JP2008028121A - Manufacturing method of semiconductor luminescence element - Google Patents

Manufacturing method of semiconductor luminescence element Download PDF

Info

Publication number
JP2008028121A
JP2008028121A JP2006198581A JP2006198581A JP2008028121A JP 2008028121 A JP2008028121 A JP 2008028121A JP 2006198581 A JP2006198581 A JP 2006198581A JP 2006198581 A JP2006198581 A JP 2006198581A JP 2008028121 A JP2008028121 A JP 2008028121A
Authority
JP
Japan
Prior art keywords
growth
layer
barrier layer
manufacturing
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006198581A
Other languages
Japanese (ja)
Inventor
Naoki Kaneda
直樹 金田
Yoshinobu Narita
好伸 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006198581A priority Critical patent/JP2008028121A/en
Publication of JP2008028121A publication Critical patent/JP2008028121A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a semiconductor luminescence element whereby the luminescence efficiency can be improved in the luminescence layer of the multi-quantum-well structure comprising a gallium-nitride-based compound semiconductor containing In. <P>SOLUTION: The manufacturing method of the semiconductor luminescence element having the luminescence layer of the multi-quantum-well structure comprises a gallium-nitride-based compound semiconductor containing In, and has a growth stopping process for stopping the feeding of a group III raw-material gas in the growth interface between the barrier layer and the quantum layer of the multi-quantum-well structure. Hereupon, the time t<SB>1</SB>of the growth stopping process which ranges from the completion of growing the barrier layer to the initiation of growing the well layer, and a time t<SB>2</SB>of the growth stopping process which ranges from the completion of growing the well layer to the initiation of growing the barrier layer, satisfy the relation of t<SB>1</SB><t<SB>2</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、窒化ガリウム系青紫色の半導体レーザ(LD)、窒化ガリウム系青・緑色の発光ダイオード(LED)のような窒化ガリウム系化合物半導体素子の製造に好適な半導体発光素子の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor light-emitting element suitable for manufacturing a gallium nitride-based compound semiconductor element such as a gallium nitride-based blue-violet semiconductor laser (LD) and a gallium nitride-based blue / green light-emitting diode (LED). About.

窒化ガリウム系LD、LEDは光ディスク装置のピックアップ用光源や各種表示用光源として広く用いられている。可視領域で発光する発光素子の発光層は、発光波長の点からInを含む窒化ガリウム系化合物半導体からなる多重量子井戸構造が一般的である。ここで、多重量子井戸構造とは、バンドギャップエネルギーの異なる半導体薄膜層を交互に積層したもので、複数の井戸層(ウェル層)のそれぞれを、井戸層よりバンドギャップエネルギーの大きな障壁層(バリア層)で挟んで形成した半導体多層構造である。   Gallium nitride LDs and LEDs are widely used as pickup light sources and various display light sources for optical disk devices. The light emitting layer of a light emitting element that emits light in the visible region generally has a multiple quantum well structure made of a gallium nitride compound semiconductor containing In in terms of emission wavelength. Here, the multiple quantum well structure is a structure in which semiconductor thin film layers having different band gap energies are alternately stacked, and each of a plurality of well layers (well layers) has a barrier layer (barrier layer having a larger band gap energy than the well layer). It is a semiconductor multi-layer structure formed between layers.

高効率で発光する量子井戸構造を作製するためには、量子井戸構造の最適化、すなわち、井戸層、障壁層の組成及び膜厚の最適化、組成の均一化、量子井戸層への不純物ドーピング量の最適化、量子井戸構造を成長するための下地部分の転位密度の低減、量子井戸構造へかかる歪み量の低減、量子井戸構造成長後の熱履歴によるIn元素拡散、飛散の抑制、また不純物元素の拡散の低減、量子井戸構造のコヒーレント成長、すなわち、格子緩和せずに成長していることなどが必要であること、が開示されている(例えば、非特許文献1〜3、特許文献1,2参照)。   In order to produce a quantum well structure that emits light with high efficiency, optimization of the quantum well structure, that is, optimization of the composition and thickness of the well layer and the barrier layer, uniformity of the composition, impurity doping to the quantum well layer Optimization of the amount, reduction of dislocation density in the base part for growing the quantum well structure, reduction of strain applied to the quantum well structure, diffusion of In element due to thermal history after growth of the quantum well structure, suppression of scattering, and impurities It is disclosed that reduction of element diffusion, coherent growth of a quantum well structure, that is, growth without lattice relaxation is necessary (for example, Non-Patent Documents 1 to 3 and Patent Document 1). , 2).

上記の量子井戸構造の作製に必要な条件・対策に加え、Inを含む窒化ガリウム系化合物半導体では、熱力学的にやや不安定であることから、井戸層と障壁層の成長界面の状態によっても発光効率が大きく左右されることが分かってきた。こうした観点から、障壁層と井戸層の成長界面で、成長中断工程を導入する提案がある(非特許文献4、特許文献3)。   In addition to the conditions and countermeasures necessary for the fabrication of the quantum well structure described above, gallium nitride compound semiconductors containing In are somewhat unstable in terms of thermodynamics, so depending on the state of the growth interface between the well layer and the barrier layer. It has been found that the luminous efficiency is greatly influenced. From such a viewpoint, there is a proposal to introduce a growth interruption process at the growth interface between the barrier layer and the well layer (Non-patent Documents 4 and 3).

非特許文献4では、バリア層成長終了から井戸層成長開始までの成長中断中に、意図的にIn原料を供給することによって、量子井戸構造の発光効率の改善を図っている。また、特許文献3文献では、障壁層成長終了から井戸層成長開始までの成長中断中、および井戸層成長終了から障壁層成長開始までの成長中断中に、III族原料ガスの供給を停止する一方、キャリアガスとNHを継続して供給して、量子ドットの形成および結晶性の向上を図っている。 In Non-Patent Document 4, the luminous efficiency of the quantum well structure is improved by intentionally supplying an In raw material during the growth interruption from the end of the barrier layer growth to the start of the well layer growth. In Patent Document 3, the supply of the group III source gas is stopped during the growth interruption from the end of the barrier layer growth to the start of the well layer growth and during the growth interruption from the end of the well layer growth to the start of the barrier layer growth. The carrier gas and NH 3 are continuously supplied to form quantum dots and improve crystallinity.

N.A.Shapiro,et.al.,“The effects of indium concentration and well-thickness on the mechanisms of radiative recombination in InxGa1-xN quantum wells”, MRS Internet Journal of Nitride Semiconductor ResearchN.A.Shapiro, et.al., “The effects of indium concentration and well-thickness on the mechanisms of radiative recombination in InxGa1-xN quantum wells”, MRS Internet Journal of Nitride Semiconductor Research B.Monemar,et.al.,“Photoluminescence in n-doped In0.1Ga0.9N/In0.01Ga0.99N multiple quantum wells”, MRS Internet Journal of Nitride Semiconductor ResearchB. Monemar, et.al., “Photoluminescence in n-doped In0.1Ga0.9N / In0.01Ga0.99N multiple quantum wells”, MRS Internet Journal of Nitride Semiconductor Research Atsuchi Yamaguchi, et.al.,“Optical Recombination Process in High-Quality GaN Films and InGaN Quantum Wells Grown on Facet-Initiated Epitaxial Lateral Overgrown GaN Substrates”, Jpn.J.Appl.Phys. Vol.39(2000) pp.2402-2406Atsuchi Yamaguchi, et.al., “Optical Recombination Process in High-Quality GaN Films and InGaN Quantum Wells Grown on Facet-Initiated Epitaxial Lateral Overgrown GaN Substrates”, Jpn.J.Appl.Phys. Vol.39 (2000) pp. 2402-2406 Shi-Jong LEEM, et.al.,“The Effects of In Flow during Growth Interruption on the Optical Properties of InGaN Multiple Quantum Wells Grown by Low Pressure Metalorganic Chemical Vapor Deposition”, Jpn.J.Appl.Phys. Vol.40(2001) pp.L371-L373Shi-Jong LEEM, et.al., “The Effects of In Flow during Growth Interruption on the Optical Properties of InGaN Multiple Quantum Wells Grown by Low Pressure Metalorganic Chemical Vapor Deposition”, Jpn.J.Appl.Phys. Vol.40 ( 2001) pp.L371-L373 特開平8−228025号公報JP-A-8-228025 特開2001−85735号公報JP 2001-85735 A 特開2001−77417号公報JP 2001-77417 A

非特許文献4の成長中断方法では、本発明者らの追試によれば、発光効率の改善効果は十分ではなく、また結晶成長毎の発光波長の変動量・ばらつきが大きかった。また、特許文献3の成長中断方法では、井戸層成長後の成長中断は量子ドットができやすい状態を作り出すため、LEDの発光層としては一定の効果が得られるものの、LDの発光層としてコヒーレント発光させるという観点からは十分な効果が得られなかった。   In the growth interruption method of Non-Patent Document 4, according to the follow-up test by the present inventors, the effect of improving the light emission efficiency was not sufficient, and the amount of variation and variation in the light emission wavelength for each crystal growth was large. Further, in the growth interruption method of Patent Document 3, since the growth interruption after the well layer growth creates a state in which quantum dots are easily formed, a certain effect can be obtained as the light emitting layer of the LED, but coherent light emission as the light emitting layer of the LD. From the viewpoint of making it, sufficient effect was not obtained.

しかしながら、発光層の発光効率はまだ向上の余地があり、LDの閾電流の低減やLEDの高出力化のために、Inを含む窒化ガリウム系化合物半導体からなる多重量子井戸構造の発光効率の更なる向上が強く求められている。   However, there is still room for improvement in the light emission efficiency of the light emitting layer. In order to reduce the threshold current of the LD and increase the output of the LED, the light emission efficiency of the multiple quantum well structure made of a gallium nitride compound semiconductor containing In is further increased. There is a strong demand for improvement.

本発明は、Inを含む窒化ガリウム系化合物半導体からなる多重量子井戸構造の発光層の発光効率向上が図れる半導体発光素子の製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a semiconductor light emitting device capable of improving the light emission efficiency of a light emitting layer having a multiple quantum well structure made of a gallium nitride compound semiconductor containing In.

上記課題を解決するために、本発明は次のように構成されている。
本発明の第1の態様は、Inを含む窒化ガリウム系化合物半導体からなる多重量子井戸構造の発光層を有する半導体発光素子の製造方法において、前記多重量子井戸構造の障壁層と井戸層の成長界面で、III族原料ガスの供給を停止する成長中断工程を有し、前記障壁層成長終了から前記井戸層成長開始に至るまでの前記成長中断工程の時間tと、前記井戸層成長終了から前記障壁層成長開始に至るまでの前記成長中断工程の時間tが、t<tを満たすことを特徴とする半導体発光素子の製造方法である。
In order to solve the above problems, the present invention is configured as follows.
According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor light emitting device having a light emitting layer having a multiple quantum well structure made of a gallium nitride compound semiconductor containing In, and a growth interface between the barrier layer and the well layer having the multiple quantum well structure. And the growth interruption step of stopping the supply of the group III source gas, the time t 1 of the growth interruption step from the end of the barrier layer growth to the start of the well layer growth, and the end of the well layer growth In the method for manufacturing a semiconductor light emitting device, the time t 2 of the growth interruption process until the barrier layer growth starts satisfies t 1 <t 2 .

本発明の第2の態様は、第1の態様において、前記成長中断工程に、V族原料ガス及び窒素の混合ガスを供給することを特徴とする半導体発光素子の製造方法である。   According to a second aspect of the present invention, there is provided a method for manufacturing a semiconductor light emitting device according to the first aspect, wherein a mixed gas of a group V source gas and nitrogen is supplied to the growth interruption step.

本発明の第3の態様は、第1の態様において、前記成長中断工程に、V族原料ガス、窒素及び水素の混合ガスを供給することを特徴とする半導体発光素子の製造方法である。   According to a third aspect of the present invention, there is provided a method for manufacturing a semiconductor light emitting device according to the first aspect, wherein a mixed gas of a group V source gas, nitrogen and hydrogen is supplied to the growth interruption step.

本発明の第4の態様は、第3の態様において、前記混合ガスの水素分圧が、前記障壁層成長終了から前記井戸層成長開始に至るまでの前記成長中断工程の時よりも、前記井戸層成長終了から前記障壁層成長開始に至るまでの前記成長中断工程の時の方が大きいことを特徴とする半導体発光素子の製造方法である。   According to a fourth aspect of the present invention, in the third aspect, the hydrogen partial pressure of the mixed gas is higher than that in the growth interruption step from the end of the barrier layer growth to the start of the well layer growth. In the method of manufacturing a semiconductor light emitting device, the time of the growth interruption process from the end of the layer growth to the start of the barrier layer growth is larger.

本発明の第5の態様は、第2〜4の態様のいずれかの態様において、前記時間tが、40秒未満であることを特徴とする半導体発光素子の製造方法である。 A fifth aspect of the present invention, in any of the embodiments of the second to fourth embodiments, the time t 2 is the method for manufacturing a semiconductor light emitting device and less than 40 seconds.

本発明の第6の態様は、第1〜第5の態様のいずれかの態様において、有機金属気相成長法を用いて前記窒化ガリウム系化合物半導体を成長することを特徴とする半導体発光素子の製造方法である。   According to a sixth aspect of the present invention, there is provided the semiconductor light-emitting device according to any one of the first to fifth aspects, wherein the gallium nitride compound semiconductor is grown using a metal organic vapor phase epitaxy method. It is a manufacturing method.

本発明によれば、Inを含む窒化ガリウム系化合物半導体からなる多重量子井戸構造の発光層を備える半導体発光素子の発光効率を向上できる。   ADVANTAGE OF THE INVENTION According to this invention, the light emission efficiency of a semiconductor light-emitting device provided with the light emitting layer of the multiple quantum well structure which consists of a gallium nitride type compound semiconductor containing In can be improved.

以下、本発明に係る半導体発光素子の製造方法の実施形態を説明する。   Hereinafter, embodiments of a method for manufacturing a semiconductor light emitting device according to the present invention will be described.

(第1の実施形態)
基板上に、InGaNからなる井戸層と障壁層とが交互に積層された多重量子井戸構造の発光層を製造する方法を述べる。結晶成長方法には、有機金属気相成長法(MOVPE法)、分子線エピタキシー法(MBE法)、ハイドライド気相成長法(HVPE法)などがあるが、ここでは、最も一般的なMOVPE法を用いて、基板上にエピタキシャル層を積層成長させた。
(First embodiment)
A method of manufacturing a light emitting layer having a multiple quantum well structure in which well layers and barrier layers made of InGaN are alternately stacked on a substrate will be described. Crystal growth methods include metalorganic vapor phase epitaxy (MOVPE), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), etc. Here, the most common MOVPE method is used. An epitaxial layer was stacked and grown on the substrate.

本実施形態では、井戸層成長工程と障壁層成長工程との間、及び、障壁層成長工程と井戸層成長工程との間に、III族原料ガスを供給しない成長中断工程を設けている。これら成長中断工程において、障壁層成長終了から井戸層成長開始に至るまでの成長中断工程の時間tと、井戸層成長終了から障壁層成長開始に至るまでの成長中断工程の時間tとが、t<tを満たすように設定している。 In the present embodiment, a growth interruption process in which no group III source gas is supplied is provided between the well layer growth process and the barrier layer growth process and between the barrier layer growth process and the well layer growth process. In these growth interruption processes, a time t 1 of the growth interruption process from the end of the barrier layer growth to the start of the well layer growth and a time t 2 of the growth interruption process from the end of the well layer growth to the start of the barrier layer growth are: , T 1 <t 2 is set.

障壁層と井戸層の成長界面での成長中断によって、熱力学的にやや不安定な状態で結晶表面近傍に堆積していたInを主体とする化合物半導体の一部が、結晶表面近傍から離脱する。これにより、障壁層及び井戸層の膜厚はごく僅かであるが減少すると共に、両者の界面での結晶の急峻性が向上する。この効果によって発光効率が向上する。Inの適度な離脱を促すためには、Inの混晶比によって成長中断時間を変えることが好ましく、井戸層は障壁層よりもIn混晶比が大きいことから、井戸層成長終了後から障壁層成長開始に至るまでの成長中断時間を相対的に長めに取ると効果が大きい。   Due to the growth interruption at the growth interface between the barrier layer and the well layer, a part of the compound semiconductor mainly composed of In deposited in the vicinity of the crystal surface in a slightly thermodynamically unstable state is detached from the vicinity of the crystal surface. . Thereby, although the film thickness of a barrier layer and a well layer decreases very slightly, the steepness of the crystal | crystallization at both interface improves. This effect improves luminous efficiency. In order to promote moderate separation of In, it is preferable to change the growth interruption time depending on the In mixed crystal ratio. Since the In layer has a larger In mixed crystal ratio than the barrier layer, the barrier layer is formed after completion of the growth of the well layer. A relatively long growth interruption time until the start of growth has a great effect.

成長中断工程に供給するガスは、V族原料ガス、窒素ガス及び水素ガスの混合ガスが好ましい。V族原料ガスと窒素ガスの混合ガスに加え、水素ガスを添加すると、結晶表面での原子の移動を促進させる効果が、一層向上する。
更に、混合ガスの水素分圧を、障壁層成長終了から井戸層成長開始に至るまでの成長中断工程の時よりも、井戸層成長終了から障壁層成長開始に至るまでの成長中断工程の時の方を大きくするのが好ましい。このように、結晶表面近傍でのInが多い井戸層の成長界面で、水素分圧を高めることにより、結晶表面での原子の移動を促進する効果がより大きくなる。
The gas supplied to the growth interruption step is preferably a mixed gas of group V source gas, nitrogen gas and hydrogen gas. When hydrogen gas is added in addition to the mixed gas of group V source gas and nitrogen gas, the effect of promoting the movement of atoms on the crystal surface is further improved.
Furthermore, the hydrogen partial pressure of the mixed gas is changed during the growth interruption process from the end of the well layer growth to the start of the barrier layer growth, rather than during the growth interruption process from the end of the barrier layer growth to the start of the well layer growth. It is preferable to enlarge the direction. Thus, by increasing the hydrogen partial pressure at the growth interface of the well layer with a lot of In in the vicinity of the crystal surface, the effect of promoting the movement of atoms on the crystal surface is further increased.

(第2の実施形態)
MOVPE法により、Inを含む窒化ガリウム系化合物半導体からなる多重量子井戸構造を作製した。III族原料として、トリメチルガリウム(TMG)、トリメチルインジウム(TMI)を使用した。V族原料としては、アンモニア(NH)を使用したが、モノメチルヒドラジン、ジメチルヒドラジン等の有機V族原料や、これらとアンモニアの混合ガスを用いてもよい。n型ドーパントとしては、シラン(SiH)の希釈ガスを用いたが、ジシラン(Si)、置換アルキル基シラン、モノゲルマン(GeH)などを使用してもよい。
(Second Embodiment)
A multiple quantum well structure made of a gallium nitride compound semiconductor containing In was produced by the MOVPE method. Trimethylgallium (TMG) and trimethylindium (TMI) were used as Group III materials. As the group V material, ammonia (NH 3 ) is used, but organic group V materials such as monomethylhydrazine and dimethylhydrazine, and a mixed gas of these and ammonia may be used. As the n-type dopant, dilute gas of silane (SiH 4 ) was used, but disilane (Si 2 H 6 ), substituted alkyl group silane, monogermane (GeH 4 ), and the like may be used.

まず、サファイア基板上にバッファ層を介して、n型GaN層を3μm成長した。次いで、In0.01Ga0.99N層を障壁層とし、In0.1Ga0.9Nを井戸層とする多重量子井戸構造を成長した。井戸層の厚さは2〜4nmとし、障壁層の厚さは3〜20nmとした。井戸層成長時には、TMG、TMI、NH及び窒素ガスを供給して成長した。障壁層成長には、これらに加えて水素ガスも供給したが、この水素ガスは必ずしも必須ではない。成長中断工程では、NHガス、窒素ガス及び水素ガスの混合ガスを供給した。障壁層成長終了から井戸層成長開始までの成長中断時間はt秒とし、井戸層成長終了から障壁層成長開始までの成長中断時間はt秒とした(t>t)。また、井戸層成長終了から障壁層成長開始までの成長中断工程の時の水素分圧を、障壁層成長終了から井戸層成長開始までの成長中断工程の時よりも大きくした。図1に、量子井戸構造部の成長シーケンスの模式図を示す。図1中、tは井戸層成長工程の時間、tは障壁層成長工程の時間であり、縦軸は各ガスの供給量、横軸は時間である。なお、多重量子井戸構造の成長温度は800℃としたが、成長中断工程中に温度を変化させることにより、井戸層と障壁層の成長温度を異なる温度としてもよい。 First, an n-type GaN layer was grown to 3 μm on a sapphire substrate via a buffer layer. Next, a multi-quantum well structure was grown using the In 0.01 Ga 0.99 N layer as a barrier layer and In 0.1 Ga 0.9 N as a well layer. The thickness of the well layer was 2 to 4 nm, and the thickness of the barrier layer was 3 to 20 nm. During the well layer growth, growth was performed by supplying TMG, TMI, NH 3 and nitrogen gas. In addition to these, hydrogen gas was also supplied for the growth of the barrier layer, but this hydrogen gas is not always necessary. In the growth interruption process, a mixed gas of NH 3 gas, nitrogen gas and hydrogen gas was supplied. The growth interruption time from the end of the barrier layer growth to the start of the well layer growth was t 1 second, and the growth interruption time from the end of the well layer growth to the start of the barrier layer growth was t 2 seconds (t 2 > t 1 ). In addition, the hydrogen partial pressure during the growth interruption process from the end of the well layer growth to the start of the barrier layer growth was made larger than that during the growth interruption process from the end of the barrier layer growth to the start of the well layer growth. In FIG. 1, the schematic diagram of the growth sequence of a quantum well structure part is shown. In Figure 1, t w is the time of the well layer growth step, t b is the time of the barrier layer growth step, the vertical axis represents the supply amount of the gas, the horizontal axis represents time. Although the growth temperature of the multiple quantum well structure is 800 ° C., the growth temperature of the well layer and the barrier layer may be different by changing the temperature during the growth interruption process.

上述した成長条件において、井戸層成長終了後の成長中断工程の水素ガス分圧と障壁層成長終了後の成長中断工程の水素ガス分圧とを同一にし、且つ成長中断時間t、tと両成長中断時の水素ガス分圧を種々に変化させ、複数の多重量子井戸構造を作製し、それらのフォトルミネッセンス(PL)強度を調べた。PL強度の測定結果を図2に示す。
なお、PL測定は室温においてYAGレーザの4倍高調波(266nm)のパルス励起によって行った。励起強度は平均値で約2mWであった。受光スリット幅は0.5mmとし、PL発光はNDフィルタを介してCCDカメラによって受光した。
Under the growth conditions described above, the hydrogen gas partial pressure in the growth interruption process after completion of the well layer growth and the hydrogen gas partial pressure in the growth interruption process after completion of the barrier layer growth are made the same, and the growth interruption times t 1 and t 2 Various multi-quantum well structures were fabricated by varying the hydrogen gas partial pressure during both growth interruptions, and their photoluminescence (PL) intensities were examined. The measurement result of PL intensity is shown in FIG.
The PL measurement was performed by pulse excitation of the fourth harmonic (266 nm) of the YAG laser at room temperature. The excitation intensity was about 2 mW on average. The light receiving slit width was 0.5 mm, and PL light was received by a CCD camera through an ND filter.

図2に示すように、t>tのとき、PL強度が増加した。但しt、tが40秒と長くなるとPL強度は低下した。また、成長中断時の水素ガス分圧が0(水素ガスを供給せず)のときよりも、水素分圧0.05、0.10のときの方がPL強度は強かった。
また、図2の実験では成長中断時間t、tにおける水素分圧は同一としたが、障壁層から井戸層へ至る成長中断時の水素分圧を図2の分圧とし、井戸層から障壁層へ至る成長中断時の水素分圧をこれよりも大きくした場合には、PL強度が20%以上増加した例があった。
As shown in FIG. 2, the PL intensity increased when t 2 > t 1 . However, when t 1 and t 2 became as long as 40 seconds, the PL intensity decreased. In addition, the PL intensity was higher when the hydrogen partial pressure was 0.05 or 0.10 than when the hydrogen gas partial pressure during the growth interruption was 0 (no hydrogen gas was supplied).
In the experiment of FIG. 2, the hydrogen partial pressure at the growth interruption times t 1 and t 2 is the same, but the hydrogen partial pressure at the time of growth interruption from the barrier layer to the well layer is the partial pressure of FIG. There was an example in which the PL intensity increased by 20% or more when the hydrogen partial pressure at the time of the growth interruption reaching the barrier layer was higher than this.

更に、図2に示す条件で作製した量子井戸構造をX線測定により衛星反射ピークを測定したところ、PL強度が強いものは反射ピーク形状が鋭くなり、井戸層と障壁層の結晶界面における急峻性が向上していることを確認できた(図3)。図3には、t(=30)>t(=10)の条件で成長した多重量子井戸構造に対するX線回折強度と、t(=10)≦t(=30)の条件で成長した多重量子井戸構造に対するX線回折強度の一例を比較して示している。 Furthermore, when the satellite reflection peak was measured by X-ray measurement of the quantum well structure fabricated under the conditions shown in FIG. 2, the one with a high PL intensity had a sharper reflection peak shape, and the steepness at the crystal interface between the well layer and the barrier layer. Was confirmed to be improved (FIG. 3). FIG. 3 shows the X-ray diffraction intensity for the multiple quantum well structure grown under the condition of t 2 (= 30)> t 1 (= 10) and the condition of t 2 (= 10) ≦ t 1 (= 30). An example of X-ray diffraction intensity for a grown multiple quantum well structure is shown in comparison.

(第3の実施形態)
MOVPE法より、Inを含む窒化ガリウム系化合物半導体からなる多重量子井戸構造の発光層を有するLED用のエピタキシャルウェハを作製した。使用した原料は、第2の実施形態と同じものに加え、更に、トリメチルアルミニウム(TMA)、ビスシクロペンタジエニルマグネシウム(CpMg)を使用した。
(Third embodiment)
An epitaxial wafer for LED having a light emitting layer having a multiple quantum well structure made of a gallium nitride compound semiconductor containing In was produced by the MOVPE method. In addition to the same raw materials as those in the second embodiment, trimethylaluminum (TMA) and biscyclopentadienylmagnesium (Cp 2 Mg) were used.

まず、サファイア基板上にバッファ層を介して、3μmのn型GaN層を成長した。次いで、n型Al0.05Ga0.95Nクラッド層を成長し、その上に第2の実施形態と同等な成長条件及び成長中断条件で、In0.01Ga0.99N層を障壁層とし、In0.1Ga0.9Nを井戸層とする多重量子井戸構造の発光部を成長した。更に、Mgドープのp型Al0.07Ga0.93Nクラッド層を成長し、最後にMgドープのp型GaNコンタクト層を成長した。このようにして作製したLED用エピタキシャルウェハを用い、これに電極を形成した後、LEDチップを作製した。得られたLEDチップに電流を注入して発光強度を調べた結果、図2の同等の結果、すなわち、図2でPL強度が強かった成長中断条件の多重量子井戸構造のものほど、LED発光強度は大きかった。 First, a 3 μm n-type GaN layer was grown on a sapphire substrate via a buffer layer. Next, an n-type Al 0.05 Ga 0.95 N cladding layer is grown, and the In 0.01 Ga 0.99 N layer is barriered under the same growth conditions and growth interruption conditions as in the second embodiment. As a layer, a light-emitting portion having a multiple quantum well structure having In 0.1 Ga 0.9 N as a well layer was grown. Further, an Mg-doped p-type Al 0.07 Ga 0.93 N cladding layer was grown, and finally an Mg-doped p-type GaN contact layer was grown. The LED epitaxial wafer thus produced was used to form electrodes, and then an LED chip was produced. As a result of investigating the emission intensity by injecting current into the obtained LED chip, the equivalent result of FIG. 2, that is, the light emission intensity of the multiple quantum well structure under the growth interruption condition in which the PL intensity was strong in FIG. Was big.

(第4の実施形態)
MOVPE法により、Inを含む窒化ガリウム系化合物半導体からなる多重量子井戸構造の発光層を有するLD用のエピタキシャルウェハを作製した。原料は第2,3の実施形態と同じものを使用した。まず、GaN自立基板上に、バッファ層を介して、1μmのn型Al0.05Ga0.95N層を成長した。次いで、アンドープGaN下ガイド層を成長し、更に第2の実施形態と同等な成長条件・成長中断条件でIn0.1Ga0.9Nを井戸層とし、In0.02Ga0.98N層を障壁層とする多重量子井戸構造を成長した。次いで、アンドープGaN上ガイド層を成長し、MgをドーピングしたAlGaN系短周期超格子クラッド構造を成長した。次いで、Mgドープのp型GaNコンタクト層を成長した。
(Fourth embodiment)
An LD epitaxial wafer having a light emitting layer having a multiple quantum well structure made of a gallium nitride compound semiconductor containing In was produced by the MOVPE method. The same raw materials as those in the second and third embodiments were used. First, a 1 μm n-type Al 0.05 Ga 0.95 N layer was grown on a GaN free-standing substrate through a buffer layer. Next, an undoped GaN lower guide layer is grown, and In 0.1 Ga 0.9 N is used as a well layer under the same growth conditions and growth interruption conditions as in the second embodiment, and In 0.02 Ga 0.98 N A multiple quantum well structure with a barrier layer was grown. Next, an undoped GaN upper guide layer was grown, and an Mg-doped AlGaN-based short period superlattice clad structure was grown. Next, an Mg-doped p-type GaN contact layer was grown.

第2の実施形態と同様な成長中断条件で作製した多重量子井戸構造を発光層とするLDチップを作製し、閾電流値を比較した結果、図2と同等の結果、すなわち、図2でPL強度が強かった成長中断条件の多重量子井戸構造のものほど、LDの閾電流は小さかった。   As a result of fabricating an LD chip having a light emitting layer with a multiple quantum well structure fabricated under the same growth interruption condition as in the second embodiment and comparing the threshold current values, the result is equivalent to FIG. 2, that is, PL in FIG. The threshold current of the LD was smaller in the multi-quantum well structure under the growth interruption condition with higher strength.

実施形態における多重量子井戸構造部の成長シーケンスを示す模式図である。It is a schematic diagram which shows the growth sequence of the multiple quantum well structure part in embodiment. 多重量子井戸構造の成長中断工程の条件と、得られた多重量子井戸構造のPL強度との関係を表す図である。It is a figure showing the relationship between the conditions of the growth interruption process of a multiple quantum well structure, and PL intensity | strength of the obtained multiple quantum well structure. 多重量子井戸構造のX線測定によるX線衛星反射スペクトルを示すグラフである。It is a graph which shows the X-ray satellite reflection spectrum by the X-ray measurement of a multiple quantum well structure.

符号の説明Explanation of symbols

障壁層成長終了から井戸層成長開始に至るまでの成長中断工程の時間
井戸層成長終了から障壁層成長開始に至るまでの成長中断工程の時間
t 1 Time of growth interruption process from the end of barrier layer growth to the start of well layer growth t 2 Time of growth interruption process from the end of well layer growth to the start of barrier layer growth

Claims (6)

Inを含む窒化ガリウム系化合物半導体からなる多重量子井戸構造の発光層を有する半導体発光素子の製造方法において、
前記多重量子井戸構造の障壁層と井戸層の成長界面で、III族原料ガスの供給を停止する成長中断工程を有し、
前記障壁層成長終了から前記井戸層成長開始に至るまでの前記成長中断工程の時間tと、前記井戸層成長終了から前記障壁層成長開始に至るまでの前記成長中断工程の時間tが、t<tを満たすこと
を特徴とする半導体発光素子の製造方法。
In a method for manufacturing a semiconductor light emitting device having a light emitting layer having a multiple quantum well structure made of a gallium nitride compound semiconductor containing In,
A growth interruption step of stopping the supply of the group III source gas at the growth interface between the barrier layer and the well layer of the multiple quantum well structure;
A time t 1 of the growth interruption process from the end of the barrier layer growth to the start of the well layer growth, and a time t 2 of the growth interruption process from the end of the well layer growth to the start of the barrier layer growth, A method of manufacturing a semiconductor light emitting element, wherein t 1 <t 2 is satisfied.
前記成長中断工程に、V族原料ガス及び窒素の混合ガスを供給することを特徴とする請求項1に記載の半導体発光素子の製造方法。   The method for manufacturing a semiconductor light emitting device according to claim 1, wherein a mixed gas of a group V source gas and nitrogen is supplied to the growth interruption step. 前記成長中断工程に、V族原料ガス、窒素及び水素の混合ガスを供給することを特徴とする請求項1に記載の半導体発光素子の製造方法。   2. The method of manufacturing a semiconductor light emitting device according to claim 1, wherein a mixed gas of a group V source gas, nitrogen and hydrogen is supplied to the growth interruption step. 前記混合ガスの水素分圧が、前記障壁層成長終了から前記井戸層成長開始に至るまでの前記成長中断工程の時よりも、前記井戸層成長終了から前記障壁層成長開始に至るまでの前記成長中断工程の時の方が大きいことを特徴とする請求項3に記載の半導体発光素子の製造方法。   The growth from the end of the growth of the well layer to the start of the growth of the barrier layer is greater than the partial pressure of hydrogen in the gas mixture during the growth interruption step from the end of the growth of the barrier layer to the start of the growth of the well layer. 4. The method of manufacturing a semiconductor light emitting element according to claim 3, wherein the time of the interruption process is larger. 前記時間tが、40秒未満であることを特徴とする請求項2〜4のいずれかに記載の半導体発光素子の製造方法。 The method for manufacturing a semiconductor light-emitting element according to claim 2 , wherein the time t 2 is less than 40 seconds. 有機金属気相成長法を用いて前記窒化ガリウム系化合物半導体を成長することを特徴とする請求項1〜5のいずれかに記載の半導体発光素子の製造方法。   6. The method of manufacturing a semiconductor light-emitting element according to claim 1, wherein the gallium nitride compound semiconductor is grown using a metal organic vapor phase epitaxy method.
JP2006198581A 2006-07-20 2006-07-20 Manufacturing method of semiconductor luminescence element Pending JP2008028121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198581A JP2008028121A (en) 2006-07-20 2006-07-20 Manufacturing method of semiconductor luminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198581A JP2008028121A (en) 2006-07-20 2006-07-20 Manufacturing method of semiconductor luminescence element

Publications (1)

Publication Number Publication Date
JP2008028121A true JP2008028121A (en) 2008-02-07

Family

ID=39118450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198581A Pending JP2008028121A (en) 2006-07-20 2006-07-20 Manufacturing method of semiconductor luminescence element

Country Status (1)

Country Link
JP (1) JP2008028121A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054616A (en) * 2007-08-23 2009-03-12 Sharp Corp Method for manufacturing nitride semiconductor light-emitting element, and the nitride semiconductor light-emitting layer
JP2010129676A (en) * 2008-11-26 2010-06-10 Sharp Corp Nitride semiconductor laser device and method of manufacturing the same
JP2010171267A (en) * 2009-01-23 2010-08-05 Sumitomo Electric Ind Ltd Method of manufacturing nitride-based semiconductor optical element
WO2010098163A1 (en) * 2009-02-24 2010-09-02 住友電気工業株式会社 Light emitting element producing method and light emitting element
US8728237B2 (en) 2010-02-17 2014-05-20 Kabushiki Kaisha Toshiba Crystal growth method for nitride semiconductor having a multiquantum well structure
CN104851949A (en) * 2014-02-19 2015-08-19 丰田合成株式会社 Method for producing group III nitride semiconductor light-emitting device
US9614121B1 (en) 2016-01-27 2017-04-04 Samsung Electronics Co., Ltd. Method of fabricating semiconductor light emitting device
CN114204419A (en) * 2021-10-26 2022-03-18 长春理工大学 Epitaxial structure of high-performance and high-quality InGaAs/InGaAsP multi-quantum well and growth method and application thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054616A (en) * 2007-08-23 2009-03-12 Sharp Corp Method for manufacturing nitride semiconductor light-emitting element, and the nitride semiconductor light-emitting layer
US8311070B2 (en) 2008-11-26 2012-11-13 Sharp Kabushiki Kaisha Nitride semiconductor laser device
JP2010129676A (en) * 2008-11-26 2010-06-10 Sharp Corp Nitride semiconductor laser device and method of manufacturing the same
JP2010171267A (en) * 2009-01-23 2010-08-05 Sumitomo Electric Ind Ltd Method of manufacturing nitride-based semiconductor optical element
WO2010098163A1 (en) * 2009-02-24 2010-09-02 住友電気工業株式会社 Light emitting element producing method and light emitting element
CN102239574A (en) * 2009-02-24 2011-11-09 住友电气工业株式会社 Light emitting element producing method and light emitting element
JP2010199236A (en) * 2009-02-24 2010-09-09 Sumitomo Electric Ind Ltd Light emitting element producing method and light emitting element
US8728237B2 (en) 2010-02-17 2014-05-20 Kabushiki Kaisha Toshiba Crystal growth method for nitride semiconductor having a multiquantum well structure
CN104851949A (en) * 2014-02-19 2015-08-19 丰田合成株式会社 Method for producing group III nitride semiconductor light-emitting device
JP2015154043A (en) * 2014-02-19 2015-08-24 豊田合成株式会社 Group iii nitride semiconductor light emitting element manufacturing method
US9647170B2 (en) 2014-02-19 2017-05-09 Toyoda Gosei Co., Ltd. Method for producing group III nitride semiconductor light-emitting device
CN104851949B (en) * 2014-02-19 2017-09-19 丰田合成株式会社 Method for manufacturing group iii nitride semiconductor light-emitting device
US9614121B1 (en) 2016-01-27 2017-04-04 Samsung Electronics Co., Ltd. Method of fabricating semiconductor light emitting device
CN114204419A (en) * 2021-10-26 2022-03-18 长春理工大学 Epitaxial structure of high-performance and high-quality InGaAs/InGaAsP multi-quantum well and growth method and application thereof
CN114204419B (en) * 2021-10-26 2024-04-19 长春理工大学 Epitaxial structure of high-performance high-quality InGaAs/InGaAsP multi-quantum well, and growth method and application thereof

Similar Documents

Publication Publication Date Title
JP4538476B2 (en) Method for forming a semiconductor structure
JP5306254B2 (en) Semiconductor light emitting device
US8173458B2 (en) Method for forming quantum well structure and method for manufacturing semiconductor light emitting element
JP5048236B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
US20100144078A1 (en) Optical semiconductor device and manufacturing method therefor
US8728237B2 (en) Crystal growth method for nitride semiconductor having a multiquantum well structure
JP2008078613A (en) Method of producing nitride semiconductor, and nitride semiconductor element
US20120248456A1 (en) Nitride semiconductor multilayer structure, method for producing same, and nitride semiconductor light-emitting element
JP5279006B2 (en) Nitride semiconductor light emitting device
US20060261353A1 (en) Group III nitride semiconductor stacked structure
JP2008028121A (en) Manufacturing method of semiconductor luminescence element
US7488971B2 (en) Nitride semiconductor; light-emitting device, light-emitting diode, laser device and lamp using the semiconductor; and production methods thereof
JP2008078186A (en) Method of growing crystal of nitride compound semiconductor
US9755111B2 (en) Active region containing nanodots (also referred to as “quantum dots”) in mother crystal formed of zinc blende-type (also referred to as “cubic crystal-type”) AlyInxGal-y-xN Crystal (y[[□]][≧] 0, x &gt; 0) grown on Si substrate, and light emitting device using the same (LED and LD)
KR101125408B1 (en) Compound semiconductor and method for producing same
JP2012204540A (en) Semiconductor device and method of manufacturing the same
EP2403023A1 (en) Light emitting element producing method and light emitting element
JP2009231609A (en) Production method of semiconductor light-emitting element
JP2015115343A (en) Method of manufacturing nitride semiconductor element
KR100742989B1 (en) Method for Fabricating Gallium Nitride-Based Light Emitting Device
US20160365474A1 (en) Group iii nitride semiconductor light-emitting device and production method therefor
US9595633B2 (en) Method for producing light-emitting device and method for producing group III nitride semiconductor
JP5120861B2 (en) Optical semiconductor device and manufacturing method thereof
JP2005150627A (en) Light emitting diode and its manufacturing method
JP2006310886A (en) Group iii-v compound semiconductor light-emitting element