JP2008018362A - Hydrogen occlusion material, hydrogen occlusion body, hydrogen storage device, and fuel cell vehicle - Google Patents

Hydrogen occlusion material, hydrogen occlusion body, hydrogen storage device, and fuel cell vehicle Download PDF

Info

Publication number
JP2008018362A
JP2008018362A JP2006193216A JP2006193216A JP2008018362A JP 2008018362 A JP2008018362 A JP 2008018362A JP 2006193216 A JP2006193216 A JP 2006193216A JP 2006193216 A JP2006193216 A JP 2006193216A JP 2008018362 A JP2008018362 A JP 2008018362A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
per unit
layers
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006193216A
Other languages
Japanese (ja)
Inventor
Junji Katamura
淳二 片村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006193216A priority Critical patent/JP2008018362A/en
Publication of JP2008018362A publication Critical patent/JP2008018362A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen occlusion material having high hydrogen occlusion ability, a hydrogen occlusion body, a hydrogen storage device, and a fuel cell vehicle. <P>SOLUTION: The hydrogen occlusion material 1 comprises a six-membered ring containing carbon atoms as a main body, and has molecular layers L<SB>1</SB>, L<SB>2</SB>laminated approximately in parallel having apertures H<SB>1a</SB>, H<SB>1b</SB>, H<SB>2a</SB>and H<SB>2b</SB>with a size of the diameter or more of the six-membered ring and a molecule chain C<SB>1a</SB>to C<SB>1f</SB>to link with the net face of the atoms of the neighboring molecule layers L<SB>1</SB>, L<SB>2</SB>at the discreted position. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、水素吸蔵材料、水素吸蔵体、水素貯蔵装置及び燃料電池車両に関する。   The present invention relates to a hydrogen storage material, a hydrogen storage body, a hydrogen storage device, and a fuel cell vehicle.

燃料電池車両の実用化のために、低コスト、軽量で、かつ水素吸蔵密度の高い水素吸蔵材料を用いた効率的な水素吸蔵法の開発が望まれている。中でも、炭素系材料を用いた水素吸蔵法の研究が盛んに行われており、炭素系材料としては、活性炭、グラファイト層間化合物(GIC)、単層カーボンナノチューブ(SWNT)、多層カーボンナノチューブ(MWNT)、グラファイトナノファイバー(GNF)、フラーレン類等が知られている。これらの炭素系材料は、常温での吸蔵・放出特性、製造コスト、量産性や収率に課題を有しているため、その課題を克服すべく検討が進められている。   In order to put the fuel cell vehicle into practical use, development of an efficient hydrogen storage method using a hydrogen storage material that is low-cost, lightweight, and has a high hydrogen storage density is desired. In particular, research on hydrogen storage methods using carbon-based materials has been actively conducted, and examples of carbon-based materials include activated carbon, graphite intercalation compounds (GIC), single-walled carbon nanotubes (SWNT), and multi-walled carbon nanotubes (MWNT). Further, graphite nanofiber (GNF), fullerenes and the like are known. Since these carbon-based materials have problems in occlusion / release characteristics at normal temperature, production cost, mass productivity, and yield, studies are being made to overcome these problems.

黒鉛を水素吸蔵材料として用いる場合には、黒鉛層の表面に水素が吸着されるよりも、黒鉛層にはさまれたスリット状空間又は黒鉛層を円筒状に丸めた空間内部の方が水素の吸着力が強くなるため、水素が高密度に充填されることが計算機を用いた解析により示されている(非特許文献1参照)。特に、スリット状空間の幅又は円筒状空間の直径が拡大されている場合には高い水素密度が得られると予想されているため、スリット状空間の幅を拡げる検討が行われている。そこで、スリット状空間を有する材料として、いわゆる膨張黒鉛を利用した材料の検討が行われており、膨張条件を制御することによって黒鉛層間を拡げる方法が提案されている(特許文献1、特許文献2参照)。また、不飽和炭化水素を重合させることにより、黒鉛層間を拡げる方法が提案されている(特許文献3参照)。
特開2002−53301号公報 特開2001−26414号公報 特開平11−70612号公報 Q.Wang and J.K. Johnson, J. Phys. Chem. B103, 277-281 (1999)
When graphite is used as a hydrogen storage material, hydrogen is absorbed in the slit-like space sandwiched between the graphite layers or in the space in which the graphite layer is rolled into a cylindrical shape, rather than adsorbing hydrogen on the surface of the graphite layer. Since the adsorptive power becomes strong, it is shown by analysis using a computer that hydrogen is filled at a high density (see Non-Patent Document 1). In particular, when the width of the slit-like space or the diameter of the cylindrical space is enlarged, it is expected that a high hydrogen density will be obtained. Therefore, studies have been made to increase the width of the slit-like space. In view of this, as a material having a slit-like space, a material using so-called expanded graphite has been studied, and a method of expanding the graphite layer by controlling expansion conditions has been proposed (Patent Documents 1 and 2). reference). Moreover, the method of expanding a graphite layer by polymerizing unsaturated hydrocarbon is proposed (refer patent document 3).
JP 2002-53301 A JP 2001-26414 A JP-A-11-70612 Q. Wang and JK Johnson, J. Phys. Chem. B103, 277-281 (1999)

しかしながら、単に黒鉛層間を拡げる場合は、高圧水素下では拡げた黒鉛層間が圧縮されるため、高圧下での水素吸蔵能が低下する。この場合は、水素が吸着することができる表面積を増やすだけであり、十分な水素吸蔵能を得ることができない場合がある。   However, when the graphite layer is simply expanded, the expanded graphite layer is compressed under high-pressure hydrogen, so that the hydrogen storage capacity under high pressure is reduced. In this case, only the surface area on which hydrogen can be adsorbed is increased, and sufficient hydrogen storage capacity may not be obtained.

本発明は、上記課題を解決するためになされたものであり、本発明に係る水素吸蔵材料は、炭素原子を含む六員環を主体とし、六員環の直径以上の大きさの孔を有する略平行に積層された分子の層と、隣り合う分子の層の原子網面を離散位置で結合する分子鎖とを有することを特徴とする。   The present invention has been made to solve the above-described problems, and the hydrogen storage material according to the present invention is mainly composed of a six-membered ring containing carbon atoms and has pores having a diameter larger than the diameter of the six-membered ring. It is characterized by having molecular layers stacked substantially in parallel and molecular chains that bond atomic network planes of adjacent molecular layers at discrete positions.

本発明に係る水素吸蔵体は、本発明に係る水素吸蔵材料のうちの少なくともいずれか一つを含むことを特徴とする。   The hydrogen storage body according to the present invention includes at least one of the hydrogen storage materials according to the present invention.

本発明に係る水素貯蔵装置は、本発明に係る水素吸蔵体を備えることを特徴とする。   The hydrogen storage device according to the present invention includes the hydrogen storage body according to the present invention.

本発明に係る燃料電池車両は、本発明に係る水素貯蔵装置を搭載することを特徴とする。   The fuel cell vehicle according to the present invention is equipped with the hydrogen storage device according to the present invention.

本発明によれば、水素吸蔵材料内部に高密度に水素を蓄積することが可能となる。この結果、水素吸蔵材料の単位質量あたりの水素吸蔵能及び水素吸蔵材料単位体積あたりの水素吸蔵能が向上する。   According to the present invention, it is possible to accumulate hydrogen at a high density inside the hydrogen storage material. As a result, the hydrogen storage capacity per unit mass of the hydrogen storage material and the hydrogen storage capacity per unit volume of the hydrogen storage material are improved.

本発明によれば、水素吸蔵能の高い水素吸蔵体が得られる。   According to the present invention, a hydrogen storage body having a high hydrogen storage capacity can be obtained.

本発明によれば、水素貯蔵能の高い水素貯蔵装置が得られ、水素貯蔵装置の小型化及び軽量化が可能となり、車両設置時には、設置スペースの節減及び車両重量の軽減が可能となる。   According to the present invention, a hydrogen storage device having a high hydrogen storage capacity can be obtained, and the hydrogen storage device can be reduced in size and weight, and when the vehicle is installed, the installation space can be reduced and the vehicle weight can be reduced.

本発明によれば、車両重量が低減するため燃費の改善が図れ、航続距離の延長が図れる。さらに、水素貯蔵装置の体積が低下するため、車室をより広く活用できる。   According to the present invention, since the vehicle weight is reduced, the fuel efficiency can be improved and the cruising distance can be extended. Furthermore, since the volume of the hydrogen storage device is reduced, the passenger compartment can be used more widely.

以下、本発明の実施の形態に係る水素吸蔵材料、水素吸蔵体、水素貯蔵装置及び水素燃料車両を詳細に説明する。   Hereinafter, a hydrogen storage material, a hydrogen storage body, a hydrogen storage device, and a hydrogen fuel vehicle according to an embodiment of the present invention will be described in detail.

(水素吸蔵材料)
まず、本発明の実施の形態に係る水素吸蔵材料を説明する。
(Hydrogen storage material)
First, the hydrogen storage material which concerns on embodiment of this invention is demonstrated.

第一実施形態
図1に、本発明の第一実施形態に係る水素吸蔵材料1の一部を模式図で示す。水素吸蔵材料1は、分子の層L及びLと、分子鎖C1a〜C1fとによって構成されている。各分子の層L及びLは互いに略平行に積層されており、それぞれが炭素原子を含む六員環を主体とし、直径が六員環の直径(六員環の外接円の直径)以上の大きさである略円形状の孔H1a、H1b、H2a、H2bを有する原子網面からなる。分子鎖C1a〜C1fは分子の層L及びLの原子網面を互いに離散した位置で化学的に結合し、分子の層間に水素吸蔵空間Sを画成する。つまり、分子鎖C1a〜C1fは、分子の層Lの下面L1bと分子の層Lの上面L2aとの層間を、層間距離がdとなる位置で架橋結合して、分子の層LとLとの間に水素を吸蔵する水素吸蔵空間Sを画成する。層間距離dは、分子の層LとLとの中心部間の距離を示す。分子の層Lの上面L1aと分子の層Lの下面L2bは更に別の分子鎖を有し、隣り合う別の分子の層との間に水素吸蔵空間を画成する。なお、分子の層L及びLは、それぞれ置換原子を有していてもよく、置換原子としては、例えば、ホウ素原子又は窒素原子があげられる。
1st Embodiment In FIG. 1, a part of hydrogen storage material 1 which concerns on 1st embodiment of this invention is shown with a schematic diagram. The hydrogen storage material 1 is composed of molecular layers L 1 and L 2 and molecular chains C 1a to C 1f . Layers L 1 and L 2 of each molecule are stacked substantially in parallel with each other, each of which is mainly composed of a six-membered ring containing carbon atoms, and the diameter is equal to or greater than the diameter of the six-membered ring (the diameter of the circumscribed circle of the six-membered ring). It is composed of an atomic network surface having substantially circular holes H 1a , H 1b , H 2a , and H 2b having a size of. The molecular chains C 1a to C 1f chemically bond the atomic network surfaces of the molecular layers L 1 and L 2 at discrete positions to define a hydrogen storage space S 1 between the molecular layers. That is, the molecular chains C 1a to C 1f cross-link between the lower surface L 1b of the molecular layer L 1 and the upper surface L 2a of the molecular layer L 2 at a position where the interlayer distance is d 1 , A hydrogen storage space S 1 for storing hydrogen is defined between the layers L 1 and L 2 . The interlayer distance d 1 indicates the distance between the central portions of the molecular layers L 1 and L 2 . The lower surface L 2b of layer L 2 of the upper surface L 1a and molecular layers L 1 molecule further comprises another molecular chain, defining the hydrogen storage space between the layers of another neighboring molecules. The molecular layers L 1 and L 2 may each have a substituent atom, and examples of the substituent atom include a boron atom and a nitrogen atom.

本発明の第一実施形態に係る水素吸蔵材料1は、このような構成とすることにより、分子の層間に水素を強く吸着できる空間Sを確保しつつ、高圧水素下でもその空間を維持することが可能となる。このため、高圧水素下であっても、水素吸蔵材料1の内部に高密度に水素を蓄積することが可能となる。また、分子の層間が分子鎖C1a〜C1fによって化学的に結合されているため、水分や加熱によって水素を吸蔵する吸蔵空間Sが破壊されることがない。このため、水素を吸蔵する吸蔵空間Sを維持することが可能となり、水素吸蔵材料の単位質量あたりの水素吸蔵能、及び水素吸蔵材料の単位体積あたりの水素吸蔵能が向上する。 By adopting such a configuration, the hydrogen storage material 1 according to the first embodiment of the present invention maintains a space S 1 even under high-pressure hydrogen while ensuring a space S 1 in which hydrogen can be strongly adsorbed between molecular layers. It becomes possible. For this reason, even under high-pressure hydrogen, it is possible to accumulate hydrogen at a high density inside the hydrogen storage material 1. In addition, since the molecular layers are chemically bonded by the molecular chains C 1a to C 1f , the storage space S 1 for storing hydrogen is not destroyed by moisture or heating. Therefore, it becomes possible to maintain the storage space S 1 of occluding hydrogen, the hydrogen storage capacity per unit mass of the hydrogen storage material, and hydrogen storage capacity per unit volume of the hydrogen storage material is improved.

分子の層が有する孔は、隣り合う分子の層間の距離d、孔の直径をrとするとき、次の関係を満たすことが好ましい。   The pores of the molecular layer preferably satisfy the following relationship, where the distance between adjacent molecular layers is d, and the pore diameter is r.

r>−2d+c ・・・・式(1)
c=1.8[nm]
本発明の第一実施形態に係る水素吸蔵材料1では、孔H1aの直径をr1a、H1bの直径をr1b、H2aの直径をr2a、H2bの直径をr2bとするとき、各直径r1a、r1b、r2a及びr2bの平均r、分子の層L及びLの層間距離dとするとき、次の関係を満たすことが好ましい。
r> -2d + c Formula (1)
c = 1.8 [nm]
In the hydrogen storage material 1 according to the first embodiment of the present invention, the diameter of the hole H 1a is r 1a , the diameter of H 1b is r 1b , the diameter of H 2a is r 2a , and the diameter of H 2b is r 2b. When the average r 1 of the diameters r 1a , r 1b , r 2a and r 2b and the interlayer distance d 1 of the molecular layers L 1 and L 2 are satisfied, the following relationship is preferably satisfied.

>−2d+c ・・・・式(2)
c=1.8[nm]
本発明の第一実施形態に係る水素吸蔵材料1において、式(2)の関係を満たす場合には、水素吸蔵材料の単位質量あたりの水素吸蔵能が向上する。式(2)を満たさない場合には、十分な単位質量あたりの水素吸蔵能に達しない。
r 1 > −2d 1 + c (2)
c = 1.8 [nm]
In the hydrogen storage material 1 which concerns on 1st embodiment of this invention, when satisfy | filling the relationship of Formula (2), the hydrogen storage capacity per unit mass of a hydrogen storage material improves. When the formula (2) is not satisfied, sufficient hydrogen storage capacity per unit mass is not reached.

隣り合う分子の層間の距離dは、d<1.0[nm]であることが好ましい。この場合には、水素吸蔵材料の単位体積あたりの水素吸蔵能が向上する。 The distance d 1 between adjacent molecules is preferably d 1 <1.0 [nm]. In this case, the hydrogen storage capacity per unit volume of the hydrogen storage material is improved.

孔は、六員環の直径をdとするとき、任意な分子の層の隣り合う孔の中心間距離が1.05×(r+d)以下であることが好ましい。本発明の第一実施形態に係る水素吸蔵材料1において、分子の層L及びLの隣り合う孔H1a、H1bの中心間距離をdとした場合、dがr+dのn倍になるとそれにほぼ反比例して水素吸蔵能が減少する。dがr+dの場合には水素吸蔵能が最大となり、この場合がもっとも好ましい形態となる。dが1.05×(r+d)以上の場合には単位質量あたりの水素吸蔵能が減少し、十分な水素貯蔵能に達しない。 Holes, the diameter of the six-membered ring when the d h, it is preferable the distance between the centers of adjacent holes of the layers of any molecule is 1.05 × (r + d h) or less. In the hydrogen storage material 1 according to the first embodiment of the present invention, when the distance between the centers of the adjacent holes H 1a and H 1b of the molecular layers L 1 and L 2 is d 2 , d 2 is r 1 + d h When n times, the hydrogen storage capacity decreases almost inversely. When d 2 is r 1 + d, the hydrogen storage capacity is maximized, and this case is the most preferable mode. d 2 is the hydrogen storage capacity per unit mass decreases in the case of 1.05 × (r + d h) above, does not reach a sufficient hydrogen storage capacity.

分子の層L及びLの原子網面は、格子に欠陥を持つ黒鉛面であることが好ましい。この場合には、価格の安価な黒鉛を原材料として使用することが可能である。 The atomic network surfaces of the molecular layers L 1 and L 2 are preferably graphite surfaces having defects in the lattice. In this case, inexpensive graphite can be used as a raw material.

分子鎖C1a〜C1fは、鎖状有機物を含むことが好ましい。一般的に、黒鉛では黒鉛を構成する分子の層間は分子間力によって結合されている。分子間力は弱い結合であるため、単純に層間を拡大したままだと高圧水素下では分子の層間に水素が入る前に層間が容易に圧壊する。このため、高圧水素下では水素吸蔵能を保つことができない。また、分子の層間に炭素原子以外の異物を挿入することにより分子の層間を保持する場合には、加圧や加熱により分子の層間が不安定になり水素吸蔵能を保つことができない。これに対し、分子間力とは別に、新たに共有結合、イオン結合及び金属結合からなる群から選択される結合によって分子の層間を結合した場合には、加圧や加熱によって分子の層間が圧壊せず、分子層間に形成した水素を吸蔵する吸蔵空間を維持することが可能となり、水素吸蔵能が向上する。この場合、分子の層間を結合する分子鎖C1a〜C1fは、できるだけ水素を吸蔵する空間を占有しない鎖状有機物を含むことが好ましい。この鎖状有機物は有機単量体が連なって形成された重合体であることが好ましく、有機単量体は、エチレン、スチレン、イソプレン及び1,3-ブタジエンからなる群から選択されるアルキル鎖であることが好ましい。このような構成とすることにより、分子の層間の距離を適切に保つことができ、分子の層間に水素吸着に有効な水素吸蔵空間を画成することが可能となる。このため、水素吸蔵材料の単位質量あたりの水素吸蔵能が向上する。 The molecular chains C 1a to C 1f preferably contain a chain organic material. Generally, in graphite, layers between molecules constituting graphite are bonded by intermolecular force. Since the intermolecular force is a weak bond, if the layer is simply expanded, the layer easily collapses under high-pressure hydrogen before hydrogen enters the molecular layer. For this reason, hydrogen storage capacity cannot be maintained under high-pressure hydrogen. In addition, when a foreign layer other than a carbon atom is inserted between the molecular layers to hold the molecular layer, the molecular layer becomes unstable due to pressurization or heating, and the hydrogen storage ability cannot be maintained. On the other hand, in addition to the intermolecular force, when the molecular layer is newly bonded by a bond selected from the group consisting of a covalent bond, an ionic bond and a metal bond, the molecular layer is crushed by pressurization or heating. Without this, it is possible to maintain an occlusion space that occludes hydrogen formed between molecular layers, and the hydrogen occlusion ability is improved. In this case, it is preferable that the molecular chains C 1a to C 1f connecting the layers of the molecules include a chain organic material that does not occupy as much space as possible for storing hydrogen. The chain organic material is preferably a polymer formed by continuous organic monomers, and the organic monomer is an alkyl chain selected from the group consisting of ethylene, styrene, isoprene and 1,3-butadiene. Preferably there is. With such a configuration, the distance between the molecular layers can be appropriately maintained, and a hydrogen storage space effective for hydrogen adsorption can be defined between the molecular layers. For this reason, the hydrogen storage capacity per unit mass of the hydrogen storage material is improved.

本発明の第一実施形態に係る水素吸蔵材料1は、例えば次のようにして調製する。炭素原子を含む六員環を主体とする原子網面が略平行に積層した構造体である黒鉛材料に対し、例えば強酸化処理を施すことにより、原子網面に欠陥を導入する。この欠陥導入のプロセスは、高エネルギーを持つ粒子などを照射するプロセスであっても良い。その後、欠陥を導入した黒鉛の層間にCsなどのアルカリ金属を挿入し、続けてアルカリ金属によって重合されうる有機単量体で原子網面を結合し、さらに水洗によりアルカリ金属を除去することにより水素吸蔵材料1が得られる。また、アルカリ金属の代わりに、黒鉛層間に挿入可能な、酸や金属塩化物等を用いることも可能である。得られた水素吸蔵材料1は、炭素原子を含む六員環を主体とし、六員環の直径以上の大きさ孔H1a、H1b、H2a、H2bを有する略平行に積層された分子の層L及びLと、隣り合う分子の層L及びLの原子網面を離散位置で結合する分子鎖C1a〜C1fとを有する。 The hydrogen storage material 1 which concerns on 1st embodiment of this invention is prepared as follows, for example. Defects are introduced into the atomic network surface by, for example, performing strong oxidation treatment on the graphite material, which is a structure in which atomic network surfaces mainly composed of six-membered rings containing carbon atoms are stacked substantially in parallel. This defect introduction process may be a process of irradiating particles having high energy. Thereafter, an alkali metal such as Cs is inserted between the graphite layers into which defects have been introduced, followed by bonding of the atomic network surface with an organic monomer that can be polymerized by the alkali metal, and further removing the alkali metal by washing with water. The occlusion material 1 is obtained. Moreover, it is also possible to use an acid, a metal chloride, etc. which can be inserted between graphite layers instead of an alkali metal. The obtained hydrogen storage material 1 is composed mainly of a six-membered ring containing carbon atoms, and molecules that are stacked substantially in parallel and have holes H 1a , H 1b , H 2a , H 2b larger than the diameter of the six-membered ring. Layers L 1 and L 2, and molecular chains C 1a to C 1f that bond the atomic network planes of adjacent molecular layers L 1 and L 2 at discrete positions.

上記した構成を採用したことにより、本発明の第一実施形態に係る水素吸蔵材料では、高圧水素下であっても、水素吸蔵吸蔵空間に高密度に水素を蓄積することが可能となるため、水素吸蔵材料の単位質量あたりの水素吸蔵能及び水素吸蔵材料単位体積あたりの水素吸蔵能が向上する。なお、全ての分子の層が必ずしも六員環の直径以上の大きさ孔を有していなくてもよく、孔を有さない分子の層があってもよい。また、隣り合う分子の層の間に分子鎖を有さず、隣り合う分子の層間に水素吸蔵空間が形成されない層があっても良い。   By adopting the above configuration, in the hydrogen storage material according to the first embodiment of the present invention, even under high-pressure hydrogen, it is possible to accumulate hydrogen at high density in the hydrogen storage space, The hydrogen storage capacity per unit mass of the hydrogen storage material and the hydrogen storage capacity per unit volume of the hydrogen storage material are improved. It should be noted that all the molecular layers do not necessarily have pores having a diameter larger than the diameter of the six-membered ring, and there may be molecular layers having no pores. Further, there may be a layer that does not have a molecular chain between adjacent molecule layers and in which a hydrogen storage space is not formed between adjacent molecule layers.

第二実施形態
図2に、本発明の第二実施形態に係る水素吸蔵材料11の一部を模式図で示す。水素吸蔵材料11は、分子の層L11及びL12と、分子鎖C11a〜C11pとによって構成されている。各分子の層L11及びL12は互いに略平行に積層されており、それぞれが炭素原子を含む六員環を主体とし、内接円の直径が六員環の直径以上の大きさを有する任意の多角形状(本実施例では四角形)の孔H11a〜H12iを有する原子網面からなる。分子鎖C11a〜C11pは分子の層L11及びL12の原子網面を互いに離散した位置で化学的に結合し、分子の層間に水素吸蔵空間S11を画成する。つまり、分子鎖C11a〜C11pは、分子の層L11の下面L11bと分子の層L12の上面L12aとの層間を、層間距離がd11となる位置で架橋結合して、分子の層L11とL12との間に水素を吸蔵する水素吸蔵空間S11を画成する。層間距離d11は、分子の層L11とL12との中心部間の距離を示す。孔H11a〜H12iは、それぞれ大きさが略等しいものとし、一つの孔の長辺の長さがu、短辺の長さがvとすると、その内接円の直径r11はvの長さと等しくなる。また、分子鎖C11a〜C11pの長さは、孔H11a〜H12iの長辺又は短辺の長さと等しいものであってもよく、分子の層L11及びL12と分子鎖C11a〜C11pとは化学組成的には区別されないものとする。
2nd embodiment In FIG. 2, a part of hydrogen storage material 11 which concerns on 2nd embodiment of this invention is shown with a schematic diagram. The hydrogen storage material 11 is composed of molecular layers L 11 and L 12 and molecular chains C 11a to C 11p . The layers L 11 and L 12 of each molecule are laminated substantially in parallel with each other, each of which is mainly composed of a six-membered ring containing carbon atoms, and the diameter of the inscribed circle is larger than the diameter of the six-membered ring. consisting atom net plane having a hole H 11a to H 12i of (square in this embodiment) of the polygonal shape. The molecular chains C 11a to C 11p chemically bond the atomic network surfaces of the molecular layers L 11 and L 12 at discrete positions to define a hydrogen storage space S 11 between the molecular layers. In other words, the molecular chain C 11a -C 11p is an interlayer between the upper surface L 12a of the lower surface L 11b and a layer of molecules L 12 of layer L 11 molecules, and cross-linked at a position where the interlayer distance is d 11, the molecular defining the hydrogen storage space S 11 of occluding hydrogen between the layers L 11 and L 12. Interlayer distance d 11 denotes a distance between the center of the layer L 11 and L 12 of the molecule. The holes H 11a to H 12i are substantially equal in size, and if the length of the long side of one hole is u and the length of the short side is v, the diameter r 11 of the inscribed circle is v Equal to the length. Further, the length of the molecular chains C 11a to C 11p may be equal to the length of the long side or the short side of the holes H 11a to H 12i . The molecular layers L 11 and L 12 and the molecular chain C 11a It is not distinguished from ~ C11p in terms of chemical composition.

本発明の第二実施形態に係る水素吸蔵材料11は、このような構成とすることにより、分子の層間に水素を強く吸着できる空間S11を確保しつつ、高圧水素下でもその空間を維持することが可能となる。このため、高圧水素下であっても、水素吸蔵材料11の内部に高密度に水素を蓄積することが可能となる。また、分子の層間が分子鎖C11a〜C11pによって化学的に結合されているため、水分や加熱によって水素を吸蔵する吸蔵空間S11が破壊されることがない。このため、水素を吸蔵する吸蔵空間S11を維持することが可能となり、水素吸蔵材料の単位質量あたりの水素吸蔵能、及び水素吸蔵材料の単位体積あたりの水素吸蔵能が向上する。 By adopting such a configuration, the hydrogen storage material 11 according to the second embodiment of the present invention maintains a space S 11 capable of strongly adsorbing hydrogen between molecular layers, and maintains the space even under high-pressure hydrogen. It becomes possible. For this reason, even under high-pressure hydrogen, it is possible to accumulate hydrogen at a high density inside the hydrogen storage material 11. In addition, since the molecular layers are chemically bonded by the molecular chains C 11a to C 11p , the storage space S 11 that stores hydrogen is not destroyed by moisture or heating. Therefore, it becomes possible to maintain the storage space S 11 for storing hydrogen, the hydrogen storage capacity per unit mass of the hydrogen storage material, and hydrogen storage capacity per unit volume of the hydrogen storage material is improved.

分子の層が有する孔は、隣り合う分子の層間の距離d、孔の直径をrとするとき、次の関係を満たすことが好ましい。   The pores of the molecular layer preferably satisfy the following relationship, where the distance between adjacent molecular layers is d, and the pore diameter is r.

r>−2d+c ・・・・式(3)
c=1.8[nm]
本発明の第二実施形態に係る水素吸蔵材料11では、孔H11a〜H12iに内接する円の直径をr11としたときr11はvと長さが等しく、分子の層L11及びL12の層間距離とするとき、次の関係を満たすことが好ましい。
r> -2d + c Formula (3)
c = 1.8 [nm]
In the hydrogen storage material 11 according to the second embodiment of the present invention, when the diameter of a circle inscribed in the holes H 11a to H 12i is r 11 , r 11 is equal in length to v, and the molecular layers L 11 and L 11 When the interlayer distance is 12 , it is preferable to satisfy the following relationship.

v>−2d11+c ・・・・式(4)
c=1.8[nm]
本発明の第二実施形態に係る水素吸蔵材料11において、式(4)の関係を満たす場合には、水素吸蔵材料の単位質量あたりの水素吸蔵能が向上する。式(4)を満たさない場合には、十分な単位質量あたりの水素吸蔵能に達しない。
v> -2d 11 + c (4)
c = 1.8 [nm]
In the hydrogen storage material 11 which concerns on 2nd embodiment of this invention, when satisfy | filling the relationship of Formula (4), the hydrogen storage capacity per unit mass of a hydrogen storage material improves. When not satisfy | filling Formula (4), sufficient hydrogen storage capacity per unit mass is not reached.

隣り合う分子の層間の距離d11は、d11<1.0[nm]であることが好ましい。この場合には、水素吸蔵材料の単位体積あたりの水素吸蔵能が向上する。 The distance d 11 between adjacent molecules is preferably d 11 <1.0 [nm]. In this case, the hydrogen storage capacity per unit volume of the hydrogen storage material is improved.

孔は、六員環の直径をdとするとき、任意な分子の層の隣り合う孔の中心間距離が1.05×(r+d)以下であることが好ましい。本発明の第二実施形態に係る水素吸蔵材料1において、分子の層L及びLの隣り合う孔H1a、H1bの中心間距離をdとした場合、dがr+dのn倍になるとそれにほぼ反比例して水素吸蔵能が減少する。dがr+dの場合には水素吸蔵能が最大となり、この場合がもっとも好ましい形態となる。dが1.05×(r+d)以上の場合には単位質量あたりの水素吸蔵能が減少し、十分な水素貯蔵能に達しない。 Holes, the diameter of the six-membered ring when the d h, it is preferable the distance between the centers of adjacent holes of the layers of any molecule is 1.05 × (r + d h) or less. In the hydrogen storage material 1 according to the second embodiment of the present invention, when the distance between the centers of the adjacent holes H 1a and H 1b of the molecular layers L 1 and L 2 is d 2 , d 2 is r 1 + d h When n times, the hydrogen storage capacity decreases almost inversely. When d 2 is r 1 + d, the hydrogen storage capacity is maximized, and this case is the most preferable mode. d 2 is the hydrogen storage capacity per unit mass decreases in the case of 1.05 × (r + d h) above, does not reach a sufficient hydrogen storage capacity.

任意な分子の層の隣り合う孔の中心間距離が1.05×(r+d)以下であることが好ましい。本発明の第二実施形態に係る水素吸蔵材料11において、分子の層L11及びL12の隣り合う孔H11a、H11bの中心間距離をd12とした場合、d12がv+dのn倍になるとそれにほぼ反比例して水素吸蔵能が減少する。d12がv+dの場合には水素吸蔵能が最大となり、この場合がもっとも好ましい形態となる。d12が1.05×(v+d)以上の場合には単位質量あたりの水素吸蔵能が減少し、十分な水素貯蔵能に達しない。 It is preferable that the center-to-center distance between adjacent holes in an arbitrary molecular layer is 1.05 × (r + d h ) or less. In the hydrogen storage material 11 according to the second embodiment of the present invention, when the distance between the centers of adjacent holes H 11a and H 11b of the molecular layers L 11 and L 12 is d 12 , d 12 is n of v + d h . When doubled, the hydrogen storage capacity decreases almost in inverse proportion. hydrogen storage capacity is maximized when d 12 is v + d, in this case is the most preferred form. d 12 is hydrogen storage capacity per unit mass decreases in the case of 1.05 × (v + d h) above, does not reach a sufficient hydrogen storage capacity.

分子鎖C11a〜C11pは、鎖状有機物を含むことが好ましい。この鎖状有機物は有機単量体が連なって形成された重合体であることが好ましく、有機単量体は、エチレン、スチレン、イソプレン及び1,3-ブタジエンからなる群から選択されるアルキル鎖であることが好ましい。このような構成とすることにより、分子の層間の距離を適切に保つことができ、分子の層間に水素吸着に有効な水素吸蔵空間を画成することが可能となる。このため、水素吸蔵材料の単位質量あたりの水素吸蔵能が向上する。 The molecular chains C 11a to C 11p preferably contain a chain organic material. The chain organic material is preferably a polymer formed by continuous organic monomers, and the organic monomer is an alkyl chain selected from the group consisting of ethylene, styrene, isoprene and 1,3-butadiene. Preferably there is. With such a configuration, the distance between the molecular layers can be appropriately maintained, and a hydrogen storage space effective for hydrogen adsorption can be defined between the molecular layers. For this reason, the hydrogen storage capacity per unit mass of the hydrogen storage material is improved.

本発明の第二実施形態に係る水素吸蔵材料11は、例えば次のようにして調製する。炭素原子を含む六員環を主体とする原子網面が略平行に積層した構造体である黒鉛材料に対し、例えば強酸化処理を施すことにより、原子網面に欠陥を導入する。この欠陥導入のプロセスは高エネルギーを持つ粒子などを照射するプロセスであっても良い。その後、欠陥を導入した黒鉛の層間にCs金属を挿入し、続けてCsによって重合されうる有機単量体で原子網面を結合し、さらに水洗によりCsを除去することにより水素吸蔵材料11が得られる。得られた水素吸蔵材料1は、炭素原子を含む六員環を主体とし、六員環の直径以上の大きさ孔H11a〜H12iを有する略平行に積層された分子の層L11及びL12と、隣り合う分子の層L11及びL12の原子網面を離散位置で結合する分子鎖C11a〜C11pとを有する。 The hydrogen storage material 11 which concerns on 2nd embodiment of this invention is prepared as follows, for example. Defects are introduced into the atomic network surface by, for example, performing strong oxidation treatment on the graphite material, which is a structure in which atomic network surfaces mainly composed of six-membered rings containing carbon atoms are stacked substantially in parallel. This defect introduction process may be a process of irradiating particles having high energy. Thereafter, Cs metal is inserted between the layers of graphite into which defects have been introduced, the atomic network surface is subsequently bonded with an organic monomer that can be polymerized by Cs, and further, Cs is removed by washing with water to obtain the hydrogen storage material 11. It is done. The obtained hydrogen storage material 1 is mainly composed of six-membered rings containing carbon atoms, and has molecular layers L 11 and L 11 that are stacked substantially in parallel and have holes H 11a to H 12i larger than the diameter of the six-membered ring. 12 and molecular chains C 11a to C 11p that connect atomic network planes of adjacent molecular layers L 11 and L 12 at discrete positions.

上記した構成を採用したことにより、本発明の第二実施形態に係る水素吸蔵材料では、高圧水素下であっても、水素吸蔵吸蔵空間に高密度に水素を蓄積することが可能となるため、水素吸蔵材料の単位質量あたりの水素吸蔵能及び水素吸蔵材料単位体積あたりの水素吸蔵能が向上する。   By adopting the above configuration, in the hydrogen storage material according to the second embodiment of the present invention, even under high-pressure hydrogen, it is possible to accumulate hydrogen at high density in the hydrogen storage space, The hydrogen storage capacity per unit mass of the hydrogen storage material and the hydrogen storage capacity per unit volume of the hydrogen storage material are improved.

(水素吸蔵体及び水素貯蔵装置)
図3は、本発明の実施の形態に係る車載用の水素吸蔵体21及び水素貯蔵装置20を示している。この水素貯蔵装置20は、上記した水素吸蔵材料を加圧成型により固形化又は薄膜化して形成した水素吸蔵体21を、水素流出口22を設けた耐圧容器23の内部に封入した構成である。このような水素貯蔵装置20は、車両に搭載して燃料電池システムあるいは水素エンジンシステムに組み込んで用いることができる。容器の形状は単純な閉空間を有する形状のほかに、内部にリブや柱を設けたものであっても良い。また、容器の素材は、アルミニウム、ステンレス及びカーボン構造材料等、水素の吸蔵放出に耐えうる強度と化学的安定性を有する素材の中から選び出すことが好ましい。更に、容器内部に熱交換装置を配置することにより、水素の吸蔵放出の速度・効率に寄与することが可能となる。このような構成にすることで、水素貯蔵能の高い水素貯蔵装置を実現することが可能となる。また、水素貯蔵装置を小型化及び軽量化が可能となり、水素貯蔵装置を車両設置した場合には、設置スペースの節減及び車両重量の軽減が可能となる。なお、この水素吸蔵体の加圧成型は、耐圧タンク内に水素吸蔵体を充填する前に行っても良く、充填しながら同時に行っても良い。
(Hydrogen storage body and hydrogen storage device)
FIG. 3 shows an in-vehicle hydrogen storage body 21 and a hydrogen storage device 20 according to the embodiment of the present invention. This hydrogen storage device 20 has a configuration in which a hydrogen storage body 21 formed by solidifying or thinning the above-described hydrogen storage material by pressure molding is enclosed in a pressure vessel 23 provided with a hydrogen outlet port 22. Such a hydrogen storage device 20 can be used by being mounted on a vehicle and incorporated in a fuel cell system or a hydrogen engine system. The shape of the container may be a shape having a simple closed space, or a rib or a column provided inside. Moreover, it is preferable to select the material of the container from materials having strength and chemical stability that can withstand occlusion and release of hydrogen, such as aluminum, stainless steel, and carbon structural material. Furthermore, by disposing a heat exchange device inside the container, it is possible to contribute to the speed and efficiency of the storage and release of hydrogen. With such a configuration, it is possible to realize a hydrogen storage device with high hydrogen storage capacity. Further, the hydrogen storage device can be reduced in size and weight, and when the hydrogen storage device is installed in a vehicle, the installation space can be saved and the vehicle weight can be reduced. The pressure molding of the hydrogen storage body may be performed before the hydrogen storage body is filled in the pressure tank or may be performed simultaneously with the filling.

(燃料電池車両)
図4は、本発明の実施の形態に係る水素貯蔵装置20を搭載する水素燃料車両を示しており、図3に示すような水素貯蔵装置20を水素燃料車両30に設置搭載したものである。このとき、車両に設置搭載する水素貯蔵装置20は一つ又は二つ以上に分割しても良く、複数の水素貯蔵装置の形状はそれぞれ異なったものでも良い。また、エンジンルームやトランクルーム内部、あるいはシート下のフロア部等の車室内部の他に、ルーフ上部等の車室外に水素貯蔵装置20を設置することも可能である。このような車両は、車両重量が低減するため燃費の改善が図れ、航続距離の延長が図れる。また、水素貯蔵装置20の体積が低下するため、車室をより広く活用できる。
(Fuel cell vehicle)
FIG. 4 shows a hydrogen fuel vehicle equipped with the hydrogen storage device 20 according to the embodiment of the present invention. The hydrogen storage device 20 shown in FIG. At this time, the hydrogen storage device 20 installed and mounted on the vehicle may be divided into one or two or more, and the shapes of the plurality of hydrogen storage devices may be different from each other. Further, in addition to the interior of the engine room or the trunk room, or the interior of the vehicle such as the floor under the seat, the hydrogen storage device 20 can be installed outside the interior of the vehicle such as the upper part of the roof. In such a vehicle, the vehicle weight is reduced, so that the fuel consumption can be improved and the cruising distance can be extended. Moreover, since the volume of the hydrogen storage device 20 is reduced, the passenger compartment can be used more widely.

以下、本発明の実施の形態に係る水素吸蔵材料の実施例について説明する。   Examples of the hydrogen storage material according to the embodiment of the present invention will be described below.

<水素吸蔵能の算出>
水素吸蔵能の算出には、熱力学的平衡状態に対する分子シミュレーションである、モンテカルロ計算法を用いて行った。モンテカルロ法は、分子あるいは原子の配置を確率的に計算していく確率論的な方法である。水素吸蔵能の予測には、系の粒子数、体積及び温度が規定された統計集団である大正準集団を用いたモンテカルロ計算、すなわちグランドカノニカルモンテカルロ計算法を用いて行った。
<Calculation of hydrogen storage capacity>
The hydrogen storage capacity was calculated using the Monte Carlo calculation method, which is a molecular simulation for a thermodynamic equilibrium state. The Monte Carlo method is a probabilistic method in which the arrangement of molecules or atoms is calculated stochastically. The hydrogen storage capacity was predicted by Monte Carlo calculation using a large canonical population, which is a statistical population in which the number of particles, volume, and temperature of the system were defined, that is, Grand Canonical Monte Carlo calculation method.

モンテカルロ計算には各原子間の相互作用が必要となり、ここでは二つの分子間の相互作用、すなわち2体間ポテンシャルを定義する。2体間ポテンシャルとしては、次の式(5)に示す最も典型的なレナード・ジョーンズ(Lennard-Jones)12−6ポテンシャルを用いる。   Monte Carlo calculations require interactions between atoms, and here we define the interaction between two molecules, that is, the potential between two bodies. As the potential between two bodies, the most typical Lennard-Jones 12-6 potential shown in the following formula (5) is used.

u(r)=4e((σ/r)12−(σ/r)) ・・・ 式(5)
ここで、u(r)は原子間ポテンシャルを表し、e及びσは原子対に固有の定数でそれぞれポテンシャル曲線の井戸の深さとポテンシャルエネルギーがゼロになる分子間距離(実質的な原子直径)に相当する。ここでは、e及びσの値に最も典型的な分子場であるユニバーサルフォースフィールド(Universal Force Field)を用いた。計算に用いたモデルは、面内に直径が0.4〜0.9[nm]になるような孔を含んだ炭素六員環からなる層が積層した物を用いた。このとき、層間距離を0.33〜1.0[nm]の間で変化させた。また水素吸蔵能の計算は、77[K]、水素圧10[MPa]で行った。
u (r) = 4e ((σ / r) 12 − (σ / r) 6 ) (5)
Here, u (r) represents an interatomic potential, and e and σ are constants specific to the atom pair, and the inter-molecular distance (substantial atomic diameter) at which the well depth of the potential curve and the potential energy become zero, respectively. Equivalent to. Here, the universal force field (Universal Force Field) which is the most typical molecular field for the values of e and σ was used. As a model used for the calculation, a layer in which a layer composed of a carbon six-membered ring including a hole having a diameter of 0.4 to 0.9 [nm] in a plane was stacked was used. At this time, the interlayer distance was changed between 0.33 and 1.0 [nm]. The hydrogen storage capacity was calculated at 77 [K] and a hydrogen pressure of 10 [MPa].

実施例で得られた単位重量あたりの水素吸蔵量及び単位体積あたりの水素吸蔵量を算出した結果を、それぞれ表1及び2に示す。また、図4に表1に示した層間距離と単位重量あたりの水素吸蔵量との関係を、図5に表2に示した層間距離と単位体積あたりの水素吸蔵量との関係を示す。

Figure 2008018362
Figure 2008018362
The results of calculating the hydrogen storage amount per unit weight and the hydrogen storage amount per unit volume obtained in the examples are shown in Tables 1 and 2, respectively. 4 shows the relationship between the interlayer distance shown in Table 1 and the hydrogen storage amount per unit weight, and FIG. 5 shows the relationship between the interlayer distance shown in Table 2 and the hydrogen storage amount per unit volume.
Figure 2008018362
Figure 2008018362

孔の直径が0.4[nm]の場合、層間距離が0.33〜0.7[nm]の場合には水素吸蔵量が0であり、層間距離が1.0[nm]のときに単位重量あたりの水素吸蔵量が4.2[wt%]及び単位体積あたりの水素吸蔵量が0.007[g/cm]であった。この結果より、孔の直径が0.4[nm]の場合には、孔の周囲よりも層と層との間に水素が吸着されたことが考えられる。また、層間距離が1[nm]の場合には、r>−2d+1.8を満たす。 When the hole diameter is 0.4 [nm], when the interlayer distance is 0.33 to 0.7 [nm], the hydrogen storage amount is 0, and when the interlayer distance is 1.0 [nm] The hydrogen storage amount per unit weight was 4.2 [wt%], and the hydrogen storage amount per unit volume was 0.007 [g / cm 3 ]. From this result, it is considered that when the hole diameter is 0.4 [nm], hydrogen is adsorbed between the layers rather than around the hole. Further, when the interlayer distance is 1 [nm], r> −2d + 1.8 is satisfied.

孔の直径が0.5[nm]の場合、層間距離が0.33[nm]の場合には水素吸蔵量が0であり、層間距離が0.5[nm]のときに単位重量あたりの水素吸蔵量が1.6[wt%]及び単位体積あたりの水素吸蔵量が0.005[g/cm]であり、層間距離が0.6[nm]のときに単位重量あたりの水素吸蔵量が2.5[wt%]及び単位体積あたりの水素吸蔵量が0.007[g/cm]であり、層間距離が0.7[nm]のときに単位重量あたりの水素吸蔵量が5.5[wt%]及び単位体積あたりの水素吸蔵量が0.013[g/cm]であり、層間距離が1.0[nm]のときに単位重量あたりの水素吸蔵量が6.6[wt%]及び単位体積あたりの水素吸蔵量が0.007[g/cm]であった。この結果より、孔の直径が0.5[nm]の場合には、層間距離が0.33[nm]の場合には水素が吸着する空間がないため水素吸蔵量が0となったが、層間距離が0.5[nm]以上の場合には、孔の周囲及び、層と層との間に水素が吸着されたことが考えられる。また、層間距離が広がるにつれて単位重量あたりの水素吸蔵量が増加したが、単位体積あたりの水素吸蔵量は層間距離が1.0[nm]で減少した。これは、層間距離が大きくなりすぎ、水素吸蔵に寄与しない空間が増えたため、結果として単位体積あたりの水素吸蔵能が減少したためと考えられる。なお、層間距離が0.7及び1.0[nm]の場合には、r>−2d+1.8を満たす。 When the hole diameter is 0.5 [nm], when the interlayer distance is 0.33 [nm], the hydrogen storage amount is 0, and when the interlayer distance is 0.5 [nm], the per unit weight Hydrogen storage per unit weight when the hydrogen storage is 1.6 [wt%], the hydrogen storage per unit volume is 0.005 [g / cm 3 ], and the interlayer distance is 0.6 [nm] When the amount is 2.5 [wt%], the hydrogen storage amount per unit volume is 0.007 [g / cm 3 ], and the interlayer distance is 0.7 [nm], the hydrogen storage amount per unit weight is The hydrogen occlusion amount per unit weight is 5.5 [wt%], the hydrogen occlusion amount per unit volume is 0.013 [g / cm 3 ], and the interlayer distance is 1.0 [nm]. The hydrogen occlusion amount per unit volume was 6 [wt%] and 0.007 [g / cm 3 ]. From this result, when the hole diameter is 0.5 [nm], when the interlayer distance is 0.33 [nm], there is no space for hydrogen adsorption, so the hydrogen occlusion amount becomes 0. When the interlayer distance is 0.5 [nm] or more, it is considered that hydrogen was adsorbed around the pores and between the layers. Further, the hydrogen storage amount per unit weight increased as the interlayer distance increased, but the hydrogen storage amount per unit volume decreased when the interlayer distance was 1.0 [nm]. This is presumably because the interlaminar distance became too large and the space that did not contribute to hydrogen storage increased, resulting in a decrease in hydrogen storage capacity per unit volume. When the interlayer distance is 0.7 and 1.0 [nm], r> −2d + 1.8 is satisfied.

孔の直径が0.7[nm]の場合、層間距離が0.33[nm]の場合には単位重量あたりの水素吸蔵量が1.5[wt%]及び単位体積あたりの水素吸蔵量が0.005[g/cm]であり、層間距離が0.5[nm]のときに単位重量あたりの水素吸蔵量が2.3[wt%]及び単位体積あたりの水素吸蔵量が0.007[g/cm]であり、層間距離が0.6[nm]のときに単位重量あたりの水素吸蔵量が5.9[wt%]及び単位体積あたりの水素吸蔵量が0.0118[g/cm]であり、層間距離が0.7[nm]のときに単位重量あたりの水素吸蔵量が7.2[wt%]及び単位体積あたりの水素吸蔵量が0.0118[g/cm]であり、層間距離が1.0[nm]のときに単位重量あたりの水素吸蔵量が8.5[wt%]及び単位体積あたりの水素吸蔵量が0.007[g/cm]であった。この結果より、孔の直径が0.7[nm]の場合には、孔の周囲及び、層と層との間に水素が吸着されたことが考えられる。また、層間距離が広がるにつれて単位重量あたりの水素吸蔵量が増加したが、単位体積あたりの水素吸蔵量は層間距離が1.0[nm]で減少した。これは、層間距離が大きくなりすぎ、水素吸蔵に寄与しない空間が増えたため、結果として単位体積あたりの水素吸蔵能が減少したためと考えられる。なお、層間距離が0.6〜1.0[nm]の場合には、r>−2d+1.8を満たす。 When the hole diameter is 0.7 [nm], when the interlayer distance is 0.33 [nm], the hydrogen storage amount per unit weight is 1.5 [wt%] and the hydrogen storage amount per unit volume is 0.005 [g / cm 3 ], when the interlayer distance is 0.5 [nm], the hydrogen storage amount per unit weight is 2.3 [wt%], and the hydrogen storage amount per unit volume is 0.00. When the interlayer distance is 0.6 [nm], the hydrogen storage amount per unit weight is 5.9 [wt%] and the hydrogen storage amount per unit volume is 0.0118 [g / cm 3 ]. g / cm 3 ], when the interlayer distance is 0.7 [nm], the hydrogen storage amount per unit weight is 7.2 [wt%], and the hydrogen storage amount per unit volume is 0.0118 [g / cm 3] and is, hydrogen in the hydrogen storage capacity 8.5 [wt%] and per unit volume per unit weight when the interlayer distance is 1.0 [nm] Kura amount was 0.007 [g / cm 3]. From this result, when the diameter of the hole is 0.7 [nm], it is considered that hydrogen was adsorbed around the hole and between the layers. Further, the hydrogen storage amount per unit weight increased as the interlayer distance increased, but the hydrogen storage amount per unit volume decreased when the interlayer distance was 1.0 [nm]. This is presumably because the interlaminar distance became too large and the space that did not contribute to hydrogen storage increased, resulting in a decrease in hydrogen storage capacity per unit volume. When the interlayer distance is 0.6 to 1.0 [nm], r> −2d + 1.8 is satisfied.

孔の直径が0.9[nm]の場合、層間距離が0.33[nm]の場合には単位重量あたりの水素吸蔵量が2.9[wt%]及び単位体積あたりの水素吸蔵量が0.009[g/cm]であり、層間距離が0.5[nm]のときに単位重量あたりの水素吸蔵量が7[wt%]及び単位体積あたりの水素吸蔵量が0.0118[g/cm]であり、層間距離が0.6[nm]のときに単位重量あたりの水素吸蔵量が8[wt%]及び単位体積あたりの水素吸蔵量が0.011[g/cm]であり、層間距離が0.7[nm]のときに単位重量あたりの水素吸蔵量が9[wt%]及び単位体積あたりの水素吸蔵量が0.01[g/cm]であり、層間距離が1.0[nm]のときに単位重量あたりの水素吸蔵量が11[wt%]及び単位体積あたりの水素吸蔵量が0.006[g/cm]であった。この結果より、孔の直径が0.9[nm]の場合には、孔の周囲及び、層と層との間に水素が吸着されたことが考えられる。また、層間距離が広がるにつれて単位重量あたりの水素吸蔵量が増加したが、単位体積あたりの水素吸蔵量は層間距離が0.5[nm]で減少した。これは、層間距離が大きくなりすぎ、水素吸蔵に寄与しない空間が増えたため、結果として単位体積あたりの水素吸蔵能が減少したためと考えられる。なお、層間距離が0.5[nm]以上の場合には、r>−2d+1.8を満たす。 When the hole diameter is 0.9 [nm], when the interlayer distance is 0.33 [nm], the hydrogen storage amount per unit weight is 2.9 [wt%] and the hydrogen storage amount per unit volume is When the interlayer distance is 0.5 [nm], the hydrogen storage amount per unit weight is 7 [wt%] and the hydrogen storage amount per unit volume is 0.0118 [g / cm 3 ]. g / cm 3 ], and when the interlayer distance is 0.6 [nm], the hydrogen storage amount per unit weight is 8 [wt%] and the hydrogen storage amount per unit volume is 0.011 [g / cm 3]. When the interlayer distance is 0.7 [nm], the hydrogen storage amount per unit weight is 9 [wt%] and the hydrogen storage amount per unit volume is 0.01 [g / cm 3 ], When the interlayer distance is 1.0 [nm], the hydrogen storage amount per unit weight is 11 [wt%] and the hydrogen storage amount per unit volume is 0.006 [ It was / cm 3]. From this result, when the diameter of the hole is 0.9 [nm], it is considered that hydrogen was adsorbed around the hole and between the layers. In addition, the hydrogen storage amount per unit weight increased as the interlayer distance increased, but the hydrogen storage amount per unit volume decreased when the interlayer distance was 0.5 [nm]. This is presumably because the interlaminar distance became too large and the space that did not contribute to hydrogen storage increased, resulting in a decrease in hydrogen storage capacity per unit volume. When the interlayer distance is 0.5 [nm] or more, r> −2d + 1.8 is satisfied.

以上の結果より、炭素原子を含む六員環を主体とする分子の層において、導入された孔の直径rが、隣接する原子平面間の層間距離dに対して、r>−2d+1.8の場合には、特に水素吸蔵材料の単位質量あたりの水素吸蔵能を発現することがわかった。また、r>−2d+1.8であり、かつd<0.1[nm]の場合には、単位体積あたりの水素吸蔵能をより高くすることも可能となることがわかった。   From the above results, in the molecular layer mainly composed of six-membered rings containing carbon atoms, the diameter r of the introduced holes is such that r> −2d + 1.8 with respect to the interlayer distance d between adjacent atomic planes. In some cases, it was found that the hydrogen storage capacity per unit mass of the hydrogen storage material was developed. Further, it was found that when r> -2d + 1.8 and d <0.1 [nm], the hydrogen storage capacity per unit volume can be further increased.

以上、本実施の形態の形態について説明したが、上記の実施の形態の開示の一部をなす論述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。   As mentioned above, although the form of this Embodiment was demonstrated, it should not be understood that the description and drawing which make a part of indication of said Embodiment limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

本発明の第一実施形態に係る水素吸蔵材料を示す模式図である。It is a schematic diagram which shows the hydrogen storage material which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る水素吸蔵材料を示す模式図である。It is a schematic diagram which shows the hydrogen storage material which concerns on 2nd embodiment of this invention. 本発明の実施の形態に係る水素貯蔵装置の実施の形態を示す断面図である。It is sectional drawing which shows embodiment of the hydrogen storage apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る燃料電池車両の実施の形態を示す側面図である。1 is a side view showing an embodiment of a fuel cell vehicle according to an embodiment of the present invention. 層間距離と単位重量あたりの水素吸蔵量との関係を示すグラフである。It is a graph which shows the relationship between interlayer distance and the hydrogen storage amount per unit weight. 層間距離と単位体積あたりの水素吸蔵量との関係を示すグラフである。It is a graph which shows the relationship between interlayer distance and the hydrogen storage amount per unit volume.

符号の説明Explanation of symbols

1、11 水素吸蔵材料
、L、L11、L12 分子の層
1a〜C1f、C11a〜C11p 分子鎖
1a、H1b、H2a、H2b、H11a〜H12i
1a、r1b、r2a、r2b 直径
、d11 層間距離
、S11 水素吸蔵空間
20 水素貯蔵装置
21 水素吸蔵体
22 水素流出口
23 耐圧容器
30 水素燃料車両
1,11 hydrogen storage material L 1, L 2, L 11 , L 12 molecular layers C 1a ~C 1f, C 11a ~C 11p molecular chain H 1a, H 1b, H 2a , H 2b, H 11a ~H 12i Holes r 1a , r 1b , r 2a , r 2b diameters d 1 , d 11 interlayer distance S 1 , S 11 hydrogen storage space 20 hydrogen storage device 21 hydrogen storage body 22 hydrogen outlet 23 pressure vessel 30 hydrogen fuel vehicle

Claims (11)

炭素原子を含む六員環を主体とし、前記六員環の直径以上の大きさの孔を有する略平行に積層された分子の層と、
隣り合う分子の層の原子網面を離散位置で結合する分子鎖とを有することを特徴とする水素吸蔵材料。
A six-membered ring containing a carbon atom as a main component, and a layer of molecules stacked in parallel and having pores having a size larger than the diameter of the six-membered ring;
A hydrogen storage material comprising a molecular chain that bonds atomic network surfaces of adjacent layers of molecules at discrete positions.
前記孔は、隣り合う分子の層間の距離d、前記孔の直径をrとするとき、次の関係を満たすことを特徴とする請求項1に記載の水素吸蔵材料。
r>−2d+c
c=1.8[nm]
2. The hydrogen storage material according to claim 1, wherein the hole satisfies the following relationship when a distance d between layers of adjacent molecules is r and a diameter of the hole is r.
r> -2d + c
c = 1.8 [nm]
d<1.0[nm]であることを特徴とする請求項2に記載の水素吸蔵材料。   The hydrogen storage material according to claim 2, wherein d <1.0 [nm]. 前記孔は、前記六員環の直径をdとするとき、任意な分子の層の隣り合う孔の中心間距離が1.05×(r+d)以下であることを特徴とする請求項2又は請求項3に記載の水素吸蔵材料。 The hole, when the diameter of the six-membered ring and d h, claim, wherein the distance between the centers of adjacent holes of the layers of any molecule is 1.05 × (r + d h) below 2 Or the hydrogen storage material of Claim 3. 前記分子の層は、格子に欠陥を持つ黒鉛面であることを特徴とする請求項1乃至請求項4のいずれか一項に記載の水素吸蔵材料。   The hydrogen storage material according to any one of claims 1 to 4, wherein the molecular layer is a graphite surface having defects in a lattice. 前記分子鎖は、鎖状有機物を含むことを特徴とする請求項1乃至請求項5のいずれか一項に記載の水素吸蔵材料。   The hydrogen storage material according to claim 1, wherein the molecular chain includes a chain organic substance. 前記鎖状有機物は、アルキル鎖であることを特徴とする請求項6に記載の水素吸蔵材料。   The hydrogen storage material according to claim 6, wherein the chain organic substance is an alkyl chain. 請求項1乃至請求項6のいずれか一項に係る水素吸蔵材料のうちの少なくともいずれか一つを含むことを特徴とする水素吸蔵体。   A hydrogen storage body comprising at least one of the hydrogen storage materials according to any one of claims 1 to 6. 請求項8に係る水素吸蔵体を備えることを特徴とする水素貯蔵装置。   A hydrogen storage device comprising the hydrogen storage body according to claim 8. 前記水素吸蔵体を、耐圧タンク中に封入したことを特徴とする請求項9に記載の水素貯蔵装置。   The hydrogen storage device according to claim 9, wherein the hydrogen storage body is sealed in a pressure tank. 請求項10に係る水素貯蔵装置を搭載することを特徴とする燃料電池車両。
A fuel cell vehicle equipped with the hydrogen storage device according to claim 10.
JP2006193216A 2006-07-13 2006-07-13 Hydrogen occlusion material, hydrogen occlusion body, hydrogen storage device, and fuel cell vehicle Pending JP2008018362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193216A JP2008018362A (en) 2006-07-13 2006-07-13 Hydrogen occlusion material, hydrogen occlusion body, hydrogen storage device, and fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193216A JP2008018362A (en) 2006-07-13 2006-07-13 Hydrogen occlusion material, hydrogen occlusion body, hydrogen storage device, and fuel cell vehicle

Publications (1)

Publication Number Publication Date
JP2008018362A true JP2008018362A (en) 2008-01-31

Family

ID=39074744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193216A Pending JP2008018362A (en) 2006-07-13 2006-07-13 Hydrogen occlusion material, hydrogen occlusion body, hydrogen storage device, and fuel cell vehicle

Country Status (1)

Country Link
JP (1) JP2008018362A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290793A (en) * 2003-03-26 2004-10-21 Nissan Motor Co Ltd Hydrogen occluding material and its manufacturing method, hydrogen occluding body, hydrogen storage apparatus and fuel cell vehicle
JP2005067977A (en) * 2003-08-27 2005-03-17 Matsushita Electric Ind Co Ltd Hydrogen occlusion material and method for manufacturing the same
JP2006043693A (en) * 2004-07-05 2006-02-16 Hitachi Powdered Metals Co Ltd Hydrogen storage material and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290793A (en) * 2003-03-26 2004-10-21 Nissan Motor Co Ltd Hydrogen occluding material and its manufacturing method, hydrogen occluding body, hydrogen storage apparatus and fuel cell vehicle
JP2005067977A (en) * 2003-08-27 2005-03-17 Matsushita Electric Ind Co Ltd Hydrogen occlusion material and method for manufacturing the same
JP2006043693A (en) * 2004-07-05 2006-02-16 Hitachi Powdered Metals Co Ltd Hydrogen storage material and production method thereof

Similar Documents

Publication Publication Date Title
Krishna et al. Hydrogen storage for energy application
Ströbel et al. Hydrogen storage by carbon materials
Pyle et al. Hydrogen storage in carbon nanostructures via spillover
Chandrasekaran et al. Carbon aerogel evolution: Allotrope, graphene-inspired, and 3D-printed aerogels
Bekyarova et al. Single-wall nanostructured carbon for methane storage
Tylianakis et al. Li-doped pillared graphene oxide: a graphene-based nanostructured material for hydrogen storage
Saha et al. Hydrogen adsorption on ordered mesoporous carbons doped with Pd, Pt, Ni, and Ru
Zu et al. Superelastic multifunctional aminosilane-crosslinked graphene aerogels for high thermal insulation, three-component separation, and strain/pressure-sensing arrays
Gogotsi et al. Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage
Murata et al. Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly
Leonard et al. Nanoengineered carbon scaffolds for hydrogen storage
Vela et al. A molecular dynamics simulation of methane adsorption in single walled carbon nanotube bundles
Nie et al. Research on the theory and application of adsorbed natural gas used in new energy vehicles: A review
Huang et al. Graphene aerogel prepared through double hydrothermal reduction as high-performance oil adsorbent
Khorshidi et al. A review of the synthesis methods, properties, and applications of layered double hydroxides/carbon nanocomposites
Wang et al. Microwave-assistant preparation of N/S co-doped hierarchical porous carbons for hydrogen adsorption
Marszewska et al. Tailoring porosity in carbon spheres for fast carbon dioxide adsorption
JPWO2006095800A1 (en) Hydrogen storage material, hydrogen storage structure, hydrogen storage body, hydrogen storage device, fuel cell vehicle, and method for manufacturing hydrogen storage material
Yang et al. Porous nitrogen-doped carbon nanoribbons for high-performance gas adsorbents and lithium ion batteries
JP2007084361A (en) Method for occluding hydrogen and hydrogen-occlusion body
Nguyen et al. “Nanoreactors” for boosting gas hydrate formation toward energy storage applications
Mishra et al. Atomistic insights into the H2 adsorption and desorption behavior of novel Li-functionalized polycrystalline CNTs
Mishra et al. Topological defects embedded large-sized single-walled carbon nanotubes for hydrogen storage: a molecular dynamics study
TWI474971B (en) A method for the construction of fractal network structure in a hydrogen storage material
Jiang et al. Simulations on methane uptake in tunable pillared porous graphene hybrid architectures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419