JP2008018851A - Underframe structure of superconductive magnet - Google Patents

Underframe structure of superconductive magnet Download PDF

Info

Publication number
JP2008018851A
JP2008018851A JP2006192624A JP2006192624A JP2008018851A JP 2008018851 A JP2008018851 A JP 2008018851A JP 2006192624 A JP2006192624 A JP 2006192624A JP 2006192624 A JP2006192624 A JP 2006192624A JP 2008018851 A JP2008018851 A JP 2008018851A
Authority
JP
Japan
Prior art keywords
underframe
superconducting magnet
frame
model
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006192624A
Other languages
Japanese (ja)
Inventor
Masaru Iwamatsu
勝 岩松
Hiroshi Kiyono
寛 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2006192624A priority Critical patent/JP2008018851A/en
Publication of JP2008018851A publication Critical patent/JP2008018851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underframe structure of a superconductive magnet for preventing resonance of a three-dimensional bending vibration mode of the superconductive magnet from existing in a traveling speed region, reducing weight of a superconductive magnet device, and improving mounting efficiency of actual equipment. <P>SOLUTION: In this underframe structure, three lateral beams 5, 6 and 7 of an underframe are arranged between side beams 3 and 4 of the underframe arranged along the superconductive magnets 1 and 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気浮上式鉄道の車両に搭載される超電導磁石の台枠構造に関するものである。   The present invention relates to a frame structure of a superconducting magnet mounted on a vehicle of a magnetic levitation railway.

かかる左右の超電導磁石の間には横梁を有する台枠が配置されるようになっている(下記特許文献1)。   A frame having a horizontal beam is arranged between the left and right superconducting magnets (Patent Document 1 below).

従来、超電導磁気浮上式鉄道用超電導磁石は走行中に地上コイルからの高調波磁場により振動を受ける。この振動は、超電導磁石のヘリウム温度領域に熱負荷を与え、加えて信頼性や耐久性を損なう原因となる。   Conventionally, superconducting magnetic levitation railway superconducting magnets are vibrated by a harmonic magnetic field from a ground coil during traveling. This vibration gives a heat load to the helium temperature region of the superconducting magnet, and in addition causes a deterioration in reliability and durability.

従来、実走行時の超電導磁石(SCM)の振動特性を明らかにする目的で、SCM−台車−SCMモデル(以下、実走行モデル)を作製して解析を行い、日の字浮上コイル模擬の電磁加振試験時と実走行時の振動特性の差異や外槽剛性や外槽−内槽間のばね定数を変化させた場合の特性等を明らかにしてきた(下記非特許文献1)。特に、日の字浮上コイルに起因した加振力で超電導磁石が振動する際の特性については、実験と解析の比較を行うことにより、その現象を説明することがほぼ可能なレベルとなった。その検討の中で、超電導磁石の左右振動については、超電導磁石自身の対策では不十分であり、他の検討ともあわせて、地上側コイルにおいて左右方向の加振力を低減する方向となっている。   Conventionally, for the purpose of clarifying the vibration characteristics of the superconducting magnet (SCM) during actual driving, an SCM-cart-SCM model (hereinafter referred to as an actual driving model) has been prepared and analyzed, and electromagnetic simulation of a Japanese character floating coil is performed. Differences in vibration characteristics during the vibration test and actual running, characteristics when the outer tank rigidity, and the spring constant between the outer tank and the inner tank are changed have been clarified (Non-Patent Document 1 below). In particular, the characteristics when the superconducting magnet vibrates due to the excitation force caused by the Japanese floating coil has reached a level where the phenomenon can be explained by comparing the experiment and analysis. In the study, for the left and right vibration of the superconducting magnet, the countermeasures of the superconducting magnet itself are insufficient, and together with other studies, the direction of the lateral excitation force is reduced in the ground side coil. .

以前、左右振動特性を向上させるための車両側の対策を検討する一環として、一つの方策として、台枠の横梁を4本から5本に変更し、台枠の左右剛性を向上させた場合のモデル(以下、5本梁モデルと呼ぶ、比較のため従来モデルは4本梁モデルと呼ぶこととする)を作製し、解析を実施した。その結果、左右振動について、従来の4本梁モデルと比較して振動が大きく低減されることがわかった(下記非特許文献2)。しかしながら、横梁を5本とすることは、左右振動低減に効果的であるが実際の機器配置等で困難な要素が大きい問題が残されている。また、台枠の横梁の本数を4本としたままで、横梁の剛性だけを変えたモデル(以下、改良4本梁モデルと呼ぶ)を作製して左右振動特性がどの程度向上するかも計算し、ある基準を定義することにより振動低減効果を見出す手法を提案し、振動低減対策のメリットが得られる可能性を見出した。
特開平11−234810号公報 日本AEM学会誌 Vol.12,No.4(2004)pp.272−278 日本AEM学会誌 Vol.13,No.3(2005)pp.252−257
Previously, as part of examining vehicle-side measures to improve left-right vibration characteristics, as one measure, when changing the horizontal beam of the underframe from 4 to 5 to improve the left-right rigidity of the underframe A model (hereinafter referred to as a five-beam model, for comparison purposes, the conventional model is referred to as a four-beam model) was prepared and analyzed. As a result, it was found that the left and right vibrations are greatly reduced compared to the conventional four beam model (Non-Patent Document 2 below). However, the use of five horizontal beams is effective in reducing left-right vibration, but there remains a problem that there are large factors that are difficult in actual device arrangement and the like. In addition, while maintaining the number of horizontal beams of the underframe as four, a model in which only the stiffness of the horizontal beam was changed (hereinafter referred to as an improved four-beam model) was also calculated to calculate how much the left-right vibration characteristics were improved. Then, we proposed a method to find the vibration reduction effect by defining a certain standard, and found the possibility of obtaining the benefits of vibration reduction measures.
Japanese Patent Laid-Open No. 11-234810 Japanese AEM Society Vol. 12, no. 4 (2004) pp. 272-278 Japanese AEM Society Vol. 13, no. 3 (2005) p. 252-257

しかしながら、台枠の横梁の本数を4本又は5本としても、実際の機器配置等で困難な要素がある。つまり、横梁が多いだけ、実際の機器配置が制限されることになり、実装効率が低減する。   However, even if the number of horizontal beams of the underframe is set to 4 or 5, there are elements that are difficult in actual device arrangement or the like. That is, as many horizontal beams are used, the actual device arrangement is limited, and the mounting efficiency is reduced.

本発明は、上記状況に鑑みて、超電導磁石の3次元曲げ振動モードの共振が走行速度領域内に存在しないようにするととともに、超電導磁石装置の重量を軽減し、実際の機器の実装効率を向上させることができる超電導磁石の台枠構造を提供することを目的とする。   In view of the above situation, the present invention prevents the resonance of the three-dimensional bending vibration mode of the superconducting magnet from being present in the traveling speed region, reduces the weight of the superconducting magnet device, and improves the mounting efficiency of actual equipment. An object of the present invention is to provide a frame structure of a superconducting magnet that can be made to operate.

本発明は、上記目的を達成するために、
〔1〕超電導磁石の台枠構造において、超電導磁石に沿って配置される台枠の側梁の間に3本の台枠の横梁を配置することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a frame structure of a superconducting magnet, three transverse beams of the frame are arranged between side beams of the frame arranged along the superconducting magnet.

〔2〕上記〔1〕記載の超電導磁石の台枠構造において、左右3次曲げ振動モードの超電導磁石の共振周波数を、154Hz超過へシフトすることを特徴とする。   [2] In the superconducting magnet frame structure according to [1], the resonance frequency of the superconducting magnet in the left and right third-order bending vibration mode is shifted to more than 154 Hz.

本発明によれば、左右3次曲げ振動モードの超電導磁石の共振周波数を、154Hz超過へシフトすることができる。   According to the present invention, the resonance frequency of the superconducting magnet in the left and right third-order bending vibration mode can be shifted to more than 154 Hz.

また、超電導磁石装置の重量を軽減し、実際の機器の実装効率を向上させることができる。   Further, the weight of the superconducting magnet device can be reduced, and the mounting efficiency of the actual device can be improved.

本発明の超電導磁石の台枠構造は、超電導磁石に沿って配置される台枠の側梁の間に3本の台枠の横梁を配置する。よって、超電導磁石の3次元曲げ振動モードの共振が走行速度領域内に存在しないようにするととともに、超電導磁石装置の重量を軽減し、実際の機器の実装効率を向上させることができる。   In the superconducting magnet frame structure of the present invention, three horizontal beams of the frame are arranged between the side beams of the frame arranged along the superconducting magnet. Therefore, the resonance of the three-dimensional bending vibration mode of the superconducting magnet does not exist in the traveling speed region, the weight of the superconducting magnet device can be reduced, and the mounting efficiency of the actual device can be improved.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の実施例を示す超電導磁石の台枠構造の平面模式図である。   FIG. 1 is a schematic plan view of a superconducting magnet frame structure showing an embodiment of the present invention.

これらの図において、1,2は左右に配置される超電導磁石、3,4は超電導磁石1,2に沿って配置される台枠の側梁、5,6,7は台枠の側梁3,4間に配置される台枠の横梁である。   In these drawings, 1 and 2 are superconducting magnets arranged on the left and right sides, 3 and 4 are side beams of the frame arranged along the superconducting magnets 1 and 2, and 5, 6 and 7 are side beams 3 of the frame. , 4 is a horizontal beam of the underframe disposed between.

今回のモデルは、台枠の横枠が5本である、つまり5本梁モデル(下記非特許文献2)を基本として、2本の台枠の横梁を削除し、かつ台枠の横梁の剛性を任意に変更できるように台枠の側梁と台枠の横梁の物性情報を独立に変更できるような改良を行った。なお、超電導磁石部分は改良していない。   This model has 5 horizontal frames of the underframe, that is, based on the 5-beam model (Non-patent Document 2 below), the two horizontal beams of the underframe are deleted, and the rigidity of the horizontal beams of the underframe The property information of the side beam of the frame and the horizontal beam of the frame can be changed independently. The superconducting magnet part is not improved.

図2はその超電導磁石の台枠構造の解析モデル外観図である。   FIG. 2 is an external view of the analytical model of the frame structure of the superconducting magnet.

解析モデル上の重量を表1に示す。   Table 1 shows the weight on the analysis model.

本発明の台枠の横梁の3本梁モデルは、従来からの4本梁モデルよりも約30kg、5本梁モデルよりも約80kgの低減効果があることがわかる。 It can be seen that the three-beam model of the horizontal beam of the underframe of the present invention has a reduction effect of about 30 kg than the conventional four-beam model and about 80 kg than the five-beam model.

次に、解析結果について説明する。   Next, the analysis result will be described.

(A)固有値解析結果
調和応答解析に先立ち、固有値解析を行った。日の字加振による調和応答を行った際に出現する可能性が高い振動モードをその5本梁モデルと比較して図3〜図6に示す。
(A) Eigenvalue analysis results Prior to the harmonic response analysis, eigenvalue analysis was performed. FIGS. 3 to 6 show vibration modes that are likely to appear when a harmonic response is performed by vibration of the Japanese character in comparison with the five beam model.

本発明の台枠の横梁の3本梁モデルの共振周波数はその5本梁モデルと比較して、数Hzのみ下がる傾向にある。重量が軽くなることで周波数が上方にシフトするのと横梁の本数が少なくなることによる剛性の低下で周波数が下方にシフトするのを相殺していると推測される。特に、台枠の横梁の3本梁モデルの場合、時速500kmの加振周波数154Hz近傍においても、台枠の横梁の5本梁モデルに比して安定な状態にある。   The resonance frequency of the three-beam model of the transverse beam of the underframe of the present invention tends to decrease by only a few Hz compared to the five-beam model. It is presumed that the frequency shifts upward due to the weight being reduced and the frequency shifts downward due to a decrease in rigidity due to a decrease in the number of cross beams. In particular, in the case of the three beam model of the horizontal beam of the underframe, the state is more stable than the five beam model of the horizontal beam of the underframe even in the vicinity of an excitation frequency of 154 Hz at a speed of 500 km / h.

(B)調和応答解析結果
調和応答解析は以下のように行った。
(B) Harmonic response analysis result The harmonic response analysis was performed as follows.

荷重は、図7に示す通り軌道側外槽表面の超電導コイル位置中心に加えた。   The load was applied to the center position of the superconducting coil on the surface of the track-side outer tub as shown in FIG.

荷重条件は日の字浮上実走行とし、y方向成分を明確にするために以下の荷重条件で解析した。   The load condition was a Japanese character floating actual running, and analysis was performed under the following load condition in order to clarify the y-direction component.

Fy+Mz加振(両側加振)・・・y方向成分に着目
Fy+My加振(両側加振)・・・z方向成分に着目
調和応答結果はSCM端部に着目した。(節点番号は、図1参照)
(1)Fz+My加振
軌道側外槽表面の超電導コイル中心位置に、日の字実走行加振時のFz及びMy成分を荷重として入力した場合の解析結果を図8に示す。力の方向に合せてz方向に着目した。比較のために節点番号253における横梁の違いによる応答の結果を図9に示す。
Fy + Mz excitation (both sides excitation): focusing on y-direction component Fy + My excitation (both sides excitation): focusing on z-direction component The harmonic response results focused on the SCM end. (See Figure 1 for node numbers)
(1) Fz + My excitation FIG. 8 shows the analysis result when the Fz and My components at the time of the Japanese character actual running excitation are input as loads to the center position of the superconducting coil on the surface of the track-side outer tank. We focused on the z direction according to the direction of the force. For comparison, FIG. 9 shows the result of response due to the difference in the cross beam at the node number 253.

図8,図9より、以下のことがわかる。   8 and 9, the following can be understood.

Fz+My加振の場合には、台枠の横梁の本数にかかわらず共振周波数並びに共振時の振動加速度には大きな差は認められない。   In the case of Fz + My excitation, no significant difference is recognized in the resonance frequency and the vibration acceleration at the time of resonance regardless of the number of horizontal beams of the frame.

(2)Fy+Mz加振
軌道側外槽表面の超電導コイル中心位置に、日の字実走行加振時のFy及びMz成分を荷重として入力した場合の解析結果を図10に示す。力の方向に合せてy方向に着目した。上記(1)と同様に、比較のために節点番号253における横梁の違いによる応答の結果を図11に示す。
(2) Fy + Mz excitation FIG. 10 shows the analysis result when the Fy and Mz components at the time of the actual Japanese character traveling vibration are input as loads to the center position of the superconducting coil on the surface of the track-side outer tank. We focused on the y direction according to the direction of the force. Similarly to the above (1), the result of the response due to the difference in the cross beam at the node number 253 is shown in FIG. 11 for comparison.

図10,図11より、以下のことがわかる。   10 and 11, the following can be understood.

3本梁モデルは、5本梁モデルほどの振動抑制効果はないが、走行時に蒸発量の増大が顕著に認められる左右3次曲げ振動モード(逆位相)が走行速度領域内に存在しないなど有効性は高い。特に、3本梁モデルでは周波数180Hzあたりに共振周波数をシフトしていることが明らかである。   The three-beam model is not as effective as the five-beam model, but it is effective in that there is no left-right third-order bending vibration mode (opposite phase) in the travel speed range where a significant increase in evaporation during travel is observed. The nature is high. In particular, it is clear that the resonance frequency is shifted around 180 Hz in the three-beam model.

台枠の横梁の3本梁モデルの場合でも、その5本梁モデルと同様に左右3次曲げ振動モードの腹となる部分に横梁が存在することにより、振動を抑制する効果が大きいことが今回の解析で明らかとなった。   Even in the case of a three-beam model of a horizontal beam of the underframe, as in the case of the five-beam model, the presence of the horizontal beam in the antinode of the left and right third-order bending vibration mode has a great effect of suppressing vibration. It became clear by analysis.

本発明の台枠の横梁の3本梁モデルの固有値解析及び調和応答解析結果から以下のことが明らかとなった。   From the eigenvalue analysis and harmonic response analysis results of the three-beam model of the transverse beam of the underframe of the present invention, the following became clear.

固有値解析の結果より、従来の台枠の横梁の4本梁モデル及び5本梁モデルと比較して上下方向が主体となる振動モードは周波数がほとんど変わらない。   As a result of the eigenvalue analysis, the frequency of the vibration mode mainly in the vertical direction is almost the same as that of the conventional 4-beam model and 5-beam model of the horizontal beam of the underframe.

左右方向が主体となる振動モードは台枠の横梁の5本梁モデルの共振周波数に比較的近い傾向にある。   The vibration mode mainly in the left-right direction tends to be relatively close to the resonance frequency of the five-beam model of the horizontal beam of the underframe.

日の字浮上実走行時の加振力による調和応答解析を行った。   Harmonic response analysis was performed by the excitation force during actual running on the Japanese character.

上下振動では、台枠の横梁の本数にかかわらず共振周波数並びに共振時の振動加速度には大きな差は認められない。   In vertical vibration, regardless of the number of horizontal beams in the underframe, there is no significant difference in the resonance frequency and the vibration acceleration at the time of resonance.

左右振動では、台枠の横梁の3本梁モデルは5本梁モデルほどの振動抑制効果はないが、実験時に蒸発量の増大が顕著に認められる左右3次曲げ振動モード(逆位相)の共振が走行速度領域内に存在しないなど有効性は高い。   In the left-right vibration, the three-beam model of the horizontal beam of the underframe is not as effective as the five-beam model, but the resonance of the left-right third-order bending vibration mode (reverse phase) in which the increase in evaporation is noticeable during the experiment. The effectiveness is high, such as being not in the travel speed range.

このように、振動低減に寄与している横梁の効果を明らかにすることができた。今回の解析したモデルでは、重量を低減できる可能性があるなど有効性は高いと考えられる。仮に、台枠の横梁の3本梁モデルの場合には、支持脚8,9は図14に示すような配置が考えられる。   Thus, the effect of the cross beam contributing to vibration reduction could be clarified. The model analyzed this time is thought to be highly effective because it may reduce the weight. In the case of a three-beam model of a horizontal beam of the underframe, the support legs 8 and 9 can be arranged as shown in FIG.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の超電導磁石の台枠構造は、重量を軽減し、かつ実際の機器の実装効率を向上させることができる超電導磁石の台枠構造として利用可能である。   The superconducting magnet frame structure of the present invention can be used as a superconducting magnet frame structure capable of reducing the weight and improving the mounting efficiency of an actual device.

本発明の実施例を示す超電導磁石の台枠構造の平面模式図である。It is a plane schematic diagram of the frame structure of the superconducting magnet which shows the Example of this invention. 本発明の実施例を示す超電導磁石の台枠構造の解析モデル外観図である。It is an analysis model external view of the frame structure of the superconducting magnet which shows the Example of this invention. 台枠の固有値解析結果(その1)を示す図である。It is a figure which shows the eigenvalue analysis result (the 1) of a frame. 台枠の固有値解析結果(その2)を示す図である。It is a figure which shows the eigenvalue analysis result (the 2) of a frame. 台枠の固有値解析結果(その3)を示す図である。It is a figure which shows the eigenvalue analysis result (the 3) of a frame. 台枠の固有値解析結果(その4)を示す図である。It is a figure which shows the eigenvalue analysis result (the 4) of a frame. 台枠の荷重位置を示す図である。It is a figure which shows the load position of a frame. 本発明の超電導磁石の台枠の調和応答解析結果を示す図(その1)である(日の字浮上コイル加振)。It is a figure (the 1) which shows the harmonic response analysis result of the frame of the superconducting magnet of this invention (day-shaped floating coil excitation). 超電導磁石の台枠の横梁の本数の違いによる調和応答解析結果を示す図(その1)である(ノード253)。It is a figure (the 1st figure) which shows the harmonic response analysis result by the difference in the number of the horizontal beams of the frame of a superconducting magnet (node 253). 本発明の超電導磁石の台枠の調和応答解析結果を示す図(その2)である(日の字浮上コイル加振)。It is a figure (the 2) which shows the harmonic response analysis result of the frame of the superconducting magnet of this invention (day-shaped floating coil vibration). 超電導磁石の台枠の横梁の本数の違いによる調和応答解析結果を示す図(その2)である(ノード253)。It is a figure (the 2) which shows the harmonic response analysis result by the difference in the number of the horizontal beams of the frame of a superconducting magnet (node 253). 本発明の超電導磁石の台枠の横梁に支持脚がついた状態を示す模式図である。It is a schematic diagram which shows the state which the support leg attached to the cross beam of the frame of the superconducting magnet of this invention.

符号の説明Explanation of symbols

1,2 超電導磁石
3,4 超電導磁石に沿って配置される台枠の側梁
5,6,7 台枠の側梁間に配置される台枠の横梁
8,9 支持脚
1, 2 Superconducting magnets 3, 4 Side beams of frame placed along superconducting magnets 5, 6, 7 Horizontal beams of frame placed between side beams of frame 8, 9 Support legs

Claims (2)

超電導磁石に沿って配置される台枠の側梁の間に3本の台枠の横梁を配置することを特徴とする超電導磁石の台枠構造。   3. A superconducting magnet frame structure, wherein three frame horizontal beams are arranged between side beams of the frame arranged along the superconducting magnet. 請求項1記載の超電導磁石の台枠構造において、左右3次曲げ振動モードの超電導磁石の共振周波数を、154Hz超過へシフトすることを特徴とする超電導磁石の台枠構造。   2. The superconducting magnet frame structure according to claim 1, wherein the resonance frequency of the superconducting magnet in the left and right third-order bending vibration mode is shifted to more than 154 Hz.
JP2006192624A 2006-07-13 2006-07-13 Underframe structure of superconductive magnet Pending JP2008018851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192624A JP2008018851A (en) 2006-07-13 2006-07-13 Underframe structure of superconductive magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192624A JP2008018851A (en) 2006-07-13 2006-07-13 Underframe structure of superconductive magnet

Publications (1)

Publication Number Publication Date
JP2008018851A true JP2008018851A (en) 2008-01-31

Family

ID=39075150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192624A Pending JP2008018851A (en) 2006-07-13 2006-07-13 Underframe structure of superconductive magnet

Country Status (1)

Country Link
JP (1) JP2008018851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115555814A (en) * 2022-12-08 2023-01-03 西安聚能超导磁体科技有限公司 Superconducting magnet framework processing method and superconducting magnet framework

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330519A (en) * 1976-08-30 1978-03-22 Toshiba Corp Superconductive magnetically floating truck
JPS5863004A (en) * 1981-10-09 1983-04-14 Toshiba Corp Superconductive magnetic floating vehicle
JPH02258470A (en) * 1989-03-31 1990-10-19 Hitachi Ltd Coupling device for vehicle
JPH06237505A (en) * 1993-02-08 1994-08-23 Fuji Heavy Ind Ltd Truck of magnetic levitated vehicle
JPH06253410A (en) * 1993-02-25 1994-09-09 Toshiba Corp Superconducting propulsion apparatus
JPH07307213A (en) * 1994-05-16 1995-11-21 Toshiba Fa Syst Eng Kk Superconducting magnet system for levitation reilroad
JPH10152044A (en) * 1996-11-26 1998-06-09 Toshiba Corp Carriage frame of superconducting magnetic device
JPH11234810A (en) * 1998-02-17 1999-08-27 Mitsubishi Electric Corp Electromagnetic levitation vehicle
JPH11321636A (en) * 1998-05-20 1999-11-24 Sumitomo Metal Ind Ltd Truck frame for magnetic levitation type rolling stock
JP2003158853A (en) * 2001-11-16 2003-05-30 Railway Technical Res Inst Supporting method of magnetic levitation type railroad superconducting coil
JP2008018850A (en) * 2006-07-13 2008-01-31 Railway Technical Res Inst Underframe structure for reducing vibration of superconductive magnet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330519A (en) * 1976-08-30 1978-03-22 Toshiba Corp Superconductive magnetically floating truck
JPS5863004A (en) * 1981-10-09 1983-04-14 Toshiba Corp Superconductive magnetic floating vehicle
JPH02258470A (en) * 1989-03-31 1990-10-19 Hitachi Ltd Coupling device for vehicle
JPH06237505A (en) * 1993-02-08 1994-08-23 Fuji Heavy Ind Ltd Truck of magnetic levitated vehicle
JPH06253410A (en) * 1993-02-25 1994-09-09 Toshiba Corp Superconducting propulsion apparatus
JPH07307213A (en) * 1994-05-16 1995-11-21 Toshiba Fa Syst Eng Kk Superconducting magnet system for levitation reilroad
JPH10152044A (en) * 1996-11-26 1998-06-09 Toshiba Corp Carriage frame of superconducting magnetic device
JPH11234810A (en) * 1998-02-17 1999-08-27 Mitsubishi Electric Corp Electromagnetic levitation vehicle
JPH11321636A (en) * 1998-05-20 1999-11-24 Sumitomo Metal Ind Ltd Truck frame for magnetic levitation type rolling stock
JP2003158853A (en) * 2001-11-16 2003-05-30 Railway Technical Res Inst Supporting method of magnetic levitation type railroad superconducting coil
JP2008018850A (en) * 2006-07-13 2008-01-31 Railway Technical Res Inst Underframe structure for reducing vibration of superconductive magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115555814A (en) * 2022-12-08 2023-01-03 西安聚能超导磁体科技有限公司 Superconducting magnet framework processing method and superconducting magnet framework

Similar Documents

Publication Publication Date Title
US8827250B2 (en) Vibration reduction device
Deng et al. Dynamic simulation of the vehicle/bridge coupled system in high-temperature superconducting maglev
CN102252815A (en) Maglev vehicle unilateral track coupling vibration test bed device
JP2006199170A (en) Derailment preventing device
EP1055838B1 (en) Vibration mechanism
JP4138858B2 (en) Stage equipment
JP2008018851A (en) Underframe structure of superconductive magnet
JP2006521503A (en) A framework structure for supporting a unit, comprising a longitudinal beam and a transverse beam, and a method of manufacturing the framework structure
Guo et al. Full vehicle dynamic modeling for engine shake with hydraulic engine mount
Huang et al. A numerical model to predict three-dimensional interaction dynamic of low-medium-speed maglev vehicle–guideway bridge system
Zhai et al. Dynamic simulation of the EMS maglev vehicle-guideway-controller coupling system
JP7113451B2 (en) Anti-vibration structure, measuring equipment
Hoshino et al. Reduction of vibrations in maglev vehicles using active primary and secondary suspension control
JP4964853B2 (en) Stage equipment
JPH10211877A (en) Magnetic levitational train
CN107719095A (en) A kind of engine front mounting rubber cushion
JP2008018850A (en) Underframe structure for reducing vibration of superconductive magnet
JP2009147291A (en) Stage device
JP3274093B2 (en) Maglev vehicle
Kozek et al. Vibration damping of a flexible car body structure using piezo-stack actuators
Lee et al. Application of hydraulic body mounts to reduce the freeway hop shake of pickup trucks
JPH06255486A (en) Truck frame of truck for magnetic levitation type rolling stock
CN106627765B (en) Rear secondary frame for vehicle
JP5259151B2 (en) Load carrying material for superconducting magnet system
JP2006104725A (en) Vibration isolation structure for handle of rammer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120