JP2008020125A - Refrigerating cycle device and heat storage device using the same - Google Patents

Refrigerating cycle device and heat storage device using the same Download PDF

Info

Publication number
JP2008020125A
JP2008020125A JP2006192313A JP2006192313A JP2008020125A JP 2008020125 A JP2008020125 A JP 2008020125A JP 2006192313 A JP2006192313 A JP 2006192313A JP 2006192313 A JP2006192313 A JP 2006192313A JP 2008020125 A JP2008020125 A JP 2008020125A
Authority
JP
Japan
Prior art keywords
refrigerant
water
heat exchanger
heat
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006192313A
Other languages
Japanese (ja)
Inventor
Takehiro Maruyama
剛広 丸山
Motohiro Suzuki
基啓 鈴木
Toru Sugawa
徹 壽川
Takashi Sawada
敬 澤田
Masahito Megata
雅人 目片
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006192313A priority Critical patent/JP2008020125A/en
Publication of JP2008020125A publication Critical patent/JP2008020125A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that an optimal cycle operation is not necessarily performed when a temperature of the water supplied to a heat exchanger for heating the water, is high and variable in a water heater and a heat storage device utilizing the water heated by a refrigerating cycle. <P>SOLUTION: This refrigerating cycle device comprises a second refrigerant-water heat exchanger 115 for exchanging heat between a refrigerant of low temperature from an evaporator 114 and the water of high temperature supplied from a water supply source, and an opening of an expansion valve 113 is controlled on the basis of an inlet water temperature of the second refrigerant-water heat exchanger 115 to optimally control a superheating degree and a pressure of the refrigerant sucked to a compressor 111 and to reduce compression power of the compressor 111. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷媒の凝縮による放熱で水等の被加熱流体を加熱する冷凍サイクル装置と、その冷凍サイクル装置を用いた蓄熱装置に関するものである。   The present invention relates to a refrigeration cycle apparatus that heats a fluid to be heated, such as water, by heat dissipation due to condensation of refrigerant, and a heat storage device that uses the refrigeration cycle apparatus.

圧縮機、第1の冷媒−水熱交換器、膨張機構、蒸発器を主な構成要素とし、それらを冷媒経路で接続する冷凍サイクル装置、いわゆるヒートポンプサイクルを用いた給湯装置が実用化されている。ヒートポンプサイクルを用いた給湯装置においては、第1の冷媒−水熱交換器において、高温の冷媒と水とが熱交換を行うことにより、温水を得ている。   A refrigeration cycle apparatus that connects a compressor, a first refrigerant-water heat exchanger, an expansion mechanism, and an evaporator as main components and connects them through a refrigerant path, that is, a hot water supply apparatus using a so-called heat pump cycle has been put into practical use. . In a hot water supply apparatus using a heat pump cycle, hot water is obtained by heat exchange between a high-temperature refrigerant and water in the first refrigerant-water heat exchanger.

冷凍サイクル装置においては、構成要素の高性能化、制御の最適化等、様々なシステム性能の高効率化の取組みがなされてきた。システム性能向上手段の一つとして、蒸発器と圧縮機との間の冷媒経路に副熱交換器を設ける構成が提案されている(例えば、特許文献1参照)。   In the refrigeration cycle apparatus, efforts have been made to improve the efficiency of various system performances such as improving the performance of components and optimizing control. As one of system performance improvement means, a configuration in which a sub heat exchanger is provided in a refrigerant path between an evaporator and a compressor has been proposed (for example, see Patent Document 1).

特許文献1では、図7に示すように、冷凍サイクル装置10が、圧縮機31、熱交換器11、膨張弁33、蒸発器34、副熱交換器12で構成され、さらに貯湯タンク20を備えている。貯湯タンク20の温水は、ポンプ42で流通路40に送られ、副熱交換器12で、授熱部43内の温水から受熱部35内の低温冷媒へ伝熱される。さらに、熱交換器11では、授熱部である凝縮器32内の高温冷媒から受熱部41内の水へ伝熱され、貯湯タンク20に戻る。すなわち、貯湯タンク20から取り出された温水は、蒸発器34から圧縮機31に向かう低温の冷媒と熱交換して温度を低下させられた後、熱交換器11で圧縮機31から吐出された高温の冷媒と熱交換して加熱され、貯湯タンク20に戻る。このような構成とすることにより、熱交換器11で熱交換される水温条件によって異なるが、副熱交換器12がない場合に比べて、冷凍サイクルの成績係数を1前後上昇させている。
特開2002−98429号公報
In Patent Document 1, as shown in FIG. 7, the refrigeration cycle apparatus 10 includes a compressor 31, a heat exchanger 11, an expansion valve 33, an evaporator 34, and an auxiliary heat exchanger 12, and further includes a hot water storage tank 20. ing. The hot water in the hot water storage tank 20 is sent to the flow passage 40 by the pump 42, and is transferred from the hot water in the heat transfer unit 43 to the low-temperature refrigerant in the heat receiving unit 35 by the auxiliary heat exchanger 12. Further, in the heat exchanger 11, heat is transferred from the high-temperature refrigerant in the condenser 32, which is a heat transfer unit, to the water in the heat receiving unit 41, and returns to the hot water storage tank 20. That is, the hot water taken out from the hot water storage tank 20 is subjected to heat exchange with a low-temperature refrigerant from the evaporator 34 toward the compressor 31 to be lowered in temperature, and then the high temperature discharged from the compressor 31 by the heat exchanger 11. The refrigerant is heated by exchanging heat with the refrigerant and returned to the hot water storage tank 20. By adopting such a configuration, the coefficient of performance of the refrigeration cycle is increased by about 1 as compared with the case where there is no auxiliary heat exchanger 12, although it varies depending on the water temperature condition in which heat is exchanged in the heat exchanger 11.
JP 2002-98429 A

特許文献1における冷凍サイクル装置10においては、副熱交換器12(第2の冷媒−水熱交換器)へ接続される水の流通路40にバイパス回路を設け、副熱交換器12へ供給される水の温度が外気温度よりも高い場合に、蒸発器34を出た冷媒と貯湯タンク20より供給される水とを副熱交換器12において熱交換させることによって、冷凍サイクルの成績係数を向上させる構成となっている。   In the refrigeration cycle apparatus 10 in Patent Document 1, a bypass circuit is provided in the water flow path 40 connected to the auxiliary heat exchanger 12 (second refrigerant-water heat exchanger) and supplied to the auxiliary heat exchanger 12. The coefficient of performance of the refrigeration cycle is improved by exchanging heat between the refrigerant exiting the evaporator 34 and the water supplied from the hot water storage tank 20 in the auxiliary heat exchanger 12 when the temperature of the water to be discharged is higher than the outside air temperature. It is the composition which makes it.

しかしながら、副熱交換器12へ供給される水の温度が変動する場合には、副熱交換器12での熱交換量が変動し、冷媒の最適な過熱度や圧力が変動する為、単純に副熱交換器12へ水を流入させるだけでは、必ずしも最適なサイクル運転となっていなかった。   However, when the temperature of the water supplied to the sub heat exchanger 12 fluctuates, the amount of heat exchange in the sub heat exchanger 12 fluctuates, and the optimum superheat degree and pressure of the refrigerant fluctuate. Simply flowing water into the auxiliary heat exchanger 12 did not necessarily provide the optimum cycle operation.

本発明の冷凍サイクル装置は、冷媒を圧縮する圧縮機111と、前記圧縮機111で圧縮された前記冷媒が放熱し、水を加熱する第1の冷媒−水熱交換器112と、前記第1の冷媒−水熱交換器112で放熱した前記冷媒の圧力を低下させる膨張機構113と、前記膨張機構113で圧力を低下させた冷媒を空気の熱で加熱する蒸発器114と、前記蒸発器114で加熱された冷媒と水とを熱交換させる第2の冷媒−水熱交換器115とが、前記冷媒を流す経路で循環する形で接続された冷媒回路116と、外部より供給された水と
前記冷媒と熱交換を行う前記第2の冷媒−水熱交換器115と、前記第2の冷媒−水熱交換器115によって前記冷媒と熱交換した前記水を前記冷媒が放熱することによって加熱する前記第1の冷媒−水熱交換器112とが順に接続され、前記第1の冷媒−水熱交換器112で加熱された前記水を供給する水経路117とを備え、前記第2の冷媒−水熱交換器115の入口水温度を検出し、前記第2の冷媒−水熱交換器115の入口水温度が上昇すると、前記膨張機構113によって低下させられる前記冷媒の圧力が高くなるように前記膨張機構113を制御する。
The refrigeration cycle apparatus of the present invention includes a compressor 111 that compresses a refrigerant, a first refrigerant-water heat exchanger 112 that heats water by radiating heat from the refrigerant compressed by the compressor 111, and the first An expansion mechanism 113 for reducing the pressure of the refrigerant radiated by the refrigerant-water heat exchanger 112, an evaporator 114 for heating the refrigerant whose pressure is reduced by the expansion mechanism 113 with heat of air, and the evaporator 114 A refrigerant circuit 116 in which a second refrigerant-water heat exchanger 115 that exchanges heat between the refrigerant heated by the refrigerant and water is circulated in a path through which the refrigerant flows, and water supplied from outside The second refrigerant-water heat exchanger 115 that exchanges heat with the refrigerant and the water that exchanges heat with the refrigerant by the second refrigerant-water heat exchanger 115 are heated by the refrigerant radiating heat. The first refrigerant-water heat exchange 112, and a water path 117 for supplying the water heated by the first refrigerant-water heat exchanger 112, and an inlet water temperature of the second refrigerant-water heat exchanger 115 is When the detected inlet water temperature of the second refrigerant-water heat exchanger 115 is detected, the expansion mechanism 113 is controlled so that the pressure of the refrigerant lowered by the expansion mechanism 113 is increased.

また、本発明の蓄熱装置は、上記冷凍サイクル装置と、蓄熱材を有する蓄熱槽181とを有し、前記蓄熱槽より水を前記水経路に供給し、前記水経路で加熱された水を前記蓄熱槽に導入し、前記加熱された水によって、前記蓄熱槽内の蓄熱材を加熱する。   Moreover, the heat storage device of the present invention includes the refrigeration cycle device and a heat storage tank 181 having a heat storage material, supplies water from the heat storage tank to the water path, and supplies the water heated in the water path to the water path. It introduce | transduces into a thermal storage tank, and the thermal storage material in the said thermal storage tank is heated with the said heated water.

また、前記蓄熱材が潜熱蓄熱材であるという構成にしても良い。   The heat storage material may be a latent heat storage material.

また、前記第2の冷媒−水熱交換器115の一部が蒸発器としても兼用できる構成としても良い。   Moreover, it is good also as a structure which a part of said 2nd refrigerant | coolant-water heat exchanger 115 can also serve as an evaporator.

本発明によれば、蒸発器において空気の熱により加熱された冷媒を第2の冷媒−水熱交換器(副熱交換器)に流通させる場合に、第2の冷媒−水熱交換器へ供給される水の温度が高くなるにつれて、膨張機構による冷媒膨張度合いを少なくし、蒸発器に流入する冷媒圧力および温度を上昇させて、蒸発器および第2の冷媒−水熱交換器での熱交換量の制御と、圧縮機での圧縮動力の低減を行うことにより、高効率な冷凍サイクル装置とそれを用いた蓄熱装置を提供することが可能となる。   According to the present invention, when the refrigerant heated by the heat of air in the evaporator is circulated through the second refrigerant-water heat exchanger (sub heat exchanger), the refrigerant is supplied to the second refrigerant-water heat exchanger. As the temperature of the water to be increased, the degree of expansion of the refrigerant by the expansion mechanism is reduced, the pressure and temperature of the refrigerant flowing into the evaporator are increased, and heat exchange between the evaporator and the second refrigerant-water heat exchanger By controlling the amount and reducing the compression power in the compressor, it is possible to provide a highly efficient refrigeration cycle apparatus and a heat storage apparatus using the refrigeration cycle apparatus.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1の冷凍サイクル装置の構成図である。図1に示すように、本発明の実施の形態1の冷凍サイクル装置110は、冷媒を圧縮する圧縮機111と、圧縮機111で圧縮された冷媒が放熱し、水経路117の水を加熱する第1の冷媒−水熱交換器112と、第1の冷媒−水熱交換器112で放熱した冷媒の圧力を低下させる膨張機構である膨張弁113と、膨張弁113で圧力を低下させられた冷媒が空気の熱により加熱される蒸発器114と、蒸発器114で加熱された冷媒と熱交換させて、水供給元から供給される水を冷却する第2の冷媒−水熱交換器115とを、冷媒回路116により順に接続することで、冷媒を循環させるヒートポンプサイクルを構成している。
(Embodiment 1)
FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, in the refrigeration cycle apparatus 110 according to Embodiment 1 of the present invention, the compressor 111 that compresses the refrigerant and the refrigerant compressed by the compressor 111 radiate heat to heat the water in the water path 117. The pressure was reduced by the first refrigerant-water heat exchanger 112, the expansion valve 113 which is an expansion mechanism for reducing the pressure of the refrigerant radiated by the first refrigerant-water heat exchanger 112, and the expansion valve 113. An evaporator 114 in which the refrigerant is heated by the heat of air, and a second refrigerant-water heat exchanger 115 that cools water supplied from a water supply source by exchanging heat with the refrigerant heated in the evaporator 114. Are connected in order by the refrigerant circuit 116 to constitute a heat pump cycle for circulating the refrigerant.

さらに、本発明の実施の形態1の冷凍サイクル装置110では、冷媒回路116を利用して水を加熱するために、水供給元と、ポンプ124と、第2の冷媒−水熱交換器115と、第1の冷媒−水熱交換器112と、水供給先とが、水経路117により順に接続されている。また、水経路117には、第2の冷媒−水熱交換器115の入口水温度を検出する温度センサ122が備えられており、温度センサ122および膨張弁113は、信号線141、142により制御装置130と接続されている。   Furthermore, in the refrigeration cycle apparatus 110 according to the first embodiment of the present invention, in order to heat water using the refrigerant circuit 116, a water supply source, a pump 124, a second refrigerant-water heat exchanger 115, The first refrigerant-water heat exchanger 112 and the water supply destination are sequentially connected by a water path 117. The water path 117 is provided with a temperature sensor 122 that detects the inlet water temperature of the second refrigerant-water heat exchanger 115, and the temperature sensor 122 and the expansion valve 113 are controlled by signal lines 141 and 142. A device 130 is connected.

本発明の実施の形態1の冷凍サイクル装置の特徴は、第2の冷媒−水熱交換器115の入口水温度が上昇するにつれて、膨張弁113で低下させる冷媒圧力および温度が高くなるように制御している点である。   The refrigeration cycle apparatus according to Embodiment 1 of the present invention is characterized in that the refrigerant pressure and temperature to be decreased by the expansion valve 113 are increased as the inlet water temperature of the second refrigerant-water heat exchanger 115 is increased. This is the point.

本発明の実施の形態1においては、冷媒として二酸化炭素を用いているが、これに限ら
れるものではない。
In Embodiment 1 of the present invention, carbon dioxide is used as the refrigerant, but the present invention is not limited to this.

次に、本発明の実施の形態1における冷凍サイクル装置110の動作について、図1を用いて説明する。   Next, operation | movement of the refrigerating-cycle apparatus 110 in Embodiment 1 of this invention is demonstrated using FIG.

冷媒は、圧縮機111で高温、高圧となって吐出され、第1の冷媒−水熱交換器112で水経路117の水と熱交換して放熱する。そして、冷媒は、膨張機構である膨張弁113でその圧力および温度を低下させられた後、蒸発器114で空気の熱により加熱される。その後、第2の冷媒−水熱交換器115で、水経路117の水と熱交換することで加熱、気化されて圧縮機111に戻る。   The refrigerant is discharged at a high temperature and high pressure in the compressor 111, and dissipates heat by exchanging heat with water in the water path 117 in the first refrigerant-water heat exchanger 112. The refrigerant is heated by the heat of air in the evaporator 114 after its pressure and temperature are lowered by the expansion valve 113 which is an expansion mechanism. Thereafter, the second refrigerant-water heat exchanger 115 is heated and vaporized by exchanging heat with water in the water path 117 and returns to the compressor 111.

水供給元から供給された水は、第2の冷媒−水熱交換器115で低温の冷媒と熱交換して冷却された後、第1の冷媒−水熱交換器112で高温の冷媒と熱交換して加熱され、水供給先に供給される。   The water supplied from the water supply source is cooled by exchanging heat with a low-temperature refrigerant in the second refrigerant-water heat exchanger 115 and then cooled with the high-temperature refrigerant and heat in the first refrigerant-water heat exchanger 112. The water is exchanged and heated and supplied to the water supply destination.

温度センサ122は、原則として、第2の冷媒−水熱交換器115の入口水温度を所定時間毎に検出して制御装置130に信号を送る。制御装置130が、第2の冷媒−水熱交換器115の入口水温度の温度変化に応じて、膨張弁113の開度を調整することにより、蒸発器114および第2の冷媒−水熱交換器115での熱交換量を制御し、圧縮機111に吸入される冷媒の過熱度および圧力を最適な大きさに制御する。   In principle, the temperature sensor 122 detects the inlet water temperature of the second refrigerant-water heat exchanger 115 every predetermined time and sends a signal to the control device 130. The controller 130 adjusts the opening degree of the expansion valve 113 according to the temperature change of the inlet water temperature of the second refrigerant-water heat exchanger 115, whereby the evaporator 114 and the second refrigerant-water heat exchange. The amount of heat exchange in the compressor 115 is controlled, and the superheat degree and pressure of the refrigerant sucked into the compressor 111 are controlled to an optimum magnitude.

制御装置130により、冷媒の過熱度を最適な大きさに制御して、圧縮機111に吸入させるようにすることで、圧縮機111の冷媒吐出温度を一定とした場合、その冷媒の吐出圧力を低減することができ、冷媒を所定の吐出圧力まで圧縮する為に必要な圧縮機111の圧縮動力を小さくすることができる。この過熱度の調整は、膨張弁113の開度調整によって蒸発器114の入口冷媒の圧力および温度が高くなるように制御し、蒸発器114において冷媒が外気から加熱される熱交換量を調整することにより行われる。また、上記調整により、蒸発器114の入口冷媒の圧力が高くなると、圧縮機111に吸入される冷媒圧力も高くなる為、圧縮機111の圧縮動力を低減できる。その結果、圧縮機111への入力電力を低減することができる。   When the refrigerant discharge temperature of the compressor 111 is made constant by controlling the degree of superheat of the refrigerant to an optimum level by the control device 130 and causing the compressor 111 to suck the refrigerant, the discharge pressure of the refrigerant is changed. The compression power of the compressor 111 necessary for compressing the refrigerant to a predetermined discharge pressure can be reduced. The adjustment of the degree of superheat is performed by adjusting the opening degree of the expansion valve 113 so that the pressure and temperature of the refrigerant at the inlet of the evaporator 114 are increased, and the heat exchange amount by which the refrigerant is heated from the outside air in the evaporator 114 is adjusted. Is done. In addition, as a result of the above adjustment, when the pressure of the refrigerant at the inlet of the evaporator 114 increases, the refrigerant pressure sucked into the compressor 111 also increases, so that the compression power of the compressor 111 can be reduced. As a result, input power to the compressor 111 can be reduced.

次に、膨張弁113の制御方法について、図2を用いて詳しく説明する。図2は、本発明の実施の形態1の冷凍サイクル装置110における膨張弁113の開度の制御方法を説明するフローチャートである。   Next, a method for controlling the expansion valve 113 will be described in detail with reference to FIG. FIG. 2 is a flowchart illustrating a method for controlling the opening degree of expansion valve 113 in refrigeration cycle apparatus 110 according to Embodiment 1 of the present invention.

工程S101において、第2の冷媒−水熱交換器115の入口水温度が温度センサ122によって検出される。検出された値は、制御装置130へ入力される。   In step S <b> 101, the temperature of the inlet water of the second refrigerant-water heat exchanger 115 is detected by the temperature sensor 122. The detected value is input to the control device 130.

工程S102において、工程S101で検出された第2の冷媒−水熱交換器115の入口水温度が、所定時間前に検出された第2の冷媒−水熱交換器115の入口水温度と比較して上昇しているかどうかが、制御装置130によって判別される。   In step S102, the inlet water temperature of the second refrigerant-water heat exchanger 115 detected in step S101 is compared with the inlet water temperature of the second refrigerant-water heat exchanger 115 detected a predetermined time ago. Is determined by the control device 130.

工程S102で、第2の冷媒−水熱交換器115の入口水温度が所定時間前に比較して上昇していると判別された場合は、工程S103において、膨張弁113の開度が制御装置130によって所定量拡大される。   If it is determined in step S102 that the inlet water temperature of the second refrigerant-water heat exchanger 115 has increased compared to a predetermined time before, the opening degree of the expansion valve 113 is controlled in step S103. A predetermined amount is enlarged by 130.

一方、工程S102で、第2の冷媒−水熱交換器115の入口水温度が所定時間前に比較して上昇していると判別されなかった場合は、工程S103は省略される。   On the other hand, if it is not determined in step S102 that the inlet water temperature of the second refrigerant-water heat exchanger 115 has increased compared to the predetermined time before, step S103 is omitted.

工程S104において、圧縮機111への入力電力が検出される。検出された値は、制
御装置130へ入力される。
In step S104, input power to the compressor 111 is detected. The detected value is input to the control device 130.

工程S105において、工程S104で検出された圧縮機111への入力電力が、所定時間前に検出された圧縮機111への入力電力と比較して増加しているかどうかが、制御装置130によって判別される。   In step S105, the control device 130 determines whether or not the input power to the compressor 111 detected in step S104 is increased compared to the input power to the compressor 111 detected a predetermined time ago. The

工程S105で、圧縮機111への入力電力が所定時間前に比較して増加していると判別された場合は、工程S106において、膨張弁113の開度が制御装置130によって所定量縮小される。   If it is determined in step S105 that the input power to the compressor 111 has increased compared to a predetermined time before, the opening degree of the expansion valve 113 is reduced by a predetermined amount by the control device 130 in step S106. .

一方、工程S105で、圧縮機111への入力電力が所定時間前に比較して増加していると判別されなかった場合は、工程S106は省略される。   On the other hand, if it is not determined in step S105 that the input power to the compressor 111 has increased compared to the predetermined time, step S106 is omitted.

以上説明したように、図2に示した制御を所定時間毎に繰り返して実施することにより、最適な冷凍サイクル装置の制御が可能になる。   As described above, it is possible to optimally control the refrigeration cycle apparatus by repeatedly performing the control shown in FIG. 2 every predetermined time.

次に、本発明の実施の形態1の冷凍サイクル装置110の運転状態を、図3を用いて説明する。図3は、縦軸に冷媒の圧力、横軸に冷媒のエンタルピを表示したモリエル線図であり、冷媒は二酸化炭素である。図3中の曲線160、163、164は、それぞれ飽和曲線、等温線、等エントロピ線を表している。   Next, the operating state of the refrigeration cycle apparatus 110 according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 3 is a Mollier diagram in which the vertical axis represents the pressure of the refrigerant and the horizontal axis represents the enthalpy of the refrigerant, and the refrigerant is carbon dioxide. Curves 160, 163, and 164 in FIG. 3 represent a saturation curve, an isotherm, and an isentropic line, respectively.

図3において、閉サイクルA161は、冷凍サイクル装置110の構成において、工程S101〜工程S106の制御を行わない場合、すなわち比較例のモリエル線図である。また、閉サイクルA162は、本実施の形態1の工程S101〜工程S106の制御を行った場合のモリエル線図である。 In FIG. 3, a closed cycle A 1 B 1 C 1 D 1 161 is a Mollier diagram of the comparative example when the control of the steps S101 to S106 is not performed in the configuration of the refrigeration cycle apparatus 110. Also, it closed cycle A 2 B 2 C 2 D 2 162 is a Mollier diagram in the case of performing control of the process S101~ step S106 the first embodiment.

比較例である閉サイクルA161において、圧縮過程での冷媒は、圧縮機111で圧縮されることによって、圧力およびエンタルピが増加し、図3の点Aから点Bに変化する。放熱過程での冷媒は、第1の冷媒−水熱交換器112で水へ放熱することによって、圧力一定のままエンタルピが減少し、点Bから点Cに変化する。膨張過程での冷媒は、膨張弁113で膨張されることによって、エンタルピ一定のまま圧力が減少し、点Cから点Dに変化する。蒸発過程での冷媒は、蒸発器114および第2の冷媒−水熱交換器115で外気および水から受熱することによって、圧力一定のままでエンタルピが増加し、点Dから点Aに変化する。その後、再び圧縮機111で圧縮される。 In the closed cycle A 1 B 1 C 1 D 1 161, which is a comparative example, the refrigerant in the compression process is compressed by the compressor 111, so that the pressure and enthalpy increase, and the point A 1 to the point B in FIG. Change to 1 . Refrigerant in the heat release process, the first refrigerant - by heat radiation to the water with the water heat exchanger 112, reduces the enthalpy remains constant pressure, changes from point B 1 to the point C 1. Refrigerant in the expansion process, by being expanded in the expansion valve 113, the enthalpy remains constant pressure is reduced, changes from the point C 1 to the point D 1. Refrigerant in the evaporation process, the evaporator 114 and the second coolant - by heat from the outside air and water in the water heat exchanger 115, an increase in enthalpy remains constant pressure, the change from point D 1 at the point A 1 To do. Thereafter, it is compressed again by the compressor 111.

閉サイクルA161においては、第2の冷媒−水熱交換器115の入口水温度が高い場合、冷媒の過熱度が必要以上に大きくなってしまう可能性がある。さらに、等エントロピ線164の傾きが小さい領域で圧縮を行う場合ほど、所定の吐出圧力まで圧縮する場合に必要な圧縮動力は大きい。図3においては、圧縮される冷媒が低圧かつ高エンタルピの状態であるほど、必要な圧縮動力は増加してしまう。特に、二酸化炭素を冷媒として用いる場合、低圧かつ高エンタルピになるにつれて、等エントロピ線164の傾きが減少する割合が比較的大きい。したがって、二酸化炭素を冷媒とする場合では、冷媒の過熱度が必要以上に大きくなると、所定の吐出圧力まで圧縮するのに必要な圧縮動力が大きく増加し、冷凍サイクルの成績係数が急激に低下してしまう。 In the closed cycle A 1 B 1 C 1 D 1 161, when the inlet water temperature of the second refrigerant-water heat exchanger 115 is high, the degree of superheat of the refrigerant may become larger than necessary. Furthermore, the compression power required for compressing to a predetermined discharge pressure increases as the compression is performed in a region where the slope of the isentropic line 164 is small. In FIG. 3, the required compression power increases as the refrigerant to be compressed is in a lower pressure and higher enthalpy state. In particular, when carbon dioxide is used as the refrigerant, the rate at which the slope of the isentropic line 164 decreases as the pressure becomes low and the enthalpy becomes relatively high. Therefore, when carbon dioxide is used as the refrigerant, if the degree of superheat of the refrigerant becomes larger than necessary, the compression power required to compress the refrigerant to a predetermined discharge pressure will greatly increase, and the coefficient of performance of the refrigeration cycle will drop sharply. End up.

また、冷媒の過熱度が必要以上に大きい場合には、第1の冷媒−水熱交換器112内における冷媒圧力が、気液二相領域の状態に近い状態(図3の飽和曲線160の付近)まで、低くなってしまう可能性がある。冷媒が気液二相領域に近い状態では、等温線163の傾きが小さくなり、第1の冷媒−水熱交換器112における冷媒の温度差が十分に確保で
きない。このため、第1の冷媒−水熱交換器112における冷媒と水との熱交換効率が低下してしまう。その結果、第1の冷媒−水熱交換器112において、所定温度まで水を加熱するのに必要な冷媒温度が高くなり、圧縮機111で必要な圧縮動力が増大する為、冷凍サイクルの成績係数が低下してしまう。
When the degree of superheat of the refrigerant is larger than necessary, the refrigerant pressure in the first refrigerant-water heat exchanger 112 is close to the state of the gas-liquid two-phase region (near the saturation curve 160 in FIG. 3). ) May be low. In a state where the refrigerant is close to the gas-liquid two-phase region, the inclination of the isotherm 163 is small, and a sufficient temperature difference of the refrigerant in the first refrigerant-water heat exchanger 112 cannot be ensured. For this reason, the heat exchange efficiency between the refrigerant and water in the first refrigerant-water heat exchanger 112 is lowered. As a result, in the first refrigerant-water heat exchanger 112, the refrigerant temperature necessary for heating water to a predetermined temperature increases, and the compression power necessary for the compressor 111 increases, so the coefficient of performance of the refrigeration cycle Will fall.

これに対して、本実施の形態1の閉サイクルA162においては、工程S101〜工程S106の制御を行うことにより、第2の冷媒−水熱交換器115の入口水温度が高い場合には、膨張弁113の開度を調整し、冷媒圧力を上昇させる。冷媒圧力が上昇すると、冷媒温度も上昇する為、冷媒温度と外気温度の差が小さくなり、蒸発器114における冷媒と外気との熱交換量が制御され、圧縮機111に吸入される冷媒の過熱度を最適な大きさに制御することができる。この結果、圧縮機111に吸入される冷媒圧力が高く、かつ図3において等エントロピ線164の傾きが大きい領域で冷媒の圧縮を行うこととなり、圧縮機111の圧縮動力を小さくすることができる為、冷凍サイクルの成績係数を高くすることができる。 On the other hand, in the closed cycle A 2 B 2 C 2 D 2 162 according to the first embodiment, the inlet water of the second refrigerant-water heat exchanger 115 is controlled by controlling the processes S101 to S106. When the temperature is high, the opening of the expansion valve 113 is adjusted to increase the refrigerant pressure. When the refrigerant pressure rises, the refrigerant temperature also rises, so the difference between the refrigerant temperature and the outside air temperature becomes small, the amount of heat exchange between the refrigerant and the outside air in the evaporator 114 is controlled, and the refrigerant that is sucked into the compressor 111 is overheated. The degree can be controlled to an optimum size. As a result, the refrigerant is compressed in a region where the refrigerant pressure sucked into the compressor 111 is high and the slope of the isentropic line 164 in FIG. 3 is large, and the compression power of the compressor 111 can be reduced. The coefficient of performance of the refrigeration cycle can be increased.

さらには、圧縮機111の入口において、冷媒の圧力を最適な大きさに制御することができる為、第1の冷媒−水熱交換器112において、所定温度まで水を加熱する為に必要な冷媒温度が高くなりすぎることがなく、第1の冷媒−水熱交換器112における冷媒と水との熱交換効率が低下することがない。その結果、圧縮機111の圧縮動力を小さくすることができる為、冷凍サイクルの成績係数を高くすることができる。   Furthermore, since the pressure of the refrigerant can be controlled to an optimum level at the inlet of the compressor 111, the refrigerant necessary for heating the water to a predetermined temperature in the first refrigerant-water heat exchanger 112. The temperature does not become too high, and the heat exchange efficiency between the refrigerant and water in the first refrigerant-water heat exchanger 112 does not decrease. As a result, since the compression power of the compressor 111 can be reduced, the coefficient of performance of the refrigeration cycle can be increased.

このように、本発明の実施の形態1の冷凍サイクル装置110では、第1の冷媒−水熱交換器112での冷媒圧力を最適に、かつ蒸発器114での冷媒圧力を高く制御できる為、圧縮機111の圧縮動力を少なくすることができる。   Thus, in the refrigeration cycle apparatus 110 according to Embodiment 1 of the present invention, the refrigerant pressure in the first refrigerant-water heat exchanger 112 can be optimally controlled and the refrigerant pressure in the evaporator 114 can be controlled high. The compression power of the compressor 111 can be reduced.

また、第1の冷媒−水熱交換器112における冷媒と水との熱交換効率が低下することはない為、圧縮機111の圧縮動力を少なくすることができる。これにより、第2の冷媒−水熱交換器115へ流入する水の温度が変動する場合においても、圧縮機111の圧縮動力を少なくすることができる為、冷凍サイクルの成績係数を向上させることができる。   In addition, since the heat exchange efficiency between the refrigerant and water in the first refrigerant-water heat exchanger 112 does not decrease, the compression power of the compressor 111 can be reduced. Thereby, even when the temperature of the water flowing into the second refrigerant-water heat exchanger 115 fluctuates, the compression power of the compressor 111 can be reduced, so that the coefficient of performance of the refrigeration cycle can be improved. it can.

なお、本実施の形態1においては、第2の冷媒−水熱交換器115として二重管熱交換器を用いることで、外管には冷媒、内管には水が流れる構成とし、さらには、蒸発器114にファンを備え、ファンの風量を調整することによって制御する構成としても良い。これにより、第2の冷媒−水熱交換器115の一部を蒸発器として兼用できる為、第2の冷媒−水熱交換器115の入口水温度が変動した場合においても、第2の冷媒−水熱交換器115の冷媒出口での冷媒過熱度をより最適な大きさに制御することが可能となる。   In the first embodiment, a double pipe heat exchanger is used as the second refrigerant-water heat exchanger 115, so that the refrigerant flows in the outer pipe and the water flows in the inner pipe. The evaporator 114 may be provided with a fan and controlled by adjusting the air volume of the fan. As a result, a part of the second refrigerant-water heat exchanger 115 can be used as an evaporator. Therefore, even when the inlet water temperature of the second refrigerant-water heat exchanger 115 fluctuates, the second refrigerant- It becomes possible to control the degree of refrigerant superheating at the refrigerant outlet of the water heat exchanger 115 to a more optimal magnitude.

また、ポンプ124によって水流量を制御しているが、本発明の構成はこれに限られたものではなく、例えば、水供給元からの水圧で水を流し、絞り弁等で水流量を制御する構成としても良い。これにより、装置の構成をより簡素化することができる。   Moreover, although the water flow rate is controlled by the pump 124, the configuration of the present invention is not limited to this. For example, the water flow is made by water pressure from the water supply source, and the water flow rate is controlled by a throttle valve or the like. It is good also as a structure. Thereby, the structure of an apparatus can be simplified more.

また、膨張機構として膨張弁113を用いているが、本発明の構成はこれに限られたものではなく、例えば、膨張機構として膨張機を用いる構成としても良い。これにより、冷凍サイクルの成績係数をより向上させることが可能となる。   Further, although the expansion valve 113 is used as the expansion mechanism, the configuration of the present invention is not limited to this, and for example, a configuration using an expander as the expansion mechanism may be used. Thereby, it is possible to further improve the coefficient of performance of the refrigeration cycle.

また、本実施の形態1における冷凍サイクル装置の変形例として、図4に示すように、第1の冷媒−水熱交換器112と膨張弁113との間の経路、および蒸発器114と第2の冷媒−水熱交換器115との間の経路に、第1の冷媒−水熱交換器112で放熱した冷媒と、蒸発器114において空気の熱により加熱された冷媒とを熱交換する内部冷媒熱交換器123を共通設置する構成としても良い。   Further, as a modification of the refrigeration cycle apparatus in the first embodiment, as shown in FIG. 4, the path between the first refrigerant-water heat exchanger 112 and the expansion valve 113, the evaporator 114 and the second An internal refrigerant that exchanges heat between the refrigerant radiated by the first refrigerant-water heat exchanger 112 and the refrigerant heated by the heat of air in the evaporator 114 in a path between the refrigerant and the water-heat exchanger 115. It is good also as a structure which installs the heat exchanger 123 in common.

(実施の形態2)
図5は、本発明の実施の形態2の蓄熱装置の構成図である。図5において、図1と同じ構成については同一の符号を用いて、説明を省略する。
(Embodiment 2)
FIG. 5 is a configuration diagram of the heat storage device according to the second embodiment of the present invention. In FIG. 5, the same components as those in FIG.

図5に示すように、本発明の実施の形態2の蓄熱装置180は、実施の形態1の冷凍サイクル110と、蓄熱槽181と、蓄熱熱交換器182と、水経路118とにより構成されている。水経路118は、第1の冷媒−水熱交換器112と、第1の冷媒−水熱交換器112で加熱された水で蓄熱材を加熱する蓄熱熱交換器182と、第2の冷媒−水熱交換器115とを、順に接続し、冷媒回路116を利用して加熱した水を循環させて、蓄熱槽181へ流入させている。   As shown in FIG. 5, the heat storage device 180 according to the second embodiment of the present invention is configured by the refrigeration cycle 110 according to the first embodiment, the heat storage tank 181, the heat storage heat exchanger 182, and the water path 118. Yes. The water path 118 includes a first refrigerant-water heat exchanger 112, a heat storage heat exchanger 182 that heats the heat storage material with water heated by the first refrigerant-water heat exchanger 112, and a second refrigerant- The water heat exchanger 115 is connected in order, and the water heated by using the refrigerant circuit 116 is circulated to flow into the heat storage tank 181.

本実施の形態2においては、蓄熱材として、固液相変化時の潜熱を利用する潜熱蓄熱材である、融点が約58℃の酢酸ナトリウム三水和物を用いているが、これに限られるものではない。   In Embodiment 2, sodium acetate trihydrate having a melting point of about 58 ° C., which is a latent heat storage material that uses latent heat at the time of solid-liquid phase change, is used as the heat storage material. It is not a thing.

次に、本発明の実施の形態2における蓄熱装置180の動作について、図5を用いて説明する。なお、蓄熱運転開始時での蓄熱槽181内の蓄熱材の温度は、蓄熱残量にもよるが、例えば外気温度程度の低温度である。   Next, operation | movement of the thermal storage apparatus 180 in Embodiment 2 of this invention is demonstrated using FIG. Note that the temperature of the heat storage material in the heat storage tank 181 at the start of the heat storage operation is, for example, a low temperature such as the outside air temperature, although depending on the remaining heat storage.

冷媒回路116を利用して加熱された水は、水経路118により蓄熱槽181へ流入され、蓄熱熱交換器182で放熱することで蓄熱材を加熱している。放熱後の水は、第2の冷媒−水熱交換器115で低温の冷媒と熱交換した後、第1の冷媒−水熱交換器112で再度、所定の温度まで加熱されて、蓄熱槽181へと送られる。   The water heated using the refrigerant circuit 116 flows into the heat storage tank 181 through the water path 118 and radiates heat in the heat storage heat exchanger 182 to heat the heat storage material. The heat-dissipated water is heat-exchanged with a low-temperature refrigerant in the second refrigerant-water heat exchanger 115 and then heated again to a predetermined temperature in the first refrigerant-water heat exchanger 112, and the heat storage tank 181. Sent to.

蓄熱運転が進むにつれて、蓄熱材の温度は上昇していき、蓄熱材と水との温度差が小さくなっていく為、蓄熱熱交換器182での熱交換量が少なくなっていき、蓄熱槽181から第2の冷媒−水熱交換器115へ流入する水の温度、すなわち第2の冷媒−水熱交換器115の入口水温度は上昇していく。   As the heat storage operation proceeds, the temperature of the heat storage material increases, and the temperature difference between the heat storage material and water decreases, so the amount of heat exchange in the heat storage heat exchanger 182 decreases, and the heat storage tank 181. , The temperature of the water flowing into the second refrigerant-water heat exchanger 115, that is, the inlet water temperature of the second refrigerant-water heat exchanger 115 rises.

図6は、本実施の形態2の蓄熱装置180における蓄熱材として、融点が約58℃である酢酸ナトリウム三水和物を用い、蓄熱槽181へ流入させる水の温度を80℃とした場合に、蓄熱槽181から第2の冷媒−水熱交換器115へ流入する水の温度推移を、伝熱シミュレーションを用いて計算した結果を表したグラフである。   FIG. 6 shows a case where sodium acetate trihydrate having a melting point of about 58 ° C. is used as the heat storage material in the heat storage device 180 of the second embodiment, and the temperature of water flowing into the heat storage tank 181 is 80 ° C. It is the graph showing the result of having calculated the temperature transition of the water which flows in into the 2nd refrigerant | coolant-water heat exchanger 115 from the thermal storage tank 181 using the heat transfer simulation.

蓄熱運転において、第2の冷媒−水熱交換器115へ流入する水の温度は、大きく以下のA〜Cの3つの領域に分類できる。   In the heat storage operation, the temperature of the water flowing into the second refrigerant-water heat exchanger 115 can be roughly classified into the following three regions A to C.

図6において、Aで示された領域では、主に蓄熱熱交換器182の配管内に元々保持されていた水が押し出されている状態であり、第2の冷媒−水熱交換器115へ流入する水の温度は、比較的低温度で一定である為、膨張弁113の開度はほとんど変化しない。   In FIG. 6, in the region indicated by A, the water originally held in the piping of the heat storage heat exchanger 182 is being pushed out and flows into the second refrigerant-water heat exchanger 115. Since the temperature of the water to be used is relatively low and constant, the opening degree of the expansion valve 113 hardly changes.

Bで示された領域では、主に蓄熱材の固体顕熱を用いて蓄熱が行われている状態であり、蓄熱材の温度が融点付近まで比較的急激に上昇していく為、第2の冷媒−水熱交換器115へ流入する水の温度が、前記融点より若干低い温度まで急激に上昇していく。その結果、膨張弁113の開度は従来構成の場合と比較して、急激に広がる方向へ制御されていく。   In the region indicated by B, the heat storage is mainly performed using the solid sensible heat of the heat storage material, and the temperature of the heat storage material rises relatively rapidly to the vicinity of the melting point. The temperature of the water flowing into the refrigerant-water heat exchanger 115 rapidly rises to a temperature slightly lower than the melting point. As a result, the opening degree of the expansion valve 113 is controlled in a direction in which the expansion valve 113 spreads more rapidly than in the conventional configuration.

Cで示された領域では、主に蓄熱材の固液相変化時の潜熱を用いて蓄熱が行われている状態であり、蓄熱材の温度が融点付近で一定となっている為、第2の冷媒−水熱交換器1
15へ流入する水の温度は、融点付近で徐々に上昇していく。その結果、膨張弁113の開度はBの状態から徐々に広がる方向へ制御されていく。
In the region indicated by C, heat storage is mainly performed using latent heat at the time of solid-liquid phase change of the heat storage material, and the temperature of the heat storage material is constant near the melting point. Refrigerant-water heat exchanger 1
The temperature of the water flowing into 15 gradually increases near the melting point. As a result, the opening degree of the expansion valve 113 is controlled to gradually expand from the B state.

このように、本実施の形態2の蓄熱装置180においては、工程S101〜S106の制御方法を用いて膨張弁113の開度調整を行う為、第2の冷媒−水熱交換器115の入口水温度が変動した場合においても、第2の冷媒−水熱交換器115の冷媒出口での冷媒過熱度および冷媒圧力を最適な大きさに制御することが可能となるため、工程S101〜S106の制御方法を用いない従来構成の場合と比較して、冷凍サイクルの成績係数を高くすることができる。   Thus, in the heat storage device 180 of the second embodiment, the inlet water of the second refrigerant-water heat exchanger 115 is used to adjust the opening of the expansion valve 113 using the control method of steps S101 to S106. Even when the temperature fluctuates, it is possible to control the refrigerant superheat degree and the refrigerant pressure at the refrigerant outlet of the second refrigerant-water heat exchanger 115 to optimum magnitudes, so that the control in steps S101 to S106 is performed. The coefficient of performance of the refrigeration cycle can be increased as compared with the case of the conventional configuration not using the method.

なお、本実施の形態2においては、蓄熱熱交換器182を設置しているが、本発明の構成はこれに限られたものではなく、蓄熱材として水を用いる場合には、蓄熱槽181として貯湯タンクを用いても良い。この場合、蓄熱熱交換器182は備えていなくても良い。   In addition, in this Embodiment 2, although the heat storage heat exchanger 182 is installed, the structure of this invention is not restricted to this, When using water as a heat storage material, as the heat storage tank 181, A hot water storage tank may be used. In this case, the heat storage heat exchanger 182 may not be provided.

本発明にかかる冷凍サイクル装置とそれを用いた蓄熱装置は、ヒートポンプ給湯機、蓄熱式給湯機、蓄熱式冷暖房機といった熱利用システムに用いることができる。   The refrigeration cycle apparatus according to the present invention and the heat storage device using the refrigeration cycle apparatus can be used in a heat utilization system such as a heat pump water heater, a heat storage hot water heater, and a heat storage air conditioner.

本発明の実施の形態1の冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1の冷凍サイクル装置における膨張弁の開度の制御方法を説明するフローチャートThe flowchart explaining the control method of the opening degree of the expansion valve in the refrigeration cycle apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の冷凍サイクル装置のモリエル線図Mollier diagram of the refrigeration cycle apparatus of Embodiment 1 of the present invention 本発明の実施の形態1の冷凍サイクル装置の変形例の構成図The block diagram of the modification of the refrigerating-cycle apparatus of Embodiment 1 of this invention. 本発明の実施の形態2の蓄熱装置の構成図The block diagram of the thermal storage apparatus of Embodiment 2 of this invention 本発明の実施の形態2の蓄熱装置における第2の冷媒−水熱交換器の入口水温度の推移を表したグラフThe graph showing transition of the inlet water temperature of the 2nd refrigerant | coolant-water heat exchanger in the heat storage apparatus of Embodiment 2 of this invention. 従来の冷凍サイクル装置の構成図Configuration diagram of conventional refrigeration cycle equipment

符号の説明Explanation of symbols

10、110 冷凍サイクル装置
11 熱交換器
12 副熱交換器
20 貯湯タンク
21、23 給水管
22 給湯管
24 混合器
30、116 冷媒回路
31、111 圧縮機
32 凝縮器
33、113 膨張弁
34、114 蒸発器
35、41 受熱部
40 流通路
42、124 ポンプ
43 授熱部
112 第1の冷媒−水熱交換器
115 第2の冷媒−水熱交換器
117、118 水経路
122 温度センサ
123 内部冷媒熱交換器
130 制御装置
141、142 信号線
160 飽和曲線
161 閉サイクルA
162 閉サイクルA
163 等温線
164 等エントロピ線
180 蓄熱装置
181 蓄熱槽
182 蓄熱熱交換器
DESCRIPTION OF SYMBOLS 10, 110 Refrigeration cycle apparatus 11 Heat exchanger 12 Sub heat exchanger 20 Hot water storage tank 21, 23 Water supply pipe 22 Hot water supply pipe 24 Mixer 30, 116 Refrigerant circuit 31, 111 Compressor 32 Condenser 33, 113 Expansion valve 34, 114 Evaporator 35, 41 Heat receiving part 40 Flow path 42, 124 Pump 43 Heat receiving part 112 First refrigerant-water heat exchanger 115 Second refrigerant-water heat exchanger 117, 118 Water path 122 Temperature sensor 123 Internal refrigerant heat Exchanger 130 Controller 141, 142 Signal line 160 Saturation curve 161 Closed cycle A 1 B 1 C 1 D 1
162 closed cycle A 2 B 2 C 2 D 2
163 isotherm 164 isentropic wire 180 heat storage device 181 heat storage tank 182 heat storage heat exchanger

Claims (4)

冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された前記冷媒が放熱し、水を加熱する第1の冷媒−水熱交換器と、前記第1の冷媒−水熱交換器で放熱した前記冷媒の圧力を低下させる膨張機構と、前記膨張機構で圧力を低下させた冷媒を空気の熱で加熱する蒸発器と、前記蒸発器で加熱された冷媒と水とを熱交換させる第2の冷媒−水熱交換器とが、前記冷媒を流す経路で循環する形で接続された冷媒回路と、
外部より供給された水と前記冷媒と熱交換を行う前記第2の冷媒−水熱交換器と、前記第2の冷媒−水熱交換器によって前記冷媒と熱交換した前記水を前記冷媒が放熱することによって加熱する前記第1の冷媒−水熱交換器とが順に接続され、前記第1の冷媒−水熱交換器で加熱された前記水を供給する水経路とを備え、
前記第2の冷媒−水熱交換器の入口水温度を検出し、前記第2の冷媒−水熱交換器の入口水温度が上昇すると、前記膨張機構によって低下させられる前記冷媒の圧力が高くなるように前記膨張機構を制御する冷凍サイクル装置。
The compressor that compresses the refrigerant, the refrigerant compressed by the compressor radiates heat, heats the first refrigerant-water heat exchanger that heats the water, and the heat that is radiated by the first refrigerant-water heat exchanger An expansion mechanism that reduces the pressure of the refrigerant, an evaporator that heats the refrigerant whose pressure is reduced by the expansion mechanism with heat of air, and a second refrigerant that exchanges heat between the refrigerant heated by the evaporator and water A refrigerant circuit connected in such a way that a water heat exchanger circulates in a path through which the refrigerant flows;
The refrigerant radiates heat from the second refrigerant-water heat exchanger that exchanges heat with water supplied from the outside and the refrigerant, and the water that exchanges heat with the refrigerant by the second refrigerant-water heat exchanger. The first refrigerant-water heat exchanger that is heated by heating, and a water path that supplies the water heated by the first refrigerant-water heat exchanger,
When the inlet water temperature of the second refrigerant-water heat exchanger is detected and the inlet water temperature of the second refrigerant-water heat exchanger rises, the pressure of the refrigerant lowered by the expansion mechanism increases. A refrigeration cycle apparatus that controls the expansion mechanism.
請求項1に記載の冷凍サイクル装置と、蓄熱材を有する蓄熱槽とを有し、
前記蓄熱槽より水を前記水経路に供給し、前記水経路で加熱された水を前記蓄熱槽に導入し、前記加熱された水によって、前記蓄熱槽内の蓄熱材を加熱する蓄熱装置。
The refrigeration cycle apparatus according to claim 1 and a heat storage tank having a heat storage material,
A heat storage device that supplies water from the heat storage tank to the water path, introduces water heated in the water path into the heat storage tank, and heats the heat storage material in the heat storage tank with the heated water.
前記蓄熱材が潜熱蓄熱材であることを特徴とする、
請求項2に記載の蓄熱装置。
The heat storage material is a latent heat storage material,
The heat storage device according to claim 2.
前記第2の冷媒−水熱交換器の一部が蒸発器としても兼用できる構成であることを特徴とする、
請求項1〜3のいずれかに記載の冷凍サイクル装置とそれを用いた蓄熱装置。
A part of the second refrigerant-water heat exchanger is configured to be used also as an evaporator,
The refrigeration cycle apparatus according to any one of claims 1 to 3, and a heat storage apparatus using the refrigeration cycle apparatus.
JP2006192313A 2006-07-13 2006-07-13 Refrigerating cycle device and heat storage device using the same Pending JP2008020125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192313A JP2008020125A (en) 2006-07-13 2006-07-13 Refrigerating cycle device and heat storage device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192313A JP2008020125A (en) 2006-07-13 2006-07-13 Refrigerating cycle device and heat storage device using the same

Publications (1)

Publication Number Publication Date
JP2008020125A true JP2008020125A (en) 2008-01-31

Family

ID=39076198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192313A Pending JP2008020125A (en) 2006-07-13 2006-07-13 Refrigerating cycle device and heat storage device using the same

Country Status (1)

Country Link
JP (1) JP2008020125A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192135A (en) * 2008-02-14 2009-08-27 Panasonic Corp Heat pump water heater
JP2010032157A (en) * 2008-07-30 2010-02-12 Denso Corp Refrigeration cycle device
JP2010139232A (en) * 2008-12-15 2010-06-24 Yamaguchi Michiko Compression type heat pump equipped with latent heat storage device
JP2012159260A (en) * 2011-02-02 2012-08-23 Orion Machinery Co Ltd Temperature adjusting device
KR101279929B1 (en) * 2010-06-15 2013-07-05 한라비스테온공조 주식회사 Dualpipe heat exchange system using cold reserve technique
JPWO2013115073A1 (en) * 2012-02-01 2015-05-11 国立大学法人 東京大学 Energy saving device and energy saving method using self-heat regeneration
KR20160128028A (en) * 2015-04-28 2016-11-07 차종만 Turbine-integrated Eddy Current Heater for Heat Pump System using Refrigerants
KR20160128027A (en) * 2015-04-28 2016-11-07 차종만 Heat Pump System using Turbine-integrated Eddy Current Heater
US9834455B2 (en) 2010-04-30 2017-12-05 Sunlight Photonics Inc. Solar desalination system employing a humidification-dehumidification process
WO2018025318A1 (en) * 2016-08-02 2018-02-08 三菱電機株式会社 Heat pump device
WO2020114147A1 (en) * 2018-12-05 2020-06-11 江苏天舒电器有限公司 Multi-stage heat utilization heat pump control system and method for bathroom

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192135A (en) * 2008-02-14 2009-08-27 Panasonic Corp Heat pump water heater
JP2010032157A (en) * 2008-07-30 2010-02-12 Denso Corp Refrigeration cycle device
JP2010139232A (en) * 2008-12-15 2010-06-24 Yamaguchi Michiko Compression type heat pump equipped with latent heat storage device
US10538435B2 (en) 2010-04-30 2020-01-21 Sunlight Aerospace Inc. Solar desalination system employing a humidification-dehumidification process
US9834455B2 (en) 2010-04-30 2017-12-05 Sunlight Photonics Inc. Solar desalination system employing a humidification-dehumidification process
US9834454B2 (en) 2010-04-30 2017-12-05 Sunlight Photonics Inc. Hybrid solar desalination system
KR101279929B1 (en) * 2010-06-15 2013-07-05 한라비스테온공조 주식회사 Dualpipe heat exchange system using cold reserve technique
JP2012159260A (en) * 2011-02-02 2012-08-23 Orion Machinery Co Ltd Temperature adjusting device
JPWO2013115073A1 (en) * 2012-02-01 2015-05-11 国立大学法人 東京大学 Energy saving device and energy saving method using self-heat regeneration
KR20160128028A (en) * 2015-04-28 2016-11-07 차종만 Turbine-integrated Eddy Current Heater for Heat Pump System using Refrigerants
KR20160128027A (en) * 2015-04-28 2016-11-07 차종만 Heat Pump System using Turbine-integrated Eddy Current Heater
KR101678913B1 (en) * 2015-04-28 2016-11-23 차종만 Heat Pump System using Turbine-integrated Eddy Current Heater
KR101678914B1 (en) * 2015-04-28 2016-11-23 차종만 Turbine-integrated Eddy Current Heater for Heat Pump System using Refrigerants
WO2018025318A1 (en) * 2016-08-02 2018-02-08 三菱電機株式会社 Heat pump device
GB2567333A (en) * 2016-08-02 2019-04-10 Mitsubishi Electric Corp Heat pump device
CN109511272A (en) * 2016-08-02 2019-03-22 三菱电机株式会社 Heat pump assembly
GB2567333B (en) * 2016-08-02 2020-06-24 Mitsubishi Electric Corp Heat pump apparatus
CN109511272B (en) * 2016-08-02 2020-10-30 三菱电机株式会社 Heat pump device
DE112016007113B4 (en) 2016-08-02 2023-02-23 Mitsubishi Electric Corporation heat pump device
WO2020114147A1 (en) * 2018-12-05 2020-06-11 江苏天舒电器有限公司 Multi-stage heat utilization heat pump control system and method for bathroom

Similar Documents

Publication Publication Date Title
JP2008020125A (en) Refrigerating cycle device and heat storage device using the same
JP5182358B2 (en) Refrigeration equipment
JP6538290B1 (en) Air conditioner
JP2009243810A (en) Refrigerating device
JP2005291622A (en) Refrigerating cycle device and its control method
JP2018054237A (en) Air conditioner
JP2005147456A (en) Air conditioner
JP2936961B2 (en) Air conditioner
JP2007303806A (en) Refrigerating cycle device and its operation method
JP2006118820A (en) Heat pump type water heater
JP6609198B2 (en) Combined heat source heat pump device
JP2008039233A (en) Refrigerating device
JP2008075948A (en) Water cooling type air conditioner
JP2010181052A (en) Heat pump device
JP2004219062A (en) Air conditioner and its operation control method
JP5571978B2 (en) Heat pump system
KR102558826B1 (en) Air conditioner system and control method
JP6978242B2 (en) Refrigerant circuit equipment
JP2005351537A (en) Refrigerating cycle system and its control method
JPWO2012081110A1 (en) Air conditioner
JP6704505B2 (en) Heat pump water heater
JP2008116184A (en) Refrigerating cycle device
JP6609195B2 (en) Heat pump equipment
JP2007309565A (en) Water heater
JP2006234211A (en) Heat pump water heater