JP2008023496A - Manufacturing method of hydrogen separation membrane cell - Google Patents

Manufacturing method of hydrogen separation membrane cell Download PDF

Info

Publication number
JP2008023496A
JP2008023496A JP2006201850A JP2006201850A JP2008023496A JP 2008023496 A JP2008023496 A JP 2008023496A JP 2006201850 A JP2006201850 A JP 2006201850A JP 2006201850 A JP2006201850 A JP 2006201850A JP 2008023496 A JP2008023496 A JP 2008023496A
Authority
JP
Japan
Prior art keywords
hydrogen
separation membrane
base material
hydrogen separation
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006201850A
Other languages
Japanese (ja)
Inventor
Eiji Okada
英二 岡田
Koki Takamura
光喜 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2006201850A priority Critical patent/JP2008023496A/en
Publication of JP2008023496A publication Critical patent/JP2008023496A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing a hydrogen separation membrane cell having a sufficient sealability and pressure resistance using a palladium metal membrane or a palladium alloy membrane. <P>SOLUTION: The manufacturing method of the hydrogen separation membrane cell containing a hydrogen permeable membrane, a porous material, a support frame and a base material as constituent members satisfies a condition (a) wherein the width (a) of the support, the width (b) of the side frame of the base material, the width (c) of the base material and the gap (d) between the base material and the porous material satisfy the following formulae of a-(b+d)>0 (1), a<0.1c (2) and 0<d<0.01c (3) at the same time, a condition (b) wherein the hydrogen-permeable membrane and the base material are bonded and the hydrogen-permeable membrane and the support frame are bonded and a condition (c) wherein the porous material and the base material are not bonded. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水素分離膜セルの製造方法、該方法によって得られる水素分離膜セル及び該水素分離膜セルを備えた水素分離装置に関する。   The present invention relates to a method for producing a hydrogen separation membrane cell, a hydrogen separation membrane cell obtained by the method, and a hydrogen separation apparatus including the hydrogen separation membrane cell.

従来、水素含有ガスから水素を分離する方法として、工業的にはPSA(圧力スイング吸着)法が数多く採用されている。PSA装置は吸着剤を充填した複数の吸着塔とこれを制御する自動弁から構成されており、装置が大きく且つ複雑のものとなる。そのため近年、装置の小型化・簡素化の観点から膜分離技術が注目されている。   Conventionally, many PSA (pressure swing adsorption) methods have been adopted industrially as a method for separating hydrogen from a hydrogen-containing gas. The PSA apparatus is composed of a plurality of adsorption towers filled with an adsorbent and an automatic valve for controlling the adsorption tower, and the apparatus is large and complicated. Therefore, in recent years, membrane separation technology has attracted attention from the viewpoint of miniaturization and simplification of the apparatus.

水素を分離するための膜としては、ポリイミドなどの有機高分子膜、多孔質セラミックなどの無機多孔質膜、パラジウムやパラジウム合金を代表とする金属膜及びこれらを組み合わせた複合膜などがある。有機高分子膜や無機多孔質膜はその原料が安価であるという利点を持っているが、分子ふるいの作用を利用しているため高純度の水素を得るのは難しい。   Examples of the membrane for separating hydrogen include an organic polymer membrane such as polyimide, an inorganic porous membrane such as porous ceramic, a metal membrane typified by palladium or palladium alloy, and a composite membrane combining these. Organic polymer membranes and inorganic porous membranes have the advantage that their raw materials are inexpensive, but it is difficult to obtain high-purity hydrogen because they use the action of molecular sieves.

それに対し、パラジウム合金を代表とする金属膜は、水素の固溶・拡散を利用しているため極めて高純度な水素を製造できるという利点を持っている。しかし、原料が高価であるという欠点を持ち、現在では極めて高純度の水素が求められる用途にのみ実用化されている。   On the other hand, a metal film typified by a palladium alloy has an advantage that extremely high-purity hydrogen can be produced because it uses hydrogen solid solution and diffusion. However, it has the disadvantage that the raw material is expensive, and is currently put into practical use only for applications that require extremely high-purity hydrogen.

そこで近年、高価なパラジウム及びパラジウム合金の使用量を減らすべく、金属又は無機の多孔体にメッキしてなる複合膜が報告されている(例えば特許文献1参照)。しかし、メッキや蒸着ではピンホールをなくすのは難しく、高純度の水素を得るのが難しいという欠点を持つ。   Therefore, in recent years, there has been reported a composite film obtained by plating a metal or inorganic porous body in order to reduce the amount of expensive palladium and palladium alloy used (see, for example, Patent Document 1). However, it is difficult to eliminate pinholes in plating and vapor deposition, and it has the disadvantage that it is difficult to obtain high purity hydrogen.

ピンホールのない薄膜を作る方法としては圧延法が一般的であるが、これにより得られた薄膜を用いて基本セルを製造する場合、加工方法、特にシール方法が難しくなる。また、薄膜を用いて水素分離を行なう場合、圧力差が大きいほど水素透過量が多くなる。そのためパラジウム合金の使用量を減らすべく薄膜を利用しようとすると、その耐圧強度が問題となるため、強度を補強することも課題となる。   A rolling method is generally used as a method for forming a thin film without a pinhole. However, when a basic cell is manufactured using a thin film obtained by this method, a processing method, particularly a sealing method becomes difficult. When hydrogen separation is performed using a thin film, the amount of hydrogen permeation increases as the pressure difference increases. For this reason, if a thin film is used to reduce the amount of palladium alloy used, its pressure resistance becomes a problem, and it is also a problem to reinforce the strength.

シール性と薄膜強度の補強を考慮してなされた水素分離膜も開示されている(例えば特許文献2参照)。これによると、薄膜と金属多孔体や取付枠、それに加え第3元素による金属層を介して接合するため、接合時に多くのエネルギーが必要となることが予想される。入力エネルギーが大きいと薄膜にダメージを与えやすく、破損や欠陥の原因となりやすい。   A hydrogen separation membrane made in consideration of reinforcement of sealing properties and thin film strength is also disclosed (see, for example, Patent Document 2). According to this, since it joins through a thin film, a metal porous body, an attachment frame, and also the metal layer by a 3rd element, it is anticipated that much energy is required at the time of joining. When the input energy is large, the thin film is likely to be damaged, which is likely to cause breakage and defects.

耐圧などの強度改善のために金属又はセラミックのサポートを使うことが一般的に行なわれている。このとき、構造が複雑になり、水素分離膜セルの製造効率が損なわれると同時に接合などの加工部分が増えて漏れや破損の原因となりやすいという欠点がある。
特許第3174668号公報 特許第3377640号公報
In general, a metal or ceramic support is used to improve strength such as pressure resistance. At this time, there is a drawback that the structure becomes complicated, the production efficiency of the hydrogen separation membrane cell is impaired, and at the same time, the number of processed parts such as bonding is increased, which tends to cause leakage and breakage.
Japanese Patent No. 3174668 Japanese Patent No. 3377640

本発明は、上記の問題点に鑑みてなされたものであり、圧延により製作したパラジウム金属膜又はパラジウム合金膜を用いた水素分離膜セルを製造するに当たり、充分なシール性及び耐圧性を有する水素分離膜セルの効率的な製造方法を提供するものである。   The present invention has been made in view of the above-described problems, and has a sufficient sealing property and pressure resistance in manufacturing a hydrogen separation membrane cell using a palladium metal membrane or a palladium alloy membrane manufactured by rolling. An efficient method for producing a separation membrane cell is provided.

本発明者らは上記課題を解決するため鋭意検討した結果、水素透過性膜、多孔質体、支持枠及び基材を構成部材として含む水素分離膜セルを製造するに当たり、特定の条件下で多孔質体と基材との接着を行なわないことにより、効率良く簡便に充分なシール性及び耐圧性を有する水素分離膜セルが得られることを見出し本発明に至った。すなわち本発明はつぎの通りである。
1.水素透過性膜、多孔質体、支持枠及び基材を構成部材として含む水素分離膜セルの製造方法であって、つぎの条件を満たすことを特徴とする水素分離膜セルの製造方法。
(a)支持枠の幅a、基材の縁枠の幅b、基材の幅c、基材と多孔質体との隙間dが、次式(1)〜(3)を同時に満たす。
a−(b+d)>0 ・・・ (1)
a<0.1c ・・・ (2)
0<d<0.01c ・・・ (3)
(b)水素透過性膜と基材との接着及び水素透過性膜と支持枠との接着を行なう、
(c)多孔質体と基材との接着を行なわない。
2.前記水素透過性膜を基材の両面に配置する第1項記載の水素分離膜セルの製造方法。
3.前記水素透過性膜が、パラジウム金属膜、又は銅、銀、金、白金、ロジウム、ルテニウム、イリジウム、鉄、ニッケル、コバルト及びモリブデンからなる群より選ばれる1種以上とパラジウムとの合金を主成分とする合金膜である第1項記載の水素分離膜セルの製造方法。
4.前記多孔質体が金属製又はセラミックス製である第1項記載の水素分離膜セルの製造方法。
5.第1項〜第4項のいずれかに記載の方法によって製造される水素分離膜セル。
6.第5項記載の水素分離膜セルを1以上備える水素分離装置。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a hydrogen separation membrane cell including a hydrogen permeable membrane, a porous body, a support frame, and a base material as constituent members is porous under specific conditions. It has been found that a hydrogen separation membrane cell having sufficient sealing properties and pressure resistance can be obtained efficiently and simply by not bonding the material and the substrate. That is, the present invention is as follows.
1. A method for producing a hydrogen separation membrane cell comprising a hydrogen permeable membrane, a porous body, a support frame and a base material as constituent members, wherein the following conditions are satisfied:
(A) The width a of the support frame, the width b of the edge frame of the substrate, the width c of the substrate, and the gap d between the substrate and the porous body simultaneously satisfy the following expressions (1) to (3).
a- (b + d)> 0 (1)
a <0.1c (2)
0 <d <0.01c (3)
(B) Adhesion between the hydrogen permeable membrane and the base material and adhesion between the hydrogen permeable membrane and the support frame;
(C) The porous body and the substrate are not bonded.
2. The method for producing a hydrogen separation membrane cell according to claim 1, wherein the hydrogen permeable membrane is disposed on both surfaces of a substrate.
3. The hydrogen permeable membrane is mainly composed of a palladium metal film or an alloy of palladium and one or more selected from the group consisting of copper, silver, gold, platinum, rhodium, ruthenium, iridium, iron, nickel, cobalt, and molybdenum. The method for producing a hydrogen separation membrane cell according to claim 1, which is an alloy membrane.
4). The method for producing a hydrogen separation membrane cell according to claim 1, wherein the porous body is made of metal or ceramics.
5. A hydrogen separation membrane cell produced by the method according to any one of Items 1 to 4.
6). A hydrogen separator comprising one or more hydrogen separation membrane cells according to claim 5.

本発明により、水素分離膜セルを製造するに当たり、構成部材間の接着部分の構造を単純化できる。また、充分なシール性、強度及び耐久性を持つ水素分離膜セルを容易に製造することができるようになり加工性、生産性が向上する。   According to the present invention, in manufacturing a hydrogen separation membrane cell, it is possible to simplify the structure of the bonded portion between the constituent members. In addition, a hydrogen separation membrane cell having sufficient sealing performance, strength and durability can be easily manufactured, and processability and productivity are improved.

本発明において用いる水素透過性膜は、パラジウム金属膜、又は銅、銀、金、白金、ロジウム、ルテニウム、イリジウム、鉄、ニッケル、コバルト及びモリブデンからなる群より選ばれる1種以上の金属とパラジウム金属との合金を主成分とする合金膜である。また、該合金膜に対して、種々の特性を向上させる目的でその他の成分を適宜添加してもよい。本発明において用いる水素透過性膜の膜厚は特に制限されないが、水素透過量は膜の厚さに反比例するためできるだけ薄くすることが望ましい。しかし、膜厚が薄くなると加工の難易度が高くなる。そのため、水素透過性膜の膜厚は水素透過量と加工性を考慮して選定される。例えば、1〜100μm、好ましくは5〜50μm、より好ましくは10〜20μmである。   The hydrogen permeable membrane used in the present invention is a palladium metal membrane or one or more metals selected from the group consisting of copper, silver, gold, platinum, rhodium, ruthenium, iridium, iron, nickel, cobalt, and molybdenum, and palladium metal. Is an alloy film mainly composed of an alloy. Further, other components may be appropriately added to the alloy film for the purpose of improving various characteristics. The thickness of the hydrogen permeable membrane used in the present invention is not particularly limited, but it is desirable to make it as thin as possible because the hydrogen permeation amount is inversely proportional to the thickness of the membrane. However, as the film thickness decreases, the difficulty of processing increases. Therefore, the thickness of the hydrogen permeable membrane is selected in consideration of the hydrogen permeation amount and workability. For example, 1-100 micrometers, Preferably it is 5-50 micrometers, More preferably, it is 10-20 micrometers.

本発明において用いる多孔質体は、充分な強度と耐熱性とを有するガス透過性の材料によって形成される部材である。例えば、金属製多孔質体やセラミックス製多孔質体などが挙げられる。   The porous body used in the present invention is a member formed of a gas permeable material having sufficient strength and heat resistance. Examples thereof include a metal porous body and a ceramic porous body.

本発明において用いる基材の材質はステンレス、ニッケル、銅などを用いることができる。例えば、SUS430又はニッケルがパラジウム合金膜との接合に適している。基材のサイズや形状に制限はないが、分離した高純度水素の取り出し口と多孔質体をはめ込む溝などが必要となる。基材の縁枠及び外周部分の加工精度は接合する上で重要である。歪み等があると接合時にピンホールが生じやすくなる。   Stainless steel, nickel, copper, etc. can be used as the material of the base material used in the present invention. For example, SUS430 or nickel is suitable for joining with a palladium alloy film. The size and shape of the substrate are not limited, but a separate high-purity hydrogen outlet and a groove into which the porous body is inserted are required. The processing accuracy of the edge frame and the outer peripheral portion of the base material is important for joining. If there is distortion or the like, pinholes are likely to occur during bonding.

本発明において用いる支持枠の材質はステンレス、ニッケル、銅などを用いることができる。例えば、SUS430又はニッケルがパラジウム合金膜との接合に適している。支持枠の材質は上記基材の材質と同じものを用いると接合しやすくなる。支持枠の厚さは0.5mm以下、好ましくは0.3〜0.1mmの範囲である。後述のレーザー溶接を行なう場合は、支持枠の厚さを考慮し、レーザーの出力を調節することが接合する上で重要となる。   The material of the support frame used in the present invention can be stainless steel, nickel, copper, or the like. For example, SUS430 or nickel is suitable for joining with a palladium alloy film. When the material of the support frame is the same as the material of the base material, it becomes easy to join. The thickness of the support frame is 0.5 mm or less, preferably in the range of 0.3 to 0.1 mm. When performing laser welding, which will be described later, it is important to adjust the laser output in consideration of the thickness of the support frame.

以下、本発明の実施形態を図面により説明する。図1及び図2は水素透過性膜、多孔質体、支持枠及び基材を構成部材として含む水素分離膜セルの外観図(正面図)の代表例である。水素分離膜セルの形状は制限されない。正方形や長方形、円形、楕円形など適宜設計可能であるが、正方形又は円形が好ましい。   Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are representative examples of external views (front views) of a hydrogen separation membrane cell including a hydrogen permeable membrane, a porous body, a support frame, and a base material as constituent members. The shape of the hydrogen separation membrane cell is not limited. Although a square, a rectangle, a circle, an ellipse, or the like can be designed as appropriate, a square or a circle is preferable.

構成部材間の接着方法はレーザー溶接や拡散接着やロウ付けなど一般的に知られている方法を用いることができる。水素透過性膜の厚さが薄い場合、レーザー溶接と拡散接着が実用的となる。レーザー溶接を行う場合は、水素透過性膜と支持枠の厚さを考慮して出力を調整する。拡散接着を行う場合は、部材の材質に応じて雰囲気ガス、温度、締め付け圧の適正化が必要となる。   As a bonding method between the constituent members, a generally known method such as laser welding, diffusion bonding, or brazing can be used. When the hydrogen permeable membrane is thin, laser welding and diffusion bonding become practical. When laser welding is performed, the output is adjusted in consideration of the thickness of the hydrogen permeable membrane and the support frame. When performing diffusion bonding, it is necessary to optimize the atmospheric gas, temperature, and tightening pressure according to the material of the member.

図3は前記水素分離膜セルの側面図の一例、図4は接着部の拡大図である。まず、多孔質体を基材に作った溝にはめ込んだ後、水素透過性膜と支持枠を載せる。これを治具で固定し、各部材にずれが生じないように注意して外周をシールする。この際、多孔質体と基材との接着は行なわない。従来は多孔質体と基材とを溶接等で接着していたが、この場合は基材と水素透過性膜との接着部に歪みが生じ易かった。本発明の方法では多孔質体と基材との接着を行なわないので、水素透過性膜と基材との接着面に歪みのないものを容易に得ることができるようになる。   FIG. 3 is an example of a side view of the hydrogen separation membrane cell, and FIG. 4 is an enlarged view of an adhesion portion. First, after inserting a porous body into a groove made of a base material, a hydrogen permeable membrane and a support frame are placed. This is fixed with a jig, and the outer periphery is sealed with care so as not to cause a shift in each member. At this time, adhesion between the porous body and the substrate is not performed. Conventionally, the porous body and the base material are bonded by welding or the like, but in this case, the bonding portion between the base material and the hydrogen permeable membrane is easily distorted. In the method of the present invention, since the porous body and the base material are not bonded, it is possible to easily obtain a non-strained bonding surface between the hydrogen permeable membrane and the base material.

また、多孔質体の重みや振動でセルが破損することを防止するため、支持枠の幅a(図4参照)、基材の縁枠の幅b(図4参照)、基材の幅c(図3参照)、基材と多孔質体との隙間d(図4参照)が次式(1)〜(3)を同時に満たすように設計することにより多孔質体を押さえられる構造とする。
a−(b+d)>0 ・・・ (1)
a<0.1c ・・・ (2)
0<d<0.01c ・・・ (3)
In order to prevent the cell from being damaged by the weight or vibration of the porous body, the width a of the support frame (see FIG. 4), the width b of the edge frame of the substrate (see FIG. 4), and the width c of the substrate. (Refer to FIG. 3) The design is such that the gap d (see FIG. 4) between the base material and the porous body satisfies the following expressions (1) to (3) at the same time.
a- (b + d)> 0 (1)
a <0.1c (2)
0 <d <0.01c (3)

また、図3に示すように、上記水素透過性膜を基材の両面に配置することにより、単位セル当たりの水素透過量を向上させることができる。   Moreover, as shown in FIG. 3, the hydrogen permeation amount per unit cell can be improved by disposing the hydrogen permeable membrane on both surfaces of the substrate.

図6に一例を示すように、本発明の方法により製造した水素分離膜セル7を格納容器に組み込むことにより水素分離装置8が提供される。該水素分離装置では、供給された水素含有ガスが水素分離膜セル7の外側を流通し、水素透過性膜が水素を選択的に透過させ該セル内部に純粋な水素が導入される。こうして分離された精製水素を製品水素ガス排出ノズル10から取り出す。   As shown in FIG. 6 as an example, a hydrogen separation device 8 is provided by incorporating a hydrogen separation membrane cell 7 manufactured by the method of the present invention into a containment vessel. In the hydrogen separation apparatus, the supplied hydrogen-containing gas flows outside the hydrogen separation membrane cell 7, and the hydrogen permeable membrane selectively permeates hydrogen to introduce pure hydrogen into the cell. The purified hydrogen thus separated is taken out from the product hydrogen gas discharge nozzle 10.

水素の透過速度は温度が高いほど大きくなる。本発明において用いられる水素分離膜の操作温度は200〜700℃の範囲、好ましくは250〜600℃の範囲、より好ましくは300〜450℃の範囲である。   The permeation rate of hydrogen increases as the temperature increases. The operating temperature of the hydrogen separation membrane used in the present invention is in the range of 200 to 700 ° C, preferably in the range of 250 to 600 ° C, more preferably in the range of 300 to 450 ° C.

また、水素の透過速度は原料側と精製側の水素分圧の差が大きいほど大きくなる。一般的に水素分圧と透過量の関係はQ=K(√P1−√P2)で示される。ここでKは透過に関わる定数であり、Qは水素透過量、P1,P2はそれぞれ原料ガス側の水素分圧と精製ガス側の水素分圧である。分圧差を大きくすれば透過量も多くなるが、水素透過性膜は薄膜を用いるため、原料ガス圧は慎重に設定する必要がある。   The hydrogen permeation rate increases as the difference in hydrogen partial pressure between the raw material side and the purification side increases. Generally, the relationship between the hydrogen partial pressure and the permeation amount is represented by Q = K (√P1−√P2). Here, K is a constant related to permeation, Q is the hydrogen permeation amount, and P1 and P2 are the hydrogen partial pressure on the source gas side and the hydrogen partial pressure on the purified gas side, respectively. If the partial pressure difference is increased, the amount of permeation increases. However, since the hydrogen permeable membrane uses a thin film, the raw material gas pressure must be set carefully.

また、該水素分離装置では要求される水素製造量や使用条件等に応じて、水素分離膜セルが単独で又は複数個用いられる。   In the hydrogen separation apparatus, a single hydrogen separation membrane cell or a plurality of hydrogen separation membrane cells are used in accordance with the required amount of hydrogen production and usage conditions.

(正方形型水素分離膜セルの製造)
基材としてはSUS430を用い、100mm×100mm(基材の幅c=100mm)の正方形型とした。多孔質体としてはSUS316L製焼結金網を用いた。支持枠の材質は上記基材と同じSUS430で、厚さは0.3mmとした。水素透過性膜としては冷間圧延により製作した厚さ20μmのパラジウム合金膜(Pd−40wt%Cu合金)を用いた。該パラジウム合金膜は基材の両面に接着した。支持枠の幅a=6mm、基材の縁枠の幅b=3mm、基材と多孔質体との隙間d=0.15mmとした。
基材とパラジウム合金膜と支持枠との接着は1度にまとめて行ない、接着にはYAGレーザー(500W−CW)を用いて外縁部をシール溶接した(図5参照)。多孔質体と基材との接着は行なわなかった。
こうして得られた水素分離膜セルはHeを用いたリークテストを行ない、1×10−9・m/s以下であることを確認した。
得られた水素分離膜セルを水素透過試験装置に装着し、Arガスを用いて原料側と精製側の圧力差が0.9MPaでリークを起こさないことを確認した。
また、水素透過試験原料に市販のボンベ水素(露点:−60℃以下)を用いて行ない、温度300℃、原料側圧力0.5MPa、精製側大気圧の条件で128L/hの精製水素(露点:−80℃以下)が得られた。
(Manufacture of square hydrogen separation membrane cell)
As the base material, SUS430 was used, and a square shape of 100 mm × 100 mm (base material width c = 100 mm) was used. A SUS316L sintered wire mesh was used as the porous body. The material of the support frame was SUS430, which was the same as the base material, and the thickness was 0.3 mm. As the hydrogen permeable membrane, a 20 μm thick palladium alloy membrane (Pd-40 wt% Cu alloy) manufactured by cold rolling was used. The palladium alloy film was adhered to both surfaces of the substrate. The width a of the support frame was 6 mm, the width b of the edge frame of the base material was 3 mm, and the gap d between the base material and the porous body was 0.15 mm.
The substrate, the palladium alloy film, and the support frame were bonded together at once, and the outer edge was sealed and welded using a YAG laser (500 W-CW) (see FIG. 5). Adhesion between the porous body and the substrate was not performed.
The hydrogen separation membrane cell thus obtained was subjected to a leak test using He, and was confirmed to be 1 × 10 −9 · m 3 / s or less.
The obtained hydrogen separation membrane cell was attached to a hydrogen permeation test apparatus, and it was confirmed that no leak occurred when the pressure difference between the raw material side and the purification side was 0.9 MPa using Ar gas.
In addition, the hydrogen permeation test raw material is a commercially available bomb hydrogen (dew point: −60 ° C. or less), and purified hydrogen (dew point) at a temperature of 300 ° C., a raw material side pressure of 0.5 MPa and a purification side atmospheric pressure. : −80 ° C. or lower).

正方形型水素分離膜セルの正面図Front view of square hydrogen separation membrane cell 円形型水素分離膜セルの正面図Front view of circular hydrogen separation membrane cell 水素分離膜セルの側面図の代表例Typical example of side view of hydrogen separation membrane cell 水素分離膜セルの図3における接着部の拡大図Enlarged view of the adhesion part in FIG. 実施例におけるレーザー溶接後の状態State after laser welding in Example 水素分離装置の一例Example of hydrogen separator

符号の説明Explanation of symbols

1.水素透過性膜
2.支持枠
3.製品水素導管
4.基材
5.多孔質体
6.レーザー溶接部
7.水素分離膜セル
8.水素分離装置
9.原料ガス供給ノズル
10.ブリードガス排出ノズル
11.製品水素ガス排出ノズル
12.製品水素ガス集合導管
1. 1. Hydrogen permeable membrane 3. Support frame Product hydrogen conduit 4. Base material 5. Porous body 6. 6. Laser welding part Hydrogen separation membrane cell 8. Hydrogen separator 9. Raw material gas supply nozzle 10. Bleed gas discharge nozzle 11. Product hydrogen gas discharge nozzle 12. Product hydrogen gas collecting conduit

Claims (6)

水素透過性膜、多孔質体、支持枠及び基材を構成部材として含む水素分離膜セルの製造方法であって、下記条件(a)〜(c)を満たすことを特徴とする水素分離膜セルの製造方法。
(a)支持枠の幅a、基材の縁枠の幅b、基材の幅c、基材と多孔質体との隙間dが、次式(1)〜(3)を満たす。
a−(b+d)>0 ・・・ (1)
a<0.1c ・・・ (2)
0<d<0.01c ・・・ (3)
(b)水素透過性膜と基材との接着及び水素透過性膜と支持枠との接着を行なう、
(c)多孔質体と基材との接着を行なわない。
A hydrogen separation membrane cell manufacturing method comprising a hydrogen permeable membrane, a porous body, a support frame and a base material as constituent members, wherein the following conditions (a) to (c) are satisfied: Manufacturing method.
(A) The width a of the support frame, the width b of the edge frame of the substrate, the width c of the substrate, and the gap d between the substrate and the porous body satisfy the following formulas (1) to (3).
a- (b + d)> 0 (1)
a <0.1c (2)
0 <d <0.01c (3)
(B) Adhesion between the hydrogen permeable membrane and the base material and adhesion between the hydrogen permeable membrane and the support frame;
(C) The porous body and the substrate are not bonded.
前記水素透過性膜を基材の両面に配置する請求項1記載の水素分離膜セルの製造方法。   The method for producing a hydrogen separation membrane cell according to claim 1, wherein the hydrogen permeable membrane is disposed on both surfaces of a base material. 前記水素透過性膜が、パラジウム金属膜、又は銅、銀、金、白金、ロジウム、ルテニウム、イリジウム、鉄、ニッケル、コバルト及びモリブデンからなる群より選ばれる1種以上とパラジウムとの合金を主成分とする合金膜である請求項1記載の水素分離膜セルの製造方法。   The hydrogen permeable membrane is mainly composed of a palladium metal film or an alloy of palladium and one or more selected from the group consisting of copper, silver, gold, platinum, rhodium, ruthenium, iridium, iron, nickel, cobalt, and molybdenum. The method for producing a hydrogen separation membrane cell according to claim 1, wherein the membrane is an alloy membrane. 前記多孔質体が金属製又はセラミックス製である請求項1記載の水素分離膜セルの製造方法。   The method for producing a hydrogen separation membrane cell according to claim 1, wherein the porous body is made of metal or ceramics. 請求項1〜4のいずれかに記載の方法によって製造される水素分離膜セル。   The hydrogen separation membrane cell manufactured by the method in any one of Claims 1-4. 請求項5記載の水素分離膜セルを1以上備える水素分離装置。   A hydrogen separator comprising one or more hydrogen separation membrane cells according to claim 5.
JP2006201850A 2006-07-25 2006-07-25 Manufacturing method of hydrogen separation membrane cell Pending JP2008023496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006201850A JP2008023496A (en) 2006-07-25 2006-07-25 Manufacturing method of hydrogen separation membrane cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006201850A JP2008023496A (en) 2006-07-25 2006-07-25 Manufacturing method of hydrogen separation membrane cell

Publications (1)

Publication Number Publication Date
JP2008023496A true JP2008023496A (en) 2008-02-07

Family

ID=39114684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006201850A Pending JP2008023496A (en) 2006-07-25 2006-07-25 Manufacturing method of hydrogen separation membrane cell

Country Status (1)

Country Link
JP (1) JP2008023496A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095422A (en) * 2008-10-19 2010-04-30 National Institute Of Advanced Industrial Science & Technology Apparatus for producing hydrogen
JP2012230071A (en) * 2011-04-27 2012-11-22 Murata Mfg Co Ltd Hydrogen gas sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873201A (en) * 1994-09-06 1996-03-19 Mitsubishi Heavy Ind Ltd Hydrogen separating membrane unit
JPH10296061A (en) * 1997-04-23 1998-11-10 Mitsubishi Heavy Ind Ltd Hydrogen separation membrane and its manufacture
JPH11300172A (en) * 1998-04-24 1999-11-02 Tokyo Gas Co Ltd Support for gas separation membrane, structure for gas purification, and gas purification apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873201A (en) * 1994-09-06 1996-03-19 Mitsubishi Heavy Ind Ltd Hydrogen separating membrane unit
JPH10296061A (en) * 1997-04-23 1998-11-10 Mitsubishi Heavy Ind Ltd Hydrogen separation membrane and its manufacture
JPH11300172A (en) * 1998-04-24 1999-11-02 Tokyo Gas Co Ltd Support for gas separation membrane, structure for gas purification, and gas purification apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095422A (en) * 2008-10-19 2010-04-30 National Institute Of Advanced Industrial Science & Technology Apparatus for producing hydrogen
JP2012230071A (en) * 2011-04-27 2012-11-22 Murata Mfg Co Ltd Hydrogen gas sensor

Similar Documents

Publication Publication Date Title
US8226751B2 (en) Composite membrane material for hydrogen separation and element for hydrogen separation using the same
Burkhanov et al. Palladium-based alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures
US8110022B2 (en) Hydrogen purifier module and method for forming the same
EP0796647A1 (en) Hydrogen separation member
US7125440B2 (en) Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use
US8226750B2 (en) Hydrogen purifier module with membrane support
JP4944656B2 (en) Membrane support for hydrogen separation and module for hydrogen separation using this support
JP2019005684A (en) Hydrogen separation device and hydrogen separation system
JP2008023496A (en) Manufacturing method of hydrogen separation membrane cell
US7749305B1 (en) Composite structure for high efficiency hydrogen separation containing preformed nano-particles in a bonded layer
JP2007090295A (en) Hydrogen separation member and its manufacturing method
TW201231145A (en) Hydrogen separation apparatus
JP2008155118A (en) Composite membrane for separating hydrogen and module for separating hydrogen using this hydrogen permeable membrane
Nam et al. Preparation of highly stable palladium alloy composite membranes for hydrogen separation
JP2006000722A (en) Hydrogen-permeable alloy membrane and its manufacturing method
JP2008080234A (en) Hydrogen permeable membrane of composite multi-layer structure and its manufacturing method
JPH11276867A (en) Joining of hydrogen-permeable membrane
JP3174668B2 (en) Hydrogen separation membrane
Ryi et al. Low temperature diffusion bonding of Pd-based composite membranes with metallic module for hydrogen separation
JP2007038111A (en) Hydrogen permeable element and method for manufacturing the same
JP2008043907A (en) Hydrogen permeable composite membrane and its manufacturing method
JPH10296061A (en) Hydrogen separation membrane and its manufacture
KR101252569B1 (en) Module configuration of hydrogen purification separation membrane module for the reduce of concentration polarization
JP2008272605A (en) Hydrogen permeable membrane and its manufacturing method
JP2008043908A (en) Hydrogen-permeable membrane, its manufacturing method, and hydrogen-permeable member using this hydrogen-permeable membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090609

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Effective date: 20110302

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111025

Free format text: JAPANESE INTERMEDIATE CODE: A02