JP2008025446A - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine Download PDF

Info

Publication number
JP2008025446A
JP2008025446A JP2006198354A JP2006198354A JP2008025446A JP 2008025446 A JP2008025446 A JP 2008025446A JP 2006198354 A JP2006198354 A JP 2006198354A JP 2006198354 A JP2006198354 A JP 2006198354A JP 2008025446 A JP2008025446 A JP 2008025446A
Authority
JP
Japan
Prior art keywords
valve
ladder
portions
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006198354A
Other languages
Japanese (ja)
Inventor
Atsushi Ito
篤史 伊藤
Eiji Sakagami
英二 坂上
Masaya Otsuka
雅也 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2006198354A priority Critical patent/JP2008025446A/en
Priority to PCT/JP2007/063445 priority patent/WO2008010420A1/en
Publication of JP2008025446A publication Critical patent/JP2008025446A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0284Rotary slide valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0263Plenum chambers; Resonance chambers or resonance pipes the plenum chamber and at least one of the intake ducts having a common wall, and the intake ducts wrap partially around the plenum chamber, i.e. snail-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake device for an internal combustion engine capable of inexpensively preventing a collision sound between a rotary valve and a bore part, regardless of deformation of the rotary valve for switching an air supply form of the internal combustion engine. <P>SOLUTION: When the rotary valve having a plurality of valve parts 11 for respectively separately opening and closing a supply switching port 7 of a plurality of air supply passages of an intake manifold becomes a closing state, an inner surface part 77b of a ladder fitting recessed part is positioned on the opposite side of the supply switching port existing side to a ladder engaging part 64. In a central side valve part 11b except for an end side valve part positioned in both end parts of the rotary valve, a seal interval A between the inner surface part 77b and the ladder engaging part 64, becomes smaller than a valve interval C between the central side valve part 11b and the bore part 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関用吸気装置に関する。   The present invention relates to an intake device for an internal combustion engine.

上記した内燃機関用吸気装置として、従来、例えば特許文献1に示されるものがあった。
特許文献1に示される内燃機関用吸気装置は、吸気分配装置ケーシング(吸気マニホールドに相当)と、この吸気分配装置ケーシングの内部に設けた切替ローラ(ロータリバルブに相当)とを備えている。
吸気分配装置ケーシングは、複数の個別吸気管、及び、複数の短い個別吸気管により、内燃機関の複数の気筒に各別に空気供給する複数の空気供給路を形成している。
切替ローラは、開口を有したバルブ部の複数を一体回転自在に備え、各バルブ部によって個別吸気管を開閉する。
切替ローラの各バルブ部は、シールケージ(シール材に相当)を備えている。シールケージは、一対のリングエレメント(リング部に相当)と、一対のリングエレメントを連結するシール条片(ラダー部に相当)とを備えている。各リングエレメントは、バルブ部の端部に位置する溝に挿入されている。
Conventionally, for example, Patent Document 1 discloses an intake device for an internal combustion engine described above.
An intake device for an internal combustion engine disclosed in Patent Document 1 includes an intake air distribution device casing (corresponding to an intake manifold) and a switching roller (corresponding to a rotary valve) provided inside the intake air distribution device casing.
The intake air distribution device casing forms a plurality of air supply passages for supplying air individually to a plurality of cylinders of the internal combustion engine by a plurality of individual intake pipes and a plurality of short individual intake pipes.
The switching roller includes a plurality of valve portions having openings so as to be integrally rotatable, and each valve portion opens and closes an individual intake pipe.
Each valve portion of the switching roller is provided with a seal cage (corresponding to a seal material). The seal cage includes a pair of ring elements (corresponding to a ring portion) and a seal strip (corresponding to a ladder portion) connecting the pair of ring elements. Each ring element is inserted into a groove located at the end of the valve portion.

特表2001−519006号公報Special table 2001-519006 gazette

この種の吸気装置は、図15(a)に示す如く構成する。この図は、バルブ部11が供給切換え口7を閉じている状態を示す。
この図に示すように、シール材60のラダー部62に、このラダー部62のシール材内側に配置したラダー係合部64を設ける。このラダー係合部64は、バルブ部11の外周側に設けたラダー係入凹部76に係入する。
バルブ11が供給切換え口7を閉じた状態においてラダー係入凹部76の内面のうち、ラダー係合部64に対して吸気マニホールド1の供給切換え口7が存在する側とは反対側に位置する内面部77と、ラダー係合部64との間にシール間隔Eを設ける。
一般に、バルブ部11及びシール材60は、樹脂成形によって成形する。このため、前記シール間隔Eの距離が狭くなっていると、バルブ部11及びシール材60に発生した製作誤差によっては、ラダー係合部64と、ラダー係入凹部62の内面部77とが当接する。すると、ラダー部62がボア部8に圧接され、バルブ部11の切換え操作が重くなる。このため、バルブ部11及びシール材60に発生する製作誤差にかかわらずラダー係合部64と内面部77との当接を回避できるよう前記シール間隔Eを設けてある。
この理由により、従来、シール間隔Eが、バルブ部11の外周縁15aとボア部11との間に設けるバルブ間隔Cよりも大きくなっていた。
This type of intake device is configured as shown in FIG. This figure shows a state in which the valve unit 11 closes the supply switching port 7.
As shown in this figure, a ladder engaging portion 64 disposed on the inner side of the ladder member 62 is provided on the ladder portion 62 of the seal member 60. The ladder engaging portion 64 is engaged with a ladder engaging recess 76 provided on the outer peripheral side of the valve portion 11.
In the state where the valve 11 closes the supply switching port 7, the inner surface of the ladder engaging recess 76 located on the opposite side to the side where the supply switching port 7 of the intake manifold 1 exists with respect to the ladder engaging portion 64. A seal interval E is provided between the portion 77 and the ladder engaging portion 64.
In general, the valve unit 11 and the sealing material 60 are formed by resin molding. For this reason, if the distance of the seal interval E is narrow, depending on manufacturing errors occurring in the valve portion 11 and the seal material 60, the ladder engaging portion 64 and the inner surface portion 77 of the ladder engaging recess 62 will be in contact. Touch. Then, the ladder part 62 is press-contacted with the bore part 8, and the switching operation of the valve part 11 becomes heavy. For this reason, the seal interval E is provided so that contact between the ladder engaging portion 64 and the inner surface portion 77 can be avoided irrespective of manufacturing errors occurring in the valve portion 11 and the sealing material 60.
For this reason, conventionally, the seal interval E has been larger than the valve interval C provided between the outer peripheral edge 15 a of the valve portion 11 and the bore portion 11.

この結果、図15(b)に示す如き問題があった。
すなわち、ロータリバルブが閉じ状態に切換え操作され、バルブ部11が供給切換え口7を閉じると、内燃機関の駆動によって空気供給路に発生する吸気脈動などにより、ロータリバルブに振動が発生する。すると、ロータリバルブにバルブ部11が供給切換え口7に接近、離間する方向に繰り返して変位する変形が発生する。バルブ部11が供給切換え口7に向かって変位すると、バルブ部11がシール材60に対して相対移動し、バルブ部11の外周縁が供給切換え口7の付近でボア部8に衝突して衝突音が発生することがあった。
As a result, there was a problem as shown in FIG.
That is, when the rotary valve is switched to the closed state and the valve unit 11 closes the supply switching port 7, vibration is generated in the rotary valve due to intake pulsation generated in the air supply path by driving the internal combustion engine. As a result, the rotary valve is deformed such that the valve portion 11 is repeatedly displaced in the direction of approaching and separating from the supply switching port 7. When the valve unit 11 is displaced toward the supply switching port 7, the valve unit 11 moves relative to the sealing material 60, and the outer peripheral edge of the valve unit 11 collides with the bore unit 8 in the vicinity of the supply switching port 7. Sound sometimes occurred.

本発明の目的は、上記した衝突音を防止することができ、しかも安価に得ることができる内燃機関用吸気装置を提供することにある。   An object of the present invention is to provide an intake device for an internal combustion engine that can prevent the above-described collision noise and can be obtained at low cost.

本第1発明にあっては、内燃機関の複数の気筒に各別に空気供給する複数の空気供給路を備えた吸気マニホールドの前記複数の空気供給路に各別に作用する複数のバルブ部を一体回転自在に備えたロータリバルブを、前記複数の空気供給路の空気供給形態を切り換えるよう、前記複数のバルブ部が前記吸気マニホールドの供給切換え口を開いた開き状態と、前記複数のバルブ部が前記供給切換え口を閉じた閉じ状態とに前記吸気マニホールドに回転切換え自在に支持させ、前記バルブ部の回転軸芯方向での両端部に各別に外嵌する一対のリング部と、前記一対のリング部を連結するラダー部とを備え、前記バルブ部と前記吸気マニホールドのボア部との間にシール作用するよう、前記各バルブ部に装着したシール材と、前記ラダー部のシール材内側に位置するラダー係合部が係入するよう前記バルブ部の外周側に設けたラダー係入凹部とを備え、前記ロータリバルブが前記閉じ状態に切換えられると、前記ラダー部が前記供給切換え口に沿って前記バルブ部と前記ボア部との間に位置するように構成した内燃機関用吸気装置において、前記複数のバルブ部のうちのロータリバルブ両端部に各別に位置する一対の端側バルブ部を除く中央側バルブ部において、かつ、前記ロータリバルブが前記閉じ状態に切換えられた状態において、前記ラダー係入凹部の内面のうちの前記ラダー係合部に対して前記供給切換え口存在側とは反対側に位置する内面部と、前記ラダー係合部とのシール間隔が、前記バルブ部と前記ボア部とのバルブ間隔よりも小になるよう構成してある。   In the first aspect of the invention, the plurality of valve portions acting individually on the plurality of air supply paths of the intake manifold having the plurality of air supply paths for supplying air to the plurality of cylinders of the internal combustion engine are integrally rotated. An open state in which the plurality of valve portions open a supply switching port of the intake manifold, and the plurality of valve portions supply the rotary valve, so that the rotary valve provided freely can switch the air supply mode of the plurality of air supply paths. A pair of ring portions that are rotatably supported by the intake manifold in a closed state in which the switching port is closed, and are fitted on both ends of the valve portion in the direction of the rotation axis, respectively, and the pair of ring portions A seal member attached to each of the valve portions so as to act as a seal between the valve portion and the bore portion of the intake manifold, and a seal for the ladder portion. A ladder engaging recess provided on an outer peripheral side of the valve portion so that a ladder engaging portion positioned inside is engaged, and when the rotary valve is switched to the closed state, the ladder portion is connected to the supply switching port. In the intake device for an internal combustion engine configured to be positioned between the valve portion and the bore portion along the line, a pair of end-side valve portions that are separately located at both ends of the rotary valve of the plurality of valve portions In the central side valve portion excluding, and in a state where the rotary valve is switched to the closed state, the supply switching port existing side with respect to the ladder engaging portion of the inner surface of the ladder engaging recess The seal interval between the inner surface portion located on the opposite side and the ladder engaging portion is configured to be smaller than the valve interval between the valve portion and the bore portion.

本第1発明の構成によると、バルブ部が供給切換え口に向かって変位しても、中央側バルブ部において、変位がシール間隔に達すると、前記内面部がラダー係合部に当接する。すると、ラダー部がバルブ部に当接し、バルブ部のボア部までの変位が阻止される。中央側バルブ部の変位が阻止される結果、ロータリバルブが両端で支持されているために、各端側バルブ部のボア部までの変位も阻止される。これにより、各バルブ部のボア部との衝突を防止できる。
本構成によると、内面部に発生し得る製作誤差を考慮しつつシール間隔が所定の間隔になるように内面部を製作する。すると、通常の動作時において、ラダー部が内面部によってボア部に圧接されることを回避できる。そして、各端側バルブ部においては、中央側バルブ部に比して低い製作精度で成形できる。
この結果、ロータリバルブを軽く切換え操作できながら、バルブ部とボア部との衝突音が発生しにくい静かな状態で内燃機関に空気供給できる高品質の吸気装置を安価に得ることができる。
According to the configuration of the first aspect of the invention, even if the valve portion is displaced toward the supply switching port, the inner surface portion comes into contact with the ladder engaging portion when the displacement reaches the seal interval in the central valve portion. Then, the ladder portion comes into contact with the valve portion, and displacement of the valve portion to the bore portion is prevented. As a result of the displacement of the central valve portion being prevented, the rotary valve is supported at both ends, and therefore displacement of each end valve portion to the bore portion is also prevented. Thereby, the collision with the bore part of each valve part can be prevented.
According to this configuration, the inner surface portion is manufactured so that the seal interval becomes a predetermined interval in consideration of manufacturing errors that may occur in the inner surface portion. Then, during normal operation, the ladder portion can be prevented from being pressed against the bore portion by the inner surface portion. And each end side valve | bulb part can be shape | molded with a low manufacture precision compared with the center side valve | bulb part.
As a result, it is possible to obtain a high-quality intake device that can supply air to the internal combustion engine in a quiet state in which it is difficult to generate a collision sound between the valve portion and the bore portion while the rotary valve can be switched lightly.

本第2発明にあっては、前記複数のバルブ部として、四気筒に各別に空気供給する四つの空気供給路に各別に作用する四つのバルブ部を備え、前記一対の端側バルブ部として、二つの端側バルブ部を備え、前記中央側バルブ部として、二つのバルブ部を備えている。   In the second aspect of the invention, the plurality of valve portions include four valve portions acting individually on four air supply paths for supplying air to the four cylinders individually, and the pair of end side valve portions, Two end side valve portions are provided, and two valve portions are provided as the central side valve portion.

本第2発明の構成によると、四つのバルブ部のうち、端側の二つのバルブ部を比較的低い製作精度で成形することができ、バルブ部とボア部の衝突音が発生しにくくて内燃機関の四気筒を静かに空気供給できる高品質の吸気装置を安価に得ることができる。   According to the configuration of the second invention, of the four valve parts, the two valve parts on the end side can be formed with relatively low manufacturing accuracy, and the impact sound between the valve part and the bore part is less likely to be generated. It is possible to obtain a high-quality intake device that can quietly supply air to the four cylinders of the engine at low cost.

以下、本発明の実施例を図面に基づいて説明する。
図1は、本発明の実施形態に係る内燃機関用吸気装置の縦断面図である。図3は、図1のIII−III断面矢視図である。これらの図に示すように、本発明の実施形態に係る内燃機関用吸気装置は、吸気マニホールド1と、この吸気マニホールド1の内部に設けたロータリバルブ10とを備え、四気筒形の内燃機関2に装備されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a longitudinal sectional view of an intake device for an internal combustion engine according to an embodiment of the present invention. 3 is a cross-sectional view taken along the line III-III in FIG. As shown in these drawings, an intake device for an internal combustion engine according to an embodiment of the present invention includes an intake manifold 1 and a rotary valve 10 provided inside the intake manifold 1, and includes a four-cylinder internal combustion engine 2. Equipped with.

吸気マニホールド1は、四つの吸気管状体1aを連結した状態で備え、この四つの吸気管状体1aにより、内燃機関2の四つのシリンダの吸気部に各別に接続された四つの空気供給路3を形成している。また、吸気マニホールド1は、前記四つの吸気管状体1aに連設されたサージタンク4を備えている。各空気供給路3は、前記サージタンク4の内部に吸気口5aが開口したロングポート5と、前記サージタンク4の内部に吸気口6aが開口したショートポート6とを備えている。吸気マニホールド1の四つの吸気管状体1a及びサージタンク4は、樹脂成形によって成形されている。   The intake manifold 1 includes four intake tubular bodies 1a connected to each other. The four intake tubular bodies 1a provide four air supply passages 3 respectively connected to intake portions of four cylinders of the internal combustion engine 2. Forming. The intake manifold 1 also includes a surge tank 4 that is connected to the four intake tubular bodies 1a. Each air supply path 3 includes a long port 5 in which an intake port 5 a is opened inside the surge tank 4 and a short port 6 in which an intake port 6 a is opened inside the surge tank 4. The four intake tubular bodies 1a and the surge tank 4 of the intake manifold 1 are formed by resin molding.

ロータリバルブ10は、前記各ショートポート6の供給切換え口7を備えたボア部8を挿通した状態で吸気マニホールド1の一対の軸支部1b,1bに支持されている。また、ロータリバルブ10は、このロータリバルブ10の一端側の支軸13に出力軸9aが連動されているアクチュエータ9によって軸芯Pまわりで回転操作され、各ショートポート6の前記供給切換え口7を閉じた閉じ状態と、各ショートポート6の前記供給切換え口7を開いた開き状態とに切換えられる。   The rotary valve 10 is supported by a pair of shaft support portions 1b, 1b of the intake manifold 1 in a state where the bore portion 8 having the supply switching port 7 of each short port 6 is inserted. The rotary valve 10 is rotated around the axis P by an actuator 9 whose output shaft 9a is linked to a support shaft 13 on one end side of the rotary valve 10, and the supply switching port 7 of each short port 6 is opened. It is switched between the closed state and the open state in which the supply switching port 7 of each short port 6 is opened.

内燃機関2が低速回転すると、ロータリバルブ10は、閉じ状態に切換えられ、各ショートポート6をサージタンク4に連通しないよう閉じ操作して各空気供給路3を低速用の空気供給形態に切換える。すると、各空気供給路3は、スロットル(図示せず)からサージタンク4に流入した空気をシリンダの吸引作用により、ロングポート5を介してシリンダに燃焼用空気として供給する。内燃機関2が高速回転すると、ロータリバルブ10は、開き状態に切換えられ、各ショートポート6をサージタンク4に連通するよう開き操作して各空気供給路3を高速用の空気供給形態に切換える。すると、各空気供給路3は、サージタンク4に流入した空気をシリンダの吸引作用により、ショートポート6を介してシリンダに燃焼用空気として供給する。この高速用の空気供給形態の場合、各空気供給路3は、ロングポート5もサージタンク4に連通させた状態になっている。   When the internal combustion engine 2 rotates at a low speed, the rotary valve 10 is switched to a closed state, and each short port 6 is closed so as not to communicate with the surge tank 4 to switch each air supply path 3 to a low-speed air supply mode. Then, each air supply path 3 supplies the air flowing into the surge tank 4 from a throttle (not shown) as combustion air to the cylinder via the long port 5 by the suction action of the cylinder. When the internal combustion engine 2 rotates at a high speed, the rotary valve 10 is switched to an open state, and each short port 6 is opened to communicate with the surge tank 4 to switch each air supply path 3 to a high-speed air supply mode. Then, each air supply path 3 supplies the air flowing into the surge tank 4 to the cylinder as combustion air via the short port 6 by the suction action of the cylinder. In the case of this high-speed air supply mode, each air supply path 3 is in a state where the long port 5 is also communicated with the surge tank 4.

次に、ロータリバルブ10について詳述する。図3は、ロータリバルブ10の縦断面構造を示している。図10は、ロータリバルブ10の全体の斜視図である。図11は、ロータリバルブ10の全体の正面図である。図12は、図11のXII−XII断面矢視図である。図13は、図11のXIII−XIII断面矢視図である。図14は、図11のXIV−XIV断面矢視図である。
これらの図に示すように、ロータリバルブ10は、このロータリバルブ10の回転軸芯Pの方向に一列に同心状に並んだ四つのバルブ部11と、ロータリバルブ10の両端側に吸気マニホールド1の前記軸支部1bに回転自在に支持されるよう設けた支軸12,13とを備えている。四つのバルブ部11は、樹脂成形によって成形されている。また、四つのバルブ部11は、バルブ部11の成形と同時に各バルブ部間にバルブ部11の周方向に並べて樹脂成形された複数の連結部材14によって連結されており、一体回転する。一方の支軸12は、ロータリバルブ10の端部に一端側が一体回転自在に埋設された金属製の支軸になっている。この支軸12は、樹脂製の軸受け18と、軸調心用オーリング19とを介して軸支部1bの支持穴に回転自在に支持されている。軸支部1bの支持穴は、空気が吸気マニホールド外に漏れ出ないように凹入形の穴になっている。他方の支軸13は、ロータリバルブ10の端部に樹脂成形によって一体成形してある。この支軸13は、アクチュエータ9の出力軸9aを介して軸支部1bに支持されている。四つのバルブ部11は、前記四つのショートポート6に各別に対応し、前記供給切換え口7に開閉作用する。ロータリバルブ10は、これの回転軸芯Pに沿う方向に並ぶ複数の円板状の側板部15のうちの前記一方の支軸12が存在する側の端部に位置する側板部15の外径が、前記他方の支軸13が存在する側の端部に位置する側板部15の外径よりも若干小さくなった抜きテーパを備えている。各側板部15は、回転軸芯Pの沿う方向視で回転軸芯Pを中心にした円形になっている。
Next, the rotary valve 10 will be described in detail. FIG. 3 shows a longitudinal sectional structure of the rotary valve 10. FIG. 10 is a perspective view of the entire rotary valve 10. FIG. 11 is a front view of the entire rotary valve 10. 12 is a cross-sectional view taken along the line XII-XII in FIG. 13 is a cross-sectional view taken along XIII-XIII in FIG. 14 is a cross-sectional view taken along the line XIV-XIV in FIG.
As shown in these drawings, the rotary valve 10 includes four valve portions 11 arranged concentrically in a line in the direction of the rotation axis P of the rotary valve 10, and the intake manifold 1 at both ends of the rotary valve 10. Support shafts 12 and 13 are provided so as to be rotatably supported by the shaft support portion 1b. The four valve portions 11 are formed by resin molding. The four valve portions 11 are connected by a plurality of connecting members 14 that are resin-molded side by side in the circumferential direction of the valve portion 11 at the same time as the valve portion 11 is molded, and rotate integrally. One support shaft 12 is a metal support shaft in which one end side is embedded in the end portion of the rotary valve 10 so as to be integrally rotatable. The support shaft 12 is rotatably supported in a support hole of the shaft support portion 1b via a resin bearing 18 and a shaft aligning O-ring 19. The support hole of the shaft support portion 1b is a recessed hole so that air does not leak out of the intake manifold. The other support shaft 13 is integrally formed at the end of the rotary valve 10 by resin molding. The support shaft 13 is supported by the shaft support portion 1 b via the output shaft 9 a of the actuator 9. Four valve portions 11 correspond to the four short ports 6, respectively, and open and close the supply switching port 7. The rotary valve 10 has an outer diameter of the side plate portion 15 located at the end portion on the side where the one support shaft 12 exists among the plurality of disc-shaped side plate portions 15 arranged in the direction along the rotation axis P. However, it has a draft taper slightly smaller than the outer diameter of the side plate portion 15 located at the end portion on the side where the other support shaft 13 is present. Each side plate portion 15 has a circular shape centered on the rotation axis P when viewed in the direction along the rotation axis P.

各バルブ部11は、底板部材21を有した閉領域部20と、バルブ部10の回転軸芯である前記回転軸芯Pに対して前記閉領域部20とは反対側に位置した補強領域部30と、この補強領域部30と前記閉領域部20の間に位置するとともにポート穴41を有した開領域部40と、バルブ部11の回転軸芯Pに対して前記開領域部40とは反対側に位置するとともに連通穴51を有した連通領域部50とを備えている。   Each valve portion 11 includes a closed region portion 20 having a bottom plate member 21 and a reinforcing region portion located on the opposite side of the closed region portion 20 with respect to the rotational axis P that is the rotational axis of the valve portion 10. 30, the open region portion 40 positioned between the reinforcing region portion 30 and the closed region portion 20 and having the port hole 41, and the open region portion 40 with respect to the rotational axis P of the valve portion 11. And a communication region portion 50 having a communication hole 51 located on the opposite side.

前記閉領域部20は、バルブ部11の両端側に位置する前記側板部15と、この一対の側板部15,15に連設した前記底板部材21と、この底板部材21の外面側のバブル部周方向での両端部に立設した壁板部材22とによって構成してある。この閉領域部20は、底板部材21の外面側に存在した凹入部23を備え、かつ、この凹入部23の内部で前記底板部材21の外面側に立設した複数の補強リブ24を備えている。   The closed region portion 20 includes the side plate portion 15 located on both ends of the valve portion 11, the bottom plate member 21 connected to the pair of side plate portions 15, 15, and a bubble portion on the outer surface side of the bottom plate member 21. It is comprised by the wall board member 22 standingly arranged by the both ends in the circumferential direction. The closed region portion 20 includes a recessed portion 23 existing on the outer surface side of the bottom plate member 21, and a plurality of reinforcing ribs 24 erected on the outer surface side of the bottom plate member 21 inside the recessed portion 23. Yes.

前記補強領域部30は、前記一対の側板部15,15と、一対の側板部15,15に連設した補強板部材31とによって構成してある。この補強領域部30は、前記補強板部材31の外面側にバルブ部周方向に並べて立設した複数の補強リブ32を備えている。   The reinforcing region portion 30 is constituted by the pair of side plate portions 15 and 15 and a reinforcing plate member 31 provided continuously to the pair of side plate portions 15 and 15. The reinforcing region portion 30 includes a plurality of reinforcing ribs 32 arranged upright on the outer surface side of the reinforcing plate member 31 side by side in the valve portion circumferential direction.

前記開領域部40は、前記一対の側板部15,15と、前記底板部材21と、前記補強板部材31とによって構成される筒体42の一端部と、この筒体42の一端側の開口である前記ポート穴41とを備えている。前記連通領域部50は、前記筒体42の他端部と、前記筒体42の他端側の開口である前記連通穴51とを備えている。前記ポート穴41と前記連通穴51とは、前記筒体42によって連通されている。   The open region portion 40 includes one end portion of a cylindrical body 42 constituted by the pair of side plate portions 15, 15, the bottom plate member 21, and the reinforcing plate member 31, and an opening on one end side of the cylindrical body 42. The port hole 41 is provided. The communication region portion 50 includes the other end portion of the cylindrical body 42 and the communication hole 51 that is an opening on the other end side of the cylindrical body 42. The port hole 41 and the communication hole 51 are communicated with each other by the cylindrical body 42.

図3に示すように、ロータリバルブ10は、各バルブ部11に装着されたシール材60を備えている。図10は、シール材60の全体の斜視状態を示している。この図に示すように、シール材60は、一対の円形のリング部61,61と、この一対のリング部61,61を連結する一対のラダー部62,62とによって構成してある。一対のリング部61,61及び一対のラダー部62,62は、樹脂成形によって一体成形されている。各リング部61には、このリング部61の中心に対して前記一対のラダー部62,62が存在する側とは反対側に配置した開口63を設けてある。各ラダー部62の外周面62aは、バルブ部11の回転軸芯Pに沿う方向視で円弧面になっている。シール材60の各ラダー部62での外径は、各リング部61での外径よりも若干小さくなっている。   As shown in FIG. 3, the rotary valve 10 includes a sealing material 60 attached to each valve portion 11. FIG. 10 shows a perspective view of the entire sealing material 60. As shown in this figure, the sealing material 60 is composed of a pair of circular ring portions 61, 61 and a pair of ladder portions 62, 62 connecting the pair of ring portions 61, 61. The pair of ring portions 61 and 61 and the pair of ladder portions 62 and 62 are integrally formed by resin molding. Each ring portion 61 is provided with an opening 63 disposed on the opposite side of the center of the ring portion 61 from the side where the pair of ladder portions 62 and 62 are present. The outer peripheral surface 62 a of each ladder portion 62 is an arc surface as viewed in the direction along the rotational axis P of the valve portion 11. The outer diameter at each ladder portion 62 of the sealing material 60 is slightly smaller than the outer diameter at each ring portion 61.

各バルブ部11のシール材60は、次の如き取り付け構造によってバルブ部11に装着されている。この取り付け構造を、図3〜14に示す。
これらの図に示すように、バルブ部11の両端部に、前記側板部15の外側に配置したリング支持部70を設けてある。バルブ部11どうしの間に位置する各リング支持部70は、前記側板部15と、前記各連結部材14と、この各連結部材14に連設したピン部材71とによって構成されている。このリング支持部70は、各連結部材14の端面が溝底になり、前記側板部15及び前記ピン部材71が側壁になった環状の溝形になっている。ロータリバルブ10の両端に位置するバルブ部11がこれと隣り合うバルブ部11とは反対側に備えるリング支持部70は、側板部15と、この側板部15の外面側にバルブ部11の周方向に分散させて設けた支持部材16とによって構成されている。このリング支持部70は、各支持部材16の側板と、側板部15とが側壁になった環状の溝形になっている。
The sealing material 60 of each valve part 11 is attached to the valve part 11 by the following mounting structure. This attachment structure is shown in FIGS.
As shown in these drawings, ring support portions 70 disposed outside the side plate portion 15 are provided at both ends of the valve portion 11. Each ring support portion 70 located between the valve portions 11 is constituted by the side plate portion 15, each connection member 14, and a pin member 71 provided continuously to each connection member 14. The ring support portion 70 has an annular groove shape in which the end face of each connecting member 14 is a groove bottom, and the side plate portion 15 and the pin member 71 are side walls. The ring support portion 70 provided on the opposite side of the valve portion 11 adjacent to the valve portion 11 positioned at both ends of the rotary valve 10 includes a side plate portion 15 and a circumferential direction of the valve portion 11 on the outer surface side of the side plate portion 15. And a support member 16 provided in a dispersed manner. The ring support portion 70 has an annular groove shape in which the side plate of each support member 16 and the side plate portion 15 serve as side walls.

図3,5,8,13は、シール材60の装着状態を示している。図13は、リング部61を二点鎖線で示している、これらの図に示すように、一対のリング部61,61が一対のリング支持部70,70に各別に外嵌している。各リング部61は、ボア部8との接触によって受ける操作力と、前記開口63の作用とによって縮径側に弾性変形し、この弾性変形状態でリング支持部70に外嵌している。これにより、各リング部61の外周面61aは、ボア部8の内面に圧接される。また、リング部61をリング支持部70に装着する際、開口63が広がるようリング部61を拡径側に弾性変形させ、広がった開口63からリング支持部70に外嵌させる。   3, 5, 8, and 13 show the mounting state of the sealing material 60. In FIG. 13, the ring portion 61 is indicated by a two-dot chain line. As shown in these drawings, the pair of ring portions 61 and 61 are externally fitted to the pair of ring support portions 70 and 70, respectively. Each ring portion 61 is elastically deformed to the reduced diameter side by the operation force received by contact with the bore portion 8 and the action of the opening 63, and is externally fitted to the ring support portion 70 in this elastically deformed state. As a result, the outer peripheral surface 61 a of each ring portion 61 is pressed against the inner surface of the bore portion 8. Further, when the ring portion 61 is attached to the ring support portion 70, the ring portion 61 is elastically deformed to the enlarged diameter side so that the opening 63 is widened, and is externally fitted to the ring support portion 70 from the widened opening 63.

各ラダー部62のシール材内側に、ラダー部62の全長にわたってラダー係合部64を設けてある。ラダー係合部64は、ラダー部62の全長にわたっている凸条64aを備えている。一方、バルブ部11に、前記閉領域部20のバルブ部回転方向での両外側に分散配置した一対のラダー支持部75を設けてある。各ラダー支持部75は、前記底板部材21の端部21aと、前記壁板部材22とによって構成してある。各ラダー支持部75のバルブ部外面側に、ラダー係入凹部76を設けてある。一対のラダー係合部64,64が一対のラダー係入凹部76,76に各別に係入している。   A ladder engaging portion 64 is provided over the entire length of the ladder portion 62 inside the sealing material of each ladder portion 62. The ladder engaging portion 64 includes a ridge 64 a that extends over the entire length of the ladder portion 62. On the other hand, the valve part 11 is provided with a pair of ladder support parts 75 distributed on both outer sides of the closed region part 20 in the rotation direction of the valve part. Each ladder support portion 75 is configured by the end portion 21 a of the bottom plate member 21 and the wall plate member 22. A ladder engaging recess 76 is provided on the outer surface side of the valve portion of each ladder support portion 75. A pair of ladder engaging portions 64, 64 are engaged with the pair of ladder engaging recesses 76, 76, respectively.

図4は、ロータリバルブ10が開き状態に切換えられた場合における各ショートポート6、及び各バルブ部11の断面状態を示している。
この図に示すように、ロータリバルブ10が開き状態に切換えられると、バルブ部11の開領域部40が前記供給切換え口7に対向し、ポート穴41によって供給切換え口7を開く。このとき、連通領域部50の連通穴51がショートポート6の吸気口6aに対向し、供給切換え口7が吸気口6aに連通する。このとき、シール材60の両リング部61の外周面側が、開領域部40の外周縁よりも開領域部40の外周側に突出し、供給切換え口7のバルブ部11の回転軸芯方向での一端側に沿った位置でボア部8の内周面にリング部61の弾性力によって接触する。これにより、供給切換え口7のバルブ部回転軸芯方向での両外側におけるバルブ部11とボア部8との間がリング部61によってシールされ、ショートポート6を介して内燃機関2に供給する空気に供給切換え口7の付近での乱流が発生しにくい。
FIG. 4 shows a cross-sectional state of each short port 6 and each valve portion 11 when the rotary valve 10 is switched to the open state.
As shown in this figure, when the rotary valve 10 is switched to the open state, the open region portion 40 of the valve portion 11 faces the supply switching port 7, and the supply switching port 7 is opened by the port hole 41. At this time, the communication hole 51 of the communication area 50 faces the intake port 6a of the short port 6, and the supply switching port 7 communicates with the intake port 6a. At this time, the outer peripheral surface side of both ring portions 61 of the sealing material 60 protrudes to the outer peripheral side of the open region portion 40 from the outer peripheral edge of the open region portion 40, and the supply switching port 7 in the direction of the rotation axis of the valve portion 11. The inner circumferential surface of the bore portion 8 is brought into contact with the inner peripheral surface of the bore portion 8 at a position along one end side by the elastic force of the ring portion 61. As a result, the space between the valve portion 11 and the bore portion 8 on both outer sides of the supply switching port 7 in the direction of the rotational axis of the valve portion is sealed by the ring portion 61 and supplied to the internal combustion engine 2 through the short port 6. In addition, turbulence near the supply switching port 7 is unlikely to occur.

図2は、ロータリバルブ10が閉じ状態に切換えられた場合における各ショートポート6及び各バルブ部11の断面図である。
この図に示すように、ロータリバルブ10が閉じ状態に切換えられると、バルブ部11の閉領域部20が前記供給切換え口7に対向し、側板部15と壁板部材22と底板部材21とによって供給切換え口7を閉じる。このとき、シール材60の両リング部61,61の外周面側が、閉領域部20の外周縁よりも閉領域部20の外周側に突出し、供給切換え口7のバルブ部11の回転軸芯方向での一端側に沿った位置でボア部8の内周面にリング部61の弾性復元力によって接触する。一方、一対のラダー部62,62は、供給切換え口7のバルブ部周方向での両側に分散し、供給切換え口7のバルブ部11の周方向での一端側に沿った位置でバルブ部11とボア部8との間に位置する。これにより、供給切換え口7のバルブ部11の回転軸芯方向での両外側におけるバルブ部11とボア部8との間がリング部61によってシールされ、供給切換え口7のバルブ部11の周方向での両外側におけるバルブ部11とボア部8との間がラダー部62によってシールされる。ただし、各ラダー部62の外周面62aは、リング部61の外周面61aよりもバルブ部11の内側に若干入り込んでおり、ボア部8の内周面に対して非接触状態になっている。
FIG. 2 is a cross-sectional view of each short port 6 and each valve unit 11 when the rotary valve 10 is switched to the closed state.
As shown in this figure, when the rotary valve 10 is switched to the closed state, the closed region portion 20 of the valve portion 11 faces the supply switching port 7, and the side plate portion 15, the wall plate member 22, and the bottom plate member 21 Close the supply switching port 7. At this time, the outer peripheral surface side of both ring portions 61, 61 of the sealing material 60 protrudes to the outer peripheral side of the closed region portion 20 from the outer peripheral edge of the closed region portion 20, and the rotational axis direction of the valve portion 11 of the supply switching port 7 At the position along the one end side, the inner peripheral surface of the bore portion 8 is brought into contact with the elastic restoring force of the ring portion 61. On the other hand, the pair of ladder portions 62 and 62 are dispersed on both sides of the supply switching port 7 in the circumferential direction of the valve portion, and the valve portion 11 is positioned along one end side of the supply switching port 7 in the circumferential direction of the valve portion 11. And the bore 8. Thereby, the space between the valve portion 11 and the bore portion 8 on both outer sides of the valve portion 11 of the supply switching port 7 in the direction of the rotation axis is sealed by the ring portion 61, and the circumferential direction of the valve portion 11 of the supply switching port 7 Between the valve portion 11 and the bore portion 8 on both outer sides, a ladder portion 62 is sealed. However, the outer peripheral surface 62 a of each ladder portion 62 slightly enters the inside of the valve portion 11 rather than the outer peripheral surface 61 a of the ring portion 61, and is in a non-contact state with respect to the inner peripheral surface of the bore portion 8.

以下において、各バルブ部11が備える構造を説明するに当たり、ロータリバルブ10の四つのバルブ部11のうち、ロータリバルブ10の両端部に各別に位置する一対のバルブ部11,11それぞれを端側バルブ部11aと称し、ロータリバルブ10の中央部に位置する二つのバルブ部11,11それぞれを、中央側バルブ部11bと称する。   In the following description, the structure of each valve unit 11 will be described. Of the four valve units 11 of the rotary valve 10, the pair of valve units 11, 11 respectively positioned at both ends of the rotary valve 10 are respectively end-side valves. Each of the two valve parts 11 and 11 located in the central part of the rotary valve 10 is referred to as a central valve part 11b.

図5,6は、前記中央側バルブ部11bが供給切換え口7を閉じている状態におけるこの中央側バルブ部11bのラダー係合部64とラダー係入凹部76との係合状態を示す。
これらの図に示すように、中央バルブ部11bにおけるラダー係入凹部76の内面は、内面部77bを備えている。この内面部77bは、中央側バルブ部11bが供給切換え口7を閉じている状態において、ラダー係合部64に対して供給切換え口7が存在する側とは反対側に位置している。前記内面部77bと、ラダー係合部64の前記内面部77bに対向する部位との間にシール間隔Aを設けてある。このシール間隔Aは、前記内面部77bの中央側バルブ部11bの回転軸芯方向での全長にわたって設けてある。一方、中央側バルブ部11bは、この中央側バルブ部1bの外周縁15aと、ボア部8の内周面との間にバルブ間隔Cが存在する状態になっている。シール間隔Aとバルブ間隔Cとは、「シール間隔A<バルブ間隔C」という関係になっている。各中央側バルブ部11bの内面部77bは、内面部77bに発生し得る製作誤差を考慮した製作精度で成形する。これにより、通常の動作時においてラダー部62が内面部77bによってボア部8に圧接されることを回避できるよう、前記シール間隔Aを設ける。
5 and 6 show the engaged state between the ladder engaging portion 64 and the ladder engaging recess 76 of the central valve portion 11b in a state where the central valve portion 11b closes the supply switching port 7. FIG.
As shown in these drawings, the inner surface of the ladder engaging recess 76 in the central valve portion 11b includes an inner surface portion 77b. The inner surface portion 77b is located on the opposite side of the ladder engaging portion 64 from the side where the supply switching port 7 exists in a state where the central valve portion 11b closes the supply switching port 7. A seal interval A is provided between the inner surface portion 77b and a portion of the ladder engaging portion 64 that faces the inner surface portion 77b. This seal interval A is provided over the entire length of the central valve portion 11b of the inner surface portion 77b in the direction of the rotation axis. On the other hand, the central valve portion 11b is in a state in which a valve interval C exists between the outer peripheral edge 15a of the central valve portion 1b and the inner peripheral surface of the bore portion 8. The seal interval A and the valve interval C have a relationship of “seal interval A <valve interval C”. The inner surface portion 77b of each central side valve portion 11b is formed with a manufacturing accuracy in consideration of manufacturing errors that may occur in the inner surface portion 77b. Thus, the seal interval A is provided so that the ladder portion 62 can be prevented from being pressed against the bore portion 8 by the inner surface portion 77b during normal operation.

図8,9は、前記端側バルブ部11aが供給切換え口7を閉じている状態におけるこの端側バルブ部11aのラダー係合部64とラダー係入凹部76との係合状態を示す。
これらの図に示すように、端側バルブ部11aにおけるラダー係入凹部76の内面は、内面部77aを備えている。この内面部77aは、端側バルブ部11aが供給切換え口7を閉じている状態において、ラダー係合部64に対して供給切換え口7が存在する側とは反対側に位置している。前記内面部77aと、ラダー係合部64の前記内面部77aに対向する部位との間にシール間隔Dを設けてある。このシール間隔Dは、前記内面部77aの端側バルブ部11の回転軸芯方向での全長にわたって設けてある。一方、端側バルブ部11aは、この端側バルブ部11aの外周縁15aと、ボア部8の内周面との間にバルブ間隔Cが存在する状態になっている。シール間隔Dとバルブ間隔Cとは、「シール間隔D>バルブ間隔C」という関係になっている。これにより、各端側バルブ部11aの内面部77aを、各中央側バルブ部11bの内面部77bに比して低い製作精度で成形する。
各中央側バルブ部11bにおける前記バルブ間隔Cと、各端側バルブ部11aにおける前記バルブ間隔Cとは同じになっている。
8 and 9 show the engaged state between the ladder engaging portion 64 and the ladder engaging recess 76 of the end side valve portion 11a in a state where the end side valve portion 11a closes the supply switching port 7. FIG.
As shown in these drawings, the inner surface of the ladder engaging recess 76 in the end side valve portion 11a includes an inner surface portion 77a. The inner surface portion 77a is located on the opposite side to the side where the supply switching port 7 is present with respect to the ladder engaging portion 64 in a state where the end side valve portion 11a closes the supply switching port 7. A seal interval D is provided between the inner surface portion 77a and a portion of the ladder engaging portion 64 that faces the inner surface portion 77a. This seal interval D is provided over the entire length of the end side valve portion 11 of the inner surface portion 77a in the rotational axis direction. On the other hand, the end side valve portion 11 a is in a state where a valve interval C exists between the outer peripheral edge 15 a of the end side valve portion 11 a and the inner peripheral surface of the bore portion 8. The seal interval D and the valve interval C have a relationship of “seal interval D> valve interval C”. Thereby, the inner surface part 77a of each end side valve | bulb part 11a is shape | molded with low manufacture precision compared with the inner surface part 77b of each center side valve | bulb part 11b.
The valve interval C in each central side valve portion 11b is the same as the valve interval C in each end side valve portion 11a.

ロータリバルブ部10が閉じ状態に切換えられる際、各端側バルブ部11aにおいても、各中央側バルブ部11bにおいても、一方のラダー支持部75において、このラダー支持部75の端部75aとラダー部62の端面62bとが当接し、これによってシール材60が端側バルブ部11a、中央側バルブ部11bと共に回動する。   When the rotary valve portion 10 is switched to the closed state, the end portion 75a of the ladder support portion 75 and the ladder portion are provided in one ladder support portion 75 in each end side valve portion 11a and in each central side valve portion 11b. The end surface 62b of 62 contacts and the sealing material 60 rotates with the end side valve part 11a and the center side valve part 11b.

ロータリバルブ10が閉じ状態に切換えられると、内燃機関2の駆動に起因して各空気供給路3に発生する吸気脈動などにより、ロータリバルブ10に両端側の支軸12,13で支持されている部位を支点とした振動が発生する。すると、端側バルブ部11a及び中央側バルブ部11bとシール材60とはリング支持部70の溝内及びラダー係入凹部76の内部で相対移動するため、ロータリバルブ10に、各端側バルブ部11a及び各中央側バルブ部11bが供給切換え口7に接近、離間する方向に繰り返して変位する変形が発生する。図7は、中央側バルブ部11bが供給切換え口7に向かって変位した状態を示す。中央側バルブ部11bの変位が前記シール間隔Aに達すると、ラダー係入凹部76の内面部77bがラダー係合部64に当接する。すると、シール材60の各リング部61の外周面61aとボア部8の内周面とが当接していてラダー部62がリング部61を介してボア部8に支持されているため、ラダー部62が中央側バルブ部11bにストップ作用し、中央側バルブ部11bのそれ以上の変位が阻止される。中央側バルブ部11bが変位する前のシール間隔Aがバルブ間隔Cよりも小であるため、中央側バルブ部11bがボア部8に衝突しない。中央側バルブ部11bにストップが掛かると、このストップと、ロータリバルブ10の両端側の軸支部1bによる支持とのために、各端側バルブ部11aのボア部8までの変位が阻止される。これにより、各端側バルブ部11aがボア部8に衝突しない。   When the rotary valve 10 is switched to the closed state, the rotary valve 10 is supported by the support shafts 12 and 13 at both ends due to intake air pulsation generated in each air supply path 3 due to driving of the internal combustion engine 2. Vibration is generated with the part as a fulcrum. Then, since the end side valve part 11a, the center side valve part 11b, and the sealing material 60 move relative to each other in the groove of the ring support part 70 and inside the ladder engaging recess 76, each end side valve part is connected to the rotary valve 10. 11a and each central side valve | bulb part 11b generate | occur | produce the deformation | transformation which repeatedly displaces in the direction which approaches and separates the supply switching port 7. FIG. FIG. 7 shows a state where the central side valve portion 11 b is displaced toward the supply switching port 7. When the displacement of the central valve portion 11 b reaches the seal interval A, the inner surface portion 77 b of the ladder engaging recess 76 comes into contact with the ladder engaging portion 64. Then, since the outer peripheral surface 61a of each ring part 61 of the sealing material 60 and the inner peripheral surface of the bore part 8 are in contact with each other and the ladder part 62 is supported by the bore part 8 via the ring part 61, the ladder part 62 stops the central valve portion 11b, and further displacement of the central valve portion 11b is prevented. Since the seal interval A before the displacement of the central valve portion 11b is smaller than the valve interval C, the central valve portion 11b does not collide with the bore portion 8. When the stop is applied to the central valve portion 11b, the displacement of each end side valve portion 11a to the bore portion 8 is prevented because of this stop and the support by the shaft support portions 1b on both ends of the rotary valve 10. Thereby, each end side valve | bulb part 11a does not collide with the bore part 8. FIG.

ロータリバルブ10が開き状態に切換え操作される際、一方のラダー支持部75において、このラダー支持部75の前記端部75aがラダー部62の端面62bに当接し、シール材60がバルブ部11によって回動操作される。さらに、ラダー部62がボア部8に対して非接触状態にあることにより、中央側バルブ部11bも端側バルブ部11aも軽く回動する。   When the rotary valve 10 is switched to the open state, in one ladder support portion 75, the end portion 75 a of the ladder support portion 75 comes into contact with the end surface 62 b of the ladder portion 62, and the sealing material 60 is moved by the valve portion 11. It is rotated. Furthermore, since the ladder part 62 is in a non-contact state with respect to the bore part 8, both the central side valve part 11b and the end side valve part 11a rotate lightly.

〔別の実施形態〕
上記実施形態の如く、内燃機関の四つの気筒に空気供給する構成に替えて、三つ、六つなど四つ以外の複数の気筒に空気供給する構成を備えた内燃機関用吸気装置にも本第1発明を適用することができる。例えば、三つの気筒に空気供給する吸気装置の場合には、ロータリバルブの両端のバルブ部を除く中央の一つのバルブ部に前記シール間隔Aを備える。六つの気筒に空気供給する吸気装置の場合には、ロータリバルブの両端側の二つのバルブ部を除く中央の二つのバルブ部に前記シール間隔Aを備える。これらにより、本発明の目的を達成することができる。
[Another embodiment]
Instead of the configuration for supplying air to the four cylinders of the internal combustion engine as in the above embodiment, the present invention is also applied to an intake device for an internal combustion engine having a configuration for supplying air to a plurality of cylinders other than four, such as three or six. The first invention can be applied. For example, in the case of an intake device that supplies air to three cylinders, the seal interval A is provided in one central valve portion excluding the valve portions at both ends of the rotary valve. In the case of an intake device that supplies air to six cylinders, the seal interval A is provided in the two central valve portions excluding the two valve portions on both ends of the rotary valve. With these, the object of the present invention can be achieved.

内燃機関用吸気装置の縦断面図Longitudinal sectional view of an intake device for an internal combustion engine ショートポートの閉じ状態での断面図Cross section with short port closed 図1のIII−III断面矢視図III-III sectional view of FIG. ショートポートの開き状態での断面図Cross section with short port open 中央側バルブ部の閉じ作用状態の断面図Cross section of the closing action of the central valve 中央側バルブ部のラダー係合部及びラダー係入凹部の断面図Sectional view of the ladder engaging part and the ladder engaging recess of the central valve part バルブ部の変位状態での断面図Sectional view of the valve part in a displaced state 端側バルブ部の閉じ作用状態での断面図Sectional view in the closing action state of the end side valve 端側バルブ部のラダー係合部及びラダー係入凹部の断面図Sectional view of the ladder engaging part and the ladder engaging recess of the end side valve part ロータリバルブ及びシール材の全体斜視図Overall perspective view of rotary valve and sealing material ロータリバルブの正面図Front view of rotary valve 図11のXII−XII断面矢視図XII-XII cross-sectional view of FIG. 図11のXIII−XIII断面矢視図XIII-XIII cross-sectional view of FIG. 図11のXIV−XIV断面矢視図XIV-XIV section arrow view of FIG. (a)は、従来のバルブ部の閉じ作用状態での断面図、(b)は、従来のバルブ部の変位状態での断面図(A) is sectional drawing in the closing action state of the conventional valve part, (b) is sectional drawing in the displacement state of the conventional valve part.

符号の説明Explanation of symbols

1 吸気マニホールド
2 内燃機関
3 空気供給路
7 供給切換え口
8 ボア部
10 ロータリバルブ
11a 端側バルブ部
11b 中央側バルブ部
60 シール材
61 リング部
62 ラダー部
64 ラダー係合部
76 ラダー係入凹部
77a 端側バルブ部の内面部
77b 中央側バルブ部の内面部
A シール間隔
C バルブ間隔
DESCRIPTION OF SYMBOLS 1 Intake manifold 2 Internal combustion engine 3 Air supply path 7 Supply switching port 8 Bore part 10 Rotary valve 11a End side valve part 11b Central side valve part 60 Sealing material 61 Ring part 62 Ladder part 64 Ladder engaging part 76 Ladder engagement recessed part 77a Inner surface 77b of end side valve portion Inner surface portion A of central side valve portion A Seal interval C Valve interval

Claims (2)

内燃機関の複数の気筒に各別に空気供給する複数の空気供給路を備えた吸気マニホールドの前記複数の空気供給路に各別に作用する複数のバルブ部を一体回転自在に備えたロータリバルブを、前記複数の空気供給路の空気供給形態を切り換えるよう、前記複数のバルブ部が前記吸気マニホールドの供給切換え口を開いた開き状態と、前記複数のバルブ部が前記供給切換え口を閉じた閉じ状態とに前記吸気マニホールドに回転切換え自在に支持させ、
前記バルブ部の回転軸芯方向での両端部に各別に外嵌する一対のリング部と、前記一対のリング部を連結するラダー部とを備え、前記バルブ部と前記吸気マニホールドのボア部との間にシール作用するよう、前記各バルブ部に装着したシール材と、
前記ラダー部のシール材内側に位置するラダー係合部が係入するよう前記バルブ部の外周側に設けたラダー係入凹部とを備え、
前記ロータリバルブが前記閉じ状態に切換えられると、前記ラダー部が前記供給切換え口に沿って前記バルブ部と前記ボア部との間に位置するように構成した内燃機関用吸気装置であって、
前記複数のバルブ部のうちのロータリバルブ両端部に各別に位置する一対の端側バルブ部を除く中央側バルブ部において、かつ、前記ロータリバルブが前記閉じ状態に切換えられた状態において、前記ラダー係入凹部の内面のうちの前記ラダー係合部に対して前記供給切換え口存在側とは反対側に位置する内面部と、前記ラダー係合部とのシール間隔が、前記バルブ部と前記ボア部とのバルブ間隔よりも小になるよう構成してある内燃機関用吸気装置。
A rotary valve provided with a plurality of valve portions acting individually on the plurality of air supply paths of an intake manifold having a plurality of air supply paths for supplying air to a plurality of cylinders of the internal combustion engine, respectively, in a freely rotatable manner; In order to switch the air supply mode of the plurality of air supply paths, the plurality of valve portions are in an open state in which the supply switching port of the intake manifold is opened, and the valve portions are in a closed state in which the supply switching port is closed. Support the intake manifold so that it can rotate and switch,
A pair of ring portions that are individually fitted to both ends of the valve portion in the rotational axis direction; and a ladder portion that connects the pair of ring portions; and the valve portion and the bore portion of the intake manifold A sealing material attached to each of the valve parts so as to act as a seal between them;
A ladder engaging recess provided on the outer peripheral side of the valve portion so that a ladder engaging portion located inside the sealing material of the ladder portion is engaged,
An internal combustion engine intake device configured such that when the rotary valve is switched to the closed state, the ladder portion is positioned between the valve portion and the bore portion along the supply switching port,
In the central side valve portion excluding a pair of end side valve portions respectively positioned at both ends of the rotary valve of the plurality of valve portions, and in a state where the rotary valve is switched to the closed state, the ladder engagement Of the inner surface of the recess, the seal interval between the inner surface portion located on the opposite side of the supply switching port presence side with respect to the ladder engaging portion and the rudder engaging portion is the valve portion and the bore portion. An intake device for an internal combustion engine that is configured to be smaller than the valve interval.
前記複数のバルブ部として、四気筒に各別に空気供給する四つの空気供給路に各別に作用する四つのバルブ部を備え、前記一対の端側バルブ部として、二つの端側バルブ部を備え、前記中央側バルブ部として、二つのバルブ部を備えている請求項1記載の内燃機関用吸気装置。   As the plurality of valve parts, provided with four valve parts acting individually on four air supply paths for supplying air to the four cylinders separately, and as the pair of end side valve parts, provided with two end side valve parts, The intake device for an internal combustion engine according to claim 1, comprising two valve portions as the central valve portion.
JP2006198354A 2006-07-20 2006-07-20 Intake device for internal combustion engine Withdrawn JP2008025446A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006198354A JP2008025446A (en) 2006-07-20 2006-07-20 Intake device for internal combustion engine
PCT/JP2007/063445 WO2008010420A1 (en) 2006-07-20 2007-07-05 Air intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198354A JP2008025446A (en) 2006-07-20 2006-07-20 Intake device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008025446A true JP2008025446A (en) 2008-02-07

Family

ID=38956754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198354A Withdrawn JP2008025446A (en) 2006-07-20 2006-07-20 Intake device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2008025446A (en)
WO (1) WO2008010420A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9372072B2 (en) 2010-04-01 2016-06-21 Nippon Steel & Sumitomo Metal Corporation Particle measuring device and particle measuring method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19712680A1 (en) * 1997-03-26 1998-10-01 Mann & Hummel Filter Shift drum, in particular for use in an intake manifold system for a multi-cylinder internal combustion engine
JP3777313B2 (en) * 2001-09-10 2006-05-24 株式会社ケーヒン Rotary valve seal structure in variable intake system
DE10209180A1 (en) * 2002-03-01 2003-09-18 Mann & Hummel Filter Valve for opening and closing a pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9372072B2 (en) 2010-04-01 2016-06-21 Nippon Steel & Sumitomo Metal Corporation Particle measuring device and particle measuring method

Also Published As

Publication number Publication date
WO2008010420A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP4683296B2 (en) Intake device for internal combustion engine
JP4623382B2 (en) Intake device for internal combustion engine
WO2013187241A1 (en) Intake control device
JP6409984B2 (en) Intake device for internal combustion engine
KR20120082953A (en) Flap device and intake system
WO2010131512A1 (en) Air intake device for internal combustion engine
JP2010261359A (en) Variable air intake device
JP2010014055A (en) Integrated valve device for intake manifold
JP2008025446A (en) Intake device for internal combustion engine
JPWO2011135951A1 (en) Rotating damper
CN112013134B (en) Control valve
JP5527583B2 (en) Intake device for internal combustion engine
JP4628271B2 (en) Variable intake system seal structure
JP2007255331A (en) Intake manifold device for internal combustion engine
JP5285975B2 (en) Diaphragm pump
JP2009156126A (en) Intake manifold device for internal combustion engine
JP2009162071A (en) Intake manifold device for internal combustion engine
US10184362B2 (en) Intake device of internal combustion engine
JP2011064151A (en) Intake manifold device for internal combustion engine
JP2010106769A (en) Intake device for internal combustion engine
JP2009243382A (en) Operation detector of control valve
JP2000055214A (en) Valve device
JP2007170335A (en) Valve structure

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080620