JP2008014699A - Film thickness measuring method and film thickness measuring device in electrolysis processing - Google Patents

Film thickness measuring method and film thickness measuring device in electrolysis processing Download PDF

Info

Publication number
JP2008014699A
JP2008014699A JP2006184277A JP2006184277A JP2008014699A JP 2008014699 A JP2008014699 A JP 2008014699A JP 2006184277 A JP2006184277 A JP 2006184277A JP 2006184277 A JP2006184277 A JP 2006184277A JP 2008014699 A JP2008014699 A JP 2008014699A
Authority
JP
Japan
Prior art keywords
film thickness
electrolytic treatment
treatment according
magnetic
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006184277A
Other languages
Japanese (ja)
Inventor
Kenji Amaya
賢治 天谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2006184277A priority Critical patent/JP2008014699A/en
Publication of JP2008014699A publication Critical patent/JP2008014699A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for monitoring especially film thickness while electrolysis processing without breaking the electrolysis processing object, and without affecting adverse effect to the electrolysis process by the measurement. <P>SOLUTION: A magnetic sensor is arranged on the object to be electrolysis processed; the magnetic flux density distribution is measured; the surface current density of the electrolysis object is calculated from the flux density distribution; and the film thickness of the object is measured on real time while performing the electrolysis processing. By calculating the data of the flux density distribution data after the electrolysis processing, the film thickness of the object can be measured after the electrolysis processing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電解処理中に磁束密度分布を測定することにより、電解処理対象物に形成される膜厚を計測する膜厚測定方法及び膜厚測定装置に関する。   The present invention relates to a film thickness measuring method and a film thickness measuring apparatus for measuring a film thickness formed on an electrolytic processing object by measuring a magnetic flux density distribution during the electrolytic processing.

半導体の発明によってICが開発され、より微細化されたLSIやULSIが開発されている。これらのエレクトロニクス機器の微細化において、めっき技術は重要な役割を果たしている。具体的には、めっき技術は、LSIやULSIにおける銅配線の形成や、半導体チップのバンプを形成するために使用される。   ICs have been developed according to semiconductor inventions, and more miniaturized LSIs and ULSIs have been developed. Plating technology plays an important role in the miniaturization of these electronic devices. Specifically, the plating technique is used for forming a copper wiring in an LSI or ULSI and forming a bump of a semiconductor chip.

めっきの膜厚を測定する方法には、試料を切断し断面の皮膜層の厚さを顕微鏡で測定する顕微鏡測定法、めっき皮膜を陽極として電解液中で電解を行い、電解に要した電気量と時間、溶融金属量から膜厚を測定する電解式膜厚測定法等がある。しかし、これらの方法は、めっきを破壊する必要があるため問題である。   The method of measuring the film thickness of plating is a microscopic measurement method in which a sample is cut and the thickness of the film layer in the cross section is measured with a microscope, and electrolysis is performed in an electrolytic solution using the plating film as an anode. And an electrolytic film thickness measuring method for measuring the film thickness from the amount of molten metal. However, these methods are problematic because the plating needs to be destroyed.

めっき膜を破壊せずに膜厚を測定する方法としては、X線を照射して放射される蛍光X線の強度を測定してめっき厚さを求める蛍光X線法がある。   As a method for measuring the film thickness without destroying the plating film, there is a fluorescent X-ray method in which the plating thickness is obtained by measuring the intensity of fluorescent X-rays emitted by irradiating X-rays.

また、めっきの膜厚を電解めっき中にリアルタイムにモニタリングする方法として、電位分布を測定する方法がある(非特許文献1)。この電位分布測定方法では、めっき対象物は円形のシリコンウェハである。シリコンウェハの外周部に取り付けられた電極により電位を測定し、逆解析を利用して、ウェハ全体のめっきの膜厚分布を測定する。
阿部馨督、天谷賢治、青木繁、「逆解析を利用しためっき膜厚のモニタリング」、境界要素法論文集、日本計算数理工学会、2004年12月、Vol.21、p.23−26
Further, as a method for monitoring the plating film thickness in real time during electrolytic plating, there is a method of measuring a potential distribution (Non-patent Document 1). In this potential distribution measurement method, the plating object is a circular silicon wafer. The potential is measured by an electrode attached to the outer peripheral portion of the silicon wafer, and the plating film thickness distribution of the entire wafer is measured by using inverse analysis.
Jun Abe, Kenji Amaya, Shigeru Aoki, “Monitoring of plating thickness using inverse analysis”, Boundary Element Method, Japan Society for Computational Mathematics, December 2004, Vol. 21, p. 23-26

LSIウェハの電解めっきを行った際、ウェハが円形の場合、円の外側が円の中心に比べて、めっきの膜厚が大きくなってしまう傾向にある。このため、めっきの膜厚を均一にするために、後から無駄な部分を削る必要がある。これを避ける為に、めっきの膜厚をめっきの実施中にリアルタイムに管理することが課題となっている。また、めっき膜厚のリアルタイムの管理によって、めっきの品質管理を容易にする等の利点がある。   When electrolytic plating of an LSI wafer is performed, if the wafer is circular, the thickness of the plating tends to be larger on the outside of the circle than on the center of the circle. For this reason, in order to make the film thickness of plating uniform, it is necessary to cut a useless part later. In order to avoid this, it is a problem to manage the film thickness of the plating in real time during the plating. Further, there is an advantage that the quality control of the plating is facilitated by the real-time management of the plating film thickness.

X線照射によるめっき膜厚測定方法は、めっきの実施中にめっきの膜厚をリアルタイムに計測することはできない。   The plating film thickness measurement method by X-ray irradiation cannot measure the plating film thickness in real time during the execution of plating.

非特許文献1に記載の方法は、めっきの膜厚をリアルタイムに計測する方法であるが、測定のために電流を流すようになっているので、めっき膜生成に悪影響を及ぼしてしまう。また、電位測定はウェハ外周部でのみ行われるため、ウェハ中心部での計測誤差が大きい等の問題点がある。   The method described in Non-Patent Document 1 is a method of measuring the plating film thickness in real time. However, since a current is passed for measurement, the plating film generation is adversely affected. Further, since the potential measurement is performed only at the outer peripheral portion of the wafer, there are problems such as a large measurement error at the central portion of the wafer.

本発明は上述のような事情によりなされたものであり、本発明の目的は、LSIウェハ等の電解処理対象物を破壊することなく、測定によって電解処理に悪影響を及ぼすこともなく、特に膜厚を電解処理中にリアルタイムにモニタリングする方法及び装置を提供することにある。   The present invention has been made under the circumstances as described above, and the object of the present invention is not to destroy an electrolytic processing object such as an LSI wafer, and to have an adverse effect on the electrolytic processing by measurement. It is an object of the present invention to provide a method and an apparatus for monitoring in real time during electrolytic treatment.

本発明は電解処理における膜厚測定方法に関し、本発明の上記目的は、電解処理される対象物の近傍に磁気センサを配設し、前記磁気センサにより電解処理中の磁束密度の分布を計測し、前記磁束密度の分布から前記対象物の表面電流密度を求め、前記表面電流密度から前記対象物の膜厚を算出し、前記対象物の膜厚を測定することにより達成される。   The present invention relates to a method for measuring a film thickness in electrolytic treatment, and the object of the present invention is to provide a magnetic sensor in the vicinity of an object to be electrolytically processed, and to measure the distribution of magnetic flux density during the electrolytic treatment by the magnetic sensor. This is achieved by obtaining the surface current density of the object from the magnetic flux density distribution, calculating the film thickness of the object from the surface current density, and measuring the film thickness of the object.

本発明の上記目的は、前記磁束密度の分布から前記表面電流密度を求める方法がビオサバールの積分方程式であることにより、或いは前記磁束密度の分布から前記表面電流密度を求める方法がマクスウェル方程式であることにより、或いは前記表面電流密度と膜厚成長速度の比例関係より前記膜厚を測定することにより、或いは前記比例関係がファラデーの法則であることにより、或いは前記比例関係の比例定数を実験によって求めることにより、或いは前記電解処理中にリアルタイムに前記対象物の膜厚を測定することにより、より効果的に達成される。   The object of the present invention is that the method for obtaining the surface current density from the magnetic flux density distribution is Biosavart's integral equation, or the method for obtaining the surface current density from the magnetic flux density distribution is the Maxwell equation. Or by measuring the film thickness from the proportional relationship between the surface current density and the film growth rate, or when the proportional relationship is Faraday's law, or by determining the proportionality constant of the proportional relationship by experiment. Or by measuring the film thickness of the object in real time during the electrolytic treatment.

さらに本発明の上記目的は、前記磁気センサを1つ配設し、前記対象物をスキャンして前記磁束密度の分布を計測することにより、或いは前記対象物が円板で回転している場合、前記対象物の中心から外周縁に向かって一列に、かつ外側に向かって順に間隔が小さくなるように前記磁気センサを複数配設することにより、或いは前記対象物が円板で回転している場合、前記対象物の中心から外周縁に向かって一列に、かつ等間隔に前記磁気センサを複数配設することにより、或いは前記対象物が円板で回転していない場合、前記対象物の中心から放射状に前記磁気センサを配設するか、或いは前記対象物に前記磁気センサを格子状に配設することにより、或いは前記対象物が矩形板である場合、前記対象物に対して格子状に、前記磁気センサを複数配設することにより、より効果的に達成される。   Further, the object of the present invention is to arrange one magnetic sensor and measure the magnetic flux density distribution by scanning the object, or when the object is rotated by a disk, When a plurality of the magnetic sensors are arranged in such a manner that the intervals become smaller in order from the center of the object toward the outer peripheral edge and outward, or when the object is rotated by a disk , By arranging a plurality of the magnetic sensors in a line from the center of the object toward the outer peripheral edge at equal intervals, or when the object is not rotated by a disk, from the center of the object By arranging the magnetic sensors radially, or by arranging the magnetic sensors on the object in a grid, or when the object is a rectangular plate, in a grid with respect to the object, Magnetic sensor By arranging a plurality of, it is more effectively achieved.

また、本発明は電解処理における膜厚測定装置に関し、本発明の上記目的は、電解処理される対象物の近傍に配設された磁束密度分布を計測する磁気センサと、前記磁気センサの信号である磁束密度の分布から前記対象物の表面電流密度を求め、前記表面電流密度から前記対象物の膜厚を算出する解析装置とを設け、前記対象物の膜厚を測定することにより達成される。   The present invention also relates to an apparatus for measuring a film thickness in electrolytic treatment. The object of the present invention is to provide a magnetic sensor for measuring a magnetic flux density distribution disposed in the vicinity of an object to be electrolytically treated, and a signal from the magnetic sensor. It is achieved by obtaining a surface current density of the object from a distribution of a certain magnetic flux density, providing an analyzer for calculating the film thickness of the object from the surface current density, and measuring the film thickness of the object. .

本発明の上記目的は、前記磁気センサの信号をデジタル変換し、前記解析装置がデジタルの膜厚を求めることにより、或いは前記磁束密度の分布から前記表面電流密度を求める手段がビオサバールの積分方程式を実行することにより、或いは前記磁束密度の分布から前記表面電流密度を求める手段がマクスウェル方程式を実行することにより、或いは前記表面電流密度と膜厚成長速度の比例関係より前記膜厚を測定することにより、或いは前記比例関係がファラデーの法則であることにより、或いは前記比例関係の比例定数を実験によって求めることにより、或いは前記電解処理中にリアルタイムに前記対象物の膜厚を測定することにより、より効果的に達成される。   The object of the present invention is to convert the signal of the magnetic sensor into a digital signal, and the analysis device obtains a digital film thickness, or means for obtaining the surface current density from the distribution of the magnetic flux density provides a Bio-Savart integral equation. By executing, or by means of obtaining the surface current density from the magnetic flux density distribution, by executing Maxwell's equations, or by measuring the film thickness from the proportional relationship between the surface current density and the film thickness growth rate. Alternatively, the proportionality is Faraday's law, or the proportionality constant of the proportionality is obtained by experiment, or by measuring the film thickness of the object in real time during the electrolytic treatment. Is achieved.

さらに本発明の上記目的は、前記対象物が円板で回転している場合、前記対象物の中心から外周縁に向かって一列に、かつ外側に向かって順に間隔が小さくなるように前記磁気センサを複数配設することにより、或いは前記対象物が円板で回転している場合、前記対象物の中心から外周縁に向かって一列に、かつ等間隔に前記磁気センサを複数配設することにより、或いは前記対象物が円板で回転していない場合、前記対象物の中心から放射状に前記磁気センサを配設するか、或いは前記対象物に前記磁気センサを格子状に配設することにより、或いは前記対象物が円板で回転している場合、前記磁気センサを1つ配設し、前記磁気センサを前記対象物の中心から外周縁に向かってスキャンするスキャン機構を設けることにより、或いは前記対象物が円板で回転している場合、前記磁気センサを回転ロッドに取り付け、前記円板上を扇状にスキャンするスキャン装置を設けることにより、或いは前記対象物が矩形板である場合、前記対象物に対して格子状に、前記磁気センサを複数配設することにより、より効果的に達成される。   Furthermore, the object of the present invention is such that, when the object is rotated by a disc, the magnetic sensor is arranged so that the interval decreases in a line from the center of the object toward the outer peripheral edge and in order toward the outside. By arranging a plurality of magnetic sensors in a row and at equal intervals from the center of the object to the outer periphery when the object is rotated by a disc Alternatively, if the object is not rotated by a disc, the magnetic sensors are arranged radially from the center of the object, or the magnetic sensors are arranged on the object in a grid pattern, Alternatively, when the object is rotated by a disk, one magnetic sensor is provided, and a scanning mechanism for scanning the magnetic sensor from the center of the object toward the outer periphery is provided, or When the object is rotating with a disk, the magnetic sensor is attached to a rotating rod, and a scanning device that scans the disk in a fan shape is provided, or when the object is a rectangular plate, the object This is achieved more effectively by arranging a plurality of the magnetic sensors in a lattice pattern with respect to the object.

本発明の電解処理における膜厚測定方法及び膜厚測定装置によれば、磁気センサを用いて磁束密度分布を計測し、磁束密度分布から電流密度分布を計算することによって、電解処理される対象物の膜厚を測定することが可能である。磁気センサは電解処理槽の外部から非接触で配設されるため、本発明における電解処理膜の膜厚測定方法及び装置は、電解処理に悪影響を及ぼさずに膜厚を正確に測定することができる。なお、電解処理中にリアルタイムに膜厚の測定をすることが可能である。   According to the film thickness measuring method and film thickness measuring apparatus in the electrolytic treatment of the present invention, the magnetic flux density distribution is measured using a magnetic sensor, and the current density distribution is calculated from the magnetic flux density distribution, thereby subjecting the electrolytic treatment. It is possible to measure the film thickness. Since the magnetic sensor is disposed in a non-contact manner from the outside of the electrolytic treatment tank, the method and apparatus for measuring the thickness of the electrolytic treatment film in the present invention can accurately measure the film thickness without adversely affecting the electrolytic treatment. it can. Note that the film thickness can be measured in real time during the electrolytic treatment.

また、磁気センサは電解処理される対象物の表面近傍に自由に配設できるので、電解処理される対象物の全域で均等な計測精度を得ることができる利点がある。   Further, since the magnetic sensor can be freely arranged in the vicinity of the surface of the object to be electrolytically processed, there is an advantage that uniform measurement accuracy can be obtained over the entire area of the object to be electrolytically processed.

本発明では、電解処理装置として電解めっき装置に、電解槽の外側から電解処理対象物の近傍に磁気センサを配設することにより、磁気センサからの磁束密度分布に応じた信号を処理し、電解めっき処理中にめっき膜の膜厚をリアルタイムに計測する。本発明は電解めっきだけでなく、電解エッチングにおける膜厚測定にも同様に用いることができ、これらの処理を合わせて電解処理とする。また、測定した磁束密度分布のデータをメモリに記憶しておき、電解処理の後に演算することにより、電解処理の後に膜厚を算出することも可能である。   In the present invention, an electroplating apparatus as an electrolysis apparatus is provided with a magnetic sensor in the vicinity of the object to be electrolyzed from the outside of the electrolytic cell, thereby processing a signal corresponding to the magnetic flux density distribution from the magnetic sensor, and performing electrolysis. The thickness of the plating film is measured in real time during the plating process. The present invention can be used not only for electrolytic plating but also for film thickness measurement in electrolytic etching, and these treatments are combined to be electrolytic treatment. It is also possible to calculate the film thickness after the electrolytic treatment by storing the measured magnetic flux density distribution data in a memory and calculating after the electrolytic treatment.

電解めっき装置は、陽極はめっき膜を形成する金属から成り、電解槽は電解液で満たされ、陰極はめっき膜が形成される固体の対象部から成る。ここでは、陰極の対象物が、シリコンでできたLSIウェハの場合を説明する。電源から電流を流すと、陽極の金属は陽イオンとなり電解液中に溶解し、陰極で電子を受け取り、LSIウェハの表面に金属が析出して、めっき膜となる。   In the electrolytic plating apparatus, the anode is made of a metal that forms a plating film, the electrolytic cell is filled with an electrolytic solution, and the cathode is made of a solid target portion on which the plating film is formed. Here, a case where the cathode object is an LSI wafer made of silicon will be described. When a current is supplied from the power source, the metal of the anode becomes a cation and dissolves in the electrolyte, receives electrons at the cathode, and the metal is deposited on the surface of the LSI wafer to form a plating film.

図1は、本発明の電解めっき膜厚測定装置を装備した電解めっき装置の構成図である。陰極1は円板のLSIウェハ、陽極2はめっき膜を形成する円板状金属で、円筒状の電解槽3は電解液で満たされている。陰極1のLSIウェハの表面には、電解槽の外側にLSIウェハと非接触の状態で、磁気センサ4が中心から外周縁に向かって一列に、かつ外側に向って順に間隔が小さくなるように複数個配設されている。磁気センサ4は、電解めっき中にLSIウェハに流れる電流によって誘導される磁束密度を計測するために配設されており、各磁気センサ4は同一のものである。電源5は陰極1と給電ターミナル6で繋がれて、陽極2とは給電ターミナル7で繋がれており、陰極1及び陽極2間に電位を与えることによって電解液を介してめっき処理が実行されるようになっている。   FIG. 1 is a configuration diagram of an electroplating apparatus equipped with the electroplating film thickness measuring apparatus of the present invention. The cathode 1 is a disk LSI wafer, the anode 2 is a disk-shaped metal forming a plating film, and the cylindrical electrolytic cell 3 is filled with an electrolytic solution. On the surface of the LSI wafer of the cathode 1, the magnetic sensors 4 are arranged in a line from the center to the outer peripheral edge and in a line from the center to the outer side in a state of non-contact with the LSI wafer outside the electrolytic cell so that the intervals become smaller in order. A plurality are arranged. The magnetic sensor 4 is arranged for measuring the magnetic flux density induced by the current flowing in the LSI wafer during the electrolytic plating, and each magnetic sensor 4 is the same. The power source 5 is connected to the cathode 1 by the power supply terminal 6, and the anode 2 is connected to the power supply terminal 7. By applying a potential between the cathode 1 and the anode 2, the plating process is executed via the electrolytic solution. It is like that.

磁気センサ4で計測された磁束密度に対応するアナログ信号は必要に応じて増幅され、A/Dコンバータでデジタル信号に変換されて解析装置(例えばコンピュータ)に入力され、磁束密度の分布に基づく関係式モデルからLSIウェハ表面上の電流密度を算出し、具体的にはビオサバールの積分方程式或いはマクスウェル方程式を用いて、LSIウェハ表面上の電流密度を算出する。磁気センサ4に誘導される磁束密度はLSIウェハから遠ざかると減衰するので、磁気センサ4は電解槽の外側のLSIウェハにできるだけ近いところに設置することが望ましい。   An analog signal corresponding to the magnetic flux density measured by the magnetic sensor 4 is amplified as necessary, converted into a digital signal by an A / D converter, input to an analysis device (for example, a computer), and a relationship based on the magnetic flux density distribution The current density on the LSI wafer surface is calculated from the equation model. Specifically, the current density on the LSI wafer surface is calculated using Biosavall's integral equation or Maxwell equation. Since the magnetic flux density induced in the magnetic sensor 4 is attenuated as it moves away from the LSI wafer, the magnetic sensor 4 is desirably installed as close as possible to the LSI wafer outside the electrolytic cell.

磁気センサ4としては、誘導される磁束密度のレベルに応じてSQUIDセンサ、フラックスゲートセンサ、GMRセンサ、ホールセンサ等を利用することができる。図1に示されるように、LSIウェハが円形で、めっき時にLSIウェハが回転している場合には、回転軸に対して軸対称にめっき膜が形成される。そのため、磁気センサ4は円の中心Pから円の端の外周縁Qを結ぶ線分PQ上に配設すれば十分である。また、外周縁に近づく程電流密度の変化が大きくなるので、外周縁近傍での電流密度計測の解像度を上げるため、磁気センサ4は外周縁Qに近づく程密に、つまり小さい間隔で配設される。   As the magnetic sensor 4, a SQUID sensor, a fluxgate sensor, a GMR sensor, a Hall sensor, or the like can be used according to the level of the induced magnetic flux density. As shown in FIG. 1, when the LSI wafer is circular and the LSI wafer is rotating during plating, the plating film is formed symmetrically with respect to the rotation axis. Therefore, it is sufficient to arrange the magnetic sensor 4 on a line segment PQ connecting the center P of the circle and the outer peripheral edge Q of the end of the circle. Further, since the change in current density increases as it approaches the outer peripheral edge, the magnetic sensors 4 are arranged closer to the outer peripheral edge Q, that is, at smaller intervals in order to increase the resolution of current density measurement near the outer peripheral edge. The

電解めっきを行うと、LSIウェハ面内に電流密度iw[A/m]が流れる。電流密度iw[A/m]によって、磁束密度B[T]が誘起され、この磁束密度Bを磁気センサ4によって計測する。アナログの磁気信号を増幅器で増幅し、解析装置にデータとして入力するために、A/Dコンバータでアナログ信号をデジタル信号に変換する。解析装置では、下記数1のビオサバールの積分方程式により、磁束密度のデータから電流密度を算出する。 When electrolytic plating is performed, a current density iw [A / m 2 ] flows in the LSI wafer surface. The magnetic flux density B [T] is induced by the current density iw [A / m 2 ], and the magnetic flux density B is measured by the magnetic sensor 4. An analog magnetic signal is amplified by an amplifier, and the analog signal is converted into a digital signal by an A / D converter in order to input the data as data to an analysis apparatus. In the analysis device, the current density is calculated from the magnetic flux density data using the following Biosavart integral equation.

Figure 2008014699
数1で、磁束密度
Figure 2008014699
と、電流密度
Figure 2008014699
と、電流密度の位置ベクトル
Figure 2008014699
は、ベクトル量である。また、mは透磁率で、Wは体積積分を表す。
Figure 2008014699
Formula 1, magnetic flux density
Figure 2008014699
And current density
Figure 2008014699
And the current density position vector
Figure 2008014699
Is a vector quantity. M is the magnetic permeability, and W is the volume integral.

実際に電流密度を算出する際には、ビオサバールの積分方程式を離散化する。離散化の方法には、基底関数として三角関数を用いたフーリエ級数を用いる方法、基底関数としてベッセル関数を用いたフーリエハンケル級数を用いる方法がある。また、領域を要素に分割し各要素内を内挿関数で近似する、有限要素法による離散化や境界要素法による離散化を用いることができる。磁束密度Bは、下記数2で表される。   When actually calculating the current density, the Biosavart integral equation is discretized. The discretization method includes a method using a Fourier series using a trigonometric function as a basis function and a method using a Fourier Hankel series using a Bessel function as a basis function. Further, it is possible to use discretization by the finite element method or discretization by the boundary element method in which the region is divided into elements and each element is approximated by an interpolation function. The magnetic flux density B is expressed by the following formula 2.

(数2)
{B}=[K]{iw}
数2において、{B}は計測された各位置の磁束密度を表すn次元列ベクトルであり、{iw}はm個に離散化した電流密度を表すm次元列ベクトルであり、[K]はn×m行列である。各位置の電流密度{iw}は、下記数3で計算することができる。
(Equation 2)
{B} = [K] {iw}
In Equation 2, {B} is an n-dimensional column vector representing the measured magnetic flux density at each position, {iw} is an m-dimensional column vector representing the current density discretized into m pieces, and [K] is An n × m matrix. The current density {iw} at each position can be calculated by the following formula 3.

(数3)
{iw}=[K]−1{B}
方程式が悪条件の場合(逆行列[K]-1が不安定な場合)、チコノフの適切化法、フーリエ変換法、特異値分解法、ベイズ推定法、最尤推定法、パラメータ化法、周波数領域法、級数展開法等の適切化法を適用して、電流密度{iw}の解を安定に求めることができる。
(Equation 3)
{Iw} = [K] −1 {B}
When the equation is ill-conditioned (inverse matrix [K] -1 is unstable), Tikhonov optimization method, Fourier transform method, singular value decomposition method, Bayesian estimation method, maximum likelihood estimation method, parameterization method, frequency By applying an appropriate method such as the domain method or the series expansion method, the solution of the current density {iw} can be obtained stably.

また、ビオサバールの積分方程式の代わりにマクスウェル方程式を解くことによっても、磁束密度と電流の関係を得ることができる。ここでは、下記数4のアンペールの法則と、数5で示される磁場と磁束密度の関係式を用いる。   The relationship between the magnetic flux density and the current can also be obtained by solving the Maxwell equation instead of the Biosaval integral equation. Here, Ampere's law of the following formula 4 and the relational expression of the magnetic field and the magnetic flux density expressed by the formula 5 are used.

Figure 2008014699
Figure 2008014699

Figure 2008014699
ここで、磁場
Figure 2008014699
、電流密度
Figure 2008014699
、磁束密度
Figure 2008014699
はベクトル量である。上記数4と数5から、磁束密度B[T]と電流密度J[A/m]の関係が得られる。この式を差分法や有限要素法などの手法によって離散化した式を用いて、電流密度を算出する。マクスウェル方程式は、磁気センサの近傍に透磁率の異なる部材が存在する場合にも用いることができる。
Figure 2008014699
Where the magnetic field
Figure 2008014699
,Current density
Figure 2008014699
, Magnetic flux density
Figure 2008014699
Is a vector quantity. From the equations 4 and 5, the relationship between the magnetic flux density B [T] and the current density J [A / m 2 ] is obtained. The current density is calculated using an expression obtained by discretizing this expression by a method such as a difference method or a finite element method. The Maxwell equation can also be used when members having different magnetic permeability exist in the vicinity of the magnetic sensor.

LSIウェハ面内を流れる電流密度iw[A/m]とLSIウェハに流入する電流密度ic[A/m]には、下記数6の関係が成り立つ。
(数6)
ic(x,y)=−div(iw(x,y))
ここで、xy平面はLSIウェハ面上にある。divはLSIウェハ面内の発散を表す。ic[A/m]とめっき膜の成長速度v[m/s]との間には比例関係が成り立ち、下記数7が成り立つ。
(数7)
v=a×ic
ファラデーの法則を用いると比例定数aは、下記数8で与えられる。
(数8)
a=M/(F×Z×ρ)
数8において、Mはめっき膜を形成する金属の原子量、Fはファラデー定数で9.64853415×10[C/mol]、Zはめっきを形成する金属の電荷数、ρ[g/m]はめっきを形成する金属の密度である。或いは、比例定数aを実験によって決定することができる。数7の関係を用いて、めっきの膜厚を算出することができる。上述した方法により、電解めっきにおけるめっきの膜厚をリアルタイムでモニタリングすることが可能になる。
The following equation 6 is established between the current density iw [A / m 2 ] flowing in the LSI wafer surface and the current density ic [A / m 2 ] flowing into the LSI wafer.
(Equation 6)
ic (x, y) =-div (iw (x, y))
Here, the xy plane is on the LSI wafer surface. div represents the divergence in the LSI wafer surface. There is a proportional relationship between ic [A / m 2 ] and the growth rate v [m / s] of the plating film, and the following equation 7 holds.
(Equation 7)
v = a × ic
Using Faraday's law, the proportionality constant a is given by
(Equation 8)
a = M / (F × Z × ρ)
In Equation 8, M is the atomic weight of the metal forming the plating film, F is the Faraday constant, 9.64853415 × 10 4 [C / mol], Z is the number of charges of the metal forming the plating, and ρ [g / m 3 ] Is the density of the metal forming the plating. Alternatively, the proportionality constant a can be determined by experiment. The thickness of the plating can be calculated using the relationship of Equation 7. By the above-described method, it becomes possible to monitor the plating film thickness in electrolytic plating in real time.

めっき電流を変調することにより、誘起される磁束密度も変調させることができ、変調された磁束密度の検出には、安価で精度の高いコイル式の磁気センサを用いることができる。さらに、周波数フィルタ、ロックインアンプ、復調回路などを適用することにより、ノイズを低減することができる。   By modulating the plating current, the induced magnetic flux density can also be modulated, and an inexpensive and highly accurate coil-type magnetic sensor can be used to detect the modulated magnetic flux density. Furthermore, noise can be reduced by applying a frequency filter, a lock-in amplifier, a demodulation circuit, or the like.

円板のLSIウェハでLSIウェハが回転している場合で、外周縁近傍で高い解像度を必要としない場合には、円の中心から円の外周縁までの線分上に等間隔に磁気センサ4を配設しても良い。   When the LSI wafer is rotated by a disk LSI wafer and high resolution is not required in the vicinity of the outer periphery, the magnetic sensor 4 is equally spaced on a line segment from the center of the circle to the outer periphery of the circle. May be provided.

円板のLSIウェハでLSIウェハが回転していない場合、電流密度が軸対象にならない場合がある。この場合、図2に示すように磁気センサ12をLSIウェハ11の中心から放射状に配設する。或いは、磁気センサをLSIウェハ上に格子状に配設する。なお、放射状の配置図2や格子状の配置は、LSIウェハが回転している場合にも用いることができる。   When the LSI wafer is not rotating with a disc-shaped LSI wafer, the current density may not be an axis target. In this case, the magnetic sensors 12 are arranged radially from the center of the LSI wafer 11 as shown in FIG. Alternatively, the magnetic sensors are arranged in a lattice pattern on the LSI wafer. The radial layout FIG. 2 and the grid layout can also be used when the LSI wafer is rotating.

図3は、矩形のLSIウェハ13の場合の磁気センサ14の配置例を示す。この場合、磁気センサ14はLSIウェハ13上に格子状にほぼ均一に配設する。このようにすれば、電解処理中のLSIウェハ11の膜厚をリアルタイムに、上述の測定原理で測定することができる。   FIG. 3 shows an arrangement example of the magnetic sensor 14 in the case of the rectangular LSI wafer 13. In this case, the magnetic sensors 14 are arranged almost uniformly on the LSI wafer 13 in a lattice pattern. In this way, the film thickness of the LSI wafer 11 during the electrolytic treatment can be measured in real time on the above-described measurement principle.

上述では複数の磁気センサ4をLSIウェハの近傍に配設する場合を説明したが、一つの磁気センサ若しくは一列に配設された磁気センサ列(リニアセンサ)をスキャンすることによっても本発明は可能である。即ち、1つの磁気センサ16をスキャンさせる場合、回転している円形のLSIウェハ15に対して、図4に示すように、中心から外周縁に設けられているリニアスライダ17に1個の磁気センサ14を摺動可能に配設し、リニアスライダ17上を図示A1、B1方向に移動させることによってスキャンする。このようなスキャン機構によっても、同様な膜厚測定が可能である。   In the above description, the case where a plurality of magnetic sensors 4 are arranged in the vicinity of the LSI wafer has been described. However, the present invention is also possible by scanning one magnetic sensor or a magnetic sensor array (linear sensor) arranged in a line. It is. That is, when one magnetic sensor 16 is scanned, as shown in FIG. 4, with respect to the rotating circular LSI wafer 15, one magnetic sensor is provided on the linear slider 17 provided from the center to the outer peripheral edge. 14 is slidably arranged, and scanning is performed by moving the linear slider 17 on the linear slider 17 in the directions A1 and B1. A similar film thickness measurement is possible with such a scanning mechanism.

矩形のLSIウェハ18に対して、図5のように矩形の一辺に1軸ステージ20を設け、1軸ステージ20に等間隔に複数の磁気センサ19を配設してリニアセンサを構成し、このリニアセンサを図示A2、B2方向に移動することによってLSIウェハ18の全面をスキャンすることができる。また、図6のように、一軸ステージ23に1個の磁気センサ22を摺動可能に配設し、磁気センサ22を一軸ステージ23上で図示C、D方向にスライドさせる機構を設け、リニアセンサを構成する。このリニアセンサを図示A3、B3方向に移動することによって、LSIウェハ21の全面をスキャンすることができる。   As shown in FIG. 5, a single-axis stage 20 is provided on one side of the rectangular LSI wafer 18, and a plurality of magnetic sensors 19 are arranged on the single-axis stage 20 at equal intervals to form a linear sensor. The entire surface of the LSI wafer 18 can be scanned by moving the linear sensor in the directions A2 and B2 shown in the figure. Further, as shown in FIG. 6, a single magnetic sensor 22 is slidably disposed on the uniaxial stage 23, and a mechanism for sliding the magnetic sensor 22 in the directions C and D on the uniaxial stage 23 is provided. Configure. The entire surface of the LSI wafer 21 can be scanned by moving this linear sensor in the directions A3 and B3 shown in the figure.

その他、回転している円形のLSIウェハ24に対して、図7のように、1個の磁気センサ25をハードディスクやレコードのように回転ロッド26を、点Eを支点軸として、図示A4、B4方向に扇状にスキャンする機構にしても良い。LSIウェハ24は回転しているので、これでLSIウェハ全体をスキャンすることができる。   In addition, with respect to the rotating circular LSI wafer 24, as shown in FIG. 7, a single magnetic sensor 25 is used as a hard disk or a record as a rotary rod 26, and a point E is used as a fulcrum shaft. A mechanism that scans in the direction of a fan may be used. Since the LSI wafer 24 is rotating, it is possible to scan the entire LSI wafer.

以上の説明では、めっきの対象物がLSIウェハの場合を示したが、本発明はめっきの対象物をLSIウェハに限定するものではない。また、上述では電解めっきにおけるめっき膜厚測定について説明したが、電解エッチングの際の膜厚測定にも使用できる。測定対象が円形の場合と矩形の場合の実施例を示して説明したが、本発明は任意の形状の対象物に対して適用することができる。上述では磁気センサからの信号をA/D変換してデジタル処理で膜厚を測定するようにしているが、デジタルでなくてもアナログの信号のままでの膜厚測定も可能である。   In the above description, the case where the object to be plated is an LSI wafer is shown, but the present invention does not limit the object to be plated to an LSI wafer. Moreover, although the plating film thickness measurement in electrolytic plating was demonstrated above, it can be used also for the film thickness measurement in the case of electrolytic etching. Although the embodiments in the case where the measurement object is circular and rectangular have been shown and described, the present invention can be applied to an object having an arbitrary shape. In the above description, the signal from the magnetic sensor is A / D converted and the film thickness is measured by digital processing. However, the film thickness can be measured as an analog signal without being digital.

電解めっき膜厚測定装置を装備した電解めっき装置の構成図である。It is a block diagram of the electroplating apparatus equipped with the electroplating film thickness measuring apparatus. 円形のLSIウェハ上に磁気センサを放射状に配設した場合の配置例を示す平面図。The top view which shows the example of arrangement | positioning at the time of arrange | positioning a magnetic sensor radially on a circular LSI wafer. LSIウェハが矩形の場合の磁気センサの配置例を示す平面図である。It is a top view which shows the example of arrangement | positioning of a magnetic sensor in case a LSI wafer is a rectangle. 円形のLSIウェハ上を磁気センサでスキャンする様子を示す図である。It is a figure which shows a mode that a circular LSI wafer is scanned with a magnetic sensor. 矩形のLSIウェハ上を磁気センサでスキャンする様子を示す図である。It is a figure which shows a mode that a rectangular LSI wafer is scanned with a magnetic sensor. 矩形のLSIウェハ上を磁気センサでスキャンする他の例を示す図である。It is a figure which shows the other example which scans on the rectangular LSI wafer with a magnetic sensor. 円形のLSIウェハ上を磁気センサでスキャンする他の例を示す図である。It is a figure which shows the other example which scans on a circular LSI wafer with a magnetic sensor.

符号の説明Explanation of symbols

1 陰極
2 陽極
3 電解槽
4,12,14,16,19,22,25 磁気センサ
5 電源
6 電源と陰極を繋ぐ給電ターミナル
7 電源と陽極を繋ぐ給電ターミナル
11,13,15,18,21,24 LSIウェハ
17 リニアスライダ
20,23 1軸ステージ
26 回転ロッド
DESCRIPTION OF SYMBOLS 1 Cathode 2 Anode 3 Electrolyzer 4, 12, 14, 16, 19, 22, 25 Magnetic sensor 5 Power supply 6 Feeding terminal connecting power supply and cathode 7 Feeding terminal 11, 13, 15, 18, 21, connecting power supply and anode 24 LSI wafer 17 Linear slider 20, 23 Uniaxial stage 26 Rotating rod

Claims (26)

電解処理される対象物の近傍に磁気センサを配設し、前記磁気センサにより電解処理中の磁束密度の分布を計測し、前記磁束密度の分布から前記対象物の表面電流密度を求め、前記表面電流密度から前記対象物の膜厚を算出し、前記対象物の膜厚を測定できるようにしたことを特徴とする電解処理における膜厚測定方法。 A magnetic sensor is disposed in the vicinity of the object to be electrolytically processed, the distribution of magnetic flux density during the electrolytic treatment is measured by the magnetic sensor, the surface current density of the object is obtained from the distribution of magnetic flux density, and the surface A film thickness measurement method in electrolytic treatment, wherein the film thickness of the object is calculated from the current density, and the film thickness of the object can be measured. 前記磁束密度の分布から前記表面電流密度を求める方法がビオサバールの積分方程式である請求項1に記載の電解処理における膜厚測定方法。 The method for measuring a film thickness in electrolytic treatment according to claim 1, wherein the method for obtaining the surface current density from the distribution of the magnetic flux density is Biosavart's integral equation. 前記磁束密度の分布から前記表面電流密度を求める方法がマクスウェル方程式である請求項1に記載の電解処理における膜厚測定方法。 The method for measuring a film thickness in electrolytic treatment according to claim 1, wherein the method for obtaining the surface current density from the distribution of the magnetic flux density is Maxwell's equation. 前記表面電流密度と膜厚成長速度の比例関係より前記膜厚を測定する請求項1乃至3のいずれかに記載の電解処理における膜厚測定方法。 The film thickness measurement method in electrolytic treatment according to any one of claims 1 to 3, wherein the film thickness is measured from a proportional relationship between the surface current density and the film thickness growth rate. 前記比例関係がファラデーの法則である請求項4に記載の電解処理における膜厚測定方法。 The method for measuring a film thickness in electrolytic treatment according to claim 4, wherein the proportional relationship is Faraday's law. 前記比例関係の比例定数を実験によって求める請求項4に記載の電解処理における膜厚測定方法。 The method for measuring a film thickness in electrolytic treatment according to claim 4, wherein a proportionality constant of the proportional relationship is obtained by an experiment. 前記電解処理中にリアルタイムに前記対象物の膜厚を測定する請求項1乃至6のいずれかに記載の電解処理における膜厚測定方法。 The film thickness measuring method in the electrolytic treatment according to claim 1, wherein the film thickness of the object is measured in real time during the electrolytic treatment. 前記磁気センサを1つ配設し、前記対象物をスキャンして前記磁束密度の分布を計測するようになっている請求項1乃至7のいずれかに記載の電解処理における膜厚測定方法。 The method of measuring a film thickness in electrolytic treatment according to any one of claims 1 to 7, wherein one magnetic sensor is provided and the distribution of the magnetic flux density is measured by scanning the object. 前記対象物が円板で回転している場合、前記対象物の中心から外周縁に向かって一列に、かつ外側に向かって順に間隔が小さくなるように前記磁気センサを複数配設している請求項1乃至7のいずれかに記載の電解処理における膜厚測定方法。 When the object is rotated by a disk, a plurality of the magnetic sensors are arranged so that the interval decreases in a row from the center of the object toward the outer peripheral edge and in order toward the outside. Item 8. A method for measuring a film thickness in electrolytic treatment according to any one of Items 1 to 7. 前記対象物が円板で回転している場合、前記対象物の中心から外周縁に向かって一列に、かつ等間隔に前記磁気センサを複数配設している請求項1乃至7のいずれかに記載の電解処理における膜厚測定方法。 8. The magnetic sensor according to claim 1, wherein when the object is rotated by a disk, a plurality of the magnetic sensors are arranged at equal intervals in a line from the center of the object toward an outer peripheral edge. The film thickness measuring method in the electrolytic treatment as described. 前記対象物が円板である場合、前記対象物の中心から放射状に前記磁気センサを配設するか、或いは前記対象物に前記磁気センサを格子状に配設する請求項1乃至7のいずれかに記載の電解処理における膜厚測定方法。 8. When the object is a disk, the magnetic sensors are arranged radially from the center of the object, or the magnetic sensors are arranged on the object in a grid pattern. The film thickness measuring method in the electrolytic treatment as described in 2. 前記対象物が矩形板である場合、前記対象物に対して格子状に、前記磁気センサを複数配設している請求項1乃至7のいずれかに記載の電解処理における膜厚測定方法。 The film thickness measurement method in electrolytic treatment according to any one of claims 1 to 7, wherein when the object is a rectangular plate, a plurality of the magnetic sensors are arranged in a lattice pattern with respect to the object. 電解処理される対象物の近傍に配設された磁束密度分布を計測する磁気センサと、前記磁気センサの信号である磁束密度の分布から前記対象物の表面電流密度を求め、前記表面電流密度から前記対象物の膜厚を算出する解析装置とを具備し、前記対象物の膜厚を測定することを特徴とする電解処理における膜厚測定装置。 A magnetic sensor for measuring a magnetic flux density distribution disposed in the vicinity of an object to be electrolytically processed, and a surface current density of the object is obtained from a magnetic flux density distribution as a signal of the magnetic sensor, and the surface current density is obtained from the surface current density. An apparatus for analyzing the film thickness of the object, comprising: an analyzer for calculating the film thickness of the object, and measuring the film thickness of the object. 前記磁気センサの信号をデジタル変換し、前記解析装置がデジタル値の膜厚を求めるようになっている請求項13に記載の電解処理における膜厚測定装置。 14. The film thickness measuring apparatus in electrolytic processing according to claim 13, wherein a signal of the magnetic sensor is digitally converted, and the analysis apparatus obtains a digital film thickness. 前記磁束密度の分布から前記表面電流密度を求める手段がビオサバールの積分方程式を実行する請求項13又は14に記載の電解処理における膜厚測定装置。 The film thickness measuring device in electrolytic treatment according to claim 13 or 14, wherein the means for obtaining the surface current density from the distribution of the magnetic flux density executes a biosaval integral equation. 前記磁束密度の分布から前記表面電流密度を求める手段がマクスウェル方程式を実行する請求項13又は14に記載の電解処理における膜厚測定装置。 The film thickness measuring device in electrolytic treatment according to claim 13 or 14, wherein the means for obtaining the surface current density from the distribution of the magnetic flux density executes Maxwell's equation. 前記表面電流密度と膜厚成長速度の比例関係より前記膜厚を測定する請求項13乃至16のいずれかに記載の電解処理における膜厚測定装置。 The film thickness measuring device in electrolytic treatment according to any one of claims 13 to 16, wherein the film thickness is measured from a proportional relationship between the surface current density and a film thickness growth rate. 前記比例関係がファラデーの法則である請求項17に記載の電解処理における膜厚測定装置。 The film thickness measuring apparatus in electrolytic treatment according to claim 17, wherein the proportional relationship is Faraday's law. 前記比例関係の比例定数を実験によって求める請求項17に記載の電解処理における膜厚測定装置。 The film thickness measuring device for electrolytic treatment according to claim 17, wherein the proportionality constant of the proportional relationship is obtained by experiment. 前記電解処理中にリアルタイムに前記対象物の膜厚を測定する請求項13乃至19のいずれかに記載の電解処理における膜厚測定装置。 The film thickness measuring apparatus in the electrolytic treatment according to any one of claims 13 to 19, which measures the film thickness of the object in real time during the electrolytic treatment. 前記対象物が円板で回転している場合、前記対象物の中心から外周縁に向かって一列に、かつ外側に向かって順に間隔が小さくなるように前記磁気センサを複数配設している請求項13乃至20のいずれかに記載の電解処理における膜厚測定装置。 When the object is rotated by a disk, a plurality of the magnetic sensors are arranged so that the interval decreases in a row from the center of the object toward the outer peripheral edge and in order toward the outside. Item 21. A film thickness measuring device in electrolytic treatment according to any one of Items 13 to 20. 前記対象物が円板で回転している場合、前記対象物の中心から外周縁に向かって一列に、かつ等間隔に前記磁気センサを複数配設している請求項13乃至20のいずれかに記載の電解処理における膜厚測定装置。 21. The magnetic sensor according to any one of claims 13 to 20, wherein when the object is rotated by a disk, a plurality of the magnetic sensors are arranged in a line from the center of the object toward an outer peripheral edge at equal intervals. The film thickness measuring apparatus in the electrolytic treatment as described. 前記対象物が円板である場合、前記対象物の中心から放射状に前記磁気センサを配設するか、或いは前記対象物に前記磁気センサを格子状に配設する請求項13乃至20のいずれかに記載の電解処理における膜厚測定装置。 21. When the object is a disk, the magnetic sensors are arranged radially from the center of the object, or the magnetic sensors are arranged on the object in a grid pattern. The film thickness measuring apparatus in the electrolytic treatment as described in 2. 前記対象物が円板で回転している場合、前記磁気センサを1つ配設し、前記磁気センサを前記対象物の中心から外周縁に向かってスキャンするスキャン機構を備えている請求項13乃至20のいずれかに記載の電解処理における膜厚測定装置。 14. The device according to claim 13, further comprising: a scanning mechanism that, when the object is rotated by a disk, includes one magnetic sensor and scans the magnetic sensor from a center of the object toward an outer peripheral edge. The film thickness measuring apparatus in the electrolytic treatment according to any one of 20. 前記対象物が円板で回転している場合、前記磁気センサを回転ロッドに取り付け、前記円板上を扇状にスキャンするスキャン装置を備えている請求項13乃至20のいずれかに記載の電解処理における膜厚測定装置。 21. The electrolytic treatment according to claim 13, further comprising: a scanning device that scans the disk in a fan shape by attaching the magnetic sensor to a rotating rod when the object is rotated by a disk. Film thickness measuring device. 前記対象物が矩形板である場合、前記対象物に対して格子状に、前記磁気センサを複数配設している請求項13乃至20のいずれかに記載の電解処理における膜厚測定装置。 21. The film thickness measuring apparatus in electrolytic treatment according to claim 13, wherein when the object is a rectangular plate, a plurality of the magnetic sensors are arranged in a lattice pattern with respect to the object.
JP2006184277A 2006-07-04 2006-07-04 Film thickness measuring method and film thickness measuring device in electrolysis processing Pending JP2008014699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184277A JP2008014699A (en) 2006-07-04 2006-07-04 Film thickness measuring method and film thickness measuring device in electrolysis processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184277A JP2008014699A (en) 2006-07-04 2006-07-04 Film thickness measuring method and film thickness measuring device in electrolysis processing

Publications (1)

Publication Number Publication Date
JP2008014699A true JP2008014699A (en) 2008-01-24

Family

ID=39071859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184277A Pending JP2008014699A (en) 2006-07-04 2006-07-04 Film thickness measuring method and film thickness measuring device in electrolysis processing

Country Status (1)

Country Link
JP (1) JP2008014699A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216424A (en) * 2008-03-07 2009-09-24 Kobe Steel Ltd Magnet position measuring method and magnetic field measuring instrument
JP2016173185A (en) * 2011-07-12 2016-09-29 プロセク ソシエテ アノニム Device for measuring wear of carbon ceramic brake disk
CN109285431A (en) * 2018-11-02 2019-01-29 安徽新华学院 A kind of demonstration Biot-Sa farr's law experimental system and experimental method
CN109753676A (en) * 2017-11-07 2019-05-14 株式会社荏原制作所 Plating analytic method, plating resolution system and the computer readable storage medium for plating parsing
KR102563631B1 (en) * 2022-05-10 2023-08-07 가부시키가이샤 에바라 세이사꾸쇼 Plating apparatus
KR20230150718A (en) 2022-04-22 2023-10-31 가부시키가이샤 에바라 세이사꾸쇼 Plating apparatus

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138503A (en) * 1984-07-31 1986-02-24 Ketsuto Kagaku Kenkyusho:Kk Film thickness gauge
JPS63309876A (en) * 1987-06-12 1988-12-16 Nippon Telegr & Teleph Corp <Ntt> Multi-type dcsquid magnetometer
JPH01239403A (en) * 1988-03-18 1989-09-25 Sumitomo Metal Ind Ltd Film thickness measuring method
JPH01257203A (en) * 1988-04-07 1989-10-13 Sumitomo Metal Ind Ltd Electric plating method and apparatus
JPH0270099A (en) * 1988-09-05 1990-03-08 Sumitomo Metal Ind Ltd Method and apparatus for electroplating
JPH04238281A (en) * 1991-01-21 1992-08-26 Seiko Instr Inc Electrochemical reaction measuring device
JPH05335459A (en) * 1992-06-02 1993-12-17 Ritsukusu Kk Electroplating apparatus
JPH1142554A (en) * 1997-07-25 1999-02-16 Nec Corp Polishing amount control device
US6036838A (en) * 1997-11-15 2000-03-14 Deutsches Zentrum Fuer Luft -Und Raumfahrt E.V. Method for determining the substance conversion during electrochemical reactions and electrochemical unit
JP2001007408A (en) * 1999-06-18 2001-01-12 Daikin Ind Ltd Manufacture of multilayer film thermoelectric converting material, and its device, and thermoelectric converting material
JP2001152397A (en) * 1999-11-19 2001-06-05 Ebara Corp Plating analysis method
JP2001343205A (en) * 2000-03-28 2001-12-14 Toshiba Corp Eddy current loss measuring sensor, apparatus and method for measurement of film thickness as well as recording medium
JP2002174502A (en) * 2000-12-07 2002-06-21 Ulvac Japan Ltd Axial aligner, film thickness measuring apparatus, film forming apparatus, method and apparatus for measuring film thickness
JP2003227000A (en) * 2002-02-05 2003-08-15 Tokushu Giken Kk Implement for removing iron powder in chrome plating solution, device for removing iron powder and method of removing iron powder
JP2004500689A (en) * 2000-01-28 2004-01-08 フオルクスワーゲン・アクチエンゲゼルシヤフト Method of detecting current density distribution in fuel cell
JP2005003503A (en) * 2003-06-11 2005-01-06 Foresutekku:Kk Magnetic-shielding method using induction coil
JP2007270320A (en) * 2006-03-31 2007-10-18 Ebara Corp Polarization curve measurement method and electrolytic treatment apparatus

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138503A (en) * 1984-07-31 1986-02-24 Ketsuto Kagaku Kenkyusho:Kk Film thickness gauge
JPS63309876A (en) * 1987-06-12 1988-12-16 Nippon Telegr & Teleph Corp <Ntt> Multi-type dcsquid magnetometer
JPH01239403A (en) * 1988-03-18 1989-09-25 Sumitomo Metal Ind Ltd Film thickness measuring method
JPH01257203A (en) * 1988-04-07 1989-10-13 Sumitomo Metal Ind Ltd Electric plating method and apparatus
JPH0270099A (en) * 1988-09-05 1990-03-08 Sumitomo Metal Ind Ltd Method and apparatus for electroplating
JPH04238281A (en) * 1991-01-21 1992-08-26 Seiko Instr Inc Electrochemical reaction measuring device
JPH05335459A (en) * 1992-06-02 1993-12-17 Ritsukusu Kk Electroplating apparatus
JPH1142554A (en) * 1997-07-25 1999-02-16 Nec Corp Polishing amount control device
US6036838A (en) * 1997-11-15 2000-03-14 Deutsches Zentrum Fuer Luft -Und Raumfahrt E.V. Method for determining the substance conversion during electrochemical reactions and electrochemical unit
JP2001007408A (en) * 1999-06-18 2001-01-12 Daikin Ind Ltd Manufacture of multilayer film thermoelectric converting material, and its device, and thermoelectric converting material
JP2001152397A (en) * 1999-11-19 2001-06-05 Ebara Corp Plating analysis method
JP2004500689A (en) * 2000-01-28 2004-01-08 フオルクスワーゲン・アクチエンゲゼルシヤフト Method of detecting current density distribution in fuel cell
JP2001343205A (en) * 2000-03-28 2001-12-14 Toshiba Corp Eddy current loss measuring sensor, apparatus and method for measurement of film thickness as well as recording medium
JP2002174502A (en) * 2000-12-07 2002-06-21 Ulvac Japan Ltd Axial aligner, film thickness measuring apparatus, film forming apparatus, method and apparatus for measuring film thickness
JP2003227000A (en) * 2002-02-05 2003-08-15 Tokushu Giken Kk Implement for removing iron powder in chrome plating solution, device for removing iron powder and method of removing iron powder
JP2005003503A (en) * 2003-06-11 2005-01-06 Foresutekku:Kk Magnetic-shielding method using induction coil
JP2007270320A (en) * 2006-03-31 2007-10-18 Ebara Corp Polarization curve measurement method and electrolytic treatment apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216424A (en) * 2008-03-07 2009-09-24 Kobe Steel Ltd Magnet position measuring method and magnetic field measuring instrument
JP2016173185A (en) * 2011-07-12 2016-09-29 プロセク ソシエテ アノニム Device for measuring wear of carbon ceramic brake disk
CN109753676A (en) * 2017-11-07 2019-05-14 株式会社荏原制作所 Plating analytic method, plating resolution system and the computer readable storage medium for plating parsing
KR20190051798A (en) * 2017-11-07 2019-05-15 가부시키가이샤 에바라 세이사꾸쇼 Plating analysis method, plating analysis system, and computer-readable storage medium for plating analysis
KR102281073B1 (en) 2017-11-07 2021-07-23 가부시키가이샤 에바라 세이사꾸쇼 Plating analysis method, plating analysis system, and computer-readable storage medium for plating analysis
CN109753676B (en) * 2017-11-07 2023-08-18 株式会社荏原制作所 Plating analysis method, plating analysis system, and computer-readable storage medium for plating analysis
CN109285431A (en) * 2018-11-02 2019-01-29 安徽新华学院 A kind of demonstration Biot-Sa farr's law experimental system and experimental method
CN109285431B (en) * 2018-11-02 2023-11-21 安徽新华学院 Experimental system and experimental method for demonstrating Biaoo-Safire law
KR20230150718A (en) 2022-04-22 2023-10-31 가부시키가이샤 에바라 세이사꾸쇼 Plating apparatus
KR102563631B1 (en) * 2022-05-10 2023-08-07 가부시키가이샤 에바라 세이사꾸쇼 Plating apparatus

Similar Documents

Publication Publication Date Title
JP2008014699A (en) Film thickness measuring method and film thickness measuring device in electrolysis processing
Uchic Serial sectioning methods for generating 3D characterization data of grain-and precipitate-scale microstructures
Sobola et al. Influence of scanning rate on quality of AFM image: Study of surface statistical metrics
JP7121506B2 (en) SEARCHING DEVICE, SEARCHING METHOD AND PLASMA PROCESSING DEVICE
US20080185103A1 (en) Control of Critical Dimensions of Etched Structures on Semiconductor Wafers
JP2018007821A (en) Magnetic field measuring apparatus and magnetic field measuring method
JP6035535B2 (en) Distribution analyzer
CN109891228B (en) Material defect detection apparatus, material defect detection system, material defect detection method, and non-transitory computer-readable storage medium
TW201539601A (en) System and method for field-by-field overlay process control using measured and estimated field parameters
JP7452883B2 (en) Storage battery inspection device and storage battery inspection method
US7005306B1 (en) Accurate thickness measurement of thin conductive film
US5797114A (en) Method and apparatus for mapping of semiconductor materials
KR20150125931A (en) Distribution analyzing device and distribution analyzing method
Breton et al. Electrical test prediction using hybrid metrology and machine learning
JP2008304452A (en) Semiconductor inspection system and apparatus utilizing non-vibrating contact potential difference sensor and controlled illumination
JP7299615B2 (en) Material analysis system, material analysis method, and material analysis program
Ma et al. Magnetic fields induced by electrochemical reactions: Aluminum alloy corrosion sensing by SQUID magnetometry on a macroscopic scale
Ren et al. Measurement of current distribution using infrared thermography
Wondrak et al. Some methodological improvements of the contactless inductive flow tomography
JP4460808B2 (en) Current density vector estimation device and electrical conductivity estimation device
Kiwa et al. Ion transportation of electrolytes in a flow channel mapped by an HTS SQUID scanning system
JP5476584B2 (en) Current direction and density measurement method, display method, and measurement display device
WO2023170737A1 (en) Temperature control apparatus, testing apparatus, temperature control method, and temperature control program
Funahashi et al. Enhanced analysis of particles and vapor phase decomposition droplets by total-reflection X-ray fluorescence
JP3846116B2 (en) Plasma characteristic measuring apparatus and plasma processing inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011