JP2008021672A - Ultrasonic cleaning method and cleaning device using gas supersaturation solution - Google Patents

Ultrasonic cleaning method and cleaning device using gas supersaturation solution Download PDF

Info

Publication number
JP2008021672A
JP2008021672A JP2006189552A JP2006189552A JP2008021672A JP 2008021672 A JP2008021672 A JP 2008021672A JP 2006189552 A JP2006189552 A JP 2006189552A JP 2006189552 A JP2006189552 A JP 2006189552A JP 2008021672 A JP2008021672 A JP 2008021672A
Authority
JP
Japan
Prior art keywords
cleaning
cleaned
gas
cleaning liquid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006189552A
Other languages
Japanese (ja)
Inventor
Akira Sato
公 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006189552A priority Critical patent/JP2008021672A/en
Publication of JP2008021672A publication Critical patent/JP2008021672A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning method and a cleaning device for preventing a fine pattern from being damaged, and improving particle removal efficiency. <P>SOLUTION: Gas to be dissolved in a cleaning liquid is pressurized with pressure that is higher than environmental pressure when cleaning an object 2 to be cleaned for melting to a saturated state in a cleaning liquid. The cleaning liquid, where gas is melted to a saturated state, is supplied under environmental pressure, thus supersaturating the dissolved gas. The cleaning liquid, where gas is melted to the supersaturated state, is subjected to ultrasonic vibration, thus promoting the occurrence of bubbles and cleaning the surface to be cleaned of the object to be cleaned with a cleaning liquid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、半導体製造工程における半導体ウェハ表面に付着したパーティクル、あるいはフォトマスク、液晶ディスプレイ基板等の表面に付着したパーティクルを除去するための、ガス過飽和溶液を用いた洗浄方法及び洗浄装置に関する。   The present invention relates to a cleaning method and a cleaning apparatus using a gas supersaturated solution for removing particles adhering to the surface of a semiconductor wafer in a semiconductor manufacturing process or particles adhering to the surface of a photomask, a liquid crystal display substrate or the like, for example. .

半導体製造プロセスにおいて、半導体基板上に付着しているパーティクル(微細粒子)を除去する工程では、一般的に、半導体材料を酸化させる酸化剤(薬剤)とこの薬剤によって生成された酸化膜を除去するエッチング材が混合された洗浄液を使用する(例えばアンモニア+過酸化水素水など)。一般にパーティクルの除去率を上昇するためには前述の洗浄液の処理温度と薬液濃度を高くして、半導体基板表面により厚い酸化膜を形成し、短時間でその膜をエッチングして、その基板表面上に付着しているパーティクルごと除去するという手段が必要になる。しかしながら、近年では半導体プロセスの微細化に伴う低膜厚ロス洗浄の必要性や、環境に対する悪影響という観点から、前述したような高温・高濃度の薬液の使用が難しくなってきた。   In the process of removing particles (fine particles) adhering to a semiconductor substrate in a semiconductor manufacturing process, generally, an oxidizing agent (chemical) that oxidizes a semiconductor material and an oxide film generated by the chemical are removed. A cleaning solution in which an etching material is mixed is used (for example, ammonia + hydrogen peroxide solution). In general, in order to increase the particle removal rate, the treatment temperature and chemical concentration of the cleaning liquid described above are increased, a thick oxide film is formed on the surface of the semiconductor substrate, the film is etched in a short time, and the surface of the substrate is etched. A means for removing the particles adhering to the surface is necessary. However, in recent years, it has become difficult to use high-temperature and high-concentration chemical solutions as described above from the viewpoint of the need for low-thickness loss cleaning accompanying the miniaturization of semiconductor processes and the adverse effect on the environment.

そこで、低温・低濃度の洗浄液でも高いパーティクル除去率を保つ手段として洗浄液中に超音波を印加する方法が行われてきた。このように、洗浄液の濃度・温度が低くても
洗浄液及び、半導体基板に照射する超音波の強度を高める方法により、パーティクル除去率の低下を防ぐことが可能となった。
Therefore, a method of applying ultrasonic waves to the cleaning liquid has been performed as a means for maintaining a high particle removal rate even with a low temperature / low concentration cleaning liquid. As described above, even when the concentration and temperature of the cleaning liquid are low, it is possible to prevent the particle removal rate from being lowered by the method of increasing the intensity of the ultrasonic wave applied to the cleaning liquid and the semiconductor substrate.

ところで、超音波によって洗浄効果が高まる理由としては、洗浄液中を超音波振動が透過する際に発生する疎密波によってもたらされる微揺動による液の流れと、疎密波の疎の部分に発生する気圧の低い蒸気性のキャビテーションバブルが、そのバブルを取り囲む気圧の高い部分によって押しつぶされ圧壊(消滅)するときに発生する衝撃波によるものが考えられる。また、その衝撃波は発生した蒸気性キャビテーションバブルの径が大きいほど強いものとなる。これらの理由から、洗浄液中に照射を行う超音波の強度は高いほど多く、かつ径の大きな蒸気性のキャビテーションバブルが発生し洗浄効果が高くなることが考えられる。   By the way, the reason why the cleaning effect is enhanced by the ultrasonic wave is that the liquid flow caused by the fine oscillation caused by the dense wave generated when the ultrasonic vibration is transmitted through the cleaning liquid, and the atmospheric pressure generated in the sparse part of the dense wave It is conceivable that this is due to a shock wave generated when a low-viscosity cavitation bubble is crushed and crushed (disappears) by a high-pressure portion surrounding the bubble. The shock wave becomes stronger as the diameter of the generated vapor cavitation bubble is larger. For these reasons, it is considered that the higher the intensity of the ultrasonic wave irradiated in the cleaning liquid is, the more the steam cavitation bubble having a large diameter is generated and the cleaning effect is increased.

しかし照射する超音波の強度が高すぎると、洗浄液中の高い音圧によって洗浄液内部に激しく蒸気性キャビテーションが発生する。そして洗浄対象物面に微細構造物(例えばMEMSパターンなど)が形成されている場合、そのキャビテーションがパターン近傍で発生すると、それによって微細パターンが破壊され、歩留まりが著しく低下するという問題点がある。   However, if the intensity of the irradiated ultrasonic wave is too high, vigorous vapor cavitation occurs inside the cleaning liquid due to the high sound pressure in the cleaning liquid. When a fine structure (for example, a MEMS pattern) is formed on the surface of the object to be cleaned, there is a problem that if the cavitation occurs in the vicinity of the pattern, the fine pattern is destroyed thereby significantly reducing the yield.

超音波振動が洗浄液内を伝わるとき、音圧により液中圧力が高くなる部分と低くなる部分が形成される。キャビテーションとはその圧力が低くなった部分に真空状態に近い泡(蒸気性キャビテーションバブル)が生じる現象のことであり、先述のキャビテーションバブルは発生直後に押しつぶされて急激に消滅する。このときに洗浄液どうしが激しくぶつかり合い、その際に生じる衝撃波が洗浄液中を伝わりパーティクル除去に寄与する。
しかし時としてその衝撃波が非常に大きくなり、前述のように半導体基板上の微細パターンにダメージをもたらすことがある。
When the ultrasonic vibration is transmitted through the cleaning liquid, a portion where the liquid pressure is increased and a portion where the pressure in the liquid is increased due to the sound pressure are formed. Cavitation is a phenomenon in which bubbles close to a vacuum state (steam cavitation bubbles) are generated in a portion where the pressure is low, and the cavitation bubbles described above are crushed immediately after the occurrence and rapidly disappear. At this time, the cleaning liquids collide violently, and the shock wave generated at that time is transmitted through the cleaning liquid and contributes to particle removal.
However, sometimes the shock wave becomes very large and may damage the fine pattern on the semiconductor substrate as described above.

そこで、先述の洗浄液にガスを溶解させる、あるいは既に溶解されているガス(例えばNなど)を積極的に使用することによって、キャビテーションの影響を抑えながらもパーティクル除去効果に影響を与えることの無い洗浄方法が近年多く報告されている。 Therefore, by dissolving the gas in the above-described cleaning liquid, or actively using a gas that has already been dissolved (for example, N 2 ), the particle removal effect is not affected while suppressing the influence of cavitation. Many cleaning methods have been reported in recent years.

つまり、洗浄液中にガスが溶解されていると、気圧の低い蒸気性キャビテーションバブルが発生した場合、周囲の洗浄薬液中に溶存しているガスが、キャビテーションバブル内に取り込まれ、発生直後には真空に近い状態であった前記バブルの内部はガス成分を含むある程度の気圧を持ったバブルとなる。このバブル内に入りこんだ溶解ガスは再び洗浄液中に溶解していき、やがては消滅する。この消滅速度は、先述した溶解ガスの入り込むことの無い真空に近い蒸気性キャビテーションバブルよりも穏やかになっており、突発的に発生する強い衝撃波の影響を低下する。   In other words, when gas is dissolved in the cleaning liquid, if a low-atmospheric vapor cavitation bubble is generated, the gas dissolved in the surrounding cleaning chemical is taken into the cavitation bubble, The inside of the bubble in a state close to is a bubble having a certain pressure including a gas component. The dissolved gas that has entered the bubble is dissolved again in the cleaning liquid, and eventually disappears. This annihilation rate is gentler than the above-described vapor cavitation bubble close to a vacuum where the dissolved gas does not enter, and the influence of a sudden shock wave generated suddenly is reduced.

しかし、上述のような、洗浄液にガスを溶解させる方法では、突発的な強度の高い衝撃波の発生頻度は減少したが、全く無くなったわけではない。図8は従来の技術による装置を使用したときの洗浄液中の音圧を測定したグラフである。横軸に測定時間、縦軸に超音波の強度を示す音圧が示されている。そして、半導体基板上のパーティクルを除去する場合の最適な音圧は、パーティクル除去閾値とパターン破壊閾値の間ということになる。   However, in the method of dissolving the gas in the cleaning liquid as described above, the frequency of occurrence of sudden shock waves with high strength is reduced, but it is not completely eliminated. FIG. 8 is a graph obtained by measuring the sound pressure in the cleaning liquid when using a conventional apparatus. The horizontal axis indicates the measurement time, and the vertical axis indicates the sound pressure indicating the ultrasonic intensity. The optimum sound pressure for removing particles on the semiconductor substrate is between the particle removal threshold and the pattern destruction threshold.

図8から、突発的な大きなキャビテーションの発生に起因すると思われる、パターン破壊の閾値を超えてしまうような大きな音圧が測定されているのがわかる。この原因として考えられるのは、洗浄液中にキャビテーションバブルが発生したときに、溶解ガスがその近傍に存在しなかった場合である。つまり、バブル内に入り込む溶解ガスが無いために衝撃波の緩衡作用が働かずに、突発的に強い衝撃波が半導体基板に到達するのである。
このような場合に図8に示されるような音圧が発生し、基板上に形成されている微細パターンを破壊してしまう。
It can be seen from FIG. 8 that a large sound pressure that exceeds the threshold for pattern destruction, which is thought to be caused by sudden occurrence of large cavitation, is measured. A possible cause of this is when dissolved gas is not present in the vicinity of the cavitation bubble generated in the cleaning liquid. That is, since there is no dissolved gas entering the bubble, the shock wave relaxation action does not work, and a sudden strong shock wave reaches the semiconductor substrate.
In such a case, a sound pressure as shown in FIG. 8 is generated, and the fine pattern formed on the substrate is destroyed.

そこで、洗浄液中の溶解ガス濃度が低くても、キャビテーションバブルが発生した際に、効率よくバブル内に溶解ガスを取り込む方法が考案された。(特許文献1参照)。ところで洗浄液中にバブルが多く存在する場合、超音波振動は、前記バブルの影響で減衰してしまい、洗浄効果を低下させてしまう。しかし、この技術は大気圧でガスを必要最小限に溶解した洗浄液を、減圧チャンバー内に設置された半導体基板上に供給することで、キャビテーションバブルを多く発生させながらも、超音波振動が減衰しないような工夫がなされている。
特開平10−335294号公報
In view of this, a method has been devised in which a dissolved gas is efficiently taken into a bubble when a cavitation bubble is generated even if the dissolved gas concentration in the cleaning liquid is low. (See Patent Document 1). By the way, when there are many bubbles in the cleaning liquid, the ultrasonic vibration is attenuated by the influence of the bubbles, and the cleaning effect is lowered. However, this technology supplies a cleaning solution in which a gas is dissolved to the minimum necessary at atmospheric pressure on a semiconductor substrate installed in a vacuum chamber, so that ultrasonic vibrations are not attenuated while generating many cavitation bubbles. The idea is made.
Japanese Patent Laid-Open No. 10-335294

前述したように、超音波照射を利用した洗浄方法では、超音波照射の強度が強くなるほど蒸気性キャビテーションが激しく発生し、それに伴う衝撃波の多く発生する。このため、衝撃波によるエネルギーは非常に大きく、例えば半導体基板上に付着したパーティクルも効率よく除去するが、微細パターンの破壊などの発生を頻繁に引き起こす。また、このキャビテーションの発生頻度、強さ、洗浄液中における発生場所などは制御することができない。   As described above, in the cleaning method using ultrasonic irradiation, as the intensity of ultrasonic irradiation increases, vapor cavitation occurs more violently and more shock waves are generated. For this reason, the energy by the shock wave is very large. For example, particles adhering to the semiconductor substrate are also efficiently removed, but frequently cause the destruction of the fine pattern. In addition, the frequency and intensity of occurrence of cavitation, the location in the cleaning liquid, and the like cannot be controlled.

一方、上述した特許文献1に記載の発明においても、キャビテーションの発生箇所や、キャビテーションバブルに起因する衝撃波の強度は制御が出来ない。そのため、突発的に発生する、微細パターンを破壊するような衝撃波を抑えることは難しいという問題点がある。   On the other hand, even in the invention described in Patent Document 1 described above, the location where cavitation occurs and the intensity of shock waves caused by cavitation bubbles cannot be controlled. Therefore, there is a problem that it is difficult to suppress a shock wave that suddenly occurs and destroys a fine pattern.

本発明は、上述に点に鑑み、微細パターンの非破壊とパーティクル除去効率の向上を図った洗浄方法及び洗浄装置を提供するものである。   SUMMARY OF THE INVENTION In view of the above, the present invention provides a cleaning method and a cleaning apparatus that achieve non-destructive fine patterns and improved particle removal efficiency.

上記課題を解決し、本発明の目的を達成するため、本発明に係る洗浄方法は、洗浄液中に溶解させるガスを、被洗浄物の洗浄時の環境圧力よりも高い圧力で加圧することによって洗浄液中に飽和状態まで溶解し、ガスが飽和状態まで溶解した洗浄液を、環境圧力下に供給することによって溶解したガスを過飽和状態にし、ガスが過飽和状態まで溶解した洗浄液に超音波振動を付与することによって気泡の発生を促進させながら、洗浄液にて被洗浄物の被処理面を洗浄処理することを特徴とする。   In order to solve the above-mentioned problems and achieve the object of the present invention, a cleaning method according to the present invention includes a cleaning liquid by pressurizing a gas to be dissolved in the cleaning liquid at a pressure higher than the environmental pressure at the time of cleaning the object to be cleaned. Dissolve the gas in a saturated state and supply the cleaning solution in which the gas is dissolved in a saturated state to bring the dissolved gas into a supersaturated state, and apply ultrasonic vibration to the cleaning solution in which the gas is dissolved in the supersaturated state. The surface to be cleaned is cleaned with a cleaning liquid while promoting the generation of bubbles.

本発明に係る洗浄装置は、被洗浄物の洗浄時の環境圧力よりも高い圧力で加圧して飽和状態までガスを溶解した洗浄液容器と、洗浄液容器からのガス飽和洗浄液を、環境圧力下に配置した被洗浄物に供給する供給手段と、超音波発振子とを備え、ガス飽和洗浄液を、被洗浄物上でガス過飽和状態にし、ガス過飽和状態の洗浄液に超音波発振子からの超音波を付与して、気泡の発生を促進させながら、洗浄液にて被洗浄物の被処理面を洗浄するようにして成ることを特徴とする。   The cleaning apparatus according to the present invention includes a cleaning liquid container in which gas is dissolved to a saturated state by pressurization at a pressure higher than the environmental pressure at the time of cleaning an object to be cleaned, and a gas saturated cleaning liquid from the cleaning liquid container is placed under environmental pressure. Supply means for supplying to the object to be cleaned and an ultrasonic oscillator, gas saturated cleaning liquid is brought into a gas supersaturated state on the object to be cleaned, and ultrasonic waves from the ultrasonic oscillator are applied to the gas supersaturated cleaning liquid. The surface to be cleaned of the object to be cleaned is cleaned with the cleaning liquid while promoting the generation of bubbles.

洗浄時の環境圧力としては、大気圧が好ましい。洗浄液としては、アルカリ性洗浄液を用いるのが好ましい。また微細パターンダメージを発生せずに基板エッチングを行うという観点からであればフッ酸などの酸性洗浄液でも良い。   As the environmental pressure during cleaning, atmospheric pressure is preferable. As the cleaning liquid, an alkaline cleaning liquid is preferably used. From the viewpoint of performing substrate etching without generating fine pattern damage, an acidic cleaning solution such as hydrofluoric acid may be used.

本発明の洗浄方法では、洗浄液中のガスを高い圧力下で飽和状態とし、この洗浄液をこれよりも低い圧力下に供給することにより、洗浄液中のガスが過飽和状態になり気泡が発生しやすい状態にした後、超音波振動を付与する。このとき、洗浄液の一部あるいは全面に均一な強度の超音波を照射することが出来る発振子を用いる事により粒径が揃った多くの気泡が発生し、それらのバブルが消滅する際に発生する衝撃波による音圧はパーティクル除去閾値とパターン破壊閾値との間の最適値に収まる。この効果により、微細パターンを破壊することなく被洗浄物上のパーティクルが除去され洗浄される。   In the cleaning method of the present invention, the gas in the cleaning liquid is saturated under high pressure, and the cleaning liquid is supplied under a lower pressure so that the gas in the cleaning liquid becomes supersaturated and bubbles are easily generated. Then, ultrasonic vibration is applied. At this time, by using an oscillator that can irradiate ultrasonic waves with uniform intensity to a part or the entire surface of the cleaning liquid, many bubbles having a uniform particle size are generated, and these bubbles are generated when these bubbles disappear. The sound pressure due to the shock wave falls within an optimum value between the particle removal threshold and the pattern destruction threshold. By this effect, particles on the object to be cleaned are removed and cleaned without destroying the fine pattern.

本発明の洗浄装置によれば、洗浄時の環境圧力より高い圧力下でガス飽和された洗浄液を、洗浄液溶液供給手段を介して環境圧力下に配置した被洗浄物に供給し、洗浄液中のガスを過飽和状態にして気泡が発生しやすい状態にした後、超音波振動を付与することにより、洗浄液中に粒径の揃った気泡が多く発生し、微細パターンを破壊することなく安定した被洗浄物上のパーティクルの除去、洗浄が行える。   According to the cleaning apparatus of the present invention, the cleaning liquid gas-saturated at a pressure higher than the environmental pressure at the time of cleaning is supplied to the object to be cleaned disposed under the environmental pressure via the cleaning liquid solution supply means, and the gas in the cleaning liquid After supersaturated with a condition that bubbles are likely to be generated, by applying ultrasonic vibration, many bubbles with uniform particle sizes are generated in the cleaning liquid, and the object to be cleaned is stable without destroying the fine pattern. The top particles can be removed and cleaned.

本発明によれば、洗浄液にガス過飽和溶液を使用することによって従来の方法よりも粒径の揃った気体性キャビテーションバブル(内部にガスを多く含む気泡)を多く発生することが可能とるため、キャビテーションに起因する衝撃波が洗浄液中を均一かつ最適な強度で伝わる。このため、安定した洗浄効果と微細パターンの非破壊洗浄が可能となる。
つまり、本発明は被洗浄物の洗浄において、微細パターンの非破壊とパーティクル除去効率の向上を図った洗浄方法及び洗浄装置を提供するものである。
According to the present invention, by using a gas supersaturated solution as the cleaning liquid, it is possible to generate a large number of gaseous cavitation bubbles (bubbles containing a large amount of gas inside) having a uniform particle size as compared with the conventional method. The shock wave caused by is transmitted uniformly and optimally in the cleaning liquid. For this reason, a stable cleaning effect and non-destructive cleaning of a fine pattern are possible.
In other words, the present invention provides a cleaning method and a cleaning apparatus that achieve non-destructive fine patterns and improved particle removal efficiency in cleaning an object to be cleaned.

また、洗浄液にアルカリ性薬液を用いた場合、ウェハに付着しているパーティクルはキャビテーションによって発生したバブルに取り込まれ、表面から剥離され薬液中に遊離するため、被洗浄物の洗浄面に再付着することなく装置外に洗浄液と共に排出されていく。このため、更なる洗浄効果を得ることができる。   In addition, when an alkaline chemical is used as the cleaning liquid, particles adhering to the wafer are taken into bubbles generated by cavitation, peeled off from the surface, and released into the chemical, so that they reattach to the surface to be cleaned. It is discharged together with the cleaning solution. For this reason, the further cleaning effect can be acquired.

本発明の実施の形態に係る洗浄方法の原理を説明する。本実施の洗浄方法では、洗浄液を加圧容器の中に封入し溶解ガス(例えばN、CO、Ar、He、O、Hなど)を被洗浄物の洗浄時の環境圧力下、例えば、大気圧下にある半導体基板処理チャンバーよりも高い気圧で加圧する。その高圧下の状態でガスを洗浄液に十分溶解させることにより飽和溶解状態とした洗浄液を、前記圧力よりも低い圧力である大気圧下に供給すると、溶解されたガスは洗浄液に対し過飽和状態になり、ガスで内部が満たされた気体性バブルが発生しやすい状態となる。このような状態の洗浄液では気体性バブルを発生させるのに必要なエネルギー閾値が非常に低くなっている。このため上記状態の洗浄液に超音波を与えると、ガスが過飽和状態で溶解している洗浄液中で気泡が発生し易くなる。
これにより、蒸気性キャビテーションバブルを発生させるような強いエネルギーが与えられずとも、少しの衝撃で均一な径の気体性バブルが非常に多く発生するようになる。
The principle of the cleaning method according to the embodiment of the present invention will be described. In the cleaning method of the present embodiment, the cleaning liquid is sealed in a pressurized container, and dissolved gas (for example, N 2 , CO 2 , Ar, He, O 2 , H 2, etc.) is placed under the environmental pressure when cleaning the object to be cleaned. For example, pressurization is performed at a higher pressure than the semiconductor substrate processing chamber under atmospheric pressure. If a cleaning liquid that has been saturated and dissolved by sufficiently dissolving the gas in the cleaning liquid under the high pressure is supplied under atmospheric pressure, which is lower than the above pressure, the dissolved gas becomes supersaturated with respect to the cleaning liquid. In this state, a gaseous bubble whose inside is filled with gas is likely to be generated. In the cleaning liquid in such a state, an energy threshold necessary for generating a gaseous bubble is very low. For this reason, when an ultrasonic wave is applied to the cleaning liquid in the above state, bubbles are easily generated in the cleaning liquid in which the gas is dissolved in a supersaturated state.
Thereby, even if strong energy that generates a vapor cavitation bubble is not given, a very large number of gas bubbles having a uniform diameter are generated with a slight impact.

図2に常圧下においてNを飽和させた純水に超音波振動を加えたものと、5気圧で同ガスを飽和した純水を常圧下に供給してガス過飽和状態にしたものに超音波振動を加えた物の各々に発生したバブル径とその頻度を測定したデータを示す。グラフは横軸にバブル径、縦軸にバブルの発生頻度(発生数)を示している。図2中の曲線Iはガス過飽和状態、曲線IIはガス飽和状態である。5気圧で加圧したガス過飽和の純水のほうがバブル粒径のばらつきが少なく、狭い粒径範囲に多くのバブルが発生していることが分かる。 In FIG. 2, ultrasonic waves were applied to pure water saturated with N 2 under normal pressure and to a gas supersaturated state by supplying pure water saturated with the same gas at 5 atm under normal pressure. The data which measured the bubble diameter and the frequency which generate | occur | produced in each thing which added the vibration are shown. The graph shows the bubble diameter on the horizontal axis and the frequency (number of occurrences) of bubbles on the vertical axis. Curve I in FIG. 2 is a gas supersaturated state, and curve II is a gas saturated state. It can be seen that the gas supersaturated pure water pressurized at 5 atm has less variation in bubble particle size, and more bubbles are generated in a narrow particle size range.

このように、高圧下で洗浄液中にガスを過飽和させ、常圧下に供給するという工程を経ることによって、従来よりも粒径のそろった気体性バブルを発生させることができるという制御を得る。この方法により洗浄液中に強い衝撃波が発生しても、多くの均一な径の気体性バブルが衝撃波を均等に分散して、液中に伝える特徴を持つ。   In this way, by passing the process of supersaturating the gas in the cleaning liquid under high pressure and supplying it under normal pressure, it is possible to obtain a control that gas bubbles having a uniform particle size can be generated compared to the conventional method. Even if a strong shock wave is generated in the cleaning liquid by this method, many uniform-sized gas bubbles have characteristics that the shock wave is evenly dispersed and transmitted to the liquid.

なお、この発生した多くの気体性バブルのバブル粒径が均一になる傾向は、ガスが洗浄液中に多く溶解して、かつ過飽和時の圧力と被洗浄物(例えば半導体基板)洗浄時の圧力差が大きい程高くなる。したがって、常圧で飽和し真空状態で処理を行っても、差圧は1気圧であるために効果はそれほど高くならないが、差圧が1気圧でも、過飽和時の圧力を2気圧とし、1気圧で処理を行えば、溶解ガスによる発泡の効果は前述の条件よりも高くなる。大気圧でガスを飽和するよりも2気圧でガスを飽和したほうが、溶解度は高くなるからである。また、5気圧から1気圧の差圧4気圧であれば更なる効果が得られる。   The tendency that the bubble diameter of many of the generated gas bubbles becomes uniform is that a large amount of gas dissolves in the cleaning liquid, and the pressure difference between the supersaturated pressure and the cleaning object (for example, semiconductor substrate) is cleaned. The higher the value, the higher. Therefore, even if processing is performed at a normal pressure and in a vacuum state, the effect is not so high because the differential pressure is 1 atm. However, even if the differential pressure is 1 atm, the pressure at the time of supersaturation is 2 atm and 1 atm. If the treatment is performed, the effect of foaming by the dissolved gas becomes higher than the above-mentioned conditions. This is because the solubility is higher when the gas is saturated at 2 atmospheres than when the gas is saturated at atmospheric pressure. Further effects can be obtained if the differential pressure is 4 atm from 5 atm to 1 atm.

ところで、アルカリ性の半導体洗浄薬液(例えば非常に多く使用されている過酸化水素水−アンモニア水からなるSC−1など)を用いてパーティクル除去洗浄を行う理由はゼータ電位の観点からである。半導体基板の材料に代表されるシリコンは酸性、アルカリ性のどちらの薬液に浸漬した場合でも常に負である。ところが、前記基板に付着している多くのパーティクルは、洗浄薬液が酸性であった場合は正に帯電し、半導体基板の電位とは反対になるので、除去されても再付着しやすくなってしまう。逆に、アルカリ性では前記基板と同じ負となるので、除去されやすくなり、再付着も起こりにくい。   By the way, the reason for performing the particle removal cleaning using an alkaline semiconductor cleaning chemical (for example, SC-1 made of hydrogen peroxide-ammonia water, which is used very often) is from the viewpoint of zeta potential. Silicon typified by a semiconductor substrate material is always negative even when immersed in either acidic or alkaline chemicals. However, many particles adhering to the substrate are positively charged when the cleaning chemical is acidic and are opposite to the potential of the semiconductor substrate. . On the contrary, since it becomes the same negative as the said board | substrate with alkalinity, it becomes easy to remove and reattachment does not occur easily.

ここで、アルカリ性薬液中に発生したバブル(キャビテーションやガス起因など発生方法は問わない)は正に帯電することが知られている。すなわち前記バブルは半導体基板や除去されるべきパーティクルと異なる電位であるので、基板表面近傍で発生したバブルについては前記基板の洗浄面に引き寄せられ、また、基板に付着しているパーティクルを取り込みやすくなる。また先述した発生状態とは別に、ウェハ表面に供給されたガス過飽和液体中においてバブルは液中に存在する付着パーティクルによる起伏があると、その部分を核にバブルが発生しやすくなる。従って、この部分で発生したバブルはパーティクルを取り込みながら成長しパーティクルを包み込む。先述した状況によってパーティクルを取り込んだバブルは、表面から剥離され薬液中に遊離するため、被洗浄物の洗浄面に再付着することなく装置外に洗浄液と共に排出されていく。このため、洗浄液にアルカリ溶液を用いることで、更なる洗浄効果が得られる。   Here, it is known that bubbles generated in an alkaline chemical solution (regardless of generation method such as cavitation or gas) are positively charged. That is, since the bubble has a potential different from that of the semiconductor substrate and the particles to be removed, bubbles generated in the vicinity of the substrate surface are attracted to the cleaning surface of the substrate, and particles adhering to the substrate are easily captured. . In addition to the occurrence state described above, if bubbles are undulated by the adhering particles existing in the liquid in the gas supersaturated liquid supplied to the wafer surface, bubbles are likely to be generated with the portion as a nucleus. Therefore, the bubble generated in this portion grows while enclosing the particle and envelops the particle. Bubbles that have taken in particles according to the above-described situation are peeled off from the surface and released into the chemical solution, so that they are discharged out of the apparatus together with the cleaning solution without reattaching to the cleaning surface of the object to be cleaned. For this reason, the further washing | cleaning effect is acquired by using an alkaline solution for a washing | cleaning liquid.

以上のように、多くの径のそろった気体性バブルは、キャビテーションによる微細パターンを破壊してしまうような衝撃波を均等に分散することができることに加え、洗浄液がアルカリ性薬液であることによって、気体性バブル自体がパーティクルをうまく取り込むことが出来る。   As described above, a large number of gas bubbles having a uniform diameter can uniformly disperse a shock wave that destroys a fine pattern caused by cavitation, and the cleaning liquid is an alkaline chemical liquid. The bubble itself can capture particles well.

従来においては、キャビテーションバブルが圧壊(消滅)するときに発生する衝撃波がパーティクルの除去に大きく寄与していたが、本発明の洗浄方法においては、先述の原理に加え超音波照射によって多く発生した気体性バブルがパーティクルを取り込み、除去を行う効果を合わせることで洗浄効果をさらに高めている。また、洗浄液中にバブルが多く発生していると超音波振動は減衰される、と先述したが、その減衰が問題となるのは、キャビテーションなどを発生させる時などに大きなエネルギーを印加する必要があるからである。しかし、本実施の形態に係る洗浄方法では、ガス過飽和状態の薬液を使用するために、弱いエネルギー照射でも多くのバブルが発生する。更に超音波発振子と洗浄基板との距離を小さくする事が可能な枚葉洗浄機を使用すれば、超音波振動の減衰によるパーティクル除去効果への影響はほとんど無い。   In the past, the shock wave generated when the cavitation bubble collapses (disappears) greatly contributes to the removal of particles. However, in the cleaning method of the present invention, in addition to the principle described above, a large amount of gas generated by ultrasonic irradiation The cleaning effect is further enhanced by combining the effects of the bubble taking in and removing particles. In addition, as described above, ultrasonic vibration is attenuated when a large number of bubbles are generated in the cleaning liquid, but the attenuation is a problem because it is necessary to apply a large amount of energy when generating cavitation or the like. Because there is. However, since the cleaning method according to the present embodiment uses a gas supersaturated chemical solution, many bubbles are generated even with weak energy irradiation. Further, if a single wafer cleaning machine capable of reducing the distance between the ultrasonic oscillator and the cleaning substrate is used, there is almost no influence on the particle removal effect due to attenuation of the ultrasonic vibration.

一方、本実施の形態の洗浄装置は、洗浄液中のキャビテーション起因によるバブル、ガス起因によるバブルの両方のバブルを積極的に利用して行う洗浄装置である。よって、超音波が洗浄液中で減衰しにくくするため、枚様式の洗浄装置でかつ超音波発振子と被洗浄物の距離が短い装置構造であることが好ましい。   On the other hand, the cleaning apparatus of the present embodiment is a cleaning apparatus that actively uses both bubbles caused by cavitation and bubbles caused by gas in the cleaning liquid. Therefore, in order to make it difficult for the ultrasonic wave to attenuate in the cleaning liquid, it is preferable to have a sheet-type cleaning device and a device structure in which the distance between the ultrasonic oscillator and the object to be cleaned is short.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明に係る洗浄方法に適用される洗浄装置の一実施の形態を示す。この洗浄装置は半導体基板やマスクなどの洗浄に用いられるものであるが、本実施の形態では被洗浄物に半導体基板を適用した場合とする。   FIG. 1 shows an embodiment of a cleaning apparatus applied to the cleaning method according to the present invention. Although this cleaning apparatus is used for cleaning a semiconductor substrate, a mask, and the like, in this embodiment, it is assumed that the semiconductor substrate is applied to an object to be cleaned.

本実施の形態に係る洗浄装置1は、洗浄すべき半導体基板2を載置保持する保持手段3と、圧力下でガスを溶解させた洗浄液4〔4a,4b〕を収容した加圧タンク5、6と、加圧タンク5、6内のガス溶解洗浄液を半導体基板2の表面に供給するための洗浄液の供給手段10と、半導体基板2の表面に供給された洗浄液に超音波を振動させるための超音波振動子9とを備えて成る。   The cleaning apparatus 1 according to the present embodiment includes a holding unit 3 for mounting and holding a semiconductor substrate 2 to be cleaned, and a pressurized tank 5 containing a cleaning solution 4 [4a, 4b] in which a gas is dissolved under pressure, 6, cleaning liquid supply means 10 for supplying the gas-dissolved cleaning liquid in the pressurized tanks 5, 6 to the surface of the semiconductor substrate 2, and ultrasonic waves to vibrate the cleaning liquid supplied to the surface of the semiconductor substrate 2. And an ultrasonic transducer 9.

洗浄液の供給手段10は、加圧タンク5、6内のガス溶解洗浄液を半導体基板2まで送る配管7と、配管7の先端にあってガス溶解洗浄液を表面に供給するための供給ノズル8とを有して構成される。   The cleaning liquid supply means 10 includes a pipe 7 for sending the gas-dissolved cleaning liquid in the pressurized tanks 5 and 6 to the semiconductor substrate 2 and a supply nozzle 8 at the tip of the pipe 7 for supplying the gas-dissolved cleaning liquid to the surface. It is configured.

本例では、加圧タンク5内に洗浄液4としてリンス用の純水洗浄液4aが収容され、加圧タンク6に洗浄液4として薬液4bが収容される。純水加圧タンク5からは純水用配管11が導出され、薬液加圧タンク6からは薬液用配管12が導出される。両配管11及び12は途中で合流され、1本の配管13となって供給ノズル8に連結される。一方、それぞれの加圧タンク5及び6にガスを供給するための配管、いわゆる過飽和ガス配管14が設けられ、この過飽和ガス配管14が分岐され、それぞれの分岐配管14a、14bがそれぞれの加圧タンク5及び6内に挿入配置される。過飽和ガス配管14を通って、大気圧より高い圧力ガスが加圧タンク5、6に供給される。   In this example, a pure water cleaning liquid 4 a for rinsing is stored in the pressurized tank 5 as the cleaning liquid 4, and a chemical liquid 4 b is stored in the pressurized tank 6 as the cleaning liquid 4. A pure water pipe 11 is led out from the pure water pressurization tank 5, and a chemical liquid pipe 12 is led out from the chemical liquid pressurization tank 6. Both pipes 11 and 12 are joined together to form one pipe 13 and connected to the supply nozzle 8. On the other hand, pipes for supplying gas to the respective pressurized tanks 5 and 6, so-called supersaturated gas pipes 14 are provided, the supersaturated gas pipes 14 are branched, and the respective branched pipes 14 a and 14 b are respectively connected to the respective pressurized tanks. 5 and 6 are inserted and arranged. A pressure gas higher than the atmospheric pressure is supplied to the pressurized tanks 5 and 6 through the supersaturated gas pipe 14.

半導体基板2の保持手段3、供給ノズル8及び超音波発振子9の少なくとも発振面は、図示しないが、処理チャンバーの大気雰囲気内に配置される。   Although not shown, at least the oscillation surfaces of the holding means 3, the supply nozzle 8, and the ultrasonic oscillator 9 of the semiconductor substrate 2 are arranged in the atmospheric atmosphere of the processing chamber.

本発明に係るガス過飽和溶液を用いた超音波洗浄装置1は、半導体基板2を取り付ける回転可能なスピンチャック、半導体基板2表面に洗浄液を供給するための洗浄液配管13、半導体基板2表面に供給された洗浄液に超音波を振動させる超音波発振子9、洗浄液に圧力下でガスを溶解させるための加圧タンク5、6、ガスをタンクに供給するための過飽和ガス配管14から構成される。   An ultrasonic cleaning apparatus 1 using a gas supersaturated solution according to the present invention is supplied to a rotatable spin chuck to which a semiconductor substrate 2 is attached, a cleaning liquid pipe 13 for supplying a cleaning liquid to the surface of the semiconductor substrate 2, and a surface of the semiconductor substrate 2. The ultrasonic oscillator 9 for vibrating the cleaning liquid with ultrasonic waves, the pressurized tanks 5 and 6 for dissolving the gas under pressure in the cleaning liquid, and the supersaturated gas pipe 14 for supplying the gas to the tank.

半導体基板2の保持手段3は、いわゆるスピンチャックで構成され、回転軸15を中心に回転可能に配置される。保持手段(以下、スピンチャックという)3は、6本の円柱形状であるピン17を有し、被洗浄物である半導体基板2を高速回転させても確実に固定することが出来る構造を備える。尚、このような基板固定構造は公知の技術によるものでもよい。さらに図示はしていないが、スピンチャック3の回転軸15の内部にも薬液配管が備わっており、前記基板の裏面洗浄を行うことも可能であり、かつ、チャックを回転させるためのモーター駆動部との連結構造を備える。   The holding means 3 for the semiconductor substrate 2 is constituted by a so-called spin chuck, and is arranged so as to be rotatable around a rotation shaft 15. The holding means (hereinafter referred to as “spin chuck”) 3 has six cylindrical pins 17 and has a structure capable of reliably fixing the semiconductor substrate 2 as an object to be cleaned even if it is rotated at a high speed. Such a substrate fixing structure may be based on a known technique. Further, although not shown, a chemical solution pipe is also provided inside the rotation shaft 15 of the spin chuck 3, and the back surface of the substrate can be cleaned, and a motor drive unit for rotating the chuck Connection structure.

薬液配管12及び、純水配管11が合流された配管13とに連結された供給ノズル8は、半導体基板2の表面付近で、かつ後述する超音波発振子9の可能な限り近くに配置される。図1では薬液配管12と純水配管11が途中で合流して1本になっているが、各々独立していて複数本あってもよい。これらの洗浄液配管13が、加圧タンク5、6においてガスが過飽和された薬液及び純水を、半導体基板表面に供給する。また、薬液にはアルカリ溶液を用いる。   The supply nozzle 8 connected to the chemical liquid pipe 12 and the pipe 13 joined with the pure water pipe 11 is arranged near the surface of the semiconductor substrate 2 and as close as possible to the ultrasonic oscillator 9 described later. . In FIG. 1, the chemical solution pipe 12 and the pure water pipe 11 are joined together to form one, but a plurality of pieces may be provided independently of each other. These cleaning liquid pipes 13 supply a chemical solution and pure water in which gas is supersaturated in the pressurized tanks 5 and 6 to the surface of the semiconductor substrate. An alkaline solution is used as the chemical solution.

供給ノズル8の供給口付近には超音波発振子9が取り付けられており、その発振面はスピンチャック3に取り付けられた半導体基板2と平行である。そして、前述の洗浄液配管13から供給された薬液もしくは純水が表面張力により液膜を形成することが出来るように、半導体基板2と超音波発振子9の距離は極めて近く設置されている。   An ultrasonic oscillator 9 is attached near the supply port of the supply nozzle 8, and its oscillation surface is parallel to the semiconductor substrate 2 attached to the spin chuck 3. The distance between the semiconductor substrate 2 and the ultrasonic oscillator 9 is set very close so that the chemical liquid or pure water supplied from the cleaning liquid pipe 13 can form a liquid film by surface tension.

また、供給ノズル8と超音波発振子9は、半導体基板2の洗浄面上を、その回転中心から円周方向に向かって移動できる機構を備えており、半導体基板2の回転動作と合わせて、前記基板表面を全て洗浄できるようになっている。なお、ガスが過飽和された薬液及び純水が流れる配管13には、その内部で気圧低下が発生しバブルが発生するのを防ぐため、可能な限りノズル供給口に近い部分に開閉バルブ16を設け、ガス加圧タンク5、6内部から前記開閉バルブ16までは全て均一な圧力を保つ構造としている。   Further, the supply nozzle 8 and the ultrasonic oscillator 9 are provided with a mechanism capable of moving on the cleaning surface of the semiconductor substrate 2 from the center of rotation toward the circumferential direction. The entire surface of the substrate can be cleaned. In addition, in the pipe 13 through which the chemical solution and the pure water in which the gas is supersaturated flows, an opening / closing valve 16 is provided as close to the nozzle supply port as possible in order to prevent a pressure drop and bubbles from occurring. The gas pressure tanks 5 and 6 to the open / close valve 16 are all configured to maintain a uniform pressure.

また、洗浄液が配管を流れる際、洗浄液の流れ方向を変える場合において急激にその洗浄液の向きを変えるとキャビテーションが発生してしまい、半導体基板の洗浄面に達する前にバブルが大量に発生してしまう。つまり、配管の角部分すなわち折曲部(符号20参照)では、洗浄液の圧力が低下し、それがキャビテーションの原因となる。そこで、洗浄液配管の曲率は可能な限り緩やかな形状としている。すなわち、アールを付けて、緩く曲げられた形状とする。   Also, when the cleaning liquid flows through the pipe, if the direction of the cleaning liquid is changed suddenly, cavitation occurs if the direction of the cleaning liquid is suddenly changed, and a large amount of bubbles are generated before reaching the cleaning surface of the semiconductor substrate. . That is, at the corner portion of the pipe, that is, the bent portion (see reference numeral 20), the pressure of the cleaning liquid is reduced, which causes cavitation. Therefore, the curvature of the cleaning liquid piping is made as gentle as possible. That is, a rounded shape is used to form a loosely bent shape.

加圧タンク5、6に導入した純水配管11、薬液配管12はタンク下方まで延びており、内部の薬液もしくは純水を全て取り出すことができる構造としている。また過飽和ガス配管14は加圧タンク上部の壁面付近でカットされている。加圧タンク5、6の過飽和ガス配管14の一次側には加圧ガス圧力調整用のレギュレーター21とガス洗浄用のフィルター22が備えられている。この加圧タンク5、6においてガスが過飽和された洗浄液が、半導体基板2に供給される。   The pure water pipe 11 and the chemical liquid pipe 12 introduced into the pressurized tanks 5 and 6 extend to the lower part of the tank, and have a structure in which all the chemical liquid or pure water inside can be taken out. The supersaturated gas pipe 14 is cut near the wall surface at the top of the pressurized tank. A primary side of the supersaturated gas pipe 14 of the pressurized tanks 5 and 6 is provided with a regulator 21 for adjusting the pressurized gas pressure and a filter 22 for gas cleaning. A cleaning liquid whose gas is supersaturated in the pressurized tanks 5 and 6 is supplied to the semiconductor substrate 2.

次に、図1の洗浄装置1を用いて、半導体基板2を実際に洗浄する洗浄方法を、動作手準と共に示す。まず、夫々の加圧タンク5、6にアルカリ性の洗浄薬液と純水を供給し、圧力が大気圧よりも高い高圧ガスによって、飽和状態にする。なお、このときに使用するガスはN、CO、Ar、He、O、Hなどである。 Next, a cleaning method for actually cleaning the semiconductor substrate 2 using the cleaning apparatus 1 of FIG. First, alkaline cleaning chemicals and pure water are supplied to the pressurized tanks 5 and 6, respectively, and saturated with high pressure gas whose pressure is higher than atmospheric pressure. The gas used at this time is N 2 , CO 2 , Ar, He, O 2 , H 2 or the like.

一方、半導体基板2を内部が大気圧に維持された処理チャンバ(図示せず)にロードし、図1に示すスピンチャック3に固定する。そして基板回転数を所望の値まで徐々に増していくが、先述したように、半導体基板2の洗浄面と超音波発振子9とが形成するわずかな空隙の間に薬液を供給し、その表面張力による液膜を媒体として超音波振動を伝え洗浄を行ため、前記の液膜が張り切れてしまうような高速回転は出来ない。そのため、回転数は10[rpm]〜500[rpm]が好ましい。   On the other hand, the semiconductor substrate 2 is loaded into a processing chamber (not shown) whose inside is maintained at atmospheric pressure, and fixed to the spin chuck 3 shown in FIG. Then, the number of rotations of the substrate is gradually increased to a desired value. As described above, the chemical solution is supplied between the slight gap formed by the cleaning surface of the semiconductor substrate 2 and the ultrasonic oscillator 9, and the surface Since cleaning is performed by transmitting ultrasonic vibration using a liquid film due to tension as a medium, the liquid film cannot be rotated at a high speed so that the liquid film is stretched. Therefore, the rotation speed is preferably 10 [rpm] to 500 [rpm].

次に、超音波発振子9と薬液配管12を半導体基板2の洗浄面に移動する。そして、薬液を供給すると同時に超音波発振子9に超音波を加え洗浄を開始する。このときに、必要に応じて前記発振子9と薬液ノズル8を基板洗浄面内で連動させながら、かつ前記基板の回転中心から円周方向に向かって移動(往復運動)させる。   Next, the ultrasonic oscillator 9 and the chemical solution pipe 12 are moved to the cleaning surface of the semiconductor substrate 2. Then, at the same time as supplying the chemical solution, ultrasonic waves are applied to the ultrasonic oscillator 9 to start cleaning. At this time, if necessary, the oscillator 9 and the chemical nozzle 8 are moved (reciprocated) from the center of rotation of the substrate in the circumferential direction while interlocking within the substrate cleaning surface.

洗浄液配管13の先端のノズル8から、大気圧中の半導体基板2の表面に供給されたガス飽和洗浄液は、大気圧との圧力差によりガス過飽和状態となり、気泡が発生し、同時に超音波発振子9からの超音波により、粒径の揃った多数の気泡が発生する。半導体基板表面のパーティクルは、この気泡に取り込まれるようにして基板表面から除去され排出される。粒径の揃った多数の気泡が発生するため、キャビテーションに起因する衝撃波が薬液中を均一な強度でつたわり、微細パターンを破壊することなく、洗浄が行われる。   The gas saturated cleaning liquid supplied from the nozzle 8 at the tip of the cleaning liquid pipe 13 to the surface of the semiconductor substrate 2 under atmospheric pressure becomes in a gas supersaturated state due to a pressure difference from the atmospheric pressure, bubbles are generated, and at the same time, an ultrasonic oscillator The ultrasonic waves from 9 generate a large number of bubbles having a uniform particle diameter. Particles on the surface of the semiconductor substrate are removed and discharged from the surface of the substrate so as to be taken in by the bubbles. Since a large number of bubbles having a uniform particle size are generated, a shock wave caused by cavitation passes through the chemical solution with uniform strength, and cleaning is performed without destroying the fine pattern.

洗浄終了後、純水リンスを行う。この工程に使用する純水はガス加圧した純水であっても、そうでなくてもよい。本例ではガス加圧した純水を用いており、薬液洗浄と同様の作用によって良好なリンス処理が行われる。また、この工程で発振子に付着した薬液成分も十分に洗い流す作業も含む。   After cleaning, rinse with pure water. The pure water used in this step may or may not be gas-pressurized pure water. In this example, pure water pressurized with gas is used, and a good rinsing process is performed by the same action as chemical cleaning. Moreover, the chemical | medical solution component adhering to an oscillator at this process is also included in the operation | work washed away sufficiently.

リンス終了後、ノズル8及び超音波発振子9を半導体基板2の洗浄面より退避し、半導体基板2を乾燥させる。その後、半導体基板2をアンロードする。以上の手順により、半導体基板2のパーティクルが除去される。   After rinsing is completed, the nozzle 8 and the ultrasonic oscillator 9 are retracted from the cleaning surface of the semiconductor substrate 2 and the semiconductor substrate 2 is dried. Thereafter, the semiconductor substrate 2 is unloaded. Through the above procedure, particles on the semiconductor substrate 2 are removed.

次に、本発明に係る他の実施の形態(変化例)について説明する。   Next, another embodiment (variation example) according to the present invention will be described.

〔変化例1〕
図3に示すように、超音波発振子9は洗浄液配管13を備えた形状でもよい。図3に、発振子9と半導体基板2との位置関係、及び半導体基板2を例えば時計回りaに回転させた場合の薬液の流れを示す。図3に図示するように半導体基板2を回転させ、超音波発振子9を前記基板2の洗浄面上部の非常に近い場所に位置させた後に、洗浄液を供給する。薬液の供給量が適量であると、図4の発振子9下部の斜線で示した付近に大気圧よりも気圧の低い負圧領域26が生じる。本発明は、ガスを高圧で飽和させた状態で薬液を気圧の低い部分に供給することで過飽和状態とし、気泡の発生を促進する方法であるために負圧を生じさせることは好ましい。
[Variation 1]
As shown in FIG. 3, the ultrasonic oscillator 9 may have a shape including a cleaning liquid pipe 13. FIG. 3 shows the positional relationship between the oscillator 9 and the semiconductor substrate 2 and the flow of the chemical solution when the semiconductor substrate 2 is rotated clockwise, for example, a. As shown in FIG. 3, the semiconductor substrate 2 is rotated and the ultrasonic oscillator 9 is positioned at a position very close to the upper portion of the cleaning surface of the substrate 2, and then the cleaning liquid is supplied. If the supply amount of the chemical solution is an appropriate amount, a negative pressure region 26 having an atmospheric pressure lower than the atmospheric pressure is generated in the vicinity of the lower portion of the oscillator 9 shown in FIG. Since the present invention is a method in which a chemical solution is supplied to a low pressure portion in a state in which the gas is saturated at a high pressure so as to be in a supersaturated state and promote the generation of bubbles, it is preferable to generate a negative pressure.

ここで、斜線部分に負圧領域26を生じる理由を示す。洗浄液などの液体は粘性を持つ。このため、洗浄液は半導体基板2の動き(回転)aに追従し、b方向(洗浄液の流れ方向)に移動を開始する。このとき、半導体基板2と発振子下部24との空隙25が非常に狭いため薬液などの液体がもつ表面張力によって液膜が非常に切れにくい状態となる。これによって、負圧領域26を生じるのである。   Here, the reason why the negative pressure region 26 is generated in the hatched portion will be described. Liquids such as cleaning liquid are viscous. For this reason, the cleaning liquid follows the movement (rotation) a of the semiconductor substrate 2 and starts moving in the b direction (the flow direction of the cleaning liquid). At this time, since the gap 25 between the semiconductor substrate 2 and the oscillator lower portion 24 is very narrow, the liquid film is very difficult to break due to the surface tension of the liquid such as a chemical solution. As a result, the negative pressure region 26 is generated.

また、薬液の供給量が多すぎてしまうと斜線部分26は負圧にならず、ガスを大気圧に対して過飽和にする利点が無くなってしまう。以上のことから、例えば、直径2cmの超音波発振子9をと半導体基板2との間隙25を2mmとした場合、前記基板2の回転数は10〜500回転/分、薬液の供給量は30cc〜1500cc/分程度が好ましい。   Further, if the supply amount of the chemical solution is too large, the shaded portion 26 does not become negative pressure, and the advantage of supersaturating the gas with respect to atmospheric pressure is lost. From the above, for example, when the gap 25 between the ultrasonic oscillator 9 having a diameter of 2 cm and the semiconductor substrate 2 is 2 mm, the rotation speed of the substrate 2 is 10 to 500 rotations / minute, and the supply amount of the chemical solution is 30 cc. About ˜1500 cc / min is preferable.

本発明に係る洗浄薬液を用いて、図4に示す洗浄方法を実施する場合、洗浄薬液が振動子内部で超音波印加されるのを防ぐために、図4で示したように超音波振動し内部に設けられている薬液配管13と発振子部材9との間に超音波吸収構造13aを備える必要がある。また、前記発振子部材9の内部で配管形状により薬液の流れ方向を変える場合、急激に薬液の向きを変えるとキャビテーションが発生してしまい、半導体基板2の洗浄面に達する前に薬液に気泡が大量に発生してしまう。そこで、配管の曲率は可能な限り緩やかな形状とすることが必要である。   When performing the cleaning method shown in FIG. 4 using the cleaning chemical solution according to the present invention, in order to prevent the cleaning chemical solution from being ultrasonically applied inside the vibrator, the ultrasonic vibration is performed as shown in FIG. It is necessary to provide the ultrasonic absorption structure 13 a between the chemical liquid pipe 13 provided in the oscillating member and the oscillator member 9. Further, when the flow direction of the chemical solution is changed depending on the pipe shape inside the oscillator member 9, cavitation occurs if the direction of the chemical solution is suddenly changed, and bubbles are generated in the chemical solution before reaching the cleaning surface of the semiconductor substrate 2. It occurs in large quantities. Therefore, the curvature of the piping needs to be as gentle as possible.

〔変化例2〕
超音波が、半導体基板2の裏面から照射される方法を用いてもよい。本例では、図5に示すように、超音波発振子9を内蔵したスピンチャック3を設け、このスピンチャック3に保持した半導体基板2の裏面に超音波発振子9が対接するようになす。そのとき、半導体基板2表面(洗浄面)にガス過飽和薬液が供給され、超音波は半導体基板を介して前記薬液に振動を与える。これによって、洗浄液の液膜29中に、気泡28が発生する。
[Modification 2]
A method in which ultrasonic waves are irradiated from the back surface of the semiconductor substrate 2 may be used. In this example, as shown in FIG. 5, a spin chuck 3 incorporating an ultrasonic oscillator 9 is provided, and the ultrasonic oscillator 9 is in contact with the back surface of the semiconductor substrate 2 held by the spin chuck 3. At that time, a gas supersaturated chemical solution is supplied to the surface (cleaning surface) of the semiconductor substrate 2, and the ultrasonic waves vibrate the chemical solution through the semiconductor substrate. As a result, bubbles 28 are generated in the liquid film 29 of the cleaning liquid.

〔変化例3〕
超音波が、半導体基板の裏面から照射される方法の別の方法として、半導体基板の裏面に近接してある超音波発振子より、半導体基板の裏面に接する液体に超音波振動を付与する方法(図示せず)もある。ここで、裏面に接する液体とは、洗浄液、リンス液、又は、純水等の液体である。半導体基板の裏面に接する液体に超音波振動を付与することによって、その液体が媒体となり、超音波振動を半導体基板に伝える。そして、更に半導体基板を介しての被処理面に接するガス過飽和洗浄液に超音波振動が加わり、前記洗浄液に気泡が発生する。
[Variation 3]
As another method of irradiating ultrasonic waves from the back surface of the semiconductor substrate, a method of applying ultrasonic vibration to the liquid in contact with the back surface of the semiconductor substrate from an ultrasonic oscillator close to the back surface of the semiconductor substrate ( (Not shown). Here, the liquid in contact with the back surface is a liquid such as a cleaning liquid, a rinsing liquid, or pure water. By applying ultrasonic vibration to the liquid in contact with the back surface of the semiconductor substrate, the liquid becomes a medium and transmits the ultrasonic vibration to the semiconductor substrate. Further, ultrasonic vibration is applied to the gas supersaturated cleaning liquid in contact with the surface to be processed through the semiconductor substrate, and bubbles are generated in the cleaning liquid.

〔変化例4〕
また、超音波ノズル31に、本発明に係わるガス過飽和薬液4を使用してもよい(図6) 本実施の形態例では、図6に示すように、洗浄配管13の先端に、超音波ノズル31を連結し、その超音波ノズル31のノズル口を半導体基板2の表面に対向させる。超音波ノズル31は、ノズル内部の上部に超音波振動子9を備えた構成を有する。洗浄時には、ノズル内に洗浄液が導入され、ノズル口より洗浄液が半導体基板表面に供給されるとき、超音波振動子9からの超音波振動32がノズル内部の洗浄液4を伝播して半導体基板表面に供給された洗浄液中に気泡が発生するようになされる。
[Variation 4]
Moreover, you may use the gas supersaturated chemical | medical solution 4 concerning this invention for the ultrasonic nozzle 31 (FIG. 6). In this embodiment, as shown in FIG. 31 are connected, and the nozzle opening of the ultrasonic nozzle 31 is opposed to the surface of the semiconductor substrate 2. The ultrasonic nozzle 31 has a configuration in which an ultrasonic transducer 9 is provided in the upper part inside the nozzle. At the time of cleaning, when the cleaning liquid is introduced into the nozzle and the cleaning liquid is supplied from the nozzle port to the surface of the semiconductor substrate, the ultrasonic vibration 32 from the ultrasonic vibrator 9 propagates through the cleaning liquid 4 inside the nozzle to the surface of the semiconductor substrate. Bubbles are generated in the supplied cleaning liquid.

〔変化例5〕
図示はしないが、半導体基板の被処理面の上側から、被処理面に接する洗浄液に超音波振動を付与する方法と、半導体基板の裏面から超音波を照射し、被処理面に接する洗浄液に超音波振動を付与する方法を、同時に行うような構成であっても良い。例えば、本実施の形態、変化例1、変化例4に記載のいずれかと、変化例2、変化例3に記載のいずれかの方法を任意で組み合わせることによって、そのような、両方から同時に超音波振動を付与する構成にすることができる。
[Variation 5]
Although not shown, a method of applying ultrasonic vibration to the cleaning liquid in contact with the surface to be processed from the upper side of the surface to be processed of the semiconductor substrate, and an ultrasonic wave from the back surface of the semiconductor substrate to irradiate the cleaning liquid in contact with the surface to be processed. The method of applying the sonic vibration may be performed simultaneously. For example, by combining any of the methods described in the present embodiment, Modification Example 1 and Modification Example 4 with any of the methods described in Modification Example 2 and Modification Example 3, ultrasonic waves from both of them can be used simultaneously. It can be configured to impart vibration.

〔変化例6〕
図7に示すように、ガス加圧タンク内部5、6に備えられる過飽和用ガス配管6のガス供給口は、加圧される液体の内部にあっても良い(バブリング構造)。また、ガス供給口の先端を複数本に分散させる、あるいは多孔質状の部材、いわゆるボールフィルタ34を取り付けることにより、より細かい泡を液体内に供給しても良い。
[Modification 6]
As shown in FIG. 7, the gas supply port of the gas pipe 6 for supersaturation provided in the gas pressurization tank interiors 5 and 6 may be inside the liquid to be pressurized (a bubbling structure). Further, finer bubbles may be supplied into the liquid by dispersing the tip of the gas supply port into a plurality of pieces or attaching a porous member, so-called ball filter 34.

上述した本実施の形態に係わる洗浄方法及び洗浄装置によれば、洗浄液内にガスを大気圧よりも高い気圧下で飽和させるために、より多くのガスを洗浄液中に溶解することができる。そして、この洗浄液を上記ガス飽和圧力よりも低い圧力の状態、例えば大気圧の状態に供給することにより、より多くの粒径の揃った気体性バブルを発生させることができる。すなわち、従来方法よりもガスを加圧した気圧と、被洗浄物例えば半導体基板の洗浄時に用いる気圧条件との差圧が大きいため、より多くの粒径の揃った気体性バブルを発生させることができる。   According to the cleaning method and the cleaning apparatus according to the present embodiment described above, more gas can be dissolved in the cleaning liquid in order to saturate the gas in the cleaning liquid at a pressure higher than the atmospheric pressure. Then, by supplying the cleaning liquid to a state lower than the gas saturation pressure, for example, an atmospheric pressure state, it is possible to generate more gaseous bubbles having a uniform particle diameter. That is, since the differential pressure between the atmospheric pressure in which the gas is pressurized and the atmospheric pressure condition used when cleaning the object to be cleaned, for example, the semiconductor substrate, is larger than that in the conventional method, more gas bubbles with uniform particle diameters can be generated. it can.

低い圧力状態を大気圧状態とする場合は、被洗浄物を配置する処理チャンバー内を圧力制御する必要がなくなる。洗浄装置の簡素化を図ることができる。   When the low pressure state is changed to the atmospheric pressure state, it is not necessary to control the pressure in the processing chamber in which the object to be cleaned is arranged. The cleaning device can be simplified.

ガス過飽和薬液を使用することにより、従来の方法よりも粒径の揃った気体性バブルを多く発生することが可能となるため、キャビテーションに起因する衝撃波が薬液中を均一な強度で伝わる。このため安定した洗浄効果と微細パターンの非破壊洗浄が可能になる。   By using a gas supersaturated chemical solution, it becomes possible to generate more gas bubbles having a uniform particle size than in the conventional method, so that a shock wave caused by cavitation is transmitted through the chemical solution with uniform strength. Therefore, a stable cleaning effect and non-destructive cleaning of a fine pattern are possible.

洗浄効果が高くなるために、従来よりも低温度あるいは常温、かつ低濃度の薬液を使用することが出来る。このため、例えば温度調節機構が不要になるなど、洗浄装置の簡素化が可能になり、さらに環境負荷も少なくなる。   Since the cleaning effect is enhanced, it is possible to use a chemical solution having a lower temperature or a normal temperature and a lower concentration than conventional ones. For this reason, for example, the temperature adjustment mechanism is not required, and thus the cleaning device can be simplified, and the environmental load is further reduced.

洗浄液にアルカリ性薬液、例えばアンモニアと過酸化水素水の混合液を用いた場合において、被洗浄物である例えば半導体基板飢えに付着しているパーティクルは、アンモニア性薬液により負に帯電することが知られている。また、アルカリ性の薬液中で発生した気泡は正に帯電することが既に検証されている。すなわち、超音波と気泡の効果によって半導体基板から遊離した負の電荷を持つパーティクルは、正の電荷を持つ気泡に取り込まれるため、更なる洗浄効果が得られる。   In the case where an alkaline chemical solution, for example, a mixed solution of ammonia and hydrogen peroxide solution is used as the cleaning liquid, it is known that particles adhering to the object to be cleaned, such as semiconductor substrate starvation, are negatively charged by the ammonia chemical liquid. ing. It has already been verified that bubbles generated in an alkaline chemical solution are positively charged. That is, particles having a negative charge released from the semiconductor substrate due to the effects of ultrasonic waves and bubbles are taken into the bubbles having a positive charge, so that a further cleaning effect can be obtained.

超音波振動を加えることにより、さらに気体性バブルの発生を促進し、洗浄効果を高めることができる。   By applying ultrasonic vibration, it is possible to further promote the generation of gaseous bubbles and enhance the cleaning effect.

超音波発振子と被洗浄物との空隙に洗浄液による液膜を形成し、被洗浄物の動きに伴って洗浄液を所定の流速でガス過飽和洗浄液を供給することにより、液膜中に負圧領域を発生させ、より気体性バブルの発生を促進させることができる。   By forming a liquid film with the cleaning liquid in the gap between the ultrasonic oscillator and the object to be cleaned, and supplying the gas supersaturated cleaning liquid at a predetermined flow rate with the movement of the object to be cleaned, a negative pressure region in the liquid film And the generation of gaseous bubbles can be further promoted.

上例では、被洗浄物の洗浄時の環境圧力下として大気圧を用いたが、その他、大気圧以外の低い圧力、すなわち、加圧タンク5、6内において洗浄液中にガスを飽和状態で溶解する高い圧力よりも低い圧力を用いることもできる。環境圧力として大気圧を用いるときは、処理チャンバーに対する圧力制御手段等が不要となり、洗浄装置の簡素化を図ることができる。   In the above example, atmospheric pressure is used as the environmental pressure for cleaning the object to be cleaned, but other low pressures other than atmospheric pressure, that is, the gas is dissolved in a saturated state in the cleaning liquid in the pressurized tanks 5 and 6. It is also possible to use a lower pressure than a higher pressure. When atmospheric pressure is used as the environmental pressure, no pressure control means for the processing chamber is required, and the cleaning apparatus can be simplified.

気泡を発生しやすい状態にして、気泡中にパーティクルを取り込んで除去を行うため、洗浄液中に伝える超音波振動は僅かで良い。   Since the bubbles are easily generated and the particles are taken in and removed from the bubbles, the ultrasonic vibration transmitted to the cleaning liquid may be slight.

超音波発振子を被洗浄物の裏面に配置するときは、超音波振動は被洗浄物内を伝播して洗浄液に与えられ、洗浄液が被洗浄物に供給される前に超音波振動で気体性バブルが発生することがない。   When the ultrasonic oscillator is placed on the back side of the object to be cleaned, the ultrasonic vibration propagates through the object to be cleaned and is given to the cleaning liquid. Before the cleaning liquid is supplied to the object to be cleaned, the ultrasonic vibration causes a gaseous property. No bubble is generated.

配管の折曲部分を、アールを付けて緩く曲げるようにすることにより、配管の折曲部分内を流れるガス飽和洗浄液中に負圧領域が発生するのを阻止することができ、バブルを発生させることなく、ガス飽和洗浄液を被洗浄物に供給することができる。   By bending the bent part of the pipe loosely with a rounded shape, it is possible to prevent a negative pressure region from being generated in the gas-saturated cleaning liquid flowing in the bent part of the pipe, thereby generating bubbles. Without this, the gas saturated cleaning liquid can be supplied to the object to be cleaned.

上例では、本発明の洗浄方法を半導体基板の表面に付着したパーティクルの除去、洗浄に適用したが、その他、フォトマスク、液晶ディスプレイ基板等の表面に付着したパーティクルを除去、洗浄、あるいはその他の被洗浄物に付着したパーティクルの除去、洗浄に適用することができる。   In the above example, the cleaning method of the present invention is applied to the removal and cleaning of particles adhering to the surface of the semiconductor substrate. However, the particles adhering to the surface of a photomask, liquid crystal display substrate, etc. are removed, cleaned, or other It can be applied to removal and cleaning of particles adhering to an object to be cleaned.

本発明の洗浄方法及び洗浄装置は、その要旨を逸脱しない範囲で変形、変更などが可能であり、本発明は、上述の実施の形態に限定されるものではない。   The cleaning method and the cleaning apparatus of the present invention can be modified and changed without departing from the gist thereof, and the present invention is not limited to the above-described embodiment.

本発明に係る洗浄装置の一実施の形態の構成図である。It is a block diagram of one Embodiment of the washing | cleaning apparatus which concerns on this invention. 常圧下においてNを飽和させた純水と、5気圧で同ガスを飽和した純水 各々に発生したバブル径とその頻度を測定したデータを表した図である。And pure water with N 2 was saturated in the normal pressure, a view showing the data measured bubble diameter occurs when the frequency of the pure water each saturated with the gas at 5 atm. 超音波発振子内部に薬液配管を有する構造を表す構成図である。It is a block diagram showing the structure which has chemical | medical solution piping inside an ultrasonic oscillator. 超音波発振子内部に薬液配管を有する構造を表す構成図である。It is a block diagram showing the structure which has chemical | medical solution piping inside an ultrasonic oscillator. 半導体基板裏面に発振子を有する構造を表す構成図である。It is a block diagram showing the structure which has an oscillator on the back surface of a semiconductor substrate. 超音波ノズルに本発明に係わるガス過飽和薬液を使用した構造を表す構成図である。It is a block diagram showing the structure which uses the gas supersaturated chemical | medical solution concerning this invention for an ultrasonic nozzle. バブリング構造を有するガス加圧タンクを表す構成図である。It is a block diagram showing the gas pressurization tank which has a bubbling structure. 従来の技術による装置を使用したときの洗浄液中の音圧を測定したグラフである。It is the graph which measured the sound pressure in the washing | cleaning liquid when the apparatus by a prior art is used.

符号の説明Explanation of symbols

1・・洗浄装置、2・・ウェハ(半導体基板)、3・・スピンチャック、4・・洗浄液、4a・・純水、4b・・薬液、5、6・・加圧タンク、7・・配管 8・・供給ノズル、9・・超音波発振子、10・・洗浄液配管、11・・純水配管、12・・薬液配管、13・・洗浄液配管、14・・過飽和ガス配管、15・・回転軸、16・・開閉バルブ、17・・ピン、20・・配管の折曲部、21・・レギュレーター、22・・フィルター、24・・超音波発振子下部、25・・間隙、26・・負圧領域、29・・液膜、28・・気泡、31・・超音波ノズル、32・・超音波、34・・ボールフィルタ 1 .... Cleaning device 2 .... Wafer (semiconductor substrate) 3 .... Spin chuck 4 .... Cleaning liquid 4a ... Pure water 4b ... Chemical solution 5, 6 .... Pressure tank 7, ... Piping 8 .... Supply nozzle, 9 .... Ultrasonic oscillator, 10 .... Cleaning fluid piping, 11 .... Pure water piping, 12 .... Chemical solution piping, 13 .... Cleaning fluid piping, 14 .... Supersaturated gas piping, 15 .... Rotation Shaft, 16 ... Opening / closing valve, 17 ... Pin, 20 ... Piping bent part, 21 ... Regulator, 22 ... Filter, 24 ... Ultrasonic oscillator lower part, 25 ... Clearance, 26 ... Negative Pressure region, 29 ... Liquid film, 28 ... Bubble, 31 ... Ultrasonic nozzle, 32 ... Ultrasonic, 34 ... Ball filter

Claims (13)

洗浄液中に溶解させるガスを、被洗浄物の洗浄時の環境圧力よりも高い圧力で加圧することによって洗浄液中に飽和状態まで溶解し、
前記ガスが飽和状態まで溶解した前記洗浄液を、前記環境圧力下に供給することによって溶解したガスを過飽和状態にし、
前記ガスが過飽和状態まで溶解した洗浄液に超音波振動を付与することによって気泡の発生を促進させながら、前記洗浄液にて被洗浄物の被処理面を洗浄処理する
ことを特徴とする洗浄方法。
The gas to be dissolved in the cleaning liquid is dissolved to a saturated state in the cleaning liquid by pressurizing at a pressure higher than the environmental pressure at the time of cleaning the object to be cleaned.
The cleaning solution in which the gas is dissolved to a saturated state is supersaturated by supplying the dissolved gas by supplying the cleaning liquid under the environmental pressure,
A cleaning method, comprising: cleaning a surface to be cleaned with the cleaning liquid while accelerating the generation of bubbles by applying ultrasonic vibration to the cleaning liquid in which the gas is dissolved to a supersaturated state.
前記被洗浄物の被処理面に接する前記洗浄液に、前記被処理面より上側から超音波振動を加えることを特徴とする請求項1記載の洗浄方法。   The cleaning method according to claim 1, wherein ultrasonic vibration is applied to the cleaning liquid in contact with the surface to be cleaned from above the surface to be processed. 前記被洗浄物の被処理面とは反対の面側から、前記被洗浄物、或いは前記反対の面に接する液体に超音波振動を加えることにより、前記処理面に接する前記洗浄液に超音波振動を加える
ことを特徴とする請求項1記載の洗浄方法。
The ultrasonic vibration is applied to the cleaning liquid in contact with the processing surface by applying ultrasonic vibration to the cleaning object or liquid in contact with the opposite surface from the surface opposite to the processing surface of the cleaning object. The cleaning method according to claim 1, wherein the cleaning method is added.
被洗浄物の被処理面に接する前記洗浄液に、前記被処理面の上側と、前記被洗浄物の被処理面とは反対の面側、或いは反対の面に接する液体側との両方から、同時に超音波振動を加える
ことを特徴とする請求項1記載の洗浄方法。
The cleaning liquid in contact with the surface to be cleaned is simultaneously applied from both the upper surface of the surface to be processed and the liquid side in contact with the surface opposite to the surface to be cleaned, or the surface opposite to the surface to be cleaned. 2. The cleaning method according to claim 1, wherein ultrasonic vibration is applied.
超音波発振子と被洗浄物との空隙に洗浄液による液膜を形成し、
前記液膜の内部に負圧領域を発生させて気泡の発生を促進させる
ことを特徴とする請求項1記載の洗浄方法。
A liquid film is formed by the cleaning liquid in the gap between the ultrasonic oscillator and the object to be cleaned.
The cleaning method according to claim 1, wherein the generation of bubbles is promoted by generating a negative pressure region inside the liquid film.
前記洗浄液中に発生させた気泡にパーティクルを取り込んで排出する
ことを特徴とする請求項1記載の洗浄方法。
The cleaning method according to claim 1, wherein particles are taken in and discharged from bubbles generated in the cleaning liquid.
前記洗浄液にアルカリ性の洗浄液を用いる
ことを特徴とする請求項1記載の洗浄方法。
The cleaning method according to claim 1, wherein an alkaline cleaning solution is used as the cleaning solution.
被洗浄物の洗浄時の環境圧力よりも高い圧力で加圧して飽和状態までガスを溶解した洗浄液が収容された洗浄液容器と、
前記洗浄液容器からのガス飽和洗浄液を、前記環境圧力下に配置した被洗浄物に供給する供給手段と、
超音波発振子とを備え、
前記ガス飽和洗浄液を、前記被洗浄物上でガス過飽和状態にし、
前記ガス過飽和状態の洗浄液に超音波発振子からの超音波を付与して、気泡の発生を促進させながら、前記洗浄液にて被洗浄物の被処理面を洗浄するようにして成る
ことを特徴とする洗浄装置。
A cleaning liquid container containing a cleaning liquid in which gas is dissolved to a saturated state by pressurizing at a pressure higher than the environmental pressure at the time of cleaning the object to be cleaned;
Supply means for supplying a gas-saturated cleaning liquid from the cleaning liquid container to an object to be cleaned disposed under the environmental pressure;
With an ultrasonic oscillator,
The gas saturated cleaning liquid is brought into a gas supersaturated state on the object to be cleaned,
An ultrasonic wave from an ultrasonic oscillator is applied to the gas supersaturated cleaning liquid to promote generation of bubbles, and the surface to be cleaned is cleaned with the cleaning liquid. Cleaning device to do.
前記超音波発振子が前記洗浄物の被処理面より上側に配置されて成る
ことを特徴とする請求項8記載の洗浄装置。
The cleaning apparatus according to claim 8, wherein the ultrasonic oscillator is disposed above a surface to be processed of the cleaning object.
前記超音波発振子が前記被洗浄物の被処理面とは反対の面側
または、前記反対の面に接する液体側に配置されて成る
ことを特徴とする請求項8記載の洗浄装置。
The cleaning apparatus according to claim 8, wherein the ultrasonic oscillator is disposed on a surface side opposite to a surface to be processed of the object to be cleaned or on a liquid side in contact with the opposite surface.
前記超音波発振子が前記洗浄物の被処理面より上側と、前記被洗浄物の被処理面の反対側の面側、或いは、前記反対側の面に接する液体側とに配置されて成る
ことを特徴とする請求項8記載の洗浄装置。
The ultrasonic oscillator is disposed above the surface to be cleaned of the object to be cleaned and on the surface side opposite to the surface to be cleaned of the object to be cleaned or on the liquid side in contact with the surface on the opposite side. The cleaning apparatus according to claim 8.
前記超音波発振子が前記供給手段を内蔵し、
前記超音波発振子と前記被洗浄物との空隙に所定の流速でガス過飽和洗浄液を供給するようにして成る
ことを特徴とする請求項8記載の洗浄装置。
The ultrasonic oscillator incorporates the supply means;
The cleaning apparatus according to claim 8, wherein a gas supersaturated cleaning liquid is supplied to a gap between the ultrasonic oscillator and the object to be cleaned at a predetermined flow rate.
前記配管は、折曲部分がアールを付けて緩く曲げられて成る
ことを特徴とする請求項8記載の洗浄装置。
The cleaning device according to claim 8, wherein the pipe is formed by bending a bent portion with a rounded shape.
JP2006189552A 2006-07-10 2006-07-10 Ultrasonic cleaning method and cleaning device using gas supersaturation solution Pending JP2008021672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189552A JP2008021672A (en) 2006-07-10 2006-07-10 Ultrasonic cleaning method and cleaning device using gas supersaturation solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189552A JP2008021672A (en) 2006-07-10 2006-07-10 Ultrasonic cleaning method and cleaning device using gas supersaturation solution

Publications (1)

Publication Number Publication Date
JP2008021672A true JP2008021672A (en) 2008-01-31

Family

ID=39077455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189552A Pending JP2008021672A (en) 2006-07-10 2006-07-10 Ultrasonic cleaning method and cleaning device using gas supersaturation solution

Country Status (1)

Country Link
JP (1) JP2008021672A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073848A (en) * 2008-09-18 2010-04-02 Shibaura Mechatronics Corp Substrate processing apparatus and substrate processing method
JP2010232521A (en) * 2009-03-27 2010-10-14 Dainippon Screen Mfg Co Ltd Processing liquid supply device, and processing liquid supply method
JP2011018900A (en) * 2009-07-02 2011-01-27 Imec Method and apparatus for controlling optimal operation of acoustic cleaning
WO2011080629A3 (en) * 2009-12-31 2011-12-01 Lam Research Ag Improved ultrasonic cleaning fluid, method and apparatus
WO2012042770A1 (en) * 2010-09-30 2012-04-05 コニカミノルタオプト株式会社 Method for producing glass substrate for hard disk
WO2012090597A1 (en) * 2010-12-28 2012-07-05 コニカミノルタオプト株式会社 Method for producing glass substrate for recording medium
WO2012090598A1 (en) * 2010-12-28 2012-07-05 コニカミノルタオプト株式会社 Method for producing glass substrate for recording medium
JP2012183465A (en) * 2011-03-04 2012-09-27 Toppan Printing Co Ltd Ultrasonic cleaning apparatus
JP2013115278A (en) * 2011-11-29 2013-06-10 Tokyo Seimitsu Co Ltd Supply device and supply method of cleaning solution
JP2013543653A (en) * 2010-09-24 2013-12-05 ラム・リサーチ・アーゲー Improved ultrasonic cleaning method and apparatus
JP2014017466A (en) * 2012-06-13 2014-01-30 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2017117860A (en) * 2015-12-22 2017-06-29 株式会社Screenホールディングス Substrate cleaning method and substrate cleaning apparatus
JP2019071374A (en) * 2017-10-11 2019-05-09 旭サナック株式会社 Cleaning apparatus and cleaning method
CN110147030A (en) * 2019-05-29 2019-08-20 德淮半导体有限公司 Mask pattern cleaning method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073848A (en) * 2008-09-18 2010-04-02 Shibaura Mechatronics Corp Substrate processing apparatus and substrate processing method
JP2010232521A (en) * 2009-03-27 2010-10-14 Dainippon Screen Mfg Co Ltd Processing liquid supply device, and processing liquid supply method
JP2011018900A (en) * 2009-07-02 2011-01-27 Imec Method and apparatus for controlling optimal operation of acoustic cleaning
JP2013516758A (en) * 2009-12-31 2013-05-13 ラム・リサーチ・アーゲー Improved ultrasonic cleaning fluid, method and apparatus
CN102725824A (en) * 2009-12-31 2012-10-10 朗姆研究公司 Improved ultrasonic cleaning fluid, method and apparatus
WO2011080629A3 (en) * 2009-12-31 2011-12-01 Lam Research Ag Improved ultrasonic cleaning fluid, method and apparatus
US9044794B2 (en) 2009-12-31 2015-06-02 Lam Research Ag Ultrasonic cleaning fluid, method and apparatus
TWI473668B (en) * 2010-09-24 2015-02-21 Lam Res Ag Improved ultrasonic cleaning method and apparatus
JP2013543653A (en) * 2010-09-24 2013-12-05 ラム・リサーチ・アーゲー Improved ultrasonic cleaning method and apparatus
WO2012042770A1 (en) * 2010-09-30 2012-04-05 コニカミノルタオプト株式会社 Method for producing glass substrate for hard disk
WO2012090597A1 (en) * 2010-12-28 2012-07-05 コニカミノルタオプト株式会社 Method for producing glass substrate for recording medium
WO2012090598A1 (en) * 2010-12-28 2012-07-05 コニカミノルタオプト株式会社 Method for producing glass substrate for recording medium
JP2012183465A (en) * 2011-03-04 2012-09-27 Toppan Printing Co Ltd Ultrasonic cleaning apparatus
JP2013115278A (en) * 2011-11-29 2013-06-10 Tokyo Seimitsu Co Ltd Supply device and supply method of cleaning solution
JP2014017466A (en) * 2012-06-13 2014-01-30 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
US9815093B2 (en) 2012-06-13 2017-11-14 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
JP2017117860A (en) * 2015-12-22 2017-06-29 株式会社Screenホールディングス Substrate cleaning method and substrate cleaning apparatus
JP2019071374A (en) * 2017-10-11 2019-05-09 旭サナック株式会社 Cleaning apparatus and cleaning method
JP7032726B2 (en) 2017-10-11 2022-03-09 旭サナック株式会社 Cleaning equipment and cleaning method
CN110147030A (en) * 2019-05-29 2019-08-20 德淮半导体有限公司 Mask pattern cleaning method

Similar Documents

Publication Publication Date Title
JP2008021672A (en) Ultrasonic cleaning method and cleaning device using gas supersaturation solution
JP5836973B2 (en) Improved ultrasonic cleaning method and apparatus
JP5252861B2 (en) Substrate processing equipment
KR101612633B1 (en) Substrate cleaning method and substrate cleaning apparatus
JP2007311756A (en) Ultrasonic cleaner and ultrasonic cleaning method
TW200804008A (en) Method and apparatus for cleaning substrate, and program recording medium
JP5127257B2 (en) Ultrasonic cleaning method
JP2008119642A (en) Cleaning method and cleaning apparatus
KR101990175B1 (en) Ultrasonic cleaning method
JP2008300429A (en) Method and apparatus for semiconductor substrate cleaning, and apparatus for mixing air bubbles into liquid
JP2006310456A (en) Particle removing method and substrate processing equipment
JP2003234320A (en) Method, chemical liquid, and device for cleaning substrate, and semiconductor device
JP2007150164A (en) Substrate washing method
JP2010153475A (en) Substrate treatment apparatus and substrate treatment method
JP4599323B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JP2009054919A (en) Substrate processing device
JP2006179765A (en) Substrate processing apparatus and particle removing method
JP2009032710A (en) Substrate processing apparatus
KR100578139B1 (en) Cleaning probe and Megasonic cleaning apparatus having the same
JP2009088227A (en) Processing apparatus and processing method for substrate
TWI362066B (en)
KR20060070148A (en) Megasonic cleaner having double cleaning probe and cleaning method
JP2006179764A (en) Substrate processing apparatus and particle removing method
JP4279008B2 (en) Substrate processing apparatus and substrate processing method
JP2007152207A (en) Ultrasonic washing apparatus