JP2008025449A - Honeycomb structure for exhaust emission control - Google Patents

Honeycomb structure for exhaust emission control Download PDF

Info

Publication number
JP2008025449A
JP2008025449A JP2006198455A JP2006198455A JP2008025449A JP 2008025449 A JP2008025449 A JP 2008025449A JP 2006198455 A JP2006198455 A JP 2006198455A JP 2006198455 A JP2006198455 A JP 2006198455A JP 2008025449 A JP2008025449 A JP 2008025449A
Authority
JP
Japan
Prior art keywords
exhaust gas
side cell
honeycomb structure
outer peripheral
inflow side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006198455A
Other languages
Japanese (ja)
Inventor
Koji Senda
幸二 仙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006198455A priority Critical patent/JP2008025449A/en
Publication of JP2008025449A publication Critical patent/JP2008025449A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent crack during forcible regeneration in a view of temperature distribution. <P>SOLUTION: Length of a clogging part 41a toward exhaust gas upstream direction in a flow in side cell 41 of an outer circumference part 44 is made longer than an inner circumference part 45. A border of the clogging part 41a is shifted to an exhaust gas flow in side at the outer circumference part 44. Heat capacity of the clogging part increases. Consequently, cooling effect from an end surface is not easily transferred to the flow in side cell 41. Temperature of the clogging part 41a is kept by exhaust gas flowing in a flow out side cell 42 and length thereof is long. Temperature gradient becomes small due to these actions. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ディーゼルエンジンなどからの排ガス中に含まれるPMを捕集するハニカム構造体に関する。   The present invention relates to a honeycomb structure that collects PM contained in exhaust gas from a diesel engine or the like.

ガソリンエンジンについては、排ガスの厳しい規制とそれに対処できる技術の進歩とにより、排ガス中の有害成分は確実に減少されてきている。しかし、ディーゼルエンジンについては、有害成分がPM(主として炭素微粒子からなるスート、高分子量炭化水素微粒子、サルフェート等の硫黄系微粒子など)として排出されるという特異な事情から、ガソリンエンジンに比べて排ガス浄化が難しい。   As for gasoline engines, harmful components in exhaust gas have been steadily reduced due to strict regulations on exhaust gas and advances in technology that can cope with it. However, for diesel engines, harmful components are emitted as PM (primarily carbon particulate soot, high molecular weight hydrocarbon particulates, sulfur particulates such as sulfate, etc.), and exhaust gas purification compared to gasoline engines. Is difficult.

現在までに開発されているディーゼルエンジン用排ガス浄化装置としては、大きく分けてトラップ型の排ガス浄化装置(ウォールフロー)と、オープン型の排ガス浄化装置(ストレートフロー)とが知られている。このうちトラップ型の排ガス浄化装置としては、セラミック製の目封じタイプのハニカム体(ディーゼルPMフィルタ(以下 DPFという))が知られている。この DPFは、セラミックハニカム構造体のセルの開口部の両端を例えば交互に市松状に目封じしてなるものであり、排ガス下流側で目詰めされた流入側セルと、流入側セルに隣接し排ガス上流側で目詰めされた流出側セルと、流入側セルと流出側セルを区画するセル隔壁とよりなり、セル隔壁の細孔で排ガスを濾過してPMを捕集することで排出を抑制するものである。   As exhaust gas purification devices for diesel engines that have been developed so far, a trap type exhaust gas purification device (wall flow) and an open type exhaust gas purification device (straight flow) are known. Among these, as a trap type exhaust gas purification device, a ceramic plug-type honeycomb body (diesel PM filter (hereinafter referred to as DPF)) is known. This DPF is formed by alternately sealing both ends of the openings of the cells of the ceramic honeycomb structure, for example, in a checkered pattern, and is adjacent to the inflow side cells and the inflow side cells clogged on the exhaust gas downstream side. It consists of an outflow side cell clogged upstream of the exhaust gas and a cell partition partitioning the inflow side cell and the outflow side cell. The exhaust gas is filtered through the pores of the cell partition wall to collect PM, thereby suppressing emissions. To do.

しかし DPFでは、PMの堆積によって排気圧損が上昇するため、何らかの手段で堆積したPMを定期的に除去して再生する必要がある。そこで従来は、圧損が上昇した場合にバーナあるいは電気ヒータ等で加熱する方法、あるいは酸化触媒で生成した高温の排ガスを DPFへ供給する方法などによって、堆積したPMを燃焼させ DPFを強制再生することが行われている。しかしながらこの強制再生時には、PMの堆積量が多いほど燃焼時の温度が上昇し、それによる熱応力で DPFにクラックが生じる場合がある。   However, in DPF, exhaust pressure loss increases due to PM accumulation, so it is necessary to periodically remove and regenerate PM accumulated by some means. Therefore, conventionally, DPF is forcibly regenerated by burning accumulated PM by heating with a burner or electric heater when pressure loss increases, or by supplying high-temperature exhaust gas generated by an oxidation catalyst to DPF. Has been done. However, during this forced regeneration, the higher the amount of PM deposited, the higher the temperature during combustion, and the resulting thermal stress may cause cracks in the DPF.

例えば DPFの上流側に酸化触媒を配置し、軽油などを排ガス中に噴霧して酸化触媒で燃焼させ、それによって加熱された排ガスを DPFに流入させて強制再生する方法がある。しかしながら、外周部と中心部との温度差が大きくなって中心部が溶損したり、外周部の下流側端部にクラックが発生したりする場合があった。   For example, there is a method in which an oxidation catalyst is arranged upstream of the DPF, light oil or the like is sprayed into the exhaust gas, burned with the oxidation catalyst, and the exhaust gas heated thereby flows into the DPF and is forcibly regenerated. However, the temperature difference between the outer peripheral portion and the central portion may become large and the central portion may be melted or cracks may occur at the downstream end of the outer peripheral portion.

このような不具合が生じる原因としては、 DPFは外周部ほど冷却されやすいこと、上流側での燃焼熱で排ガスがさらに加熱されるため上流端部より下流端部の方が高温となること、あるいは中心部の方が外周部よりPM燃焼性が高くなること、などがある。   The causes of such problems are that the DPF is more easily cooled at the outer periphery, the exhaust gas is further heated by the combustion heat on the upstream side, so the downstream end is hotter than the upstream end, or The center portion has higher PM combustibility than the outer peripheral portion.

また DPFに流入する排ガス流は、中心部ほど流速が大きく外周部ほど流速が小さい。そのため中心部と外周部でPM堆積量に差が生じ、中心部ほど堆積量が多くなる。そこで特開2004−162537号公報には、フィルタ中心部ではセル長を短くし、外周部ではセル長を長くした DPFが提案されている。この技術によれば、短いセル長のセルでは排ガスが流れにくくなるため、全体の流速分布として中心部の流速が抑制される。その結果、中心部と外周部とにおけるPMの堆積状態の差が小さくなり、フィルタ再生時の温度勾配が小さくなるので、局所的な高温の発生を防止することができる。   The exhaust gas flowing into the DPF has a larger flow velocity at the center and a smaller velocity at the outer periphery. For this reason, there is a difference in the PM deposition amount between the central portion and the outer peripheral portion, and the deposition amount increases in the central portion. Japanese Patent Application Laid-Open No. 2004-162537 proposes a DPF in which the cell length is shortened at the center of the filter and the cell length is lengthened at the outer periphery. According to this technique, since the exhaust gas is less likely to flow in a cell having a short cell length, the flow velocity at the center is suppressed as the overall flow velocity distribution. As a result, the difference in the PM deposition state between the central portion and the outer peripheral portion is reduced, and the temperature gradient during filter regeneration is reduced, so that local high temperatures can be prevented.

しかし特開2004−162537号公報に記載の技術では、外周部ほど冷却されやすいこと、上流側での燃焼熱で排ガスがさらに加熱されるため上流端部より下流端部の方が高温となることなど、 DPFの温度分布からの視点に欠けているため実用的ではない。   However, in the technique described in Japanese Patent Application Laid-Open No. 2004-162537, the outer peripheral portion is more easily cooled, and the exhaust gas is further heated by the combustion heat on the upstream side, so that the downstream end portion is hotter than the upstream end portion. It is not practical because it lacks the viewpoint from the temperature distribution of DPF.

また近年では、 DPF形状の基材のセル隔壁にアルミナなどからコート層を形成し、そのコート層に白金(Pt)などの触媒金属を担持した連続再生式 DPF(フィルタ触媒)が開発されている。このフィルタ触媒によれば、捕集されたPMが触媒金属の触媒反応によって酸化燃焼するため、捕集と同時にあるいは捕集に連続してPMを燃焼させることで基材を再生することができる。そして触媒反応は比較的低温で生じること、及び捕集量が少ないうちにPMを燃焼できることから、基材に作用する熱応力が小さくクラックが防止されるという利点がある。   In recent years, a continuous regeneration type DPF (filter catalyst) has been developed in which a coating layer is formed from alumina or the like on the cell partition walls of a DPF-shaped substrate, and a catalytic metal such as platinum (Pt) is supported on the coating layer. . According to this filter catalyst, the collected PM is oxidized and burned by the catalytic reaction of the catalytic metal, so that the base material can be regenerated by burning the PM simultaneously with the collection or continuously with the collection. Since the catalytic reaction occurs at a relatively low temperature and PM can be combusted while the amount collected is small, there is an advantage that the thermal stress acting on the substrate is small and cracks are prevented.

しかし上記したフィルタ触媒であっても、運転状況によってはPMの堆積量が燃焼量を上回り、それが連続した場合などには DPFと同様の強制再生が必要となる。したがって DPFと同様に基材にクラックが生じる場合がある。
特開2004−162537号
However, even with the filter catalyst described above, depending on the operating conditions, the amount of accumulated PM exceeds the amount of combustion, and if it continues, forced regeneration similar to DPF is required. Therefore, as with DPF, cracks may occur in the substrate.
JP2004-162537

本発明は、温度分布の観点から強制再生時のクラックを防止することを解決すべき課題とする。   An object of the present invention is to prevent cracks during forced regeneration from the viewpoint of temperature distribution.

上記課題を解決する本発明の排ガス浄化用ハニカム構造体の特徴は、排ガス下流側端面で目詰めされた流入側セルと、流入側セルに隣接し排ガス上流側端面で目詰めされた流出側セルと、流入側セルと流出側セルを区画し多数の細孔を有する多孔質のセル隔壁とをもつウォールフロー構造のハニカム構造体であって、外周部の流入側セルにおける目詰め部の排ガス上流方向に向かう長さは、内周部の流入側セルにおける目詰め部の長さより長いことにある。   The honeycomb structure for exhaust gas purification of the present invention that solves the above problems is characterized in that an inflow side cell clogged at the exhaust gas downstream side end surface and an outflow side cell adjacent to the inflow side cell and clogged at the exhaust gas upstream end surface And a honeycomb structure with a wall flow structure that partitions the inflow-side cell and the outflow-side cell and has a porous cell partition wall having a large number of pores, the exhaust gas upstream of the clogging portion in the inflow-side cell at the outer periphery The length toward the direction is longer than the length of the clogged portion in the inflow side cell in the inner peripheral portion.

外周部は、外周表面から径方向内部へ向かって10mm〜30mmの範囲であることが望ましい。   The outer peripheral portion is desirably in the range of 10 mm to 30 mm from the outer peripheral surface toward the inside in the radial direction.

内周部の流入側セルにおける目詰め部の長さは排ガス下流側端面から排ガス上流方向に向かって3〜5mmであり、外周部の流入側セルにおける目詰め部の長さは排ガス下流側端面から排ガス上流方向に向かって10mm〜30mmの範囲であることが望ましい。   The length of the clogged portion in the inflow side cell in the inner peripheral portion is 3 to 5 mm from the exhaust gas downstream end surface toward the exhaust gas upstream direction, and the length of the clogged portion in the inflow side cell in the outer peripheral portion is the exhaust gas downstream end surface. From 10 mm to 30 mm in the exhaust gas upstream direction is desirable.

強制再生時にクラックが生じる原因は、上記したように外周部と中心部との温度勾配が大きく外周部に熱応力が集中するためである。特に下流側端部では、外周表面と端面とが冷却されやすいこと、目詰め部の熱容量がセル壁の熱容量より大きいこと、などのために、最外周の流入側セルにおける目詰め部の境界で温度勾配が大きくなりクラックが生じやすい。   The reason why cracks occur during forced regeneration is that, as described above, the temperature gradient between the outer peripheral portion and the central portion is large, and thermal stress concentrates on the outer peripheral portion. Especially at the downstream end, the outer peripheral surface and the end face are easily cooled, and the heat capacity of the plugging part is larger than the heat capacity of the cell wall. The temperature gradient becomes large and cracks are likely to occur.

そこで本発明では、外周部の流入側セルにおける目詰め部の排ガス上流方向に向かう長さを、内周部の流入側セルにおける目詰め部の長さより長くしている。このようにすることで、外周部では流入側セルと目詰め部との境界が排ガス流入側へ移行する。また目詰め部の体積が大きくなるので、熱容量が増大する。そのため、端面からの冷却作用が流入側セルに伝わりにくくなる。またセル隔壁を通過して流出側セルを流れる排ガスによって流入側セルの目詰め部が保温され、その長さも長くなる。これらの作用により、外周部の流入側セルでは、目詰め部との境界における温度勾配が小さくなりクラックの発生を防止することができる。   Therefore, in the present invention, the length of the clogged portion in the inflow side cell in the outer peripheral portion in the upstream direction of the exhaust gas is made longer than the length of the clogged portion in the inflow side cell in the inner peripheral portion. By doing in this way, the boundary of an inflow side cell and a clogging part shifts to an exhaust gas inflow side in an outer peripheral part. Moreover, since the volume of a clogging part becomes large, a heat capacity increases. Therefore, the cooling effect from the end face is not easily transmitted to the inflow side cell. Further, the clogged portion of the inflow side cell is kept warm by the exhaust gas passing through the cell partition and flowing through the outflow side cell, and the length thereof becomes longer. By these actions, in the inflow side cell in the outer peripheral portion, the temperature gradient at the boundary with the clogging portion is reduced, and the occurrence of cracks can be prevented.

そして上記により信頼性が向上するため、高温、短時間の強制再生処理が可能となり、排ガス中への燃料添加量あるいは燃料添加頻度が低減されるため燃費が向上する。   And since reliability improves by the above, the forced regeneration process of high temperature and a short time is attained, and fuel consumption improves because the amount of fuel addition or the frequency of fuel addition to exhaust gas is reduced.

本発明のハニカム構造体は、排ガス下流側で目詰めされた流入側セルと、流入側セルに隣接し排ガス上流側で目詰めされた流出側セルと、流入側セルと流出側セルを区画し多数の細孔を有する多孔質のセル隔壁と、をもつものであり、一般にはコージェライト、炭化ケイ素などの耐熱性セラミックスから形成される。場合によっては、金属繊維からなりセル隔壁となる不織布と金属製波板との積層体から形成することも可能である。   The honeycomb structure of the present invention partitions an inflow side cell clogged on the exhaust gas downstream side, an outflow side cell adjacent to the inflow side cell and clogged on the exhaust gas upstream side, and the inflow side cell and the outflow side cell. It has a porous cell partition wall having a large number of pores, and is generally formed from heat-resistant ceramics such as cordierite and silicon carbide. Depending on the case, it is also possible to form a laminated body of a nonwoven fabric made of metal fibers and cell partition walls and a corrugated metal plate.

本発明の最大の特徴は、外周部の流入側セルにおける目詰め部の排ガス上流方向に向かう長さは、内周部の流入側セルにおける目詰め部の長さより長いことにある。なお目詰め部とは、セル内部が目詰め材で充填されている部分をいう。流入側セルの下流側端面から上流側へ所定距離入った位置のみ僅かな長さで目詰めし、そこから下流側端面までは目詰めされていないような形態は、本発明の範囲から排除される。   The greatest feature of the present invention is that the length of the plugging portion in the inflow side cell in the outer peripheral portion toward the exhaust gas upstream direction is longer than the length of the plugging portion in the inflow side cell in the inner peripheral portion. The clogging portion refers to a portion where the inside of the cell is filled with a clogging material. A configuration in which only a position within a predetermined distance from the downstream end face of the inflow side cell to the upstream side is clogged with a small length and from there to the downstream end face is excluded from the scope of the present invention. The

ここで外周部は、外周表面から径方向内部へ向かって10mm〜30mmの範囲であることが望ましい。一般の DPFの直径は 100〜 300mmであるから、10mm〜30mmは3〜30%の範囲に相当する。外周部の範囲が外周表面から径方向内部へ向かって10mm未満では、外周部に近い内周部の流入側セルにもクラックが生じる場合がある。また外周部の範囲が外周表面から径方向内部へ向かって30mmを超えると、PM捕集性能が不十分となる。   Here, the outer peripheral portion is preferably in the range of 10 mm to 30 mm from the outer peripheral surface toward the inside in the radial direction. Since the diameter of general DPF is 100-300mm, 10mm-30mm corresponds to the range of 3-30%. If the range of the outer peripheral portion is less than 10 mm from the outer peripheral surface toward the inside in the radial direction, cracks may also occur in the inflow side cells in the inner peripheral portion near the outer peripheral portion. Further, when the range of the outer peripheral portion exceeds 30 mm from the outer peripheral surface toward the inside in the radial direction, PM collection performance becomes insufficient.

内周部の流入側セルにおける目詰め部の長さは、目詰め性及びPM捕集性能(圧損、捕集量)の観点から、従来と同様に排ガス下流側端面から排ガス上流方向に向かって3〜5mmとする。一方、外周部の流入側セルにおける目詰め部の長さは、排ガス下流側端面から排ガス上流方向に向かって10mm〜30mmの範囲とすることが望ましい。外周部の流入側セルにおける目詰め部の長さが10mm未満では、端面からの冷却作用が流入側セルに伝わりやすくなるとともに、流出側セルを流れる排ガスによって保温される目詰め部の長さが短いため目詰め部が冷却されやすい。そのため流入側セルと目詰め部との境界部の温度勾配が大きくなり、クラックが生じる場合がある。また外周部の流入側セルにおける目詰め部の長さが30mmを超えると、流入側セル長が短くなるためPM捕集性能が不十分となる。   The length of the clogging part in the inflow side cell in the inner peripheral part is from the exhaust gas downstream end face to the exhaust gas upstream direction from the viewpoint of the clogging property and PM collection performance (pressure loss, collection amount) as in the conventional case. 3 to 5 mm. On the other hand, it is desirable that the length of the clogging portion in the inflow side cell in the outer peripheral portion is in the range of 10 mm to 30 mm from the exhaust gas downstream side end surface toward the exhaust gas upstream direction. If the length of the clogged portion in the inflow side cell of the outer peripheral portion is less than 10 mm, the cooling action from the end surface is easily transmitted to the inflow side cell, and the length of the clogged portion that is kept warm by the exhaust gas flowing through the outflow side cell is Due to its short length, the clogged portion is easily cooled. For this reason, the temperature gradient at the boundary between the inflow side cell and the clogging portion becomes large, and cracks may occur. In addition, when the length of the clogged portion in the inflow side cell in the outer peripheral portion exceeds 30 mm, the inflow side cell length becomes short, and thus the PM collection performance becomes insufficient.

本発明のハニカム構造体は、それのみで DPFとして用いることができる。しかし強制再生するために、本発明のハニカム構造体と、ハニカム構造体の排ガス上流側に配置されハニカム構造体に流入する排ガスを加熱する加熱手段と、を含む排ガス浄化装置とすることが好ましい。この加熱手段は、ヒータなどとすることもできるが、排ガス浄化機能を兼ね備える酸化触媒を用いることが望ましい。   The honeycomb structure of the present invention alone can be used as a DPF. However, in order to forcibly regenerate, an exhaust gas purification device including the honeycomb structure of the present invention and a heating unit that is disposed upstream of the exhaust gas in the honeycomb structure and that heats the exhaust gas flowing into the honeycomb structure is preferable. The heating means can be a heater or the like, but it is desirable to use an oxidation catalyst having an exhaust gas purification function.

また本発明のハニカム構造体は、触媒層を形成してフィルタ触媒とすることも好ましい。このフィルタ触媒は、本発明に係るハニカム構造体のセル隔壁の表面及びセル隔壁の細孔内表面の少なくとも一方に、触媒層を形成したものである。触媒層は、多孔質酸化物に触媒金属を担持してなるものであり、多孔質酸化物としてはアルミナ、ジルコニア、チタニア、セリア、シリカ、あるいはこれらから選ばれる複数種の複合酸化物などの、一種あるいは複数種を用いることができる。触媒層の形成量は、ハニカム構造体1リットル当たり5〜 200gとすることができる。触媒層が5g/L未満では、触媒金属の耐久性の低下が避けられず、 200g/Lを超えると圧損が高くなりすぎて実用的ではない。   In addition, the honeycomb structure of the present invention is preferably formed as a filter catalyst by forming a catalyst layer. This filter catalyst is obtained by forming a catalyst layer on at least one of the surface of the cell partition walls and the surface of the pores of the cell partition walls of the honeycomb structure according to the present invention. The catalyst layer is formed by supporting a catalyst metal on a porous oxide, such as alumina, zirconia, titania, ceria, silica, or a plurality of complex oxides selected from these, One kind or plural kinds can be used. The formation amount of the catalyst layer can be 5 to 200 g per liter of the honeycomb structure. If the catalyst layer is less than 5 g / L, a decrease in the durability of the catalyst metal is unavoidable, and if it exceeds 200 g / L, the pressure loss becomes too high to be practical.

触媒金属は、Pt、Pd、Rh、Irなどの貴金属あるいはCu、Co、Feなどの卑金属が用いられるが、酸化活性が高いPtが特に望ましい。触媒金属の担持量は、ハニカム構造体1リットル当たり 0.1〜5gとするのが好ましい。担持量がこれより少ないと活性が低すぎて実用的でなく、この範囲より多く担持しても活性が飽和するとともにコストアップとなってしまう。また貴金属と共に、アルカリ金属、アルカリ金属及び希土類金属から選ばれるNOx 吸蔵材を担持することもできる。   As the catalyst metal, a noble metal such as Pt, Pd, Rh, or Ir or a base metal such as Cu, Co, or Fe is used, and Pt having a high oxidation activity is particularly desirable. The amount of catalyst metal supported is preferably 0.1 to 5 g per liter of honeycomb structure. If the loading amount is less than this, the activity is too low to be practical, and if the loading amount exceeds this range, the activity is saturated and the cost is increased. A NOx occlusion material selected from alkali metals, alkali metals and rare earth metals can also be supported along with noble metals.

本発明のハニカム構造体に触媒層を形成してなるフィルタ触媒の排ガス上流側には、フィルタ触媒に流入する排ガスを加熱する加熱手段を備えることが望ましい。このように構成することで、フィルタ触媒に堆積したPMの燃焼を促進することができ、強制再生が可能となる。   It is desirable to provide heating means for heating the exhaust gas flowing into the filter catalyst on the upstream side of the exhaust gas of the filter catalyst formed by forming the catalyst layer on the honeycomb structure of the present invention. With this configuration, combustion of PM accumulated on the filter catalyst can be promoted, and forced regeneration can be performed.

この加熱手段は、ヒータなどとすることもできるが、排ガス浄化機能を兼ね備える酸化触媒を用いることが望ましい。また酸化触媒を配置した場合、強制再生時には排ガス中に軽油などを添加することが望ましい。排ガス中に添加された軽油などのHC源は、酸化触媒によって酸化されその反応熱でフィルタ触媒に流入する排ガス温度が上昇する。また酸化触媒ではNO2 などの酸化活性種が生成し、それがフィルタ触媒に流入する。したがって強制再生の効率が向上する。 The heating means can be a heater or the like, but it is desirable to use an oxidation catalyst having an exhaust gas purification function. When an oxidation catalyst is disposed, it is desirable to add light oil or the like to the exhaust gas during forced regeneration. The HC source such as light oil added to the exhaust gas is oxidized by the oxidation catalyst, and the temperature of the exhaust gas flowing into the filter catalyst is increased by the reaction heat. In addition, oxidation active species such as NO 2 are generated in the oxidation catalyst and flow into the filter catalyst. Therefore, the efficiency of forced regeneration is improved.

本発明のハニカム構造体、あるいは本発明のハニカム構造体に触媒層を形成してなるフィルタ触媒は、アルミナマットなどから形成された保持材を介してコンバータに装着される。このとき、流出側端面においては、アルミナマット等の保持材の端部が外周部の目詰め部の範囲内に位置すること、すなわちオーバーラップしていることが望ましい。保持材の端部が外周部の目詰め部より上流側に位置していると、目詰め部の境界が外部に表出して冷却されやすく、また発生する熱応力を緩和できなくなり、その部分にクラックが生じる恐れがある。   The honeycomb structure of the present invention or the filter catalyst formed by forming a catalyst layer on the honeycomb structure of the present invention is attached to the converter via a holding material formed of alumina mat or the like. At this time, on the outflow side end surface, it is desirable that the end of the holding material such as alumina mat is located within the range of the clogged portion of the outer peripheral portion, that is, overlap. If the end of the retaining material is located upstream from the clogged portion of the outer periphery, the boundary of the clogged portion will be exposed to the outside and it will be easy to cool, and it will not be possible to relieve the generated thermal stress. There is a risk of cracking.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
図1に本実施例のハニカム構造体を用いた排ガス浄化装置を示す。この排ガス浄化装置は、排気量2000ccのディーゼルエンジン1の排気系に床下触媒として配置された触媒コンバータ2を備えている。触媒コンバータ2には、排ガス上流側から下流側に向かって、酸化触媒3と、本実施例のハニカム構造体を用いたフィルタ触媒4とがこの順に直列に配置されている。また触媒コンバータ2の上流側には、排ガス中に軽油を添加するインジェクタ5が配置されている。酸化触媒3及びフィルタ触媒4は、それぞれアルミナマットからなる保持材30を介して触媒コンバータ2内に保持されている。
(Example 1)
FIG. 1 shows an exhaust gas purifying apparatus using the honeycomb structure of the present example. This exhaust gas purification device includes a catalytic converter 2 disposed as an underfloor catalyst in an exhaust system of a diesel engine 1 having a displacement of 2000 cc. In the catalytic converter 2, an oxidation catalyst 3 and a filter catalyst 4 using the honeycomb structure of the present embodiment are arranged in series in this order from the exhaust gas upstream side to the downstream side. An injector 5 that adds light oil to the exhaust gas is disposed upstream of the catalytic converter 2. The oxidation catalyst 3 and the filter catalyst 4 are each held in the catalytic converter 2 via a holding material 30 made of alumina mat.

酸化触媒3は、ストレートフロー構造のハニカム構造をなす。   The oxidation catalyst 3 has a honeycomb structure with a straight flow structure.

フィルタ触媒4は、図2に拡大して示すように、長さ 100mm、外径 160mmのハニカム基材40を母材としている。ハニカム基材40は、排ガス下流側端面で目詰めされた流入側セル41と、流入側セル41に隣接し排ガス上流側端面で目詰めされた流出側セル42と、流入側セル41と流出側セル42を区画し多数の細孔を有する多孔質のセル隔壁43とをもつウォールフロー構造をなしている。そしてセル隔壁43の表面及びその内部細孔の表面には、図示しない触媒コート層が形成されている。   As shown in an enlarged view in FIG. 2, the filter catalyst 4 uses a honeycomb substrate 40 having a length of 100 mm and an outer diameter of 160 mm as a base material. The honeycomb substrate 40 includes an inflow side cell 41 clogged at the exhaust gas downstream end surface, an outflow side cell 42 adjacent to the inflow side cell 41 and clogged at the exhaust gas upstream end surface, the inflow side cell 41 and the outflow side A wall flow structure having a porous cell partition wall 43 defining the cells 42 and having a large number of pores is formed. A catalyst coat layer (not shown) is formed on the surface of the cell partition wall 43 and the surface of the internal pores.

フィルタ触媒4の外周表面から径方向内周側へ20mm入った部分までの外周部44では、流入側セル41の目詰め部41a の長さは流出側端面から20mmである。一方、外周部45を除く内周部45では、流入側セル41の目詰め部41a の長さは流出側端面から3mmである。また流出側セル42の目詰め部は、全て長さ3mmとされている。   In the outer peripheral part 44 from the outer peripheral surface of the filter catalyst 4 to the part 20 mm inward in the radial inner peripheral side, the length of the clogging part 41a of the inflow side cell 41 is 20 mm from the outflow side end face. On the other hand, in the inner peripheral portion 45 excluding the outer peripheral portion 45, the length of the clogging portion 41a of the inflow side cell 41 is 3 mm from the outflow side end surface. Further, the clogging portions of the outflow side cells 42 are all 3 mm in length.

以下、酸化触媒3とフィルタ触媒4の製造方法を説明し、構成の詳細な説明に代える。   Hereafter, the manufacturing method of the oxidation catalyst 3 and the filter catalyst 4 is demonstrated, and it replaces with the detailed description of a structure.

直径 160mm、長さ 150mm、 400セル/inch2 のストレートフロー構造のコージェライト製ハニカム構造体を用意した。一方、アルミナ粉末をイオン交換水及びバインダと共にミリングしてスラリーを調製した。このスラリーをハニカム構造体にウォッシュコートし、 120℃で2時間乾燥後 600℃で2時間焼成してコート層を形成した。コート層は、ハニカム構造体1リットル当たり 150g形成された。 A cordierite honeycomb structure with a straight flow structure having a diameter of 160 mm, a length of 150 mm, and 400 cells / inch 2 was prepared. On the other hand, the alumina powder was milled together with ion exchange water and a binder to prepare a slurry. This slurry was wash-coated on the honeycomb structure, dried at 120 ° C. for 2 hours and then fired at 600 ° C. for 2 hours to form a coat layer. 150 g of the coating layer was formed per liter of the honeycomb structure.

次に、ジニトロジアンミン白金溶液の所定量をコート層に含浸し、 120℃で2時間乾燥後 500℃で1時間焼成してPtを担持した。こうして、ハニカム構造体1リットル当たりPtが2g担持された酸化触媒3を調製した。   Next, a predetermined amount of a dinitrodiammine platinum solution was impregnated into the coating layer, dried at 120 ° C. for 2 hours, and then fired at 500 ° C. for 1 hour to carry Pt. Thus, an oxidation catalyst 3 supporting 2 g of Pt per liter of honeycomb structure was prepared.

直径 160mm、長さ 100mm、 300セル/inch2の DPF用ストレートフロー構造のハニカム構造体を用意し、流入側端面を市松模様状に目詰めして流出側セル42を形成した。目詰め深さは全て3mmである。次に流出側端面において、流出側セル42以外のセルを目詰めして流入側セル41を形成した。このとき、外周表面から径方向へ20mmの範囲のみ目詰め深さを20mmとし、それより内周側の範囲の目詰め深さを3mmとした。こうして本実施例のハニカム構造体を形成した。 A honeycomb structure with a straight flow structure for DPF having a diameter of 160 mm, a length of 100 mm, and 300 cells / inch 2 was prepared, and the inflow side end face was packed in a checkered pattern to form the outflow side cell 42. The filling depth is all 3 mm. Next, on the outflow side end face, cells other than the outflow side cell 42 were plugged to form the inflow side cell 41. At this time, the plugging depth was set to 20 mm only in the range of 20 mm in the radial direction from the outer peripheral surface, and the plugging depth in the range on the inner peripheral side was set to 3 mm. Thus, the honeycomb structure of the present example was formed.

一方、アルミナ粉末をイオン交換水及びバインダと共にミリングしてスラリーを調製した。このスラリーを上記ハニカム構造体の流入側セルの開口から注入し、流出側セルの開口から吸引する方法でセル隔壁及び細孔表面にウォッシュコートした。その後 120℃で2時間乾燥後 600℃で2時間焼成してコート層を形成した。コート層は、ハニカム構造体1リットル当たり20g形成された。   On the other hand, the alumina powder was milled together with ion exchange water and a binder to prepare a slurry. The slurry was poured from the opening of the inflow side cell of the honeycomb structure and was sucked from the opening of the outflow side cell to wash coat the cell partition walls and pore surfaces. Thereafter, it was dried at 120 ° C. for 2 hours and then fired at 600 ° C. for 2 hours to form a coat layer. The coating layer was formed in an amount of 20 g per liter of honeycomb structure.

次に、ジニトロジアンミン白金溶液の所定量をコート層に含浸し、 120℃で2時間乾燥後 500℃で1時間焼成してPtを担持した。ハニカム構造体1リットル当たりPtが1g担持されたフィルタ触媒4を調製した。   Next, a predetermined amount of a dinitrodiammine platinum solution was impregnated into the coating layer, dried at 120 ° C. for 2 hours, and then fired at 500 ° C. for 1 hour to carry Pt. A filter catalyst 4 carrying 1 g of Pt per liter of honeycomb structure was prepared.

上記のように構成された排ガス浄化装置において、ディーゼルエンジン1の定常運転により所定量のPMを堆積させた。   In the exhaust gas purification apparatus configured as described above, a predetermined amount of PM was deposited by steady operation of the diesel engine 1.

次に酸化触媒3の入りガス温度が 300℃になる条件で5分間運転し、続いてインジェクタ5を駆動し、酸化触媒3の上流側の排ガス中に軽油を2g/分の条件で添加しながら、フィルタ触媒4の床温を 700℃に昇温後アイドルに落とし熱暴走させた。その後にフィルタ触媒4のクラック及び破損の有無を目視で調査した。   Next, the operation is performed for 5 minutes under the condition that the temperature of the gas entering the oxidation catalyst 3 is 300 ° C., and then the injector 5 is driven to add light oil to the exhaust gas upstream of the oxidation catalyst 3 under the condition of 2 g / min. Then, the bed temperature of the filter catalyst 4 was raised to 700 ° C., and then dropped to idle to cause thermal runaway. Thereafter, the filter catalyst 4 was visually inspected for cracks and breakage.

この試験をPM堆積量を種々異ならせて行い、フィルタ触媒4にクラックが生じない限界のPM堆積量を見極めた。結果を図3及び図4に示す。   This test was performed by varying the amount of PM deposition, and the limit PM deposition amount at which cracks were not generated in the filter catalyst 4 was determined. The results are shown in FIGS.

(実施例2〜5)
表1に示すように、外周部44の範囲を外周表面から径方向内部へ20mm一定とし、流入側セル41の目詰め部41a の長さを5mm、10mm、30mm、40mmとしたこと以外は実施例1と同様のハニカム構造体を用い、他は実施例1と同様の排ガス浄化装置を構成した。そして実施例1と同様にして、フィルタ触媒4にクラックが生じない限界のPM堆積量を見極めた。結果を図3及び図4に示す。
(Examples 2 to 5)
As shown in Table 1, the range of the outer peripheral portion 44 is constant 20 mm from the outer peripheral surface to the inside in the radial direction, and the length of the clogging portion 41a of the inflow side cell 41 is set to 5 mm, 10 mm, 30 mm, and 40 mm. The same honeycomb structure as in Example 1 was used, and an exhaust gas purification apparatus similar to that in Example 1 was configured. Then, in the same manner as in Example 1, the limit amount of PM deposition at which cracks were not generated in the filter catalyst 4 was determined. The results are shown in FIGS.

(実施例6〜8)
表1に示すように、外周部44の範囲を外周表面から径方向内部へ5mm、10mm、30mmとし、かつ外周部45における流入側セル41の目詰め部41a の長さを20mm一定としたこと以外は実施例1と同様のハニカム構造体を用い、他は実施例1と同様の排ガス浄化装置を構成した。そして実施例1と同様にして、フィルタ触媒4にクラックが生じない限界のPM堆積量を見極めた。結果を図3及び図4に示す。
(Examples 6 to 8)
As shown in Table 1, the range of the outer peripheral portion 44 is set to 5 mm, 10 mm, and 30 mm radially from the outer peripheral surface, and the length of the clogging portion 41a of the inflow side cell 41 in the outer peripheral portion 45 is constant 20 mm. Except for the above, a honeycomb structure similar to that of Example 1 was used, and an exhaust gas purification device similar to that of Example 1 was configured otherwise. Then, in the same manner as in Example 1, the limit PM deposition amount at which cracks were not generated in the filter catalyst 4 was determined. The results are shown in FIGS.

(比較例1)
表1に示すように、流入側セル41の目詰め部の長さを外周部44も内周部45も一律3mmとしたこと以外は実施例1と同様のハニカム構造体を用い、他は実施例1と同様の排ガス浄化装置を構成した。そして実施例1と同様にして、フィルタ触媒4にクラックが生じない限界のPM堆積量を見極めた。結果を図3及び図4に示す。
(Comparative Example 1)
As shown in Table 1, a honeycomb structure similar to that of Example 1 was used except that the length of the clogging portion of the inflow side cell 41 was uniformly 3 mm for both the outer peripheral portion 44 and the inner peripheral portion 45. An exhaust gas purification apparatus similar to Example 1 was constructed. Then, in the same manner as in Example 1, the limit PM deposition amount at which cracks were not generated in the filter catalyst 4 was determined. The results are shown in FIGS.

<評価>   <Evaluation>

Figure 2008025449
Figure 2008025449

図3及び図4より、各実施例のハニカム構造体によれば、比較例1に比べてクラックが生じない限界のPM堆積量が多い。すなわち各実施例のハニカム構造体は、比較例1に比べてクラックが生じにくいことがわかる。これは、流入側セル41の目詰め部41a の長さを内周部45より外周部44を長くしたことによる効果である。   3 and 4, according to the honeycomb structures of the respective examples, the limit PM deposition amount at which cracks do not occur is larger than that of Comparative Example 1. That is, it can be seen that the honeycomb structures of the respective examples are less likely to cause cracks than Comparative Example 1. This is an effect obtained by making the outer peripheral portion 44 longer than the inner peripheral portion 45 in the length of the clogging portion 41a of the inflow side cell 41.

また図3より、外周部44の範囲を20mm一定とした場合には目詰め部41aの長さを10mm以上とすることが望ましく、図4より目詰め部41a の長さを20mm一定とした場合には外周部44の範囲を10mm以上とすることが望ましいことが明らかである。   From FIG. 3, it is desirable that the length of the clogging portion 41a is 10 mm or more when the range of the outer peripheral portion 44 is constant 20 mm, and the length of the clogging portion 41a is constant 20 mm from FIG. It is apparent that it is desirable that the range of the outer peripheral portion 44 be 10 mm or more.

本発明に係る一実施例のハニカム構造体を含む排ガス浄化装置の断面図である。It is sectional drawing of the exhaust gas purification apparatus containing the honeycomb structure of one Example which concerns on this invention. 本発明に係る一実施例のハニカム構造体の断面図である。1 is a cross-sectional view of a honeycomb structure according to an embodiment of the present invention. 外周部の範囲を一定としたときの、外周部流入側セルの目詰め部長さと限界PM堆積量との関係を示すグラフである。It is a graph which shows the relationship between the clogging part length of an outer peripheral part inflow side cell, and the limit PM deposition amount when the range of an outer peripheral part is made constant. 外周部流入側セルの目詰め部長さを一定としたときの、外周部の範囲と限界PM堆積量との関係を示すグラフである。It is a graph which shows the relationship between the range of an outer peripheral part, and the amount of limit PM accumulation when the clogging part length of an outer peripheral part inflow side cell is made constant.

符号の説明Explanation of symbols

40:ハニカム基材 41:流入側セル 42:流出側セル
43:セル隔壁 44:外周部 45:内周部
41a:流入側セルの目詰め部
40: Honeycomb substrate 41: Inflow side cell 42: Outflow side cell
43: Cell partition wall 44: Outer periphery 45: Inner periphery
41a: Inflow side cell plugging

Claims (3)

排ガス下流側端面で目詰めされた流入側セルと、該流入側セルに隣接し排ガス上流側端面で目詰めされた流出側セルと、該流入側セルと該流出側セルを区画し多数の細孔を有する多孔質のセル隔壁とをもつウォールフロー構造のハニカム構造体であって、
外周部の該流入側セルにおける目詰め部の排ガス上流方向に向かう長さは、内周部の該流入側セルにおける目詰め部の長さより長いことを特徴とする排ガス浄化用ハニカム構造体。
An inflow side cell clogged at the exhaust gas downstream side end surface, an outflow side cell adjacent to the inflow side cell and clogged at the exhaust gas upstream side end surface, and the inflow side cell and the outflow side cell are divided into a number of cells. A honeycomb structure having a wall flow structure having a porous cell partition wall having pores,
A honeycomb structure for exhaust gas purification, wherein a length of the clogging portion in the inflow side cell in the outer peripheral portion in the upstream direction of the exhaust gas is longer than a length of the cuffing portion in the inflow side cell in the inner peripheral portion.
前記外周部は、外周表面から径方向内部へ向かって10mm〜30mmの範囲である請求項1に記載の排ガス浄化用ハニカム構造体。   The honeycomb structure for exhaust gas purification according to claim 1, wherein the outer peripheral portion has a range of 10 mm to 30 mm from the outer peripheral surface toward the inside in the radial direction. 前記内周部の該流入側セルにおける目詰め部の長さは排ガス下流側端面から排ガス上流方向に向かって3〜5mmであり、前記外周部の該流入側セルにおける目詰め部の長さは排ガス下流側端面から排ガス上流方向に向かって10mm〜30mmの範囲である請求項1に記載の排ガス浄化用ハニカム構造体。   The length of the clogged portion in the inflow side cell of the inner peripheral portion is 3 to 5 mm from the exhaust gas downstream side end surface toward the exhaust gas upstream direction, and the length of the clogged portion in the inflow side cell of the outer peripheral portion is The honeycomb structure for exhaust gas purification according to claim 1, wherein the honeycomb structure is in a range of 10 mm to 30 mm from the exhaust gas downstream end face toward the exhaust gas upstream direction.
JP2006198455A 2006-07-20 2006-07-20 Honeycomb structure for exhaust emission control Pending JP2008025449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198455A JP2008025449A (en) 2006-07-20 2006-07-20 Honeycomb structure for exhaust emission control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198455A JP2008025449A (en) 2006-07-20 2006-07-20 Honeycomb structure for exhaust emission control

Publications (1)

Publication Number Publication Date
JP2008025449A true JP2008025449A (en) 2008-02-07

Family

ID=39116341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198455A Pending JP2008025449A (en) 2006-07-20 2006-07-20 Honeycomb structure for exhaust emission control

Country Status (1)

Country Link
JP (1) JP2008025449A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240865A (en) * 2008-03-28 2009-10-22 Ngk Insulators Ltd Honeycomb structure
JP2015009205A (en) * 2013-06-28 2015-01-19 京セラ株式会社 Honeycomb structure body and gas treatment device using the same
JP2017170323A (en) * 2016-03-23 2017-09-28 日本碍子株式会社 Honeycomb filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240865A (en) * 2008-03-28 2009-10-22 Ngk Insulators Ltd Honeycomb structure
JP2015009205A (en) * 2013-06-28 2015-01-19 京セラ株式会社 Honeycomb structure body and gas treatment device using the same
JP2017170323A (en) * 2016-03-23 2017-09-28 日本碍子株式会社 Honeycomb filter
US10478766B2 (en) 2016-03-23 2019-11-19 Ngk Insulators, Ltd. Honeycomb filter

Similar Documents

Publication Publication Date Title
KR101110649B1 (en) Diesel engine and a catalysed filter therefor
JP3872384B2 (en) Exhaust gas purification filter catalyst
JP5193437B2 (en) Exhaust gas purification catalyst
KR100747088B1 (en) Dpf with improving heat durability
JP2001190916A (en) Honeycomb structure
JP5639343B2 (en) Honeycomb catalyst body
JP2001073742A (en) Particulate trap for diesel engine
JPWO2007074808A1 (en) Honeycomb structure and manufacturing method thereof
JP2016052635A (en) Honeycomb filter
JP2009160547A (en) Exhaust-gas cleaning catalyst and its production method
WO2014178633A1 (en) Gasoline particulate filter for gasoline direct injection engine
JP2006233935A (en) Exhaust emission control device
JP2005069182A (en) Exhaust emission control device
JP2008151100A (en) Exhaust emission control device
JP4239864B2 (en) Diesel exhaust gas purification device
JP2009228618A (en) Exhaust emission control device
JP2008025449A (en) Honeycomb structure for exhaust emission control
JP2006077672A (en) Exhaust emission control filter and exhaust emission control device
JP4285342B2 (en) Manufacturing method of exhaust gas purification filter
JP3827157B2 (en) Exhaust gas purification device and exhaust gas purification method
JP2008229459A (en) Exhaust gas cleaning device
JP2007138747A (en) Honeycomb structure and exhaust emission control device
JP2005264868A (en) Diesel exhaust gas emission control device
JP2007244950A (en) Particulate filter type exhaust gas cleaning catalyst and particulate filter
JP2008038768A (en) Exhaust emission control filter