り速度を飛躍的に改善することが可能である。   According to the direct plating method of the present invention, it is possible to improve the conductivity of an object to be plated after applying a catalyst, and at the same time, drastically improve the follow-up speed of electrolytic copper plating.

従って、本発明のダイレクトプレーティング方法は、プラスチックの成型品や、これに銅を接着剤等により貼り付けた銅張り積層板等に銅めっきを施すに当たり、めっき時間を短縮することができるだけでなく、めっきの付き回りが良く、不良品を大幅に減少させることの方法であり、プラスチック製の自動車部品あるいは電気部品等のめっき方法として好適に用いることができるものである。   Accordingly, the direct plating method of the present invention can not only shorten the plating time when performing copper plating on a plastic molded product or a copper-clad laminate in which copper is bonded to the plastic by an adhesive or the like. This is a method for improving plating coverage and greatly reducing defective products, and can be suitably used as a plating method for plastic automobile parts or electrical parts.

図1は実施例1で行った試験片へのダイレクトプレーティングの結果を示す図面である。FIG. 1 is a drawing showing the results of direct plating on a test piece performed in Example 1. FIG. 図2は比較例1で行った試験片へのダイレクトプレーティングの結果を示す図面である。FIG. 2 is a drawing showing the results of direct plating on the test piece performed in Comparative Example 1. 図3は実施例2で行った試験片へのダイレクトプレーティングの結果を示す図面である。FIG. 3 is a drawing showing the results of direct plating on the test piece performed in Example 2. 図4は実施例3で行った試験片へのダイレクトプレーティングの結果を示す図面である。 以 上FIG. 4 is a drawing showing the results of direct plating on the test piece performed in Example 3. more than

Claims (4)

被めっき物に触媒を付与し、次いで、銅塩、錯化剤およびアルカリ性物質を含み、前記触媒に対する還元能を有するめっき浴でストライクめっきを行い、その後、電気銅めっきを行うことを特徴とするダイレクトプレーティング方法。   A catalyst is imparted to an object to be plated, and then strike plating is performed in a plating bath containing a copper salt, a complexing agent and an alkaline substance and having a reducing ability for the catalyst, and thereafter, electrolytic copper plating is performed. Direct plating method. ストライクめっきにおける通電を、被めっき物に対して0.1〜2.0A/dmまたは0.5〜5Vで1〜10分間行うものである請求項1記載のダイレクトプレーティング方法。 2. The direct plating method according to claim 1, wherein energization in the strike plating is performed at 0.1 to 2.0 A / dm 2 or 0.5 to 5 V for 1 to 10 minutes with respect to the object to be plated. ストライクめっきに用いる浴の温度が、30〜70℃である請求項1または2に記載のダイレクトプレーティング方法。   The direct plating method according to claim 1 or 2, wherein the temperature of the bath used for strike plating is 30 to 70 ° C. 触媒が、パラジウム−スズコロイド触媒である請求項1ないし3のいずれかに記載のダイレクトプレーティング方法。
The direct plating method according to any one of claims 1 to 3, wherein the catalyst is a palladium-tin colloidal catalyst.
JP2006208040A 2006-07-31 2006-07-31 Direct plating method Pending JP2008031536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006208040A JP2008031536A (en) 2006-07-31 2006-07-31 Direct plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208040A JP2008031536A (en) 2006-07-31 2006-07-31 Direct plating method

Publications (1)

Publication Number Publication Date
JP2008031536A true JP2008031536A (en) 2008-02-14

Family

ID=39121281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208040A Pending JP2008031536A (en) 2006-07-31 2006-07-31 Direct plating method

Country Status (1)

Country Link
JP (1) JP2008031536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043717A1 (en) * 2010-09-30 2012-04-05 日立金属株式会社 Method for forming electric copper plating film on surface of rare earth permanent magnet
JP2014095104A (en) * 2012-11-07 2014-05-22 Toppan Printing Co Ltd Copper filling method of open hole by plating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145969A (en) * 1981-03-04 1982-09-09 Agency Of Ind Science & Technol Chemical plating method
JPH0544075A (en) * 1991-08-15 1993-02-23 Nippon Riironaale Kk Copper striking method substituted for electroless copper plating
JP2001214278A (en) * 1999-11-22 2001-08-07 Learonal Japan Inc Accelerator bath solution for direct plating and direct plating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145969A (en) * 1981-03-04 1982-09-09 Agency Of Ind Science & Technol Chemical plating method
JPH0544075A (en) * 1991-08-15 1993-02-23 Nippon Riironaale Kk Copper striking method substituted for electroless copper plating
JP2001214278A (en) * 1999-11-22 2001-08-07 Learonal Japan Inc Accelerator bath solution for direct plating and direct plating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043717A1 (en) * 2010-09-30 2012-04-05 日立金属株式会社 Method for forming electric copper plating film on surface of rare earth permanent magnet
JP5013031B2 (en) * 2010-09-30 2012-08-29 日立金属株式会社 Method for forming electrolytic copper plating film on surface of rare earth permanent magnet
CN103125005A (en) * 2010-09-30 2013-05-29 日立金属株式会社 Method for forming electric copper plating film on surface of rare earth permanent magnet
EP2624266A4 (en) * 2010-09-30 2017-12-27 Hitachi Metals, Ltd. Method for forming electric copper plating film on surface of rare earth permanent magnet
US10770224B2 (en) 2010-09-30 2020-09-08 Hitachi Metals, Ltd. Method for forming electrolytic copper plating film on surface of rare earth metal-based permanent magnet
JP2014095104A (en) * 2012-11-07 2014-05-22 Toppan Printing Co Ltd Copper filling method of open hole by plating

Similar Documents

Publication Publication Date Title
US4919768A (en) Electroplating process
US5250105A (en) Selective process for printing circuit board manufacturing
JP6195857B2 (en) Method for metallizing non-conductive plastic surface
US5071517A (en) Method for directly electroplating a dielectric substrate and plated substrate so produced
JPH0544075A (en) Copper striking method substituted for electroless copper plating
JPH01268896A (en) Electroplating apparatus
US5342501A (en) Method for electroplating metal onto a non-conductive substrate treated with basic accelerating solutions for metal plating
JP2769954B2 (en) Method for electrodepositing metal plating directly on plastic substrates
JP2009530502A (en) Polyimide substrate and method for producing printed circuit board using the same
KR20060077798A (en) Conductive metal plated polyimide substrate and process for manufacturing the same
JP6150822B2 (en) Method for metallizing non-conductive plastic surface
JPH06330378A (en) Method for directly forming electroplated layer on nonconductive material surface
US3694250A (en) Electroless copper plating
US5238550A (en) Electroplating process
JP4646376B2 (en) Accelerator bath solution for direct plating and direct plating method
JP2008031536A (en) Direct plating method
US20130186764A1 (en) Low Etch Process for Direct Metallization
CN110172684A (en) A kind of ABS Chrome-free coarsening solution and the preparation method and application thereof
JPH03170680A (en) Direct metal covering of nonconductive supporting body
TW202239839A (en) Method for etching at least one surface of a plastic substrate
US5104687A (en) Reduced cycle process for the manufacture of printed circuits, and a composition for carrying out said process
KR100295144B1 (en) Method for plating conductive metal on the surface of non-conductive substrates and the promoting solution therefor
KR20100082075A (en) Method of electroless plating using palladium
US5547559A (en) Process for plating metals onto various substrates in an adherent fashion
JPS59500870A (en) Non-conductive substrate activated catalyst solution and electroless plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118