JP2008019101A - Surface-modified carbon material and its producing method - Google Patents

Surface-modified carbon material and its producing method Download PDF

Info

Publication number
JP2008019101A
JP2008019101A JP2006189510A JP2006189510A JP2008019101A JP 2008019101 A JP2008019101 A JP 2008019101A JP 2006189510 A JP2006189510 A JP 2006189510A JP 2006189510 A JP2006189510 A JP 2006189510A JP 2008019101 A JP2008019101 A JP 2008019101A
Authority
JP
Japan
Prior art keywords
carbon material
fluorine
gas
sulfonic acid
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006189510A
Other languages
Japanese (ja)
Inventor
Naoyuki Hanaki
直幸 花木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006189510A priority Critical patent/JP2008019101A/en
Publication of JP2008019101A publication Critical patent/JP2008019101A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon material which can keep the surface-modified properties for a long period of time, and to provide a method for producing the same. <P>SOLUTION: The carbon material is surface modified by a sulfonic group and a fluorine atom, in which the surface-modifying fluorine atom and the sulfonic group have the relation: (content of fluorine atoms ×0.5)>(sulfonic group) in the molar ratio. The method for producing it comprises a process for obtaining the surface-modified carbon material by the sulfonic group by reacting the carbon material with a source of the sulfonic group, and a process for obtaining the surface-modified carbon material by the sulfonic group and the fluorine atom by reacting the surface-modified carbon material by the sulfonic group with fluorine gas. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、スルホン酸基とフッ素原子で表面修飾された炭素材料およびその製造方法に関する。   The present invention relates to a carbon material whose surface is modified with a sulfonic acid group and a fluorine atom, and a method for producing the same.

炭素材料の表面修飾をおこない特定の性質を付与することは従来おこなわれている。例えば、炭素質粉粒体の表面を酸化処理およびフッ素化処理によって改質することで表面の濡れ性を向上させることが知られている(特許文献1)。また、カーボンブラックをスルホン化反応溶媒中に分散させて粒子表面にスルホン酸基を導入することで、安定な水分散性が付与されることが知られている(特許文献2)。このような表面修飾された炭素材料は、例えばインクジェット用記録液や燃料電池の触媒担体として用いられている(特許文献2および3)。
また、フッ素化とスルホン化をおこなう例として、被処理体をフッ素ガスと硫黄含有化合物とを含む混合ガスと接触させる硫黄含有官能基の導入方法が知られている(特許文献4〜8)。しかしこれらの特許文献では高分子材料からなる被処理体を対象としており、カーボンブラックのような炭素材料を処理することについては知られていなかった。炭素材料に関しては、フッ素化によって得られたフッ化炭素を二酸化硫黄ガスで接触処理するフッ化炭素の精製法が知られている(特許文献9)が、これはフッ化炭素製造時において吸着した過剰のフッ素を除去するために二酸化硫黄と反応させるものであり、二酸化硫黄は表面修飾に寄与していないものであった。
特開平5−78110号公報 特開平10−110127号公報 特表2005−527957号公報 特公昭59−5601号公報 特開昭60−86132号公報 特開平4−59838号公報 特開2000−256490号公報 特開2001−76703号公報 特開平2−22114号公報
It has been conventionally performed to impart a specific property by surface modification of a carbon material. For example, it is known that the wettability of the surface is improved by modifying the surface of the carbonaceous granular material by oxidation treatment and fluorination treatment (Patent Document 1). Further, it is known that carbon black is dispersed in a sulfonation reaction solvent and a sulfonic acid group is introduced on the particle surface, thereby providing stable water dispersibility (Patent Document 2). Such a surface-modified carbon material is used as, for example, an inkjet recording liquid or a fuel cell catalyst carrier (Patent Documents 2 and 3).
Moreover, as an example of performing fluorination and sulfonation, a method for introducing a sulfur-containing functional group in which an object to be treated is brought into contact with a mixed gas containing fluorine gas and a sulfur-containing compound is known (Patent Documents 4 to 8). However, in these patent documents, an object to be processed made of a polymer material is targeted, and it has not been known to process a carbon material such as carbon black. Regarding carbon materials, there is known a purification method of fluorocarbons in which fluorocarbons obtained by fluorination are contact-treated with sulfur dioxide gas (Patent Document 9), but this was adsorbed during the production of fluorocarbons. In order to remove excess fluorine, it was made to react with sulfur dioxide, and sulfur dioxide did not contribute to the surface modification.
Japanese Patent Laid-Open No. 5-78110 Japanese Patent Laid-Open No. 10-110127 JP 2005-527957 A Japanese Patent Publication No.59-5601 JP-A-60-86132 Japanese Patent Laid-Open No. 4-59838 JP 2000-256490 A JP 2001-76703 A JP-A-2-22114

本発明の目的は、スルホン酸基とフッ素原子の両者で表面修飾した性質を長期間維持できる炭素材料、およびその製造方法を提供することにある。   An object of the present invention is to provide a carbon material that can maintain the property of surface modification with both sulfonic acid groups and fluorine atoms for a long period of time, and a method for producing the same.

本発明者は炭素材料についてスルホン酸基を導入する表面処理工程およびフッ素ガス処理による表面処理工程をこの順に、ないしは同時におこなうことによって、炭素表面修飾による改質の安定性に優れた炭素材料が得られることを見出し、本発明を完成するに至った。すなわち本発明の目的は下記の手段によって達成された。   The present inventor obtained a carbon material excellent in stability of modification by carbon surface modification by performing a surface treatment step for introducing a sulfonic acid group on a carbon material and a surface treatment step by fluorine gas treatment in this order or simultaneously. As a result, the present invention has been completed. That is, the object of the present invention has been achieved by the following means.

(1)スルホン酸基とフッ素原子とにより表面修飾されたことを特徴とする炭素材料。
(2)表面修飾したフッ素原子とスルホン酸基がモル比で(フッ素原子含量×0.5)>(スルホン酸基含量)である(1)記載の炭素材料。
(3)炭素材料とスルホン酸基供給源とを反応させてスルホン酸基により表面修飾された炭素材料を得る工程と、続いて前記スルホン酸基により表面修飾された炭素材料とフッ素ガスとを反応させてスルホン酸基とフッ素原子とにより表面修飾された炭素材料を得る工程とを含むことを特徴とする、表面修飾された炭素材料の製造方法。
(4)前記スルホン酸基供給源が、硫酸、発煙硫酸、三酸化硫黄、及び三酸化硫黄錯体の中から選ばれる少なくとも1種の化合物を含むことを特徴とする、(3)に記載の表面修飾された炭素材料の製造方法。
(5)炭素材料に二酸化硫黄ガスとフッ素ガスとを含む混合ガスを反応させて、スルホン酸基とフッ素原子とにより表面修飾された炭素材料を得る工程を含むことを特徴とする、表面修飾された炭素材料の製造方法。
(6)前記混合ガス中のフッ素ガス濃度が5〜15体積%であることを特徴とする、(5)に記載の表面修飾された炭素材料の製造方法。
(7)(2)〜(6)のいずれか1項に記載の製造方法によって製造されたことを特徴とする表面修飾された炭素材料。
(1) A carbon material that is surface-modified with a sulfonic acid group and a fluorine atom.
(2) The carbon material according to (1), wherein the surface-modified fluorine atom and sulfonic acid group have a molar ratio of (fluorine atom content × 0.5)> (sulfonic acid group content).
(3) A step of reacting a carbon material with a sulfonic acid group supply source to obtain a carbon material surface-modified with a sulfonic acid group, and subsequently reacting the carbon material surface-modified with the sulfonic acid group with a fluorine gas. And obtaining a carbon material surface-modified with sulfonic acid groups and fluorine atoms. A method for producing a surface-modified carbon material.
(4) The surface according to (3), wherein the sulfonic acid group supply source contains at least one compound selected from sulfuric acid, fuming sulfuric acid, sulfur trioxide, and sulfur trioxide complex. A method for producing a modified carbon material.
(5) Surface-modified, characterized in that it includes a step of reacting a carbon material with a mixed gas containing sulfur dioxide gas and fluorine gas to obtain a carbon material surface-modified with sulfonic acid groups and fluorine atoms. Carbon material manufacturing method.
(6) The method for producing a surface-modified carbon material according to (5), wherein a fluorine gas concentration in the mixed gas is 5 to 15% by volume.
(7) A surface-modified carbon material produced by the production method according to any one of (2) to (6).

本発明によって得られる表面修飾された炭素材料は、親水性・強酸性などを示すスルホン酸基と撥水性・耐薬品性などを示すフッ素原子を炭素原子上に有する化合物であり、高温でもスルホン酸基は離脱しにくいのでその表面の性質は安定しており長期間維持できる。本発明によって得られる表面修飾された炭素材料は、スルホン酸基導入により表面の親水性が高められているので、燃料電池や電気二重層キャパシタなどの電極材料や触媒担体、インクジェット記録液用の黒色顔料などに好適に使用することができる。さらにはスルホン酸基が安定化されているため、種々の材料に求められる濡れ性、水系溶媒中における分散性などの諸物性を安定に保つことができる。   The surface-modified carbon material obtained by the present invention is a compound having a sulfonic acid group exhibiting hydrophilicity / strong acidity and the like and a fluorine atom exhibiting water repellency / chemical resistance on the carbon atom. Since the group is difficult to leave, its surface properties are stable and can be maintained for a long time. Since the surface-modified carbon material obtained by the present invention has improved surface hydrophilicity by introduction of sulfonic acid groups, it is used for electrode materials such as fuel cells and electric double layer capacitors, catalyst carriers, and black for ink jet recording liquids. It can be suitably used for pigments and the like. Furthermore, since the sulfonic acid group is stabilized, various physical properties such as wettability and dispersibility in an aqueous solvent required for various materials can be kept stable.

本発明において用いる炭素材料とは、稲垣道夫編「解説・カーボンファミリー」(アグネ承風社、2001年刊)第1章に記載されている炭素材料の定義に従い、元素「炭素」を主成分とする全ての材料、黒鉛のみでなくダイヤモンド、フラーレン、カルビンも含めた全ての材料を炭素材料と呼ぶ。例えば、天然黒鉛、人造黒鉛、カーボンブラック、活性炭、炭素繊維、気相法炭素繊維、ダイヤモンドライクカーボン、フラーレン、カーボンナノチューブ、カーボンナノホーンなどが挙げられる。形状は、粉状、粒状、フレーク状、繊維状、板状、管状、アモルファス状、薄膜状など、いずれの形状であってもよい。   The carbon material used in the present invention is mainly composed of the element “carbon” in accordance with the definition of the carbon material described in Chapter 1 of “Introduction / Carbon Family” edited by Michio Inagaki (Agne Jofusha, 2001). All materials, not only graphite, but also all materials including diamond, fullerene, and calvin are called carbon materials. Examples thereof include natural graphite, artificial graphite, carbon black, activated carbon, carbon fiber, vapor grown carbon fiber, diamond-like carbon, fullerene, carbon nanotube, and carbon nanohorn. The shape may be any shape such as powder, granule, flake, fiber, plate, tubular, amorphous, and thin film.

本発明において用いられる炭素材料の状態は限定されず、金属や金属酸化物などを担持していてもよい。具体的には、金属(白金、パラジウムなど)、金属酸化物(酸化白金、重合体粒子、有機物粒子など)、無機系粒子(セラミック粒子、炭素材料粒子など)、金属系粒子(金属粒子、金属酸化物粒子など)などを担持しているものが挙げられる。   The state of the carbon material used in the present invention is not limited, and may carry a metal, a metal oxide, or the like. Specifically, metals (platinum, palladium, etc.), metal oxides (platinum oxide, polymer particles, organic particles, etc.), inorganic particles (ceramic particles, carbon material particles, etc.), metal particles (metal particles, metals, etc.) And the like carrying oxide particles and the like.

本発明においてまずスルホン化処理を行う。   In the present invention, a sulfonation treatment is first performed.

スルホン化処理については、Everett E. Gilbert著「Sulfonation and Related Reactions」(Interscience Publishers、1965年刊)、S. Patai著「Chemistry of Sulphonic Acids, Esters and Their Derivatives」(Wiley、1990年刊)などの成書に記載されている内容を参考にして行うことができる。また、炭素材料に対してスルホン化処理をおこなった例としては、特開平10−110112、特開平10−110127、特開平11−246806、特開2005−150002、特表2005−527957などが挙げられる。   For sulfonation treatment, Everett E. et al. Gilbert “Sulfonation and Related Reactions” (Interscience Publishers, 1965), S.G. It can be performed with reference to the contents described in a book such as “Chemistry of Sulphonic Acids, Esters and Their Derivatives” by Patai (Wiley, 1990). Examples of the sulfonation treatment for the carbon material include JP-A-10-110112, JP-A-10-110127, JP-A-11-246806, JP-A-2005-150002, and JP-T-2005-527957. .

スルホン化剤としては、硫酸、発煙硫酸、三酸化硫黄、三酸化硫黄錯体などを用いることが好ましい。三酸化硫黄との反応においては、特開2003−165926に記載されているように硫黄を燃焼させて生成させた二酸化硫黄ガスを接触酸化して得られた三酸化硫黄ガスを用いておこなってもよいし、発煙硫酸から得られる三酸化硫黄を用いてもよいし、市販の三酸化硫黄を用いてもよい。   As the sulfonating agent, sulfuric acid, fuming sulfuric acid, sulfur trioxide, sulfur trioxide complex or the like is preferably used. In the reaction with sulfur trioxide, as described in JP-A-2003-165926, sulfur trioxide gas obtained by catalytic oxidation of sulfur dioxide gas generated by burning sulfur can be used. Alternatively, sulfur trioxide obtained from fuming sulfuric acid may be used, or commercially available sulfur trioxide may be used.

炭素材料のスルホン化剤による表面処理は、炭素材料を分散させる溶媒を用いておこなってもよく、液体状のスルホン化剤の場合にはそれ自身溶媒を兼ねて用いてもよい。気体状のスルホン化剤の場合には気体が接触するようにおこなってもよいし、炭素材料を分散させた溶媒にスルホン化剤気体を吹き込むこともできる。スルホン化処理の処理温度は好ましくは−20〜200℃、より好ましくは0〜150℃である。反応時間は、好ましくは1分〜3日間であり、より好ましくは1時間〜1日間である。   The surface treatment of the carbon material with the sulfonating agent may be performed using a solvent in which the carbon material is dispersed. In the case of a liquid sulfonating agent, the carbon material itself may also be used as a solvent. In the case of a gaseous sulfonating agent, the gas may be brought into contact with each other, or the sulfonating agent gas may be blown into a solvent in which a carbon material is dispersed. The treatment temperature of the sulfonation treatment is preferably -20 to 200 ° C, more preferably 0 to 150 ° C. The reaction time is preferably 1 minute to 3 days, more preferably 1 hour to 1 day.

このスルホン化処理により炭素材料の表面において炭素原子と結合してスルホン酸基が導入される。このスルホン酸基の導入量は、炭素材料の単位表面値当り、好ましくは1×10−7mol/m〜1×10−3mol/m、より好ましくは1×10−6mol/m〜1×10−4mol/mである。この場合、最終的にフッ素化処理後のスルホン酸基は、フッ素化処理により若干減少する場合もあるが、好ましくは1×10−7mol/m〜1×10−3mol/mより好ましくは1×10−6mol/m〜1×10−4mol/mである。
また本発明において、炭素材料の表面にスルホン酸基を導入することは、炭素材料の最表面に存在する炭素原子とスルホン酸基が直接結合する場合だけでなく、芳香環を介して炭素原子と結合する、すなわち芳香族スルホン酸中の任意の炭素原子と炭素材料の最表面に存在する炭素原子が直接結合する場合も含む。
By this sulfonation treatment, sulfonic acid groups are introduced by binding to carbon atoms on the surface of the carbon material. The introduction amount of the sulfonic acid group is preferably 1 × 10 −7 mol / m 2 to 1 × 10 −3 mol / m 2 , more preferably 1 × 10 −6 mol / m per unit surface value of the carbon material. 2 to 1 × 10 −4 mol / m 2 . In this case, the sulfonic acid group after the fluorination treatment may be slightly reduced by the fluorination treatment, but preferably from 1 × 10 −7 mol / m 2 to 1 × 10 −3 mol / m 2 . It is preferably 1 × 10 −6 mol / m 2 to 1 × 10 −4 mol / m 2 .
In the present invention, the introduction of a sulfonic acid group to the surface of the carbon material is not limited to the case where the carbon atom present on the outermost surface of the carbon material and the sulfonic acid group are directly bonded to each other. It also includes a case in which any carbon atom in the aromatic sulfonic acid is bonded directly to a carbon atom present on the outermost surface of the carbon material.

本発明の好ましい態様としてスルホン化処理に次いでフッ素化処理を行う。この本発明におけるフッ素化処理について次に説明する。   In a preferred embodiment of the present invention, the fluorination treatment is performed after the sulfonation treatment. Next, the fluorination treatment in the present invention will be described.

炭素材料をフッ素ガスと反応させてフッ素化をおこなう方法は、特開昭58−166647、特開昭60−191011、特開平5−98565、特開平6−80923、特開平9−180721、特開平11−180706、特開2003−112910、特開2005−273070、WO99/059033、J. Chem. Soc. Chem. Commun. 1975, 654、J. Am. Chem. Soc. 1979, 101, 3832、日本化学会誌 1979, 1027、J. Chem. Soc. Faraday Trans 1995, 91, 3209、Carbon 1998, 36, 1399、J. Phys. Chem. A 1998, 102, 552、Carbon 1999, 37, 1033、炭素 1999, 187, 71、Carbon 2000, 38, 241、J. Phys. Soc. Jpn. 2001, 70, 175、J. Fluorine Chem. 2002, 114, 181、J. Phys. Chem. B 2004, 108, 9614、などに記載されている。渡辺信淳編著「グラファイト層間化合物」(近代編集社、1986年刊)25ページに記載されているように、高温で反応させることで完全フッ素化したフッ化カーボンが得られるが、本発明においては炭素材料の表面修飾をおこなうことが目的であるため、このような激しい反応条件は必要ない。   The method of fluorination by reacting a carbon material with fluorine gas is disclosed in JP-A-58-166647, JP-A-60-191101, JP-A-5-98565, JP-A-6-80923, JP-A-9-180721, JP-A-9-180721. 11-180706, Japanese Patent Application Laid-Open No. 2003-112910, Japanese Patent Application Laid-Open No. 2005-273070, WO99 / 059033, J. MoI. Chem. Soc. Chem. Commun. 1975, 654, J.A. Am. Chem. Soc. 1979, 101, 3832; Journal of the Chemical Society of Japan 1979, 1027; Chem. Soc. Faraday Trans 1995, 91, 3209; Carbon 1998, 36, 1399; Phys. Chem. A 1998, 102, 552, Carbon 1999, 37, 1033, Carbon 1999, 187, 71, Carbon 2000, 38, 241; Phys. Soc. Jpn. 2001, 70, 175; Fluorine Chem. 2002, 114, 181; Phys. Chem. B 2004, 108, 9614, and the like. As described on page 25 of Shinji Watanabe's “Graphite Intercalation Compound” (Modern Editorial Company, published in 1986), a fully fluorinated carbon fluoride can be obtained by reacting at a high temperature. Such a vigorous reaction condition is not necessary since the purpose is to perform surface modification.

フッ素ガスは、フッ素ガスボンベから供給しても良いし、KF・nHF共融混合物を電解したりフッ素を吸蔵している固体(例えばKNiF)を加熱したりするフッ素ガス発生装置を使用して発生させたフッ素ガスを用いても良い。 Fluorine gas may be supplied from a fluorine gas cylinder, or a fluorine gas generator that electrolyzes a KF / nHF eutectic mixture or heats a solid occluded with fluorine (for example, K 3 NiF 7 ) is used. Fluorine gas generated in this way may be used.

フッ素ガスは不活性ガスによって任意の濃度に希釈したものを用いることが好ましい。不活性ガスとしては、窒素、ヘリウム、アルゴン、二酸化炭素、パーフルオロ化合物などが挙げられる。なお、この不活性ガスによって希釈されたフッ素ガスのことを本発明においてはフッ素混合ガスと呼ぶこととする。   It is preferable to use a fluorine gas diluted to an arbitrary concentration with an inert gas. Examples of the inert gas include nitrogen, helium, argon, carbon dioxide, and perfluoro compounds. The fluorine gas diluted with the inert gas is referred to as a fluorine mixed gas in the present invention.

フッ素化処理の反応の制御は、特に粉体を用いる場合には激しい反応を制御するために反応条件や反応容器に工夫が必要であることが工業化学雑誌 1970, 73, 1211に記載されている。   It is described in industrial chemical journals 1970, 73, and 1211 that the reaction conditions and reaction vessels need to be devised to control the reaction of the fluorination treatment, particularly when powder is used. .

反応容器中のフッ素ガス混合ガス濃度は、フッ素化反応を制御する上で重要な要因の一つである。フッ素混合ガス濃度としては1〜20%が好ましく、2〜18%がより好ましく、5〜15%が特に好ましい。なお、本発明におけるフッ素混合ガスの濃度は、体積%で表わされたものである。   The fluorine gas mixed gas concentration in the reaction vessel is one of the important factors in controlling the fluorination reaction. The fluorine mixed gas concentration is preferably 1 to 20%, more preferably 2 to 18%, and particularly preferably 5 to 15%. In addition, the density | concentration of the fluorine mixed gas in this invention is represented by the volume%.

フッ素化処理の反応温度に特に制限はないが、−78〜600℃が好ましく、0〜500℃がより好ましく、10〜300℃がさらに好ましい。フッ素化反応中に反応温度を変化させておこなっても良い。特に温度制御をおこなわないで室温で反応をおこなってもよい。   Although there is no restriction | limiting in particular in the reaction temperature of a fluorination process, -78-600 degreeC is preferable, 0-500 degreeC is more preferable, and 10-300 degreeC is further more preferable. The reaction temperature may be changed during the fluorination reaction. In particular, the reaction may be carried out at room temperature without temperature control.

フッ素化処理の処理時間は任意に設定できるが、1秒〜10日が好ましく、10秒〜1時間がより好ましく、1分〜15分がさらに好ましく、5分〜10分が特に好ましい。なお、本発明におけるフッ素化処理の処理時間は、炭素材料とフッ素混合ガスの接触を開始させた時からフッ素混合ガスを取り除く操作を開始した時までの時間とする。これは、フッ素混合ガスの導入中や除去中にもフッ素ガスと炭素材料の反応が起こり得るので、厳密に処理時間を決めることが難しいために便宜上定義するものである。   The treatment time of the fluorination treatment can be arbitrarily set, but is preferably 1 second to 10 days, more preferably 10 seconds to 1 hour, further preferably 1 minute to 15 minutes, and particularly preferably 5 minutes to 10 minutes. In addition, the processing time of the fluorination treatment in the present invention is a time from when the contact between the carbon material and the fluorine mixed gas is started to when the operation of removing the fluorine mixed gas is started. This is defined for convenience because it is difficult to determine the processing time strictly because the reaction between the fluorine gas and the carbon material can occur during the introduction or removal of the fluorine mixed gas.

フッ素混合ガス中のフッ素ガス濃度およびフッ素化処理の処理時間の組み合わせとしては、1〜20%で1秒〜1時間が好ましく、2〜18%で1〜30分がより好ましく、5〜15%で5〜20分が特に好ましい。   The combination of the fluorine gas concentration in the fluorine mixed gas and the treatment time of the fluorination treatment is preferably 1 to 20% for 1 second to 1 hour, 2 to 18%, more preferably 1 to 30 minutes, and 5 to 15%. 5 to 20 minutes is particularly preferable.

フッ素化処理の反応をおこなう反応装置としてはどのようなものを用いてもよい。例えば、Prog. Inorg. Chem. 1979, 26, 172や、アール・イー・バンクス(R. E. Banks)、ビー・イー・スマート(B. E. Smart)編「オーガノフルオリン・ケミストリー:プリンシプルズ・アンド・コマーシャル・アプリケーションズ(Organofluorine Chemistry: Principles and Commercial Applications)」(プレナム・プレス(Plenum Press)、1994年刊)475〜478ページに記載されているような反応装置の概略図を参考にできる。   Any reactor may be used as a reaction apparatus for performing the reaction of fluorination treatment. For example, Prog. Inorg. Chem. 1979, 26, 172, R. E. Banks, B. E. Smart (Organ Fluorin Chemistry: Principals and Commercial Applications ( Organofluorine Chemistry: Principles and Commercial Applications ”(Plenum Press, 1994), page 475-478.

反応容器の材質としては、モネル、インコネルやステンレスなどの金属や合金、ポリテトラフルオロエチレンなどのフッ素不活性素材などを用いることができる。これらを組み合わせて成るものでもよい。   As the material of the reaction vessel, metals and alloys such as monel, inconel and stainless steel, fluorine inert materials such as polytetrafluoroethylene, and the like can be used. A combination of these may also be used.

フッ素混合ガスとの反応は、上述の反応装置を参考にして、容器中に炭素材料を入れてフッ素混合ガスを流通させながら反応させる流通式でおこなってもよいし、密閉容器中に炭素材料を入れてフッ素混合ガスを充填して反応させるバッチ式でおこなってもよいし、炭素材料を連続的に反応容器に搬入・搬出しながら反応させる連続式でおこなってもよい。   The reaction with the fluorine mixed gas may be carried out by a flow type in which a carbon material is put in a container and reacted while the fluorine mixed gas is circulated with reference to the above-mentioned reaction apparatus, or the carbon material is put in a sealed container. It may be carried out in a batch system in which the mixture is filled with fluorine gas and reacted, or in a continuous system in which the carbon material is continuously carried into and out of the reaction vessel.

流通式でおこなう場合、フッ素混合ガスの流速は任意に設定できるが、反応容器の内容量が数秒〜数分で置き換わる程度の流速で流通させるのが好ましい。例えば、内容量100mlの反応容器を用いる場合には、1〜1000ml/minが好ましく、10〜500ml/minがより好ましく、50〜300ml/minが特に好ましい。フッ素化反応中にフッ素混合ガスの流速を変化させておこなうこともできる。反応容器から出てきたフッ素混合ガスを再度反応容器に還流させながらおこなうこともできる。   In the case of using a flow system, the flow rate of the fluorine mixed gas can be arbitrarily set, but it is preferable to flow at a flow rate at which the internal volume of the reaction vessel is replaced in several seconds to several minutes. For example, when a reaction vessel having an internal volume of 100 ml is used, it is preferably 1 to 1000 ml / min, more preferably 10 to 500 ml / min, and particularly preferably 50 to 300 ml / min. It is also possible to change the flow rate of the fluorine mixed gas during the fluorination reaction. It is also possible to carry out the process while refluxing the mixed gas of fluorine coming out of the reaction vessel to the reaction vessel again.

バッチ式でおこなう場合、フッ素混合ガスの圧力は任意に設定できるが、10kPa〜10MPaが好ましく、50kPa〜1MPaがより好ましく、80〜500kPaがさらに好ましい。フッ素化処理中にフッ素混合ガスを追加あるいは放出することで圧力を変化させておこなうこともできる。   When performing by a batch type, the pressure of fluorine mixed gas can be set arbitrarily, However, 10kPa-10MPa is preferable, 50kPa-1MPa is more preferable, 80-500kPa is further more preferable. It is also possible to change the pressure by adding or releasing a fluorine mixed gas during the fluorination treatment.

連続式でおこなう場合、処理領域への炭素材料の搬入・搬出速度は、材料の性質として許容できる範囲内であれば任意に設定できる。フッ素混合ガスを流通させている反応容器の中に炭素材料を搬入する形式の場合、フッ素混合ガスの流速は流通式でおこなう場合に準じる。フッ素混合ガスが充填された反応容器の中に炭素材料を搬入する形式の場合、フッ素混合ガスの圧力はバッチ式でおこなう場合に準じる。   In the case where the process is carried out continuously, the speed at which the carbon material is carried into and out of the processing region can be arbitrarily set as long as it is within a range that is acceptable as a property of the material. In the case of a type in which a carbon material is carried into a reaction vessel in which a fluorine mixed gas is circulated, the flow rate of the fluorine mixed gas is the same as that in a flow type. In the case of a type in which a carbon material is carried into a reaction vessel filled with a fluorine mixed gas, the pressure of the fluorine mixed gas is the same as that in a batch type.

フッ素ガスとの反応中に別の反応性ガスが共存するとフッ素化反応と合わせて別の反応が起こる。これを活用する場合もありうるが、フッ素ガスとの反応をおこなう前に反応容器中を不活性雰囲気にしてからフッ素ガスとの反応をおこなうことが好ましい。不活性雰囲気にする方法としては、反応容器を減圧にした後に不活性ガスで置換する方法や、不活性ガスを流通させて置換する方法などが挙げられる。   If another reactive gas coexists during the reaction with the fluorine gas, another reaction occurs together with the fluorination reaction. Although this may be utilized, it is preferable to carry out the reaction with the fluorine gas after making the reaction vessel in an inert atmosphere before the reaction with the fluorine gas. Examples of the inert atmosphere include a method in which the reaction vessel is decompressed and then replaced with an inert gas, and a method in which an inert gas is circulated and replaced.

フッ素以外の反応性ガスを共存させてフッ素化反応と合わせて別の反応を利用する場合、共存させる反応性ガスとしては、酸素、塩素、臭素、二酸化硫黄が挙げられる。反応性ガスはフッ素ガスとあらかじめ混合して反応容器に供給しても良いし、別々に導入して反応容器中で混合してもよいし、重合体と共に反応容器中に導入してもよい。   When a reactive gas other than fluorine is coexisted and another reaction is used in combination with the fluorination reaction, examples of the reactive gas to be coexisted include oxygen, chlorine, bromine, and sulfur dioxide. The reactive gas may be mixed with fluorine gas in advance and supplied to the reaction vessel, may be introduced separately and mixed in the reaction vessel, or may be introduced into the reaction vessel together with the polymer.

フッ素ガスとの反応終了後すぐに反応容器を開封することは、容器中に残存しているフッ素ガスが処理されないまま大気中に放出されるため好ましくない。また炭素材料がフッ素ガスと空気に同時に触れることになり、不活性雰囲気での反応ではなくなるため好ましくない。フッ素化反応後は反応容器中からフッ素混合ガスを取り除いてから開封することが好ましい。フッ素混合ガスを取り除く方法としては、反応容器を減圧脱気して不活性ガスで置換する方法や、不活性ガスを流通させて置換する方法などが挙げられる。   Opening the reaction vessel immediately after completion of the reaction with the fluorine gas is not preferable because the fluorine gas remaining in the vessel is released into the atmosphere without being treated. Further, the carbon material is not preferable because it comes into contact with fluorine gas and air at the same time, and the reaction is not performed in an inert atmosphere. After the fluorination reaction, it is preferable to remove the fluorine mixed gas from the reaction vessel before opening. Examples of the method for removing the fluorine mixed gas include a method in which the reaction vessel is degassed under reduced pressure and replaced with an inert gas, and a method in which an inert gas is circulated and replaced.

炭素原子のみで構成されるダイヤモンド、黒鉛、フラーレンなどを除いて、炭素材料においては炭素原子上に水素やその他のヘテロ元素を結合して含んで構成されていることが普通である。例えば、カーボンブラック表面には酸素、水素、硫黄などの元素が微量存在していることがJ.B.ドネ、A.ボエット著、高橋浩、山下晋三、堤和男監訳「カーボンブラック」(講談社、1978年刊)第4章に記載されている。このような水素原子を含む炭素材料の直接フッ素化反応においては、C−H結合がC−F結合に変換される反応が起こることで副生成物としてフッ化水素(HF)が生成する。フッ化水素が共存したままでフッ素化反応をおこなってもよいし、取り除く操作をして反応をおこなってもよい。フッ化水素を反応系から取り除く方法としては、フッ化カリウム(KF)やフッ化ナトリウム(NaF)などのアルカリ金属フッ化物やトリアルキルアミンなどの有機塩基をフッ化水素捕捉剤として反応系中に共存させておく方法や、フッ素混合ガスと共にフッ化水素を流し去る方法などが挙げられる。フッ化水素を流し去る方法においては反応容器ガス出口でフッ化水素捕捉剤と出口ガスを接触させることが好ましい。流通式で反応をおこなう場合にはフッ化水素を流し去る方法が適しており、バッチ式でおこなう場合にはフッ化水素捕捉剤を共存させる方法が適している。   With the exception of diamond, graphite, fullerene, etc., which are composed of only carbon atoms, carbon materials are usually composed of hydrogen and other heteroelements bonded to carbon atoms. For example, there is a trace amount of elements such as oxygen, hydrogen and sulfur on the surface of carbon black. B. Donet, A. It is described in Chapter 4 of “Carbon Black” (Kodansha, 1978), translated by Boet, Hiroshi Takahashi, Shinzo Yamashita and Kazuo Tsutsumi. In such a direct fluorination reaction of a carbon material containing a hydrogen atom, a reaction in which a C—H bond is converted to a C—F bond occurs to generate hydrogen fluoride (HF) as a by-product. The fluorination reaction may be performed in the presence of hydrogen fluoride, or the reaction may be performed by removing it. As a method of removing hydrogen fluoride from the reaction system, alkali metal fluorides such as potassium fluoride (KF) and sodium fluoride (NaF) and organic bases such as trialkylamine are used as a hydrogen fluoride scavenger in the reaction system. A method of coexisting, a method of flowing off hydrogen fluoride together with a fluorine mixed gas, and the like can be mentioned. In the method of pouring off the hydrogen fluoride, it is preferable to contact the hydrogen fluoride scavenger and the outlet gas at the reaction vessel gas outlet. In the case of carrying out the reaction by a flow method, a method of removing hydrogen fluoride is suitable, and in the case of a batch method, a method of coexisting a hydrogen fluoride scavenger is suitable.

フッ素化反応をおこなった後、十分に取り除けなかったフッ素ガスおよびフッ化水素などの副生成物を除去するために、特開平5−78975記載のように水洗などによる洗浄操作をおこなうこともできる。過剰のフッ素を除去するために、塩化水素ガス、二酸化硫黄ガス、二酸化窒素ガス、水蒸気などで処理する特開平2−22114記載の方法を利用しても良い。   After performing the fluorination reaction, in order to remove by-products such as fluorine gas and hydrogen fluoride that have not been sufficiently removed, a washing operation such as washing with water can be performed as described in JP-A No. 5-78975. In order to remove excess fluorine, a method described in JP-A-2-22114 in which treatment is performed with hydrogen chloride gas, sulfur dioxide gas, nitrogen dioxide gas, water vapor, or the like may be used.

本発明の炭素材料の製造方法において、炭素材料の表面処理としてのスルホン化とフッ素化は、スルホン化に続いてフッ素化をおこなうか、あるいはスルホン化とフッ素化を同時におこなうことに特徴がある。本発明の規定する上記工程によらないで、炭素材料に対し、スルホン化処理の前にフッ素化処理を行うと十分な量のスルホン酸基を導入することができないという問題が生じ、本発明の目的を達成できない。本発明の工程をとることによりはじめて、表面修飾スルホン酸基の安定性の高い炭素材料を得ることができる。この理由は、まだ定かではないが炭素材料の表面に安定なフッ化炭素層が形成されたか、あるいはスルホン化が起こりにくい構造になったためと推定される。   In the method for producing a carbon material of the present invention, the sulfonation and fluorination as the surface treatment of the carbon material is characterized in that the fluorination is carried out following the sulfonation or the sulfonation and fluorination are carried out simultaneously. If the fluorination treatment is performed on the carbon material before the sulfonation treatment without using the above-described steps defined in the present invention, a problem arises that a sufficient amount of sulfonic acid groups cannot be introduced. The goal cannot be achieved. Only by taking the steps of the present invention can a carbon material with a highly stable surface-modified sulfonic acid group be obtained. The reason for this is not clear, but it is presumed that a stable fluorocarbon layer was formed on the surface of the carbon material, or that the structure was less susceptible to sulfonation.

スルホン化に続いてフッ素化を連続しておこなう場合、スルホン化およびフッ素化の条件は上述のスルホン化およびフッ素化についての説明に従って実施することが好ましい。スルホン化をおこなってからフッ素化をおこなうまでに、何もおこなわずに連続して処理をおこなってもよいし、洗浄、単離、中和、乾燥などの操作をおこなってもよい。スルホン化処理に用いた反応剤や副生成物がフッ素化に与える影響を取り除くために、適切な洗浄や乾燥操作をおこなうことが好ましい。   When fluorination is carried out continuously following sulfonation, the conditions for sulfonation and fluorination are preferably carried out in accordance with the description of sulfonation and fluorination described above. From the sulfonation to the fluorination, the treatment may be performed continuously without performing anything, and operations such as washing, isolation, neutralization, and drying may be performed. In order to remove the influence of the reactants and by-products used in the sulfonation treatment on the fluorination, it is preferable to perform appropriate washing and drying operations.

スルホン化とフッ素化を同時におこなう場合、フッ素ガスの高い反応性のためにスルホン化剤が反応し得るので、フッ素ガスと共存することでスルホン化できる反応剤を用いる。このような反応剤として二酸化硫黄が挙げられる。高分子材料をフッ素ガスおよび二酸化硫黄と反応させた例として、特公昭59−5601、特開昭60−86132、特開平2−22114、特開平4−59838、特開平10−7829、特開平10−101830、特開2000−256490、特開2001−76703、特開2003−128820などが挙げられる。二酸化硫黄は、日本化学会編「第4版実験化学講座16無機化合物」(丸善、1993年刊)140ページに記載されているように、ボンベに充填されたものを用いても良いし、都度合成しても良い。   When sulfonation and fluorination are carried out at the same time, a sulfonating agent can react due to the high reactivity of the fluorine gas. Therefore, a reactive agent that can be sulfonated by coexisting with the fluorine gas is used. An example of such a reactant is sulfur dioxide. Examples of polymer materials reacted with fluorine gas and sulfur dioxide include JP-B-59-5601, JP-A-60-86132, JP-A-2-22114, JP-A-4-59838, JP-A-10-7829, JP-A-10-7829. -101830, JP-A-2000-256490, JP-A-2001-76703, JP-A-2003-128820, and the like. As described in the 140th edition of the Chemical Society of Japan “4th edition Experimental Chemistry Course 16 Inorganic Compounds” (Maruzen, published in 1993), sulfur dioxide may be used filled with a cylinder or synthesized each time. You may do it.

フッ素ガスと二酸化硫黄を用いて反応をおこなう場合の反応温度としては、上述のフッ素化反応の場合と同じである。但し、フッ素ガスと二酸化硫黄は発熱反応を伴いフッ化スルフリル(SO)を生成するため、反応温度やガス濃度等の取り扱い条件が厳しく制限される。反応温度としては上述のフッ素化反応の場合と同様であるが、反応容器内の温度を監視しながら温度変化に注意しておこなうことが必要である。 The reaction temperature when the reaction is carried out using fluorine gas and sulfur dioxide is the same as in the above-described fluorination reaction. However, since fluorine gas and sulfur dioxide are accompanied by an exothermic reaction and produce sulfuryl fluoride (SO 2 F 2 ), handling conditions such as reaction temperature and gas concentration are severely limited. The reaction temperature is the same as in the case of the fluorination reaction described above, but it is necessary to pay attention to the temperature change while monitoring the temperature in the reaction vessel.

フッ素混合ガスの濃度としては、上述のフッ素化反応の場合と同様である。好ましい場合も同じである。   The concentration of the fluorine mixed gas is the same as that in the above fluorination reaction. The same applies to the preferred case.

二酸化硫黄の濃度としては、薄すぎるとスルホン化が十分に起こらず、濃すぎるとフッ素ガスとの反応が激しく起こってしまうためフッ素化が起こらない。0.01〜20%が好ましく、0.1〜10%がより好ましく、0.5〜10%が特に好ましい。なお、二酸化硫黄の濃度は体積%で表わしたものである。   If the concentration of sulfur dioxide is too thin, sulfonation does not occur sufficiently, and if it is too high, reaction with fluorine gas occurs vigorously, so fluorination does not occur. 0.01 to 20% is preferable, 0.1 to 10% is more preferable, and 0.5 to 10% is particularly preferable. The concentration of sulfur dioxide is expressed in volume%.

上述の高分子材料をフッ素ガスおよび二酸化硫黄と反応させた例には、特開平4−59838や特開2003−128820のように材料に二酸化硫黄ガスを付着させてフッ素ガスと反応させる方法と、特開昭60−86132のように二酸化硫黄とフッ素の混合ガスと反応させる方法が知られている。炭素材料について検討したところ、特開昭60−86132に記載されているような二酸化硫黄とフッ素の混合ガスを用いてもスルホン化あるいはフッ素化がほとんど起こらず、特開平4−59838の実施例に記載されているような二酸化硫黄濃度がフッ素濃度よりも高い二酸化硫黄とフッ素の混合ガスを用いてもスルホン化およびフッ素化があまり起こらないことがわかった。さらに詳細な検討の結果、二酸化硫黄濃度よりもフッ素濃度が高い場合においてスルホン化とフッ素化が良好に起こり、フッ素濃度がより高い場合にスルホン酸基とフッ素原子の導入量が多くなることがわかった。フッ素ガスと二酸化硫黄を用いる場合の反応条件としては、あらかじめ二酸化硫黄ガスのみを炭素材料と接触させておき、不活性ガスでパージして過剰な二酸化硫黄を除去する操作あるいは減圧下で脱気する操作をおこなってからフッ素ガスと反応させることが好ましい。   Examples of the above-described polymer material reacted with fluorine gas and sulfur dioxide include a method of attaching sulfur dioxide gas to the material and reacting with fluorine gas as disclosed in JP-A-4-59838 and JP-A-2003-128820, As disclosed in JP-A-60-86132, a method of reacting with a mixed gas of sulfur dioxide and fluorine is known. When the carbon material was examined, sulfonation or fluorination hardly occurred even when a mixed gas of sulfur dioxide and fluorine as described in JP-A-60-86132 was used. It has been found that sulfonation and fluorination do not occur much even when using a mixed gas of sulfur dioxide and fluorine having a sulfur dioxide concentration higher than the fluorine concentration as described. As a result of further detailed investigation, it was found that sulfonation and fluorination occur well when the fluorine concentration is higher than the sulfur dioxide concentration, and that the introduction amount of sulfonic acid groups and fluorine atoms increases when the fluorine concentration is higher. It was. As reaction conditions when using fluorine gas and sulfur dioxide, only sulfur dioxide gas is brought into contact with the carbon material in advance and purged with an inert gas to remove excess sulfur dioxide or degassing under reduced pressure. It is preferable to react with fluorine gas after the operation.

炭素材料として活性炭のような多孔質材料を用いる場合には、二酸化硫黄は活性炭に吸着されやすいため、あらかじめ二酸化硫黄ガスを接触させた場合の材料表面における二酸化硫黄の存在量は容器内のガス濃度に依存せず、材料の形状や接触時間などによって異なると考えられ、炭素材料表面で実際に反応に寄与する二酸化硫黄量を二酸化硫黄ガス濃度によって制御することは難しい。二酸化硫黄を反応容器内に充填する際の濃度と時間、別の気体を吹き込む量と時間などを管理することで、二酸化硫黄の存在量を制御して反応をおこなうことが好ましい。   When a porous material such as activated carbon is used as the carbon material, sulfur dioxide is easily adsorbed on the activated carbon, so the amount of sulfur dioxide present on the material surface when sulfur dioxide gas is contacted in advance is the gas concentration in the container. The amount of sulfur dioxide that actually contributes to the reaction on the surface of the carbon material is difficult to control by the sulfur dioxide gas concentration. It is preferable to carry out the reaction by controlling the amount of sulfur dioxide present by controlling the concentration and time when the sulfur dioxide is charged into the reaction vessel, the amount and time of blowing another gas, and the like.

本発明の別の態様として、炭素材料に対し、スルホン化とフッ素化を同時に行って、表面処理する場合フッ素ガスおよび二酸化硫黄との反応時間は任意に設定できるが、1秒〜10日が好ましく、10秒〜1時間がより好ましく、1分〜15分がさらに好ましく、5分〜10分が特に好ましい。なお、この場合におけるフッ素ガスおよび二酸化硫黄との反応時間は、炭素材料とフッ素ガスと二酸化硫黄の3種を共存させた時から、炭素材料あるいはフッ素および二酸化硫黄を取り除く操作を開始した時までの時間とする。これは、フッ素ガスあるいは二酸化硫黄の導入中や除去中にも炭素材料との反応が起こり得るので、厳密に反応時間を決めることが難しいために便宜上定義するものである。   As another aspect of the present invention, when the surface treatment is performed by simultaneously sulfonating and fluorinating a carbon material, the reaction time with fluorine gas and sulfur dioxide can be arbitrarily set, but preferably 1 second to 10 days. 10 seconds to 1 hour is more preferable, 1 minute to 15 minutes is more preferable, and 5 minutes to 10 minutes is particularly preferable. In this case, the reaction time of fluorine gas and sulfur dioxide is from the time when the carbon material, fluorine gas and sulfur dioxide coexist to the time when the operation of removing the carbon material or fluorine and sulfur dioxide is started. Time. This is defined for convenience because it is difficult to strictly determine the reaction time because the reaction with the carbon material can occur during the introduction or removal of fluorine gas or sulfur dioxide.

さらに炭素材料に対してフッ素ガスの反応と合わせて他の処理をおこなうものとして、酸素を含むガスとフッ素の混合ガスを用いた例として特開平6−1942、特開2003−112910、酸化処理(硝酸、過マンガン酸/硫酸、クロム酸塩、次亜塩素酸塩等の薬液酸化、酸・アルカリ・塩類等の各種電解質を用いた電解酸化、空気、酸素、オゾン、窒素酸化物、ハロゲンガス、プラズマ、触媒酸化等による気相酸化)およびフッ素化処理をおこなった例として特開平5−78110、特開平6−1942、特開平6−212110、フッ素含有ガス処理を施したあと水蒸気含有ガスで処理する例として特開平9−124312、フッ素化に続いてアルカリで処理する例として特開平3−269164、フッ素と二酸化硫黄ガスの混合ガスで処理したあとアルカリ水溶液に浸漬する例として特開平10−7829などが挙げられ、これらをスルホン化と合わせておこなってもよい。   Further, as an example of using a mixed gas of oxygen-containing gas and fluorine as an example in which other treatment is performed on the carbon material in combination with the reaction of fluorine gas, JP-A-6-1942, JP-A-2003-112910, oxidation treatment ( Chemical oxidation of nitric acid, permanganic acid / sulfuric acid, chromate, hypochlorite, etc., electrolytic oxidation using various electrolytes such as acid, alkali, salts, etc., air, oxygen, ozone, nitrogen oxide, halogen gas, Examples of gas phase oxidation by plasma, catalytic oxidation, etc.) and fluorination treatment include JP-A-5-78110, JP-A-6-1942, JP-A-6-212110, treatment with fluorine-containing gas, and treatment with steam-containing gas As an example, JP-A-9-12412, as an example of treating with alkali following fluorination, JP-A-3-269164, a mixed gas of fluorine and sulfur dioxide gas is used. In such Hei 10-7829 is cited as an example of immersing after alkaline aqueous solution treatment may be conducted together these sulfonated.

表面修飾した炭素材料において、フッ素原子含有量が少なすぎるとフッ素化によるスルホン酸基の安定性向上効果が十分に得られず多すぎるとフッ素原子による疎水性が大きくなりスルホン酸基を導入することで期待される親水性が損なわれてしまう。スルホン酸基の含有量が多すぎると安定性向上効果を得るためには高いフッ素含量が必要になり、少なすぎるとスルホン酸基導入による親水性が十分でないものとなる。
本発明の炭素材料において、フッ素原子含量とスルホン酸基含量の関係は、モル比でフッ素とスルホン酸基が(フッ素原子含量×0.5)>(スルホン酸基含量)であることが好ましい。
In the surface-modified carbon material, if the fluorine atom content is too small, the effect of improving the stability of the sulfonic acid group due to fluorination cannot be obtained sufficiently, and if it is too much, the hydrophobicity due to the fluorine atom increases and the sulfonic acid group is introduced. The hydrophilicity expected in is lost. If the content of the sulfonic acid group is too large, a high fluorine content is required to obtain the effect of improving the stability. If the content is too small, the hydrophilicity due to the introduction of the sulfonic acid group is not sufficient.
In the carbon material of the present invention, the fluorine atom content and the sulfonic acid group content are preferably such that the molar ratio of fluorine and sulfonic acid group is (fluorine atom content × 0.5)> (sulfonic acid group content).

本発明を実施例に基づき更に詳細に説明するが、本発明はこれに限定されない。
<参考例1>
無水酢酸50mlに氷浴で冷却しながら濃硫酸2.5mlを少しずつ添加し、ケッチェンブラック(一次粒子径 39.5nm、表面積 800m/gのもの。以下同様。)5gを加えた。反応混合物を80℃で24時間反応させ、スルホン化処理した。放冷後に固体を濾別し、水に分散して濾液が中性になるまで水洗を繰り返してから、得られた固体を減圧乾燥した。蛍光X線分析によって硫黄元素が存在することを確認した。燃焼法による元素分析によって硫黄が0.78%含まれていることがわかった。
The present invention will be described in more detail based on examples, but the present invention is not limited thereto.
<Reference Example 1>
Concentrated sulfuric acid (2.5 ml) was gradually added to 50 ml of acetic anhydride while cooling in an ice bath, and 5 g of ketjen black (with a primary particle size of 39.5 nm and a surface area of 800 m 2 / g; the same applies hereinafter) was added. The reaction mixture was reacted at 80 ° C. for 24 hours and sulfonated. After allowing to cool, the solid was filtered off, dispersed in water and repeatedly washed with water until the filtrate became neutral, and then the obtained solid was dried under reduced pressure. The presence of elemental sulfur was confirmed by fluorescent X-ray analysis. Elemental analysis by the combustion method revealed that 0.78% of sulfur was contained.

<参考例2>
ケッチェンブラック0.5gに氷浴で冷却しながら30%発煙硫酸10mlを徐々に添加した。得られた反応混合物を室温で4時間反応させ、スルホン化処理した。反応混合物を氷水に少しずつ加え、固体を濾別し、水に分散して濾液が中性になるまで水洗を繰り返してから、得られた固体を減圧乾燥した。元素分析によって硫黄が1.53%含まれていた。
<Reference Example 2>
10 ml of 30% fuming sulfuric acid was gradually added to 0.5 g of ketjen black while cooling in an ice bath. The resulting reaction mixture was reacted at room temperature for 4 hours and sulfonated. The reaction mixture was added little by little to ice water, the solid was filtered off, dispersed in water and repeatedly washed with water until the filtrate became neutral, and the obtained solid was dried under reduced pressure. Elemental analysis contained 1.53% sulfur.

<参考例3>
スルファニル酸0.5gを温水20mlに溶解し、ケッチェンブラック1.0gを加えて分散させ、濃硝酸0.25mlを加えた。80℃に設定した湯浴に浸して攪拌しながら、水1.25mlに溶解した亜硝酸ナトリウム0.25gを少しずつ滴下した。反応混合物を70℃に設定した湯浴中で3時間反応させ、スルホン化処理した。放冷後に固体を濾別し、水に分散して濾液が中性になるまで水洗を繰り返してから、得られた固体を減圧乾燥した。元素分析によって硫黄が2.28%含まれていた。
<Reference Example 3>
0.5 g of sulfanilic acid was dissolved in 20 ml of warm water, 1.0 g of ketjen black was added and dispersed, and 0.25 ml of concentrated nitric acid was added. While being immersed in a hot water bath set at 80 ° C. and stirring, 0.25 g of sodium nitrite dissolved in 1.25 ml of water was added dropwise little by little. The reaction mixture was reacted in a hot water bath set at 70 ° C. for 3 hours and sulfonated. After allowing to cool, the solid was filtered off, dispersed in water and repeatedly washed with water until the filtrate became neutral, and then the obtained solid was dried under reduced pressure. The elemental analysis contained 2.28% sulfur.

<参考例4>
窒素気流下、50%白金担持カーボン(田中貴金属工業(株)製)2gを無水酢酸20mlに分散し、濃硫酸1mlを少しずつ添加し、スルホン化処理した。反応混合物を70℃で4時間反応させた。放冷後に固体を濾別し、水に分散して濾液が中性になるまで水洗を繰り返してから、得られた固体を減圧乾燥した。元素分析によって硫黄が0.59%含まれていた。
<Reference Example 4>
Under a nitrogen stream, 2 g of 50% platinum-supported carbon (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) was dispersed in 20 ml of acetic anhydride, and 1 ml of concentrated sulfuric acid was added little by little to effect sulfonation. The reaction mixture was reacted at 70 ° C. for 4 hours. After allowing to cool, the solid was filtered off, dispersed in water and repeatedly washed with water until the filtrate became neutral, and then the obtained solid was dried under reduced pressure. Elemental analysis showed 0.59% sulfur.

<参考例5>
スルファニル酸0.5gを温水25mlに溶解し、50%白金担持カーボン1.5gを加えて分散させ、濃硫酸0.5mlを加えた。65℃に設定した湯浴に浸して攪拌しながら、水7.5mlに溶解した亜硝酸ナトリウム2.5gを少しずつ滴下した。反応混合物を65℃に設定した湯浴中で1時間反応させ、スルホン化処理した。放冷後に固体を濾別し、水に分散して濾液が中性になるまで水洗を繰り返してから、得られた固体を減圧乾燥した。元素分析によって硫黄が1.78%含まれていた。
<Reference Example 5>
0.5 g of sulfanilic acid was dissolved in 25 ml of warm water, 1.5 g of 50% platinum-supporting carbon was added and dispersed, and 0.5 ml of concentrated sulfuric acid was added. While being immersed in a hot water bath set at 65 ° C. and stirring, 2.5 g of sodium nitrite dissolved in 7.5 ml of water was added dropwise little by little. The reaction mixture was reacted in a hot water bath set at 65 ° C. for 1 hour and sulfonated. After allowing to cool, the solid was filtered off, dispersed in water and repeatedly washed with water until the filtrate became neutral, and then the obtained solid was dried under reduced pressure. Elemental analysis contained 1.78% sulfur.

<参考例6>
50%白金担持カーボン1.7gを窒素雰囲気のガラス容器に入れ、白金担持カーボンに触れないように試験管に入れた三酸化硫黄1.5gをガラス容器内に設置し、容器を密閉して室温で放置することで、三酸化硫黄気体と反応させ、スルホン化処理した。24時間後に三酸化硫黄の固体が消失していることを確認し、容器を開封して固体を氷水に注ぎ、濾液が中性になるまで水洗を繰り返してから、得られた固体を減圧乾燥した。元素分析によって硫黄が1.50%含まれていた。
<Reference Example 6>
Place 1.7 g of 50% platinum-carrying carbon in a glass container in a nitrogen atmosphere, place 1.5 g of sulfur trioxide in a test tube so that it does not touch the platinum-carrying carbon, and seal the container at room temperature. The mixture was allowed to react with sulfur trioxide gas and allowed to sulfonate. After 24 hours, it was confirmed that the solid of sulfur trioxide disappeared, the container was opened, the solid was poured into ice water, washed repeatedly with water until the filtrate became neutral, and the obtained solid was dried under reduced pressure. . Elemental analysis showed 1.50% sulfur.

<実施例1>
参考例1によってスルホン酸基を導入したケッチェンブラック0.5gをテフロン(商品名、ポリテトラフルオロエチレン)製シャーレに量り取り、フッ素およびヘリウムガス供給口と排気口を備えたポリテトラフルオロエチレン製容器に入れ、ヘリウムガスを流速100ml/minで吹き込んで1時間パージした後、20%フッ素/80%窒素混合ガスを流速100ml/minで、ヘリウムガスを流速100ml/minでそれぞれ10分間吹き込み(10%フッ素混合ガスに相当)、供給口と排気口を閉じて50分間反応させた。供給口と排気口を開け、ヘリウムガスを流速100ml/minで吹き込んで1時間パージしてから容器を開封し、得られた粉体を水洗してから減圧乾燥して、実施例1サンプルを得た。元素分析によってフッ素が10.5%、硫黄が0.56%含まれていた。
<Example 1>
0.5 g of ketjen black into which a sulfonic acid group was introduced according to Reference Example 1 was weighed into a Teflon (trade name, polytetrafluoroethylene) petri dish and made of polytetrafluoroethylene equipped with fluorine and helium gas supply ports and exhaust ports. After putting into a container and purging helium gas at a flow rate of 100 ml / min for 1 hour, 20% fluorine / 80% nitrogen mixed gas was blown at a flow rate of 100 ml / min and helium gas was blown at a flow rate of 100 ml / min for 10 minutes (10 % Of fluorine mixed gas), the supply port and the exhaust port were closed and the reaction was carried out for 50 minutes. The supply port and the exhaust port were opened, helium gas was blown in at a flow rate of 100 ml / min, purged for 1 hour, the container was opened, and the resulting powder was washed with water and dried under reduced pressure to obtain a sample of Example 1 It was. Elemental analysis revealed 10.5% fluorine and 0.56% sulfur.

表面を島津製作所(株)ESCA−750および3400を用いて測定した。炭素1s電子スペクトルにおいては、フッ素化していないケッチェンブラックで見られた282eV付近のピークに加えて289eV付近のピークが観測され、これはC−F結合に帰属される。またフッ素1s電子スペクトルにおいては、フッ素化していないケッチェンブラックでは何も観測されず、フッ素化によって688eV付近のピークが観測され、これはC−F結合に帰属される。   The surface was measured using Shimadzu Corporation ESCA-750 and 3400. In the carbon 1s electron spectrum, a peak near 289 eV was observed in addition to the peak near 282 eV observed in the non-fluorinated ketjen black, which is attributed to the C—F bond. Further, in the fluorine 1s electron spectrum, nothing is observed in the non-fluorinated ketjen black, and a peak near 688 eV is observed by fluorination, which is attributed to the C—F bond.

<実施例2>
参考例2によってスルホン酸基を導入したケッチェンブラック0.5gを用いたこと以外は、実施例1と同様の操作をおこない、実施例2サンプルを得た。元素分析によってフッ素が10.95%、硫黄が1.36%含まれていた。
<Example 2>
A sample of Example 2 was obtained in the same manner as in Example 1 except that 0.5 g of ketjen black into which a sulfonic acid group was introduced according to Reference Example 2 was used. Elemental analysis revealed 10.95% fluorine and 1.36% sulfur.

<実施例3>
参考例3によってスルホン酸基を導入したケッチェンブラック0.5gを用いたこと以外は、実施例1と同様の操作をおこない、実施例3サンプルを得た。元素分析によってフッ素が19.80%、硫黄が1.85%含まれていた。
<Example 3>
A sample of Example 3 was obtained in the same manner as in Example 1 except that 0.5 g of ketjen black into which a sulfonic acid group was introduced according to Reference Example 3 was used. By elemental analysis, it contained 19.80% fluorine and 1.85% sulfur.

<実施例4>
参考例4によってスルホン酸基を導入した白金担持カーボン1.44gをテフロン製シャーレに量り取り、フッ素およびヘリウムガス供給口と排気口を備えたポリテトラフルオロエチレン製容器に入れ、ヘリウムガスを流速100ml/minで吹き込んで1時間パージした後、20%フッ素/80%窒素混合ガスを流速100ml/minで、ヘリウムガスを流速100ml/minでそれぞれ10分間吹き込み(10%フッ素混合ガスに相当)、供給口と排気口を閉じて50分間反応させた。供給口と排気口を開け、ヘリウムガスを流速100ml/minで吹き込んで1時間パージしてから容器を開封し、得られた粉体を水洗してから減圧乾燥して、実施例4サンプルを得た。元素分析によってフッ素が4.19%、硫黄が0.53%含まれていた。
<Example 4>
1.44 g of platinum-supported carbon into which a sulfonic acid group was introduced according to Reference Example 4 was weighed into a Teflon petri dish, placed in a polytetrafluoroethylene container equipped with fluorine and helium gas supply ports and exhaust ports, and helium gas flowed at a flow rate of 100 ml. After blowing for 1 hour and purging for 1 hour, 20% fluorine / 80% nitrogen mixed gas is blown at a flow rate of 100 ml / min and helium gas is blown at a flow rate of 100 ml / min for 10 minutes (corresponding to 10% fluorine mixed gas) and supplied. The mouth and exhaust port were closed and allowed to react for 50 minutes. The supply port and the exhaust port were opened, helium gas was blown in at a flow rate of 100 ml / min, purged for 1 hour, the container was opened, and the powder obtained was washed with water and dried under reduced pressure to obtain a sample of Example 4 It was. Elemental analysis revealed 4.19% fluorine and 0.53% sulfur.

<実施例5>
参考例5によってスルホン酸基を導入した白金担持カーボン1.0gを用いたこと以外は、実施例4と同様の操作をおこない、実施例5サンプルを得た。元素分析によってフッ素が10.17%、硫黄が1.61%含まれていた。
<Example 5>
A sample of Example 5 was obtained in the same manner as in Example 4 except that 1.0 g of platinum-supported carbon into which a sulfonic acid group was introduced according to Reference Example 5 was used. Elemental analysis showed 10.17% fluorine and 1.61% sulfur.

<実施例6>
参考例6によってスルホン酸基を導入した白金担持カーボン1.0gを用いたこと以外は、実施例4と同様の操作をおこない、実施例6サンプルを得た。元素分析によってフッ素が4.10%、硫黄が1.44%含まれていた。
<Example 6>
A sample of Example 6 was obtained in the same manner as in Example 4 except that 1.0 g of platinum-supported carbon into which a sulfonic acid group was introduced according to Reference Example 6 was used. By elemental analysis, it contained 4.10% fluorine and 1.44% sulfur.

<実施例7>
ケッチェンブラック0.44gをテフロン製シャーレに量り取り、フッ素、二酸化硫黄およびヘリウムガス供給口と排気口を備えたポリテトラフルオロエチレン製500ml容器に入れ、ヘリウムガスを流速100ml/minで1時間パージした後、二酸化硫黄ガスを流速200ml/minで5分間吹き込んでからヘリウムガスを流速200ml/minで5分間吹き込み、引き続き20%フッ素/80%窒素混合ガスを流速100ml/minで、ヘリウムガスを流速100ml/minでそれぞれ5分間吹き込み(10%フッ素混合ガスに相当)、供給口と排気口を閉じて55分間反応させた。供給口と排気口を開け、ヘリウムガスを流速100ml/minで吹き込んで1時間パージしてから容器を開封し、得られた粉体を水洗してから減圧乾燥して、実施例4サンプルを得た。元素分析によってフッ素が6.25%、硫黄が0.74%含まれていた。
<Example 7>
Weigh 0.44 g of ketjen black into a Teflon petri dish and place it in a polytetrafluoroethylene 500 ml container equipped with fluorine, sulfur dioxide and helium gas supply and exhaust ports and purge the helium gas at a flow rate of 100 ml / min for 1 hour. After blowing sulfur dioxide gas at a flow rate of 200 ml / min for 5 minutes, helium gas was blown at a flow rate of 200 ml / min for 5 minutes, followed by 20% fluorine / 80% nitrogen mixed gas at a flow rate of 100 ml / min and helium gas at a flow rate. Each was blown at 100 ml / min for 5 minutes (corresponding to a 10% fluorine mixed gas), the supply port and the exhaust port were closed, and the reaction was allowed to proceed for 55 minutes. The supply port and the exhaust port were opened, helium gas was blown in at a flow rate of 100 ml / min, purged for 1 hour, the container was opened, and the powder obtained was washed with water and dried under reduced pressure to obtain a sample of Example 4 It was. Elemental analysis showed 6.25% fluorine and 0.74% sulfur.

実施例1と同様にして表面を前記ESCAで分析したところ、同じようにC−F結合に帰属されるピークが観測された。   When the surface was analyzed by ESCA in the same manner as in Example 1, the peak attributed to the C—F bond was observed in the same manner.

<実施例8>
白金担持カーボン(田中貴金属工業(株)製)1.67gをテフロン製シャーレに量り取り、フッ素、二酸化硫黄およびヘリウムガス供給口と排気口を備えたポリテトラフルオロエチレン製500ml容器に入れ、ヘリウムガスを流速100ml/minで1時間パージした後、二酸化硫黄ガスを流速200ml/minで5分間吹き込んでからヘリウムガスを流速200ml/minで5分間吹き込み、引き続き20%フッ素/80%窒素混合ガスを流速100ml/minで、ヘリウムガスを流速100ml/minでそれぞれ5分間吹き込み(10%フッ素混合ガスに相当)、供給口と排気口を閉じて55分間反応させた。供給口と排気口を開け、ヘリウムガスを流速100ml/minで吹き込んで1時間パージしてから容器を開封し、得られた粉体を水洗してから減圧乾燥して、実施例5サンプルを得た。元素分析によってフッ素が3.48%、硫黄が0.59%含まれていた。
<Example 8>
1.67 g of platinum-supported carbon (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) is weighed into a Teflon petri dish and placed in a 500 ml container of polytetrafluoroethylene equipped with fluorine, sulfur dioxide and helium gas supply and exhaust ports, and helium gas Was purged at a flow rate of 100 ml / min for 1 hour, and then sulfur dioxide gas was blown in at a flow rate of 200 ml / min for 5 minutes, then helium gas was blown in at a flow rate of 200 ml / min for 5 minutes, and then a 20% fluorine / 80% nitrogen mixed gas was flowed. Helium gas was blown at a rate of 100 ml / min for 5 minutes each at a flow rate of 100 ml / min (corresponding to a 10% fluorine mixed gas), and the reaction was carried out for 55 minutes with the supply port and the exhaust port closed. The supply port and the exhaust port were opened, helium gas was blown at a flow rate of 100 ml / min and purged for 1 hour, then the container was opened, and the powder obtained was washed with water and dried under reduced pressure to obtain a sample of Example 5 It was. Elemental analysis showed 3.48% fluorine and 0.59% sulfur.

実施例1と同様にして表面をESCAで分析したところ、同じようにC−F結合に帰属されるピークが観測された。   When the surface was analyzed by ESCA in the same manner as in Example 1, the peak attributed to the C—F bond was observed in the same manner.

<水分散性試験>
サンプルの親水性を評価するために、水に対する分散性を調べた。参考例・実施例で用いた未処理のケッチェンブラックおよび実施例1〜3、7で作成した炭素材料について、それぞれ0.5gを25ml透明サンプル瓶に量りとり、蒸留水20mlを加え、蓋をして1分間激しく攪拌した後、1分間放置して水分散液の様子を観察した。
未処理のケッチェンブラックの場合には、分散せずに透明な水にケッチェンブラックが浮かぶ様子が観察された。
実施例1〜3、7で作成した炭素材料の場合には、全体が黒色になって水に分散していることが観察された。
本発明の表面修飾した炭素材料は、親水性が付与されて水分散性が良くなっていることがわかる。
<Water dispersibility test>
In order to evaluate the hydrophilicity of the sample, the dispersibility in water was examined. About the untreated ketjen black used in Reference Examples and Examples and the carbon materials prepared in Examples 1 to 3 and 0.5 g, each 0.5 g was weighed into a 25 ml transparent sample bottle, 20 ml of distilled water was added, and the lid was covered. Then, after vigorously stirring for 1 minute, it was allowed to stand for 1 minute and the state of the aqueous dispersion was observed.
In the case of untreated ketjen black, it was observed that the ketjen black floats in clear water without being dispersed.
In the case of the carbon materials prepared in Examples 1 to 3 and 7, it was observed that the whole was black and dispersed in water.
It can be seen that the surface-modified carbon material of the present invention is imparted with hydrophilicity and has improved water dispersibility.

<安定性試験>
サンプルの安定性試験として、高温条件における硫黄原子含量の変化を調べた。参考例1および実施例1、7で作成した炭素材料について、それぞれ70%硫酸中160℃で10時間加熱還流した。放冷後、濾液から硫酸イオンが検出されなくなるまで繰り返し洗浄し、減圧乾燥して、処理後のサンプルを得た。それぞれ元素分析による硫黄原子含量分析をおこなった。結果を表に示す。
<Stability test>
As a sample stability test, changes in sulfur atom content under high temperature conditions were examined. The carbon materials prepared in Reference Example 1 and Examples 1 and 7 were each heated to reflux for 10 hours at 160 ° C. in 70% sulfuric acid. After allowing to cool, the filtrate was repeatedly washed until no sulfate ions were detected and dried under reduced pressure to obtain a treated sample. Each element was analyzed for sulfur atom content. The results are shown in the table.

Figure 2008019101
Figure 2008019101

スルホン酸基のみを導入した参考例1のサンプルは、高温処理によって硫黄原子含量が大幅に低下しているのに対して、スルホン酸基とフッ素原子を導入した実施例1のサンプルはほとんど変化しなかった。硫黄含量は(導入したスルホン酸基の量+炭素材料が始めから有する硫黄量)に対応するので、本発明の表面修飾した炭素材料は、導入したスルホン酸基が高温でも減少しない、安定な表面修飾がなされていることがわかる。また二酸化硫黄ガスとフッ素ガスの混合ガスを反応させて作成した実施例7サンプルも同様に変化しなかった。

In the sample of Reference Example 1 in which only the sulfonic acid group is introduced, the sulfur atom content is greatly reduced by the high temperature treatment, whereas the sample of Example 1 in which the sulfonic acid group and the fluorine atom are introduced is almost changed. There wasn't. Since the sulfur content corresponds to (the amount of introduced sulfonic acid groups + the amount of sulfur the carbon material has from the beginning), the surface-modified carbon material of the present invention has a stable surface where the introduced sulfonic acid groups do not decrease even at high temperatures. It can be seen that the modification is made. Similarly, the sample of Example 7 prepared by reacting a mixed gas of sulfur dioxide gas and fluorine gas did not change.

Claims (7)

スルホン酸基とフッ素原子とにより表面修飾されたことを特徴とする炭素材料。   A carbon material characterized by surface modification with a sulfonic acid group and a fluorine atom. 表面修飾したフッ素原子とスルホン酸基がモル比で(フッ素原子含量×0.5)>(スルホン酸基含量)である請求項1記載の炭素材料。   2. The carbon material according to claim 1, wherein the surface-modified fluorine atom and sulfonic acid group have a molar ratio of (fluorine atom content × 0.5)> (sulfonic acid group content). 炭素材料とスルホン酸基供給源とを反応させてスルホン酸基により表面修飾された炭素材料を得る工程と、続いて前記スルホン酸基により表面修飾された炭素材料とフッ素ガスとを反応させてスルホン酸基とフッ素原子とにより表面修飾された炭素材料を得る工程とを含むことを特徴とする、表面修飾された炭素材料の製造方法。   A step of reacting the carbon material with a sulfonic acid group supply source to obtain a carbon material surface-modified with a sulfonic acid group, and subsequently reacting the carbon material surface-modified with the sulfonic acid group with fluorine gas A method for producing a surface-modified carbon material, comprising: obtaining a carbon material surface-modified with an acid group and a fluorine atom. 前記スルホン酸基供給源が、硫酸、発煙硫酸、三酸化硫黄、及び三酸化硫黄錯体の中から選ばれる少なくとも1種の化合物を含むことを特徴とする、請求項3に記載の表面修飾された炭素材料の製造方法。   The surface-modified surface according to claim 3, wherein the sulfonic acid group source includes at least one compound selected from sulfuric acid, fuming sulfuric acid, sulfur trioxide, and sulfur trioxide complex. A method for producing a carbon material. 炭素材料に二酸化硫黄ガスとフッ素ガスとを含む混合ガスを反応させて、スルホン酸基とフッ素原子とにより表面修飾された炭素材料を得る工程を含むことを特徴とする、表面修飾された炭素材料の製造方法。   A surface-modified carbon material comprising a step of reacting a carbon material with a mixed gas containing sulfur dioxide gas and fluorine gas to obtain a carbon material surface-modified with sulfonic acid groups and fluorine atoms. Manufacturing method. 前記混合ガス中のフッ素ガス濃度が5〜15体積%であることを特徴とする、請求項5に記載の表面修飾された炭素材料の製造方法。   The method for producing a surface-modified carbon material according to claim 5, wherein the fluorine gas concentration in the mixed gas is 5 to 15% by volume. 請求項2〜6のいずれか1項に記載の製造方法によって製造されたことを特徴とする表面修飾された炭素材料。
A surface-modified carbon material produced by the production method according to claim 2.
JP2006189510A 2006-07-10 2006-07-10 Surface-modified carbon material and its producing method Pending JP2008019101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189510A JP2008019101A (en) 2006-07-10 2006-07-10 Surface-modified carbon material and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189510A JP2008019101A (en) 2006-07-10 2006-07-10 Surface-modified carbon material and its producing method

Publications (1)

Publication Number Publication Date
JP2008019101A true JP2008019101A (en) 2008-01-31

Family

ID=39075365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189510A Pending JP2008019101A (en) 2006-07-10 2006-07-10 Surface-modified carbon material and its producing method

Country Status (1)

Country Link
JP (1) JP2008019101A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214051A (en) * 2008-03-11 2009-09-24 Tokyo Univ Of Science Diamond solid acid, and solid acid catalyst and solid electrolyte consisting of the diamond solid acid
WO2010074000A1 (en) * 2008-12-24 2010-07-01 国立大学法人東北大学 Dispersion of carbon material and process for producing same
WO2015050257A1 (en) * 2013-10-03 2015-04-09 東洋炭素株式会社 Inorganic pigment particle and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214051A (en) * 2008-03-11 2009-09-24 Tokyo Univ Of Science Diamond solid acid, and solid acid catalyst and solid electrolyte consisting of the diamond solid acid
WO2010074000A1 (en) * 2008-12-24 2010-07-01 国立大学法人東北大学 Dispersion of carbon material and process for producing same
CN102264640B (en) * 2008-12-24 2014-09-10 国立大学法人东北大学 Dispersion liquid of carbon material and process for producing same
US9296613B2 (en) 2008-12-24 2016-03-29 National University Corporation Tohoku University Dispersion of carbon material and process for producing same
JP5946242B2 (en) * 2008-12-24 2016-07-06 国立大学法人東北大学 Dispersion liquid of carbon material and manufacturing method thereof
WO2015050257A1 (en) * 2013-10-03 2015-04-09 東洋炭素株式会社 Inorganic pigment particle and method for producing same

Similar Documents

Publication Publication Date Title
Roy et al. Spectroelectrochemical study of the role played by carbon functionality in fuel cell electrodes
Feng et al. Selective electrocatalytic reduction of nitrate to dinitrogen by Cu2O nanowires with mixed oxidation-state
JP4611956B2 (en) Solid acid, polymer electrolyte membrane and fuel cell
KR20030086356A (en) Fuel Cells and Other Products Containing Modified Carbon Products
US7488875B2 (en) Process for purifying carbon nanotubes made on refractory oxide supports
WO2009014229A1 (en) Method for activating catalyst for chlorine production
Yu et al. Modulating carbon growth kinetics enables electrosynthesis of graphite derived from CO2 via a liquid–solid–solid process
JP2008019101A (en) Surface-modified carbon material and its producing method
CN110817881B (en) Silicon-transition metal silicide nano composite material and preparation method and application thereof
Bromberg et al. Capture and electrochemical conversion of CO 2 in molten alkali metal borate–carbonate blends
US8119094B2 (en) Fluorine storage material
JP2009521791A (en) Chemically stabilized ionomers containing inorganic fillers
FR2485024A1 (en) FLUORINATED POLYMERS WITH SIDED CARBOXYLATED SIDE CHAINS, FILMS, MEMBRANES AND LAMINATED STRUCTURES EXCHANGED FROM FORMED IONS OF THESE POLYMERS AND THEIR USE IN CHLORINE-ALKALI ELECTROLYSIS CELLS
CN111943722A (en) Controllable method for synthesizing carbon nano tube on surface of foamed ceramic and application thereof
US20080105561A1 (en) Electrochemical Method, Apparatus And Carbon Product
WO2006054527A1 (en) Reforming catalyst for oxygen-containing hydrocarbon, method for producing hydrogen or synthesis gas using same, and fuel cell system
Bai et al. Bioinspired Hydrophobicity for Enhancing Electrochemical CO2 Reduction
Gryzunova et al. Nanowisker structures of copper oxide under conditions of exposure to temperature fields and corrosive media
WO2016129009A1 (en) Method for manufacturing metallic vanadium
JPS5834805A (en) Production of carboxyl group-containing fluorine compound
WO2013031849A1 (en) Method for producing organic compound having sulfo group, method for producing liquid composition, and method for hydrolytically treating organic compound having fluorosulfonyl group
EP0247924B1 (en) Process for preparing sulphur tetrafluoride by reduction of an uranium fluoride
CN114481167B (en) Preparation method and application of O-Ni SAC/MWCNTs composite catalyst
CN115715230B (en) Catalyst for oxygen reduction, method for selecting same, liquid composition or electrode containing catalyst for oxygen reduction, and air cell or fuel cell provided with electrode
JP2022101078A (en) Oxygen reduction catalyst and selection method therefor, liquid composition or electrode containing oxygen reduction catalyst, and air battery or fuel cell provided with electrode