JP2008016581A - Electrode for accumulator device and manufacturing method therefor, and the accumulator device - Google Patents

Electrode for accumulator device and manufacturing method therefor, and the accumulator device Download PDF

Info

Publication number
JP2008016581A
JP2008016581A JP2006185118A JP2006185118A JP2008016581A JP 2008016581 A JP2008016581 A JP 2008016581A JP 2006185118 A JP2006185118 A JP 2006185118A JP 2006185118 A JP2006185118 A JP 2006185118A JP 2008016581 A JP2008016581 A JP 2008016581A
Authority
JP
Japan
Prior art keywords
active material
electrode
forming material
material forming
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006185118A
Other languages
Japanese (ja)
Inventor
Naoki Mizuno
直樹 水野
Ai Nakajima
乃 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2006185118A priority Critical patent/JP2008016581A/en
Publication of JP2008016581A publication Critical patent/JP2008016581A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an accumulator device, such as lithium battery and electric double layer, for fully reducing the internal resistance, by forming irregular patterns on one surface of an active material layer with improved reproducibility. <P>SOLUTION: The manufacturing method of an electrode for accumulator devices used for an accumulator device, such as a lithium battery and an electric double-layer capacitor comprises a first process for supplying an active material forming material 1, containing at least an electrode active material and a binder to the irregular pattern 3 formed on a die 2; a second process for making a collector 6 to the active material forming material via an adhesive member 7 fix, or the like; and a third process for separating the die from the active material forming material, to which the collector is fixed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電気二重層キャパシタのような蓄電デバイスに関する。ならびに、そのような蓄電デバイスにおいて、正極体や負極体を構成する蓄電デバイス用電極、およびその蓄電デバイス用電極の製造方法に関する。   The present invention relates to an electricity storage device such as an electric double layer capacitor. In addition, in such an electricity storage device, the present invention relates to an electrode for an electricity storage device constituting a positive electrode body and a negative electrode body, and a method for producing the electrode for the electricity storage device.

近年、携帯型電子機器やハイブリッド自動車などの高性能化が著しく、それらに用いる電池等の蓄電デバイスの高性能化に対する要求が強くなっている。アルカリ乾電池やオキシライド乾電池などの一次電池、ニッケル水素電池やリチウムイオン電池などの二次電池など、従来の電池の高性能化に加え、燃料電池などの次世代電池や電気二重層キャパシタなどの次世代蓄電デバイスなど、新しい技術分野においても実用化に向けた開発が進められている。   2. Description of the Related Art In recent years, the performance of portable electronic devices and hybrid automobiles has been remarkably improved, and the demand for higher performance of power storage devices such as batteries used therefor has increased. In addition to improving the performance of conventional batteries such as primary batteries such as alkaline batteries and oxyride batteries, secondary batteries such as nickel metal hydride batteries and lithium ion batteries, next generation batteries such as fuel cells and next generation batteries such as electric double layer capacitors Development for practical use is also being promoted in new technical fields such as power storage devices.

中でも、特に電気二重層キャパシタが注目されており、サイクル寿命が長く、大電流出力が得られ、急速な充放電が可能であり、広い温度範囲を有し、小型化・薄型化・軽量化を図ることができ、人体に安全であり、環境に優しいなどの数々の利点を有することから、電池に代わる蓄電デバイスとして開発が盛んに行われている。   In particular, electric double layer capacitors are attracting attention, with a long cycle life, high current output, rapid charge / discharge, a wide temperature range, miniaturization, thinning, and weight reduction. Since it has many advantages such as being safe for the human body and being environmentally friendly, it has been actively developed as an electricity storage device to replace the battery.

電気エネルギの発生手段は異なるものの、従来の電池と電気二重層キャパシタとでは、基本的な構成に変わりはない。つまり、集電体とその集電体の表面に形成された活物質層よりなる二対の蓄電デバイス用電極、それらの二対の蓄電デバイス間に挿入されたセパレータ、そして電解液から構成されている。従来の電池が活物質での電気化学反応により電気エネルギを発生するのに対して、電気二重層キャパシタは活物質層に生じる電気二重層により電気エネルギを発生する。   Although the means for generating electric energy is different, the basic configuration of the conventional battery and the electric double layer capacitor is not changed. In other words, it is composed of two pairs of electrodes for an electricity storage device consisting of a current collector and an active material layer formed on the surface of the current collector, a separator inserted between the two pairs of electricity storage devices, and an electrolyte. Yes. Whereas a conventional battery generates electric energy by an electrochemical reaction in an active material, an electric double layer capacitor generates electric energy by an electric double layer generated in the active material layer.

今日、蓄電デバイスの高性能化の要求に対しては、電気エネルギ発生の高効率化、内部エネルギの低減などを目指して、材料の改善、構成の改善などの面から様々なアプローチが取られている。   Today, various approaches have been taken to improve the performance of electrical storage devices with the aim of improving the efficiency of electrical energy generation and reducing internal energy, in terms of material improvements and configuration improvements. Yes.

電気二重層キャパシタでは、例えば下記の特許文献1に記載されるように、活物質層となる金属箔の表面に活性炭主体の混練物を一体化し、スタンピングやカッティングで混練物層に微小幅の溝を刻み付け、この溝に電解液を保持することにより、活物質層に電解液を効率よく含浸させ、また活物質層を構成する活性炭の細孔の利用効率を上げ、静電容量の増大と内部抵抗の低減を可能としていた。   In the electric double layer capacitor, for example, as described in Patent Document 1 below, the activated carbon-based kneaded material is integrated on the surface of the metal foil serving as the active material layer, and a minute width groove is formed in the kneaded material layer by stamping or cutting. By holding the electrolyte solution in this groove, the active material layer is efficiently impregnated with the electrolyte solution, and the utilization efficiency of the pores of the activated carbon constituting the active material layer is increased, and the capacitance is increased. The internal resistance can be reduced.

または、下記の特許文献2に記載されるように、少なくとも多孔体粒子とバインダが含まれている活物質層の表面に円柱状のローラをプレスして、活物質層の表面に凹凸パターンを形成することにより、電極活物質と導電補助材の密着性を高めて内部抵抗を低減させていた。   Alternatively, as described in Patent Document 2 below, a cylindrical roller is pressed on the surface of the active material layer containing at least porous particles and a binder to form an uneven pattern on the surface of the active material layer As a result, the adhesion between the electrode active material and the conductive auxiliary material was increased, and the internal resistance was reduced.

特開2004−303754号公報JP 2004-303754 A 特開2005−33066号公報JP-A-2005-33066

しかしながら、上記特許文献1や特許文献2に記載される方法では、圧延によりシート状とした活物質層に対して、スタンピング、カッティング、ローラプレスにより凹凸パターンを形成しているため、形成することができる凹凸パターンの平面形状や断面形状、大きさが限定され、また再現性よく凹凸パターンを形成することができず、内部抵抗の低減は不十分であった。   However, in the methods described in Patent Document 1 and Patent Document 2, an uneven pattern is formed by stamping, cutting, and roller pressing on the active material layer formed into a sheet shape by rolling. The planar shape, cross-sectional shape, and size of the concavo-convex pattern that can be formed are limited, and the concavo-convex pattern cannot be formed with good reproducibility, so that the internal resistance is insufficiently reduced.

そこで、この発明の第1の目的は、活物質層の片面に再現性よく凹凸パターンを形成して内部抵抗を十分に低減するリチウム電池や電気二重層などの蓄電デバイスを得ることにある。   Accordingly, a first object of the present invention is to obtain an electricity storage device such as a lithium battery or an electric double layer in which an uneven pattern is formed with good reproducibility on one side of an active material layer to sufficiently reduce internal resistance.

この発明の第2の目的は、活物質層に対する集電体の固着を容易として蓄電デバイス用電極の製造を簡単とすることにある。   A second object of the present invention is to facilitate the fixation of the current collector to the active material layer and to simplify the production of the electrode for the electricity storage device.

この発明の第3の目的は、凹凸パターンに対する活物質形成材料の充填を容易として蓄電デバイス用電極の製造を簡単とすることにある。   A third object of the present invention is to simplify the manufacture of an electrode for an electricity storage device by facilitating filling of an uneven material pattern with an active material forming material.

この発明の第4の目的は、活物質形成材料からの金型の剥離を容易として蓄電デバイス用電極の製造を簡単とすることにある。   A fourth object of the present invention is to simplify the production of the electrode for an electricity storage device by facilitating the peeling of the mold from the active material forming material.

この発明の第5の目的は、活物質層自体の内部抵抗が低く、活物質層と集電体の電気的接続も良好であり、高出力の特性を有する電気二重層キャパシタを得ることにある。   A fifth object of the present invention is to obtain an electric double layer capacitor having a high output characteristic in which the internal resistance of the active material layer itself is low, the electrical connection between the active material layer and the current collector is also good. .

そこで、請求項1に記載の発明は、上記第1の目的を達成すべく、リチウム電池や電気二重層などの蓄電デバイスに用いる蓄電デバイス用電極の製造方法であって、金型に形成される凹凸パターンに、少なくとも電極活物質とバインダが含まれている活物質形成材料が供給される第1工程と、前記活物質形成材料に集電体が固着される第2工程と、集電体が固着される前記活物質形成材料から前記金型が剥離される第3工程とからなることを特徴とする。   Accordingly, the invention described in claim 1 is a method of manufacturing an electrode for an electricity storage device used for an electricity storage device such as a lithium battery or an electric double layer so as to achieve the first object, and is formed in a mold. A first step in which an active material forming material containing at least an electrode active material and a binder is supplied to the concavo-convex pattern; a second step in which a current collector is fixed to the active material forming material; and a current collector And a third step in which the mold is peeled off from the active material forming material to be fixed.

請求項2に記載の発明は、上記第2の目的を達成すべく、請求項1に記載の蓄電デバイス用電極の製造方法であって、前記第2工程で、加圧部材などを用いて加圧されることにより圧着されて前記活物質形成材料に前記集電体が固着されることを特徴とする。   In order to achieve the second object, the invention described in claim 2 is the method for manufacturing an electrode for an electricity storage device according to claim 1, wherein the second step is performed by using a pressure member or the like. The current collector is fixed to the active material forming material by being compressed by being pressed.

請求項3に記載の発明は、上記第3の目的を達成すべく、請求項1または2に記載の蓄電デバイス用電極の製造方法であって、前記第2工程で、加圧部材などを用いて加圧されることにより圧着されて前記凹凸パターンの凹部に入り込ませ、前記活物質形成材料を充填しながらその活物質形成材料に前記集電体が固着されることを特徴とする。   The invention described in claim 3 is the method for manufacturing an electrode for an electricity storage device according to claim 1 or 2 in order to achieve the above third object, wherein a pressure member or the like is used in the second step. The current collector is fixed to the active material forming material while being filled with the active material forming material while being pressed and pressed into the concave portion of the uneven pattern.

請求項4に記載の発明は、上記第4の目的を達成すべく、請求項1ないし3のいずれか1に記載の蓄電デバイス用電極の製造方法であって、前記凹凸パターンの凸部側面をテーパー面などとしてその凸部側面に抜き勾配を設け、その抜き勾配により前記第3工程で前記活物質形成材料から前記金型が剥離されることを特徴とする。   Invention of Claim 4 is a manufacturing method of the electrode for electrical storage devices of any one of Claim 1 thru | or 3 in order to achieve the said 4th objective, Comprising: The convex part side surface of the said uneven | corrugated pattern is provided. A draft angle is provided on the side surface of the convex portion as a tapered surface, and the mold is peeled from the active material forming material in the third step by the draft angle.

請求項5に記載の発明は、上記第1の目的を達成すべく、蓄電デバイス用電極であって、請求項1ないし4のいずれか1に記載の製造方法で製造されることを特徴とする。   The invention described in claim 5 is an electrode for an electricity storage device to achieve the first object, and is manufactured by the manufacturing method according to any one of claims 1 to 4. .

請求項6に記載の発明は、同じく上記第1の目的を達成すべく、蓄電デバイスであって、請求項5に記載の蓄電デバイス用電極を用いて形成されることを特徴とする。   According to a sixth aspect of the present invention, in order to achieve the first object, the power storage device is formed by using the power storage device electrode according to the fifth aspect.

請求項7に記載の発明は、上記第5の目的を達成すべく、請求項6に記載の蓄電デバイスが、電気二重層キャパシタであることを特徴とする。   According to a seventh aspect of the invention, in order to achieve the fifth object, the electric storage device according to the sixth aspect is an electric double layer capacitor.

そして、請求項1に記載の発明によれば、金型に形成される凹凸パターンに活物質形成材料が供給される第1工程と、活物質形成材料に集電体が固着される第2工程と、活物質形成材料から金型が剥離される第3工程とからなるので、離型性に優れた成形加工技術を用いて、活物質形成材料により形成される活物質層の片面に、大きさがμm、サブμmと非常に微細で任意の形状を備える凹凸パターンを再現性よく形成することで、活物質層自体の内部抵抗が小さく、高出力の特性を有する、リチウム電池や電気二重層等の蓄電デバイス用の電極を製造することができる。   And according to invention of Claim 1, the 1st process by which an active material formation material is supplied to the uneven | corrugated pattern formed in a metal mold | die, and the 2nd process by which a collector is fixed to an active material formation material And a third step in which the mold is peeled off from the active material forming material, it is possible to use a molding process technology with excellent releasability to increase the size on one side of the active material layer formed of the active material forming material. Lithium battery and electric double layer with high output characteristics by forming the concave / convex pattern with a very fine and sub-μm with an arbitrary shape with good reproducibility by reducing the internal resistance of the active material layer itself An electrode for an electricity storage device such as can be manufactured.

請求項2に記載の発明によれば、第2工程で、加圧されることにより活物質形成材料に集電体が固着されるので、活物質形成材料により形成される活物質層の密度を高めると同時に、活物質層と集電体との固着をより強固なものとし、活物質層に対する集電体の固着を容易として生産性を向上し、蓄電デバイス用電極の製造を簡単とするとともに、さらなる内部抵抗の低減を実現することができる。   According to the invention described in claim 2, since the current collector is fixed to the active material forming material by being pressurized in the second step, the density of the active material layer formed by the active material forming material is reduced. At the same time, the adhesion between the active material layer and the current collector is made stronger, the current collector is easily adhered to the active material layer, the productivity is improved, and the production of the electrode for the electricity storage device is simplified. Further reduction of internal resistance can be realized.

請求項3に記載の発明によれば、第2工程で、加圧されることにより凹凸パターンの凹部に入り込ませて活物質形成材料を充填しながら、その活物質形成材料に集電体が固着されるので、活物質形成材料の表面に凹凸パターンを精度よく形成することができるとともに、活物質層と集電体との固着を行うときに併せて、金型に形成された凹凸パターンの凹部への活物質形成材料の充填を行い、凹凸パターンに対する活物質形成材料の充填を容易として生産性を向上し、リチウム電池や電気二重層などの蓄電デバイスに用いる蓄電デバイス用電極の製造を簡単とすることができる。   According to the invention described in claim 3, in the second step, the current collector is fixed to the active material forming material while being filled with the active material forming material by being pressed into the concave portion of the uneven pattern by being pressurized. Therefore, the concave-convex pattern formed on the mold can be formed on the surface of the active material forming material with high accuracy, and the active material layer and the current collector are fixed together. The active material forming material is filled into the rugged pattern to improve the productivity by facilitating the filling of the active material forming material into the concavo-convex pattern, and the production of the electrode for the electricity storage device used for the electricity storage device such as a lithium battery or electric double layer is simplified can do.

請求項4に記載の発明によれば、凹凸パターンの凸部側面に抜き勾配を設け、その抜き勾配により第3工程で活物質形成材料から金型が剥離されるので、活物質形成材料からの金型の剥離を容易として離型性に優れた成形加工技術を用いて生産性を向上し、リチウム電池や電気二重層などの蓄電デバイスに用いる蓄電デバイス用電極の製造を簡単とすることができる。   According to the fourth aspect of the present invention, since the draft is provided on the side surface of the convex portion of the concavo-convex pattern and the mold is peeled from the active material forming material in the third step by the draft, Productivity can be improved by using molding technology that makes molds easy to peel off and has excellent releasability, making it easier to manufacture electrodes for power storage devices used in power storage devices such as lithium batteries and electric double layers. .

請求項5に記載の発明によれば、リチウム電池や電気二重層などの蓄電デバイスに用いる蓄電デバイス用電極が、請求項1ないし4のいずれか1に記載の製造方法で製造されるので、離型性に優れた成形加工技術を用いて、活物質形成材料により形成される活物質層の片面に、大きさがμm、サブμmと非常に微細で任意の形状を備える凹凸パターンを再現性よく形成することができ、活物質層自体の内部抵抗が小さく、高出力の特性を有する蓄電デバイス用電極を製造することができる。   According to the invention described in claim 5, since the electrode for an electricity storage device used for an electricity storage device such as a lithium battery or an electric double layer is manufactured by the manufacturing method according to any one of claims 1 to 4, Using a molding technology that excels in moldability, a concave / convex pattern with a very fine size of μm and sub-μm and an arbitrary shape is formed on one side of the active material layer formed of the active material forming material with high reproducibility. An electrode for an electricity storage device that can be formed, has low internal resistance of the active material layer itself, and has high output characteristics can be manufactured.

請求項6に記載の発明によれば、リチウム電池や電気二重層などの蓄電デバイスが、請求項5に記載の蓄電デバイス用電極を用いて形成されるので、離型性に優れた成形加工技術を用いて、活物質形成材料により形成される活物質層の片面に、大きさがμm、サブμmと非常に微細で任意の形状を備える凹凸パターンを再現性よく形成することができ、活物質層自体の内部抵抗が小さく、高出力の特性を有するリチウム電池や電気二重層等の蓄電デバイスを得ることができる。   According to the invention described in claim 6, since the electricity storage device such as a lithium battery or an electric double layer is formed by using the electrode for electricity storage device according to claim 5, a molding technique with excellent releasability. Can be used to form a concavo-convex pattern having a very fine size of μm and sub-μm and having an arbitrary shape on one side of an active material layer formed of an active material forming material with good reproducibility. An electric storage device such as a lithium battery or an electric double layer having a low internal resistance and high output characteristics can be obtained.

請求項7に記載の発明によれば、請求項6に記載の蓄電デバイスが電気二重層キャパシタであるので、離型性に優れた成形加工技術を用いて、活物質形成材料により形成される活物質層の片面に、大きさがμm、サブμmと非常に微細で任意の形状を備える凹凸パターンを再現性よく形成することができ、活物質層自体の内部抵抗が小さく、活物質層と集電体の電気的接続も良好であり、高出力の特性を有する電気二重層キャパシタを得ることができる。   According to the seventh aspect of the invention, since the electricity storage device according to the sixth aspect is an electric double layer capacitor, the active material formed by the active material forming material can be formed using a molding technique having excellent releasability. An uneven pattern having a very fine size of μm and sub-μm and having an arbitrary shape can be formed on one side of the material layer with good reproducibility, the internal resistance of the active material layer itself is small, and the active material layer The electrical connection of the electric body is also good, and an electric double layer capacitor having high output characteristics can be obtained.

以下、図面を参照しつつ、この発明を実施するための最良の形態につき説明する。
図1には、この発明による蓄電デバイス用電極の製造方法を示す。図示例は、蓄電デバイスの中でも電気二重層キャパシタの電極を製造する方法であり、厚さの関係から片面にしか凹凸パターンを形成することができない電極の製造例で、図においては、発明内容を判りやすくするために、各構成部材の縮尺は考慮していない。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 shows a method for manufacturing an electrode for an electricity storage device according to the present invention. The illustrated example is a method of manufacturing an electrode of an electric double layer capacitor among power storage devices, and is an example of manufacturing an electrode in which a concavo-convex pattern can be formed only on one side due to the thickness relationship. For the sake of clarity, the scale of each component is not considered.

まず、図1に示す製造方法においては、(A)に示すように、金型2を用意する。金型2は、金属、セラミックス、ガラスなどの材料を使用し、フォトリソグラフィ技術、X線リソグラフィ技術、エッチング技術、電鋳技術、機械加工技術などの既知の型加工技術を用い、またはこれらの型加工技術を組み合わせて用いてつくる。図示例では、フォトリソグラフィ技術とエッチング技術とを用いて加工したSi製マスター金型に電鋳を施して製作したニッケル基合金製のものを使用している。   First, in the manufacturing method shown in FIG. 1, as shown to (A), the metal mold | die 2 is prepared. The mold 2 uses materials such as metal, ceramics, and glass, and uses known mold processing techniques such as a photolithography technique, an X-ray lithography technique, an etching technique, an electroforming technique, a machining technique, or the like. Made using a combination of processing techniques. In the illustrated example, a nickel-based alloy made by electroforming a Si master mold processed using a photolithography technique and an etching technique is used.

金型2には、任意の大きさで任意の形状の凹凸パターン3が任意の位置に形成されている。この例では、凸部の上面が0.5μm角で、基部が1μm角であり、高さが0.5μmであって、テーパー側面を有するパターンが多数形成されている。   An uneven pattern 3 having an arbitrary size and an arbitrary shape is formed on the mold 2 at an arbitrary position. In this example, the upper surface of the convex portion is 0.5 μm square, the base is 1 μm square, the height is 0.5 μm, and many patterns having tapered side surfaces are formed.

次に、(B)に示すように、金型2に形成される凹凸パターン3に活物質形成材料1が供給される。活物質形成材料1は、少なくとも電極活物質とバインダが含まれていればよく、ここでは電極活物質とバインダと導電補助材とで構成し、電極活物質としては粒状の活性炭粒子、バインダとしてはフッ素系高分子、導電補助材としてはカーボンブラックを使用し、これらの材料を混練しているが、特にこのようなものに限定されない。   Next, as shown in (B), the active material forming material 1 is supplied to the concavo-convex pattern 3 formed on the mold 2. The active material forming material 1 only needs to contain at least an electrode active material and a binder, and here, it is composed of an electrode active material, a binder, and a conductive auxiliary material, and the electrode active material is granular activated carbon particles, and the binder is Although carbon black is used as the fluorine-based polymer and the conductive auxiliary material and these materials are kneaded, it is not particularly limited to such materials.

それから、(C)に示すように、プレスヘッドや押付け板などからなる加圧部材5により活物質形成材料1を直接加圧してもよいが、ここでは活物質形成材料1の上に接着部材7を介して集電体6が載せられる。そして、(D)に示すように、集電体6が加圧部材5により加圧されることにより、凹凸パターン3の凹部に活物質形成材料1を充填しながら乾燥され、その活物質形成材料1に集電体6が固着される。   Then, as shown in (C), the active material forming material 1 may be directly pressed by a pressing member 5 made of a press head, a pressing plate, or the like. Here, the adhesive member 7 is formed on the active material forming material 1. The current collector 6 is placed via And as shown to (D), when the electrical power collector 6 is pressurized with the pressurization member 5, it dries, filling the active material formation material 1 in the recessed part of the uneven | corrugated pattern 3, and the active material formation material A current collector 6 is fixed to 1.

凹凸パターン3に活物質形成材料1を充填する方法としては、加圧による他、スピンコーティングやスプレーなどにより塗布する方法、ディッピングする方法、ドクターブレード法、ローラ等により圧延する方法などがある。   As a method for filling the concavo-convex pattern 3 with the active material forming material 1, there are a method of applying by spin coating or spraying, a method of dipping, a doctor blade method, a method of rolling with a roller or the like in addition to pressurization.

なお、図示例では、活物質形成材料1と集電体6との固着をより強固なものとするため、導電性を有する接着部材7を使用するが、接着部材7は、導電性を有するものに限るものではない。   In the illustrated example, an adhesive member 7 having conductivity is used in order to make the active material forming material 1 and the current collector 6 more firmly fixed, but the adhesive member 7 has conductivity. It is not limited to.

その後、(E)に示すように、加圧部材5が外され、活物質形成材料1から金型2が剥離されることにより、活物質形成材料1よりなる活物質層4に集電体6が固着された電気二重層キャパシタ用電極9が製造される。活物質形成材料1により形成された活物質層4には、片面に任意の大きさで任意の形状を有する凹凸パターン8が形成される。なお、金型2の凹凸パターン3が形成される面には、活物質形成材料1が容易に剥離できるように、各々表面処理を施しておくとよい。   Thereafter, as shown in (E), the pressure member 5 is removed, and the mold 2 is peeled from the active material forming material 1, whereby the current collector 6 is formed on the active material layer 4 made of the active material forming material 1. The electrode 9 for an electric double layer capacitor to which is fixed is manufactured. An uneven pattern 8 having an arbitrary size and an arbitrary shape is formed on one side of the active material layer 4 formed of the active material forming material 1. The surface of the mold 2 on which the concave / convex pattern 3 is formed is preferably subjected to surface treatment so that the active material forming material 1 can be easily peeled off.

ここで、凹凸パターン3の凸部側面をテーパー側面として抜き勾配を設け、その抜き勾配により活物質形成材料1から金型2が剥離されるようにするので、活物質形成材料1からの金型2の剥離を容易として、離型性に優れた成形加工技術を用いて生産性を向上し、電気二重層キャパシタ用電極の製造を簡単とすることができる。   Here, the draft side is provided with the convex side surface of the concavo-convex pattern 3 as a tapered side surface, and the die 2 is peeled off from the active material forming material 1 by the draft, so that the die from the active material forming material 1 is removed. 2 can be easily peeled off, and the productivity can be improved by using a molding technique having excellent releasability, and the production of the electrode for the electric double layer capacitor can be simplified.

さて、図1に示す例では、蓄電デバイスの中の電気二重層キャパシタの電極を製造する方法について説明したが、液体、ペースト状等の非固体状の活物質形成材料を使用する蓄電バイアスであれば、電気二重層キャパシタに限らず、例えばリチウム電池などの他の蓄電デバイスの製造方法にも同様に適用することができる。   In the example shown in FIG. 1, the method for manufacturing the electrode of the electric double layer capacitor in the power storage device has been described. However, the power storage bias using a non-solid active material forming material such as a liquid or a paste may be used. For example, the present invention is not limited to the electric double layer capacitor, and can be similarly applied to a method for manufacturing another power storage device such as a lithium battery.

以上のように、金型2に形成される凹凸パターン3に活物質形成材料1が供給される第1工程(図1(A)、(B)で示す工程)と、活物質形成材料1に集電体6が固着される第2工程(図1(C)、(D)で示す工程)と、活物質形成材料1から金型2が剥離される第3工程(図1(E)で示す工程)とからなるので、離型性に優れた成形加工技術を用いて活物質形成材料1により形成される活物質層4の片面に、大きさがμm、サブμmと非常に微細で任意の形状を備える凹凸パターン3を再現性よく形成することで、活物質層4自体の内部抵抗が小さく、高出力の特性を有する電気二重層キャパシタ用電極を製造することができる。   As described above, the first step (step shown in FIGS. 1A and 1B) in which the active material forming material 1 is supplied to the uneven pattern 3 formed on the mold 2, and the active material forming material 1 In the second step (steps shown in FIGS. 1C and 1D) in which the current collector 6 is fixed, and in the third step in which the mold 2 is peeled from the active material forming material 1 (FIG. 1E). On the one side of the active material layer 4 formed of the active material forming material 1 using a molding technique having excellent mold release properties, and the size is very fine as μm and sub-μm. By forming the concavo-convex pattern 3 having the above shape with good reproducibility, an electrode for an electric double layer capacitor having a low internal resistance of the active material layer 4 itself and high output characteristics can be manufactured.

また、第2工程で、加圧されることにより活物質形成材料1に集電体6が固着されるので、活物質形成材料1により形成される活物質層の密度を高めると同時に、活物質層と集電体6との固着をより強固なものとし、活物質層に対する集電体6の固着を容易として生産性を向上し、電気二重層キャパシタ用電極の製造を簡単とするとともに、さらなる内部抵抗の低減を実現することができる。   In addition, since the current collector 6 is fixed to the active material forming material 1 by being pressurized in the second step, the density of the active material layer formed by the active material forming material 1 is increased, and at the same time, the active material The adhesion between the layer and the current collector 6 is made stronger, the current collector 6 is easily fixed to the active material layer, the productivity is improved, and the production of the electric double layer capacitor electrode is simplified. Reduction of internal resistance can be realized.

さらに、第2工程で、加圧されることにより凹凸パターン3の凹部に活物質形成材料1を充填しながらその活物質形成材料1に集電体6が固着されるので、活物質形成材料1の表面に凹凸パターン3を精度よく形成することができるとともに、活物質形成材料1と集電体6との固着を行うときに併せて、金型2に形成された凹凸パターン3の凹部への活物質形成材料1の充填を行い、凹凸パターン3に対する活物質形成材料1の充填を容易として生産性を向上し、電気二重層キャパシタ用電極の製造を簡単とすることができる。   Furthermore, in the second step, the current collector 6 is fixed to the active material forming material 1 while being filled with the active material forming material 1 in the recesses of the concavo-convex pattern 3 by being pressurized. The concave / convex pattern 3 can be accurately formed on the surface of the concave / convex pattern, and when the active material forming material 1 and the current collector 6 are fixed together, Filling the active material forming material 1 makes it easy to fill the concavo-convex pattern 3 with the active material forming material 1, thereby improving productivity and simplifying the production of the electrode for the electric double layer capacitor.

図2には、この発明による他例である蓄電デバイス用電極の製造方法を示す。この例も、蓄電デバイスの中でも電気二重層キャパシタの電極を製造する方法であり、厚さの関係から片面にしか凹凸パターンを形成することができない電極の製造例で、図においても、発明内容を判りやすくするために、各構成部材の縮尺は考慮していない。   FIG. 2 shows a method for manufacturing an electrode for an electricity storage device, which is another example of the present invention. This example is also a method of manufacturing an electrode of an electric double layer capacitor among power storage devices, and is an example of manufacturing an electrode in which a concavo-convex pattern can be formed only on one side due to the thickness relationship. For ease of understanding, the scale of each component is not considered.

同様に、(A)に示すように、金型12を用意する。金型12は、図1に示す電気二重層キャパシタ用電極9の製造方法で用いたと同様な型材料を使用し、同様な既知の型加工技術を用いてつくる。図示例では、同じく、フォトリソグラフィ技術とエッチング技術とを用いて加工したSi製マスター金型に電鋳を施して製作したニッケル基合金製のものを使用している。   Similarly, as shown to (A), the metal mold | die 12 is prepared. The mold 12 is made by using the same mold material as that used in the method of manufacturing the electric double layer capacitor electrode 9 shown in FIG. 1 and using the same known mold processing technique. In the illustrated example, similarly, a nickel-based alloy manufactured by electroforming a Si master mold processed using a photolithography technique and an etching technique is used.

金型12には、同様に、各々任意の大きさで任意の形状の凹凸パターン13が任意の位置に形成されており、この例でも、凸部の上面が0.5μm角で、基部が1μm角であり、高さが0.5μmのテーパー側面を有するパターンが多数形成されている。   Similarly, an uneven pattern 13 having an arbitrary size and an arbitrary shape is formed at an arbitrary position on the mold 12. In this example, the upper surface of the convex portion is 0.5 μm square and the base is 1 μm. A large number of patterns having a tapered side surface with a corner and a height of 0.5 μm are formed.

それから、(B)に示すように、金型12に形成された凹凸パターン13に、例えばスピンコーティング法により活物質形成材料11が供給され、凹凸パターン13の凹部に充填される。活物質形成材料11は、少なくとも電極活物質とバインダが含まれていればよく、ここでは電極活物質として粒状の活性炭粒子、バインダとしてフッ素系高分子、導電補助材としてカーボンブラックを用い、それらを溶液中に分散したものが使用されている。そして、活物質形成材料11は、充填後、乾燥される。   Then, as shown in (B), the active material forming material 11 is supplied to the concave / convex pattern 13 formed on the mold 12 by, for example, a spin coating method, and the concave / convex pattern 13 is filled. The active material forming material 11 only needs to contain at least an electrode active material and a binder. Here, granular activated carbon particles are used as an electrode active material, a fluorine-based polymer is used as a binder, and carbon black is used as a conductive auxiliary material. Dispersed in solution is used. Then, the active material forming material 11 is dried after filling.

次に、(C)に示すように、活物質形成材料11の上に接着部材17を介して集電体16が載せられ、集電体16が、プレスヘッドなどからなる加圧部材15により加圧されることにより、凹凸パターン13の凹部に活物質形成材料11を充填された状態で、その活物質形成材料11に集電体16が固着される。   Next, as shown in (C), a current collector 16 is placed on the active material forming material 11 via an adhesive member 17, and the current collector 16 is applied by a pressure member 15 such as a press head. By being pressed, the current collector 16 is fixed to the active material forming material 11 in a state where the concave portions of the uneven pattern 13 are filled with the active material forming material 11.

なお、この例でも、活物質形成材料11と集電体16との固着をより強固なものとするため、導電性を有する接着部材17を使用するが、接着部材17は、導電性を有するものに限らないことはいうまでもない。   In this example as well, in order to make the active material forming material 11 and the current collector 16 more firmly fixed, the adhesive member 17 having conductivity is used, but the adhesive member 17 has conductivity. Needless to say, it is not limited to.

その後、(D)に示すように、加圧部材15が外され、活物質形成材料11から金型12が剥離されることにより、活物質形成材料11により形成された活物質層14に集電体16が固着された電気二重層キャパシタ用電極19が製造される。活物質形成材料11により形成された活物質層14には、片面に任意の大きさで任意の形状を有する凹凸パターン18が形成される。なお、金型12の凹凸パターン13が形成される面には、活物質形成材料11が容易に剥離できるように、各々表面処理を施しておくとよい。   Thereafter, as shown in (D), the pressure member 15 is removed, and the mold 12 is peeled off from the active material forming material 11, thereby collecting current on the active material layer 14 formed of the active material forming material 11. The electric double layer capacitor electrode 19 to which the body 16 is fixed is manufactured. An uneven pattern 18 having an arbitrary size and an arbitrary shape is formed on one surface of the active material layer 14 formed of the active material forming material 11. Note that the surface of the mold 12 on which the concave / convex pattern 13 is formed is preferably subjected to surface treatment so that the active material forming material 11 can be easily peeled off.

ここで、凹凸パターン13の凸部側面をテーパー側面として抜き勾配を設け、その抜き勾配により活物質形成材料11から金型12が剥離されるようにするので、活物質形成材料11からの金型12の剥離を容易として、離型性に優れた成形加工技術を用いて生産性を向上し、電気二重層キャパシタ用電極の製造を簡単とすることができる。   Here, since the draft side is provided with the convex side surface of the concavo-convex pattern 13 as the tapered side surface, and the die 12 is peeled off from the active material forming material 11 by the draft, the die from the active material forming material 11 is removed. 12 can be easily peeled off, and the productivity can be improved by using a molding technique having excellent releasability, and the production of an electrode for an electric double layer capacitor can be simplified.

さて、図2に示す例でも、蓄電デバイスの中の電気二重層キャパシタの電極を製造する方法について説明したが、液体、ペースト状等の非固体状の活物質形成材料を使用する蓄電バイアスであれば、電気二重層キャパシタに限らず、例えばリチウム電池などの他の蓄電デバイスの製造方法にも同様に適用することができる。   In the example shown in FIG. 2, the method for manufacturing the electrode of the electric double layer capacitor in the electricity storage device has been described. However, the electricity storage bias that uses a non-solid active material forming material such as liquid or paste may be used. For example, the present invention is not limited to the electric double layer capacitor, and can be similarly applied to a method for manufacturing another power storage device such as a lithium battery.

以上のように、金型12に形成される凹凸パターン13に活物質形成材料11が供給される第1工程(図2(A)、(B)で示す工程)と、活物質形成材料11に集電体16が固着される第2工程(図2(C)で示す工程)と、活物質形成材料11から金型12が剥離される第3工程(図2(D)で示す工程)とからなるので、離型性に優れた成形加工技術を用いて活物質形成材料11により形成される活物質層14の片面に、大きさがμm、サブμmと非常に微細で任意の形状を備える凹凸パターン13を再現性よく形成することで、活物質層14自体の内部抵抗が小さく、高出力の特性を有する電気二重層キャパシタ用の電極を製造することができる。   As described above, the first step (step shown in FIGS. 2A and 2B) in which the active material forming material 11 is supplied to the uneven pattern 13 formed on the mold 12, and the active material forming material 11 A second step (step shown in FIG. 2 (C)) in which the current collector 16 is fixed, and a third step (step shown in FIG. 2 (D)) in which the mold 12 is peeled from the active material forming material 11. Therefore, on one side of the active material layer 14 formed of the active material forming material 11 using a molding technique having excellent releasability, the size is very fine such as μm and sub-μm and has an arbitrary shape. By forming the concavo-convex pattern 13 with good reproducibility, it is possible to manufacture an electrode for an electric double layer capacitor having a small internal resistance of the active material layer 14 itself and high output characteristics.

また、第2工程で、加圧されることにより活物質形成材料11に集電体16が固着されるので、活物質形成材料11により形成される活物質層の密度を高めると同時に、活物質層と集電体16との固着をより強固なものとし、活物質層に対する集電体16の固着を容易として生産性を向上し、電気二重層キャパシタ用電極の製造を簡単とするとともに、さらなる内部抵抗の低減を実現することができる。   In addition, since the current collector 16 is fixed to the active material forming material 11 by being pressurized in the second step, the density of the active material layer formed by the active material forming material 11 is increased, and at the same time, the active material The adhesion between the layer and the current collector 16 is made stronger, the current collector 16 is easily adhered to the active material layer, the productivity is improved, and the production of the electric double layer capacitor electrode is simplified. Reduction of internal resistance can be realized.

さらに、第2工程で、加圧されることにより、凹凸パターン13の凹部に活物質形成材料1を充填しながら、その活物質形成材料11に集電体16が固着されるので、活物質形成材料11の表面に凹凸パターン13を精度よく形成することができるとともに、活物質形成材料11と集電体16との固着を行うときに併せて、金型12に形成された凹凸パターン13の凹部への活物質形成材料11の充填を行い、凹凸パターン13に対する活物質形成材料11の充填を容易として生産性を向上し、電気二重層キャパシタ用電極の製造を簡単とすることができる。   Furthermore, in the second step, since the current collector 16 is fixed to the active material forming material 11 while being filled with the active material forming material 1 in the recesses of the concavo-convex pattern 13 by being pressurized, the active material is formed. The concave / convex pattern 13 formed on the mold 12 can be formed on the surface of the material 11 together with the concave / convex pattern 13 formed on the mold 12 together with the active material forming material 11 and the current collector 16. The active material forming material 11 is filled into the concave and convex patterns 13 so that the active material forming material 11 can be easily filled to improve productivity, and the production of the electrode for the electric double layer capacitor can be simplified.

そして、以上のように図1および2に示す製造方法を用いて製造された電気二重層キャパシタ用電極9、19を使用して電気二重層キャパシタを製造するときは、例えば図3に示すように、1つの電気二重層キャパシタ用電極を、電気を外部とやり取りするための集電体101と活物質層102とから構成される正極体103とし、別の1つの電気二重層キャパシタ用電極を、同じく集電体101と活物質層102とから構成される負極体104とする。そして、それらの正極体103と負極体104との接触を防止するためにそれらの間にセパレータ105を設け、正極体103と負極体104とセパレータ105に電解液が含浸されてケース106内に密封される。   When the electric double layer capacitor is manufactured using the electric double layer capacitor electrodes 9 and 19 manufactured by using the manufacturing method shown in FIGS. 1 and 2 as described above, for example, as shown in FIG. One electric double layer capacitor electrode is a positive electrode body 103 composed of a current collector 101 and an active material layer 102 for exchanging electricity with the outside, and another electric double layer capacitor electrode is Similarly, a negative electrode body 104 including a current collector 101 and an active material layer 102 is used. In order to prevent contact between the positive electrode body 103 and the negative electrode body 104, a separator 105 is provided between them, and the positive electrode body 103, the negative electrode body 104, and the separator 105 are impregnated with an electrolytic solution and sealed in the case 106. Is done.

これにより、活物質形成材料1、11の片面に凹凸パターン8、18が形成されているので、活物質層102自体の内部抵抗が低く、活物質層102と集電体101の電気的接続も良好であり、高出力の特性を有する蓄電デバイスとしての電気二重層キャパシタを得ることができる。   Thereby, since the uneven patterns 8 and 18 are formed on one surface of the active material forming materials 1 and 11, the internal resistance of the active material layer 102 itself is low, and electrical connection between the active material layer 102 and the current collector 101 is also achieved. An electric double layer capacitor as a power storage device that is good and has high output characteristics can be obtained.

(A)ないし(E)はこの発明による蓄電デバイス用電極の製造方法を示す電気二重層キャパシタ用電極の製造工程図である。(A) thru | or (E) is a manufacturing-process figure of the electrode for electrical double layer capacitors which shows the manufacturing method of the electrode for electrical storage devices by this invention. (A)ないし(E)はこの発明による別の蓄電デバイス用電極の製造方法を示す電気二重層キャパシタ用電極の製造工程図である。(A) thru | or (E) is a manufacturing-process figure of the electrode for electric double layer capacitors which shows the manufacturing method of another electrode for electrical storage devices by this invention. 図1や図2の製造工程により製造したこの発明による蓄電デバイスである電気二重層キャパシタの断面構成図である。FIG. 3 is a cross-sectional configuration diagram of an electric double layer capacitor which is an electricity storage device according to the present invention manufactured by the manufacturing process of FIGS. 1 and 2.

符号の説明Explanation of symbols

1 活物質形成材料
2 金型
3 金型の凹凸パターン
4 活物質層
5 加圧部材
6 集電体
7 接着部材
8 活物質層の凹凸パターン
9 電気二重層キャパシタ用電極
11 活物質形成材料
12 金型
13 金型の凹凸パターン
14 活物質層
15 加圧部材
16 集電体
17 接着部材
18 活物質層の凹凸パターン
19 電気二重層キャパシタ用電極
101 集電体
102 活物質層
103 正極体
104 負極体
105 セパレータ
106 ケース

DESCRIPTION OF SYMBOLS 1 Active material formation material 2 Mold 3 Mold uneven | corrugated pattern 4 Active material layer 5 Pressure member 6 Current collector 7 Adhesive member 8 Active material layer uneven | corrugated pattern 9 Electric double layer capacitor electrode 11 Active material formation material 12 Gold Mold 13 Concavity and convexity pattern of mold 14 Active material layer 15 Pressure member 16 Current collector 17 Adhesive member 18 Concavity and convexity pattern of active material layer 19 Electric double layer capacitor electrode 101 Current collector 102 Active material layer 103 Positive electrode body 104 Negative electrode body 105 Separator 106 Case

Claims (7)

金型に形成される凹凸パターンに、少なくとも電極活物質とバインダが含まれている活物質形成材料が供給される第1工程と、前記活物質形成材料に集電体が固着される第2工程と、前記活物質形成材料から前記金型が剥離される第3工程とからなることを特徴とする、蓄電デバイス用電極の製造方法。   A first step in which an active material forming material containing at least an electrode active material and a binder is supplied to the uneven pattern formed in the mold, and a second step in which a current collector is fixed to the active material forming material. And a third step in which the mold is peeled off from the active material forming material. 前記第2工程で、加圧されることにより前記活物質形成材料に前記集電体が固着されることを特徴とする、請求項1に記載の蓄電デバイス用電極の製造方法。   2. The method of manufacturing an electrode for an electricity storage device according to claim 1, wherein the current collector is fixed to the active material forming material by being pressurized in the second step. 前記第2工程で、加圧されることにより前記凹凸パターンの凹部に前記活物質形成材料を充填しながらその活物質形成材料に前記集電体が固着されることを特徴とする、請求項1または2に記載の蓄電デバイス用電極の製造方法。   2. The current collector is fixed to the active material forming material while being filled with the active material forming material in the concave portion of the uneven pattern by being pressurized in the second step. Or the manufacturing method of the electrode for electrical storage devices of 2. 前記凹凸パターンの凸部側面に抜き勾配を設け、その抜き勾配により前記第3工程で前記活物質形成材料から前記金型が剥離されることを特徴とする、請求項1ないし3のいずれか1に記載の蓄電デバイス用電極の製造方法。   The draft is provided on the side of the convex part of the concavo-convex pattern, and the mold is peeled off from the active material forming material in the third step by the draft. The manufacturing method of the electrode for electrical storage devices as described in 1 .. 請求項1ないし4のいずれか1に記載の製造方法で製造されることを特徴とする、蓄電デバイス用電極。   An electrode for an electricity storage device, which is produced by the production method according to claim 1. 請求項5に記載の蓄電デバイス用電極を用いて形成されることを特徴とする、蓄電デバイス。   An electricity storage device formed using the electrode for an electricity storage device according to claim 5. 電気二重層キャパシタであることを特徴とする、請求項6に記載の蓄電デバイス。   The electric storage device according to claim 6, wherein the electric storage device is an electric double layer capacitor.
JP2006185118A 2006-07-05 2006-07-05 Electrode for accumulator device and manufacturing method therefor, and the accumulator device Pending JP2008016581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185118A JP2008016581A (en) 2006-07-05 2006-07-05 Electrode for accumulator device and manufacturing method therefor, and the accumulator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006185118A JP2008016581A (en) 2006-07-05 2006-07-05 Electrode for accumulator device and manufacturing method therefor, and the accumulator device

Publications (1)

Publication Number Publication Date
JP2008016581A true JP2008016581A (en) 2008-01-24

Family

ID=39073330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185118A Pending JP2008016581A (en) 2006-07-05 2006-07-05 Electrode for accumulator device and manufacturing method therefor, and the accumulator device

Country Status (1)

Country Link
JP (1) JP2008016581A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017592A (en) * 2006-07-05 2008-01-24 Ricoh Elemex Corp Information display system device
CN103310993A (en) * 2012-03-09 2013-09-18 大同金属工业株式会社 Electrode
WO2014006973A1 (en) * 2012-07-04 2014-01-09 日東電工株式会社 Electrode for electricity storage devices, electricity storage device using same, and method for producing same
CN105355469A (en) * 2008-05-29 2016-02-24 康宁股份有限公司 Method for manufacturing electrodes for electric double layer devices based on mixture of fibrous polymeric material and carbon material
KR20170025760A (en) * 2015-08-31 2017-03-08 주식회사 엘지화학 Device for Manufacturing Electrode for Secondary Battery Comprising Mold for Providing Electrode Mix Layer
JP2018537807A (en) * 2015-12-15 2018-12-20 エルジー・ケム・リミテッド Electrode for electrode and electrochemical element including the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017592A (en) * 2006-07-05 2008-01-24 Ricoh Elemex Corp Information display system device
CN105355469A (en) * 2008-05-29 2016-02-24 康宁股份有限公司 Method for manufacturing electrodes for electric double layer devices based on mixture of fibrous polymeric material and carbon material
CN103310993A (en) * 2012-03-09 2013-09-18 大同金属工业株式会社 Electrode
KR200476985Y1 (en) * 2012-03-09 2015-04-23 다이도 메탈 고교 가부시키가이샤 Electrode
WO2014006973A1 (en) * 2012-07-04 2014-01-09 日東電工株式会社 Electrode for electricity storage devices, electricity storage device using same, and method for producing same
KR20170025760A (en) * 2015-08-31 2017-03-08 주식회사 엘지화학 Device for Manufacturing Electrode for Secondary Battery Comprising Mold for Providing Electrode Mix Layer
WO2017039148A1 (en) * 2015-08-31 2017-03-09 주식회사 엘지화학 Device for manufacturing electrode for secondary battery comprising electrode mixture layer forming mold
KR101936339B1 (en) 2015-08-31 2019-04-03 주식회사 엘지화학 Device for Manufacturing Electrode for Secondary Battery Comprising Mold for Providing Electrode Mix Layer
US10964969B2 (en) 2015-08-31 2021-03-30 Lg Chem, Ltd. Secondary battery electrode manufacturing device including electrode mixture layer forming mold
JP2018537807A (en) * 2015-12-15 2018-12-20 エルジー・ケム・リミテッド Electrode for electrode and electrochemical element including the same
US11094942B2 (en) 2015-12-15 2021-08-17 Lg Chem, Ltd. Method for manufacturing an electrode having a metal plate with a recess formed therein, an electrode including the same, and an electrochemical device including the same

Similar Documents

Publication Publication Date Title
US20230282908A1 (en) Hybrid electrochemical cell
US8865345B1 (en) Electrodes for three-dimensional lithium batteries and methods of manufacturing thereof
JP5181413B2 (en) Electrode for electrochemical device, solid electrolyte / electrode assembly and method for producing the same
CN111668451B (en) Preparation method of pole piece for winding type multi-pole lug battery cell, pole piece and battery cell
TW508860B (en) Paste-like thin electrode for battery, its manufacturing method, and battery
US20130078513A1 (en) Three-dimensional microbattery having a porous silicon anode
US20160013511A1 (en) Three-dimensional batteries and methods of manufacturing the same
JP2017522725A5 (en)
JP2008016581A (en) Electrode for accumulator device and manufacturing method therefor, and the accumulator device
CN103443965B (en) Battery electrode and production method thereof
JPH07130370A (en) Coating type electrode and manufacture thereof
KR20150104590A (en) Combined electrochemical and chemical etching processes for generation of porous silicon particulates
WO2011028613A3 (en) Porous amorphous silicon-carbon nanotube composite based electrodes for battery applications
JP2010225432A (en) Solid secondary battery, and manufacturing method of solid secondary battery
CN108428901B (en) A kind of composite microstructure collector and preparation method thereof for lithium ion battery
JP2009141114A (en) Electric double layer capacitor and manufacturing method thereof
CN110492107A (en) A method of preparing lithium battery porous copper foil collector
TW201843875A (en) Printed planar lithium-ion batteries
US11413850B2 (en) Holey graphene mesh and solvent-free manufacturing and composites thereof
JP5458505B2 (en) Electrode for electric double layer capacitor and method for manufacturing the same
KR20160041299A (en) Electrode for Secondary Battery Having Current Corrector with Improved Structural Stability
CN103811768A (en) Concave pit lithium ion battery current collector as well as manufacturing method and equipment of concave pit lithium ion battery current collector
JP5304153B2 (en) Electrode for electric double layer capacitor and method for manufacturing the same
JPWO2020017467A1 (en) Positive electrode for solid-state battery, method for manufacturing positive electrode for solid-state battery, and solid-state battery
CN113506877A (en) High-energy-density microporous lithium battery electrode and preparation method thereof