JP2008012501A - METHOD FOR CARRYING NOx OCCLUSION MATERIAL - Google Patents

METHOD FOR CARRYING NOx OCCLUSION MATERIAL Download PDF

Info

Publication number
JP2008012501A
JP2008012501A JP2006189332A JP2006189332A JP2008012501A JP 2008012501 A JP2008012501 A JP 2008012501A JP 2006189332 A JP2006189332 A JP 2006189332A JP 2006189332 A JP2006189332 A JP 2006189332A JP 2008012501 A JP2008012501 A JP 2008012501A
Authority
JP
Japan
Prior art keywords
composite oxide
aqueous solution
oxide precursor
compound
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006189332A
Other languages
Japanese (ja)
Other versions
JP4786442B2 (en
Inventor
Yoshiteru Yazawa
義輝 矢沢
Toshiyuki Tanaka
寿幸 田中
Hiroto Imai
啓人 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Cataler Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Cataler Corp
Priority to JP2006189332A priority Critical patent/JP4786442B2/en
Publication of JP2008012501A publication Critical patent/JP2008012501A/en
Application granted granted Critical
Publication of JP4786442B2 publication Critical patent/JP4786442B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst capable of sufficiently uniformly carrying a Ba-Ti composite oxide or the like so as to be able to prevent a deterioration due to sulfur poisoning. <P>SOLUTION: A porous oxide is impregnated with a composite oxide precursor aqueous solution that is prepared by dissolving a first compound containing at least one type of element selected from among alkaline earth metals and rare earth elements, a second compound containing at least one type of element selected from among 3rd group elements, 4th group elements, and transition metals, a third compound having polydentate ligands, and hydrogen peroxide in water and is adjusted to have a pH of 4 to 7. The porous oxide is dried and then fired. The concentration of the composite oxide precursor can be increased while delaying the gelation, so that a sufficient amount of the composite oxide precursor can be carried in a single step of water absorption and impregnation. Thus, the structure of the composite oxide will never be destroyed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、NOx 吸蔵還元型触媒などの製造に用いられるNOx 吸蔵材の担持方法に関する。 The present invention relates to a method for supporting a NO x storage material used in the production of a NO x storage reduction catalyst or the like.

リーンバーンエンジンにおいて、常時は酸素過剰の燃料リーン条件で燃焼させ、間欠的に燃料ストイキ〜リッチ条件とすることにより排ガスを還元雰囲気としてNOx を還元浄化するシステムが開発され、実用化されている。そしてこのシステムに最適な触媒として、リーン雰囲気でNOx を吸蔵し、ストイキ〜リッチ雰囲気で吸蔵されたNOx を放出するBaなどのNOx 吸蔵材を用いたNOx 吸蔵還元型の排ガス浄化用触媒が開発されている。 In a lean burn engine, a system that reduces and purifies NO x using exhaust gas as a reducing atmosphere by constantly burning in an oxygen-excess fuel lean condition and intermittently changing to a fuel stoichiometric to rich condition has been developed and put into practical use. . And as the best catalysts for this system, occludes NO x in lean atmosphere, an exhaust gas purification of the NO x storage reduction using the NO x storage material such as Ba that releases NO x occluded in the stoichiometric-rich atmosphere Catalysts have been developed.

このNOx 吸蔵還元型触媒を用いれば、空燃比をリーン側からパルス状にストイキ〜リッチ側となるように制御することにより、排ガスもリーン雰囲気からパルス状にストイキ〜リッチ雰囲気となる。したがって、リーン側ではNOx がNOx 吸蔵材に吸蔵され、それがストイキ又はリッチ側で放出されてHCやCOなどの還元性成分と反応して浄化されるため、リーンバーンエンジンからの排ガスであってもNOx を効率良く浄化することができる。また排ガス中のHC及びCOは、貴金属により酸化されるとともにNOx の還元にも消費されるので、HC及びCOも効率よく浄化される。 Using this NO x storage-and-reduction type catalyst, by controlling so that the stoichiometric-rich side air-fuel ratio from the lean side in a pulsed manner, the exhaust gas becomes stoichiometric-rich atmosphere from a lean atmosphere in pulses. Therefore, on the lean side, NO x is occluded in the NO x occlusion material, and it is released on the stoichiometric or rich side and reacts with reducing components such as HC and CO to be purified, so the exhaust gas from the lean burn engine Even if it exists, NOx can be purified efficiently. Further, HC and CO in the exhaust gas are oxidized by the noble metal and consumed for the reduction of NO x , so that HC and CO are also efficiently purified.

ところが排ガス中には、燃料中に含まれる硫黄(S)が燃焼して生成したSOx が含まれ、それがリーン雰囲気の排ガス中で貴金属により酸化されてSO3 となる。そしてそれがやはり排ガス中に含まれる水蒸気により容易に硫酸となり、これらがNOx 吸蔵材と反応して亜硫酸塩や硫酸塩が生成し、これによりNOx 吸蔵材が被毒劣化することが明らかとなった。また、アルミナなどの多孔質酸化物担体はSOx を吸着しやすいという性質があることから、上記硫黄被毒が促進されるという問題がある。 However, the exhaust gas contains SO x produced by combustion of sulfur (S) contained in the fuel, which is oxidized by the noble metal in the exhaust gas in the lean atmosphere to become SO 3 . And it is also clear that the water vapor contained in the exhaust gas easily turns into sulfuric acid, which reacts with the NO x storage material to produce sulfite and sulfate, which poisons and deteriorates the NO x storage material. became. In addition, a porous oxide carrier such as alumina has a property of easily adsorbing SO x , so that the sulfur poisoning is promoted.

そして、このようにNOx 吸蔵材が亜硫酸塩や硫酸塩となって被毒劣化すると、もはやNOx を吸蔵することができなくなり、その結果上記触媒では、耐久後のNOx の浄化性能が低下するという不具合があった。 When thus the NO x storage material is deteriorated poisoning become sulfites and sulfates, it becomes impossible to occlude NO x longer, resulting in the catalyst, decreases purification performance of the NO x after the durability There was a bug to do.

そこで特開平08−099034号公報などには、チタニアなどの酸性酸化物を担体として用いることが提案されている。酸性酸化物を担体とすることで、酸性の硫黄酸化物の近接が抑制されるため硫黄被毒を抑制することができる。また、NOx 吸蔵材とチタンなどの複合酸化物を用いても、同様に硫黄被毒を抑制することができる。 Therefore, Japanese Patent Application Laid-Open No. 08-099034 and the like propose to use an acidic oxide such as titania as a carrier. By using an acidic oxide as a carrier, the proximity of acidic sulfur oxide is suppressed, so that sulfur poisoning can be suppressed. Moreover, even with a composite oxide such as the NO x storage material and titanium, as well as it is possible to suppress the sulfur poisoning.

しかしNOx 吸蔵材とチタンなどの複合酸化物を多孔質酸化物担体に担持した触媒においては、予め調製された複合酸化物を担持した場合には、その粒径が大きく表面積が小さいために、NOx 吸蔵能が低いという問題がある。この問題を解決するには、複数の金属元素を含む水溶液を多孔質酸化物担体に含浸させ、それを焼成することで複合酸化物を形成することが望ましい。 However, in the catalyst of the composite oxide supported on a porous oxide support, such as the NO x storage material and the titanium, in the case of carrying previously prepared composite oxide, because the particle size is large surface area small, There is a problem that NO x storage capacity is low. In order to solve this problem, it is desirable to form a composite oxide by impregnating a porous oxide carrier with an aqueous solution containing a plurality of metal elements and firing it.

そこで例えば特開2003−071298号公報には、チタンアルコキシドとクエン酸を混合してチタンクエン酸錯体水溶液を調製し、それに酢酸バリウム水溶液を加えた複合酸化物前駆体水溶液を多孔質酸化物担体に含浸させ、焼成することでBa−Ti複合酸化物を担持する方法が開示されている。この方法によれば、多孔質酸化物担体に微細なBa−Ti複合酸化物を容易に担持することができる。   Therefore, for example, in Japanese Patent Application Laid-Open No. 2003-071298, titanium alkoxide and citric acid are mixed to prepare a titanium citrate complex aqueous solution, and a composite oxide precursor aqueous solution in which a barium acetate aqueous solution is added thereto is used as a porous oxide support. A method for supporting a Ba-Ti composite oxide by impregnation and firing is disclosed. According to this method, the fine Ba—Ti composite oxide can be easily supported on the porous oxide support.

ところがこの方法では、複合酸化物前駆体水溶液のゲル化の進行が早く、安定性が低いという不具合があった。そのため複合酸化物前駆体水溶液を調製後、短時間の間に多孔質酸化物担体へ含浸させる必要があった。その調製後に時間が経過した複合酸化物前駆体水溶液を用いると、担持された複合酸化物の粒径が粗大化したり、分散性が低下するようになり、NOx 吸蔵能が低下するからである。そして複合酸化物前駆体水溶液の保存が困難であるために、NOx 吸蔵材の担持工程の度に複合酸化物前駆体水溶液を調製する必要があり、工数が多大となっていた。 However, in this method, there is a problem that the progress of gelation of the complex oxide precursor aqueous solution is fast and the stability is low. Therefore, it was necessary to impregnate the porous oxide support in a short time after preparing the composite oxide precursor aqueous solution. This is because using a composite oxide precursor aqueous solution whose time has elapsed after its preparation causes the particle size of the supported composite oxide to become coarser or the dispersibility to decrease, resulting in a decrease in NO x storage capacity. . Further, since it is difficult to store the composite oxide precursor aqueous solution, it is necessary to prepare the composite oxide precursor aqueous solution every time the NO x storage material is loaded, which requires a large number of steps.

このような不具合を解決するものとして、特開2005−060147号公報には、特開2003−071298号公報に記載の複合酸化物前駆体水溶液に過酸化水素をさらに配合することが提案されている。過酸化水素によって複合酸化物前駆体水溶液のゲル化を遅延させることができるため、例えば2週間程度以上の長期間保存しても調製初期と同等の特性を有し、それを用いて多孔質酸化物に担持すれば、微細な複合酸化物を高分散で担持することができる。   As a solution to such a problem, Japanese Patent Application Laid-Open No. 2005-060147 proposes further adding hydrogen peroxide to the complex oxide precursor aqueous solution described in Japanese Patent Application Laid-Open No. 2003-071298. . Since the gelation of the complex oxide precursor aqueous solution can be delayed by hydrogen peroxide, it has the same characteristics as the initial preparation even if it is stored for a long period of time, such as about two weeks or more, and it is used for porous oxidation. If it is supported on an object, a fine composite oxide can be supported with high dispersion.

なお、上記のような複合酸化物前駆体水溶液を用いてNOx 吸蔵還元型の排ガス浄化用触媒を調製するには、先ずハニカム形状のモノリス基材にアルミナなどの担体からコート層を形成する。次にコート層をもつモノリス基材にPtなどの貴金属を担持し、次いでコート層に複合酸化物前駆体水溶液を吸水含浸させ、それを乾燥後に焼成すればよい。 Note that to prepare the NO x storage-and-reduction type exhaust gas purifying catalyst using the composite oxide precursor solution as described above, first, the monolith substrate in a honeycomb shape from a carrier such as alumina to form the coating layer. Next, a monolith substrate having a coating layer may be loaded with a noble metal such as Pt, and then the coating layer may be impregnated with a composite oxide precursor aqueous solution and dried and fired after drying.

また特開2005−152775号公報には、触媒成分を含有するコーティング液をコート層をもつモノリス基材にコートし、それを波長が 100μm以上の電磁波照射により乾燥する方法が開示されている。
特開平08−099034号 特開2003−071298号 特開2005−060147号 特開2005−152775号
Japanese Patent Application Laid-Open No. 2005-152775 discloses a method of coating a monolith substrate having a coating layer with a coating liquid containing a catalyst component and drying it by irradiation with electromagnetic waves having a wavelength of 100 μm or more.
JP 08-099034 JP2003-071298 JP 2005-060147 A JP 2005-152775 A

ところが特許文献3に記載の複合酸化物前駆体水溶液は複合酸化物前駆体の濃度が低いために、必要量の複合酸化物を担持させるためには、コート層に吸水含浸させて焼成する工程を複数回繰り返す必要があった。すると2回目以降の吸水含浸工程において、前回に担持されていた複合酸化物の構造が破壊されてBaなどが次の複合酸化物前駆体水溶液中に溶出し、その結果、触媒中におけるBaなどの分布が不均一になるという問題があった。   However, since the composite oxide precursor aqueous solution described in Patent Document 3 has a low concentration of the composite oxide precursor, in order to support a necessary amount of the composite oxide, the coating layer is impregnated with water absorption and fired. It was necessary to repeat several times. Then, in the second and subsequent water absorption impregnation steps, the structure of the composite oxide supported last time is destroyed and Ba and the like are eluted into the next aqueous composite oxide precursor solution. As a result, Ba and the like in the catalyst There was a problem that the distribution became non-uniform.

またNOx 吸蔵能をさらに向上させるために、複合酸化物前駆体水溶液にLiやKなどの水溶性塩を混合して担持する方法も考えられる。ところがこの方法では、複合酸化物前駆体の構造が破壊され、Baが複合化されず単独酸化物(又は炭酸塩)として担持されることが明らかとなった。Baは硫黄被毒によってNOx 吸蔵能が著しく低下する元素であるので、複合酸化物として担持することが必要不可欠である。 In order to further improve the NO x storage capacity, a method in which a water-soluble salt such as Li or K is mixed and supported in the composite oxide precursor aqueous solution is also conceivable. However, in this method, it was revealed that the structure of the complex oxide precursor was destroyed and Ba was not complexed and supported as a single oxide (or carbonate). Since Ba is an element whose NO x storage capacity is significantly reduced by sulfur poisoning, it is essential to support it as a complex oxide.

ところでコート層に複合酸化物前駆体水溶液を吸水含浸させ、それを熱風乾燥後に焼成する方法においては、水分が表面から蒸発するのに伴ってコート層内部の水分が表面に移動し、それに伴って複合酸化物前駆体が移動するため、コート層の厚さ方向で複合酸化物前駆体の濃度に分布が生じる。したがって厚さ方向における複合酸化物の分布が不均一となる。さらに複合酸化物前駆体には、多座配位子を有する錯体が含まれているため有機物が多い。そのため複合酸化物の分布が不均一であると、焼成時に局部的に高温となる部位が生じ、表面積が低下したり貴金属に粒成長が生じたりして、浄化性能が低下する場合があった。   By the way, in the method of impregnating the coating layer with the composite oxide precursor aqueous solution and baking it after drying with hot air, the moisture inside the coating layer moves to the surface as the moisture evaporates from the surface. Since the complex oxide precursor moves, a distribution occurs in the concentration of the complex oxide precursor in the thickness direction of the coat layer. Therefore, the distribution of the complex oxide in the thickness direction becomes non-uniform. Furthermore, since the complex oxide precursor contains a complex having a multidentate ligand, there are many organic substances. For this reason, if the distribution of the composite oxide is not uniform, a part that becomes locally hot during firing occurs, and the surface area may decrease or grain growth may occur in the noble metal, resulting in a reduction in purification performance.

本発明は上記事情に鑑みてなされたものであり、Ba−Ti複合酸化物などを十分に均一に担持し、硫黄被毒劣化を防止できる触媒とすることを解決すべき課題とする。   This invention is made | formed in view of the said situation, and makes it the problem which should be solved to make it the catalyst which carry | supports Ba-Ti complex oxide etc. fully uniformly and can prevent sulfur poisoning deterioration.

上記課題を解決する本発明のNOx 吸蔵材の担持方法の特徴は、アルカリ土類金属及び希土類元素から選ばれる少なくとも一種の元素を含む第1化合物と、第3族元素,第4族元素及び遷移金属から選ばれる少なくとも一種の元素を含む第2化合物と、多座配位子を有する第3化合物と、過酸化水素と、が水に溶解してなりpHが4〜7に調整された複合酸化物前駆体水溶液を調製し、複合酸化物前駆体水溶液を多孔質酸化物に含浸させ乾燥後に焼成して多孔質酸化物に複合酸化物を担持することにある。 The feature of the method for supporting the NO x storage material of the present invention that solves the above problems is that a first compound containing at least one element selected from an alkaline earth metal and a rare earth element, a Group 3 element, a Group 4 element, and A composite in which a second compound containing at least one element selected from transition metals, a third compound having a polydentate ligand, and hydrogen peroxide are dissolved in water and the pH is adjusted to 4 to 7. An oxide precursor aqueous solution is prepared, the composite oxide precursor aqueous solution is impregnated into a porous oxide, dried and fired, and the composite oxide is supported on the porous oxide.

乾燥工程は、波長が 100μm以上の電磁波照射により行うことが望ましい。   The drying process is preferably performed by irradiation with electromagnetic waves having a wavelength of 100 μm or more.

NOx 吸蔵材としてのアルカリ金属をさらに担持する場合には、多孔質酸化物に複合酸化物を担持した後に、アルカリ金属を含む第4化合物が水に溶解した水溶液を含浸させ焼成することが望ましい。 In the case of further supporting an alkali metal as the NO x storage material, it is desirable to saturate and calcinate an aqueous solution in which a fourth compound containing an alkali metal is dissolved in water after the composite oxide is supported on the porous oxide. .

本発明のNOx 吸蔵材の担持方法では、複合酸化物前駆体水溶液のpHを4〜7に調整している。このため理由は不明であるが、複合酸化物前駆体の濃度を高くしてもゲル化を遅延させることができる。したがって一度の吸水含浸工程により十分な量の複合酸化物前駆体を担持させることができ、2回目以降の吸水含浸工程を回避することができる。これにより複合酸化物の構造が破壊されることが無いので、Ba−Ti複合酸化物などを十分に均一に担持することができる。 In the method for supporting the NO x storage material of the present invention, the pH of the aqueous complex oxide precursor solution is adjusted to 4-7. For this reason, although the reason is unknown, gelation can be delayed even if the concentration of the complex oxide precursor is increased. Therefore, a sufficient amount of the composite oxide precursor can be supported by one water absorption impregnation step, and the second and subsequent water absorption impregnation steps can be avoided. As a result, the structure of the composite oxide is not destroyed, so that the Ba—Ti composite oxide and the like can be supported sufficiently uniformly.

また波長が 100μm以上の電磁波照射により乾燥工程を行うことで、含浸した複合酸化物前駆体水溶液をコート層の内部から表面まで均一に乾燥させることができる。したがって熱風乾燥の場合に生じる、水分の移動に伴う複合酸化物前駆体の移動を回避することができ、複合酸化物を十分均一に担持することができる。これにより焼成時における有機物の燃焼に伴う発熱が均一に生じ、局部的に高温となるのを回避することができるので、表面積の低下や貴金属の粒成長を回避することができ触媒性能の低下を防止することができる。   Moreover, the impregnated complex oxide precursor aqueous solution can be uniformly dried from the inside to the surface of the coat layer by performing the drying step by irradiation with electromagnetic waves having a wavelength of 100 μm or more. Therefore, the movement of the complex oxide precursor accompanying the movement of moisture, which occurs in the case of hot air drying, can be avoided, and the complex oxide can be supported sufficiently uniformly. As a result, the heat generated by the burning of the organic matter during firing can be uniformly generated, and it is possible to avoid a local increase in temperature, so it is possible to avoid a reduction in surface area and noble metal grain growth, resulting in a decrease in catalyst performance. Can be prevented.

そしてNOx 吸蔵材としてのアルカリ金属をさらに担持する場合には、多孔質酸化物に複合酸化物を担持した後に、アルカリ金属を含む第4化合物が水に溶解した水溶液を含浸させ焼成すれば、複合酸化物前駆体の構造が破壊されることが無いので、Ba−Ti複合酸化物などを十分に均一に担持することができる。 And when further supporting an alkali metal as a NO x storage material, after supporting the composite oxide on the porous oxide, if impregnated with an aqueous solution in which the fourth compound containing the alkali metal is dissolved in water, Since the structure of the complex oxide precursor is not destroyed, the Ba—Ti complex oxide and the like can be supported sufficiently uniformly.

したがって本発明の担持方法によりNOx 吸蔵材を担持したNOx 吸蔵還元型の触媒によれば、硫黄被毒を十分に防止することができる。 Therefore, according to the NO x occlusion reduction type catalyst carrying the NO x occlusion material by the carrying method of the present invention, sulfur poisoning can be sufficiently prevented.

特許文献2に記載の複合酸化物前駆体水溶液によるゲル化の進行は、チタンクエン酸錯体とBaイオンなどとの反応に起因している。そこで本発明に用いる複合酸化物前駆体水溶液では、アルカリ土類金属及び希土類元素から選ばれる少なくとも一種の元素を含む第1化合物と、第3族元素,第4族元素及び遷移金属から選ばれる少なくとも一種の元素を含む第2化合物と、多座配位子を有する第3化合物とに加えて、さらに過酸化水素を用いている。第2化合物と第3化合物とで形成される錯体に過酸化水素が配位することによって、錯体と第1化合物のイオンとの反応が抑制されると考えられ、ゲル化の進行が抑制される。   The progress of gelation by the composite oxide precursor aqueous solution described in Patent Document 2 is caused by the reaction between a titanium citrate complex and Ba ions or the like. Therefore, in the composite oxide precursor aqueous solution used in the present invention, at least one selected from a first compound containing at least one element selected from alkaline earth metals and rare earth elements, a Group 3 element, a Group 4 element, and a transition metal. In addition to the second compound containing one kind of element and the third compound having a polydentate ligand, hydrogen peroxide is further used. It is considered that hydrogen peroxide coordinates to the complex formed by the second compound and the third compound, whereby the reaction between the complex and the ion of the first compound is suppressed, and the progress of gelation is suppressed. .

そして本発明のNOx 吸蔵材の担持方法においては、複合酸化物前駆体水溶液のpHを4〜7に調整している。pHを4〜7に調整することで、理由は不明であるが、ゲル化の進行を抑制するとともに水溶液中の複合酸化物前駆体の濃度を高めることが可能となる。したがって1回の担持工程で十分な量の複合酸化物を担持することができ、既に担持されている複合酸化物の構造が破壊されることが無いので、複合酸化物を十分に均一に担持することができる。 And in carrying the method of the NO x storage material of the present invention, and adjusting the pH of the composite oxide precursor aqueous solution to 4-7. Although the reason is unknown by adjusting the pH to 4 to 7, it is possible to suppress the progress of gelation and increase the concentration of the complex oxide precursor in the aqueous solution. Therefore, a sufficient amount of the complex oxide can be loaded in one loading step, and the structure of the already loaded complex oxide is not destroyed, so the complex oxide is loaded sufficiently uniformly. be able to.

第1化合物は、Ba、Mg、Ca、Srなどのアルカリ土類金属及びSc、Y、La、Ce、Pr、Ndなどの希土類元素から選ばれる少なくとも一種の元素を含む化合物であり、水酸化物、酢酸塩、炭酸塩、硝酸塩など水溶性の化合物を用いることが望ましい。中でも酢酸バリウム、硝酸バリウムなどのBa化合物が特に好ましい。   The first compound is a compound containing at least one element selected from alkaline earth metals such as Ba, Mg, Ca and Sr and rare earth elements such as Sc, Y, La, Ce, Pr and Nd. It is desirable to use water-soluble compounds such as acetates, carbonates and nitrates. Of these, Ba compounds such as barium acetate and barium nitrate are particularly preferred.

第2化合物は、Al、Si、Pなどの第3族元素、Ti、Zrなどの第4族元素及びV、Cr、Mn、Fe、Co、Ni、Cu、Znなどの遷移金属から選ばれる少なくとも一種の元素を含む化合物であり、第1化合物と同様に水酸化物、硝酸塩などの水溶性の化合物を用いることができる。中でもTi化合物が望ましい。またアルコキシドを用いることも好ましい。アルコキシドを用いれば、多座配位子との錯体を容易に形成することができる。   The second compound is at least selected from Group 3 elements such as Al, Si, and P, Group 4 elements such as Ti and Zr, and transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu, and Zn. It is a compound containing a kind of element, and water-soluble compounds such as hydroxides and nitrates can be used similarly to the first compound. Of these, Ti compounds are desirable. It is also preferable to use an alkoxide. If an alkoxide is used, a complex with a polydentate ligand can be easily formed.

第3化合物は、2個以上の配位基で配位し得る多座配位子を有する化合物であり、クエン酸、シュウ酸などの多価カルボン酸類、グリコール、ピナコールなどのジオール類などが挙げられる。このうち1種を単独で用いてもよいし、複数種を組み合わせて用いることもできる。中でもクエン酸が特に好ましい。   The third compound is a compound having a polydentate ligand capable of coordinating with two or more coordination groups, and examples thereof include polyvalent carboxylic acids such as citric acid and oxalic acid, and diols such as glycol and pinacol. It is done. Among these, one type may be used alone, or a plurality of types may be used in combination. Of these, citric acid is particularly preferred.

本発明の複合酸化物前駆体水溶液は、第1化合物、第2化合物、第3化合物及び過酸化水素が水に溶解してなる。水は、イオン交換水、蒸留水などの純水であることが望ましい。また各化合物の含有量は、水1000mlに対して、第1化合物の金属元素が 0.1〜 1.0モル、第2化合物の金属元素が 0.1〜 1.0モル、第3化合物が 0.3〜 5.0モルの範囲とすることが好ましい。各化合物の含有量がこの範囲を超えると、溶液濃度が高すぎて反応が均一に起こりにくくなる傾向にある。また各化合物の含有量がこの範囲より少ないと、溶液濃度が低すぎてNOx 吸蔵材の担持効率が低下するようになる。 The composite oxide precursor aqueous solution of the present invention is obtained by dissolving the first compound, the second compound, the third compound, and hydrogen peroxide in water. The water is preferably pure water such as ion exchange water or distilled water. The content of each compound is in the range of 0.1 to 1.0 mol of the metal element of the first compound, 0.1 to 1.0 mol of the metal element of the second compound, and 0.3 to 5.0 mol of the third compound with respect to 1000 ml of water. It is preferable. If the content of each compound exceeds this range, the solution concentration is too high and the reaction tends to be difficult to occur uniformly. On the other hand, when the content of each compound is less than this range, the solution concentration is too low and the supporting efficiency of the NO x storage material decreases.

第1化合物と第2化合物は、各々の金属元素のモル比が第2化合物/第1化合物= 0.5〜 1.5の範囲となるように配合することが好ましい。このように調製された水溶液を用いてNOx 吸蔵材を担持すれば、NOx 吸蔵能が著しく向上する。 It is preferable to mix | blend a 1st compound and a 2nd compound so that the molar ratio of each metal element may become the range of 2nd compound / 1st compound = 0.5-1.5. If the NO x storage material is supported using the aqueous solution thus prepared, the NO x storage capacity is remarkably improved.

第3化合物は、第2化合物に対してモル比で3以上含まれていることが望ましい。第3化合物の含有量がこれより少ないと、第2化合物との錯体の形成が困難となり、目的とする複合酸化物の形成が困難となる。なお第3化合物が第2化合物に対してモル比で10を超えて含まれると、第1化合物及び第2化合物の溶液中濃度が低下し担持効率が低下することになるので、第2化合物に対してモル比で10以下の範囲とすることが望ましい。   The third compound is desirably contained in a molar ratio of 3 or more with respect to the second compound. If the content of the third compound is less than this, it is difficult to form a complex with the second compound, and it is difficult to form the target composite oxide. If the third compound is contained in a molar ratio of more than 10 with respect to the second compound, the concentration of the first compound and the second compound in the solution will decrease and the loading efficiency will decrease. On the other hand, the molar ratio is preferably 10 or less.

水溶液のpHを4〜7に調整するには、リン酸ナトリウムなどの緩衝剤を添加する方法もあるが、過酸化水素の添加量を低減し、アンモニア水によりpHを調整することが好ましい。特許文献3には、過酸化水素は、第2化合物に対してモル比で1/2以上3以下とすることが望ましいことが記載されている。しかし本願発明者らの研究によれば、過酸化水素の添加量を第2化合物に対してモル比で1/2以下に低減し、アンモニア水によりpHを4〜7に調整することで、ゲル化を抑制できることが明らかとなった。   In order to adjust the pH of the aqueous solution to 4 to 7, there is a method of adding a buffer such as sodium phosphate, but it is preferable to reduce the amount of hydrogen peroxide added and adjust the pH with aqueous ammonia. Patent Document 3 describes that it is desirable that the hydrogen peroxide is 1/2 or more and 3 or less in molar ratio with respect to the second compound. However, according to the study by the present inventors, the amount of hydrogen peroxide added is reduced to 1/2 or less in molar ratio with respect to the second compound, and the pH is adjusted to 4 to 7 with aqueous ammonia. It became clear that crystallization could be suppressed.

本発明のNOx 吸蔵材の担持方法では、上記した組成の複合酸化物前駆体水溶液を多孔質酸化物に含浸させ乾燥後に焼成することで、多孔質酸化物を担体としてNOx 吸蔵材を担持している。多孔質酸化物としては、 Al2O3、TiO2、ZrO2、SiO2、CeO2、 MgO、これらから選ばれる複数種からなる複合酸化物、ゼオライトなどが挙げられる。これらの一種を単独で用いてもよいし、複数種を混合して用いることもできる。 In carrying the method of the NO x storage material of the present invention, by calcining after drying impregnated with composite oxide precursor aqueous solution of the above-described composition on the porous oxide, carrying the NO x storage material of the porous oxide as carrier is doing. Examples of the porous oxide include Al 2 O 3 , TiO 2 , ZrO 2 , SiO 2 , CeO 2 , MgO, complex oxides selected from these, zeolites, and the like. One kind of these may be used alone, or a plurality of kinds may be mixed and used.

複合酸化物前駆体水溶液を用いて多孔質酸化物にNOx 吸蔵材を担持するには、多孔質酸化物粉末に複合酸化物前駆体水溶液を含浸させ、乾燥後に焼成してもよいし、ハニカム形状のモノリス基材に多孔質酸化物粉末からなるコート層を形成しておき、そのコート層に複合酸化物前駆体水溶液を含浸させ、乾燥後に焼成することもできる。乾燥時及び焼成時に過酸化水素が先ず分解することで、錯体とBaイオンなどとの反応が一気に進行してゲル化し、微細な複合酸化物を高分散で担持することができる。 In carrying the NO x storage material on the porous oxide with a composite oxide precursor aqueous solution, porous oxide powder is impregnated composite oxide precursor aqueous solution, may be fired after drying, the honeycomb It is also possible to form a coating layer made of porous oxide powder on a monolith substrate having a shape, impregnate the coating layer with a composite oxide precursor aqueous solution, and fire after drying. When hydrogen peroxide is first decomposed at the time of drying and firing, the reaction between the complex and Ba ions and the like proceeds at a stretch to gel, and a fine composite oxide can be supported in a highly dispersed state.

乾燥工程では、従来と同様に熱風乾燥することもできるが、波長が 100μm以上の電磁波照射により行うことが望ましい。電磁波の波長は 104μm〜 108μmであることが好ましく、 105μm〜 107μmであることがより好ましい。具体的には、電磁波はマイクロ波であることがより好ましい。 In the drying step, hot air drying can be performed in the same manner as in the past, but it is preferable to perform the irradiation by electromagnetic wave irradiation with a wavelength of 100 μm or more. The wavelength of the electromagnetic wave is preferably 10 4 μm to 10 8 μm, and more preferably 10 5 μm to 10 7 μm. Specifically, the electromagnetic wave is more preferably a microwave.

焼成条件は複合酸化物が生成する条件であれば特に制限がないが、例えば大気中で、好ましくは 300〜 600℃、より好ましくは 300〜 500℃に加熱する。また加熱時間は加熱温度によって異なるが、例えば1〜3時間行えば十分である。   The firing conditions are not particularly limited as long as the composite oxide is generated. For example, the firing is performed in the air, preferably at 300 to 600 ° C, more preferably at 300 to 500 ° C. The heating time varies depending on the heating temperature, but it is sufficient, for example, to perform for 1 to 3 hours.

上記した複合酸化物のみでは、低温域あるいは高温域におけるNOx 吸蔵能が不充分となる場合がある。そのような場合には、Li、Kなどのアルカリ金属系のNOx 吸蔵材をさらに担持することが望ましい。しかし、複合酸化物前駆体水溶液中にアルカリ金属の水溶性塩を溶解すると、複合酸化物前駆体の構造が破壊される場合がある。またアルカリ金属を含む第4化合物によって複合酸化物前駆体水溶液のpHが7を超える場合には、過酸化水素が分解してゲル化し易くなるという問題もある。 Only the above-described composite oxide may have insufficient NO x storage capacity in a low temperature region or a high temperature region. In such a case, it is desirable to further support an alkali metal-based NO x storage material such as Li or K. However, when the alkali metal water-soluble salt is dissolved in the aqueous composite oxide precursor solution, the structure of the composite oxide precursor may be destroyed. In addition, when the pH of the aqueous solution of the complex oxide precursor exceeds 7 due to the fourth compound containing an alkali metal, there is a problem that hydrogen peroxide is decomposed and gelled easily.

例えばBa−Ti複合酸化物前駆体水溶液に酢酸カリウムなどを溶解すると、KイオンがBaと置換すると考えられ、Ba−Ti複合酸化物前駆体の構造が破壊されてBaイオンが遊離する。このような水溶液を用いて担持した場合には、Baが単独で担持される結果、最終的に炭酸バリウムが担持されてしまう。炭酸バリウムは硫黄被毒し易く、硫黄被毒によってNOx 吸蔵能が著しく低下する。 For example, when potassium acetate or the like is dissolved in an aqueous Ba-Ti composite oxide precursor solution, it is considered that K ions are replaced with Ba, and the structure of the Ba-Ti composite oxide precursor is destroyed to release Ba ions. When supported using such an aqueous solution, as a result of Ba being supported alone, barium carbonate is finally supported. Barium carbonate is susceptible to sulfur poisoning, and the NO x storage capacity is significantly reduced by sulfur poisoning.

そこで多孔質酸化物に上記した複合酸化物を担持した後に、アルカリ金属を含む第4化合物が水に溶解した水溶液を含浸させ焼成することが望ましい。Ba−Ti複合酸化物などは、アルカリ金属を含む第4化合物が水に溶解した水溶液によってはその構造が破壊されることが無い。したがって複合酸化物の十分に均一に担持された状態を保持することができる。   Therefore, it is desirable to carry out the impregnation with an aqueous solution in which a fourth compound containing an alkali metal is dissolved in water after firing the above-described composite oxide on the porous oxide. The structure of the Ba-Ti composite oxide or the like is not destroyed depending on the aqueous solution in which the fourth compound containing an alkali metal is dissolved in water. Therefore, it is possible to maintain a state where the composite oxide is sufficiently uniformly supported.

第4化合物としては、アルカリ金属の酢酸塩、炭酸塩、硝酸塩など水溶性の塩あるいは水酸化物を用いることができる。   As the fourth compound, water-soluble salts or hydroxides such as alkali metal acetates, carbonates and nitrates can be used.

なおNOx 吸蔵還元型の触媒として用いるためには、さらにPtなどの貴金属を担持する必要がある。貴金属を担持するには、上記方法でNOx 吸蔵材を担持した後に、あるいは上記方法でNOx 吸蔵材を担持する前に、Ptなどの貴金属を含浸担持法など公知の担持法を用いて担持することができる。自動車排ガス用のNOx 吸蔵還元型触媒とする場合には、上記した複合酸化物の担持量は触媒体積1Lあたり0.01〜 0.5モル程度が好ましい。また貴金属の担持量は、触媒体積1L当たり 0.1g〜10.0g/L程度が好ましい。 In order to use it as a NO x storage reduction catalyst, it is necessary to further support a noble metal such as Pt. In order to support the noble metal, after supporting the NO x storage material by the above method or before supporting the NO x storage material by the above method, a precious metal such as Pt is supported using a known support method such as an impregnation support method. can do. When the NO x storage-and-reduction type catalyst for automobile exhaust gas, the amount of supported mixed oxide as described above is from 0.01 to 0.5 moles per catalyst volume 1L are preferred. The amount of noble metal supported is preferably about 0.1 to 10.0 g / L per liter of catalyst volume.

そして本発明の担持方法で担持されたNOx 吸蔵材は、きわめて微細で高分散であるために高いNOx 吸蔵能が発現される。そして第2化合物の金属元素が複合化されているので、硫黄被毒が抑制され、耐久後も高いNOx 吸蔵能を維持することができる。 Since the NO x storage material supported by the support method of the present invention is extremely fine and highly dispersed, a high NO x storage capacity is exhibited. And since the metal element of the second compound is complexed, the sulfur poisoning is suppressed, it can be maintained after the durability is high the NO x storage capacity.

以下、実施例と比較例及び試験例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples, comparative examples, and test examples.

(実施例1)
アルミナ粉末 100重量部、チタニア−ジルコニア複合酸化物粉末 100重量部、Rhを 0.5g/50g担持したジルコニア粉末50重量部、セリアジルコニア複合酸化物粉末20重量部の比率で含むスラリーを調製し、フルサイズ(直径 109mm、長さ 140mm)のコージェライト製ハニカム形状のモノリス基材(六角セル)にウオッシュコートし、乾燥・焼成してコート層を形成した。コート量は、モノリス基材1Lあたり 270gである。
(Example 1)
A slurry containing 100 parts by weight of alumina powder, 100 parts by weight of titania-zirconia composite oxide powder, 50 parts by weight of zirconia powder supporting 0.5 g / 50 g of Rh, and 20 parts by weight of ceria zirconia composite oxide powder was prepared. A cordierite honeycomb monolith substrate (hexagonal cell) of size (diameter 109 mm, length 140 mm) was wash coated, dried and fired to form a coating layer. The amount of coating is 270 g per liter of monolith substrate.

このコート層をもつモノリス基材に対して、所定濃度のジニトロジアンミン白金硝酸溶液を用いてPtを選択吸着担持し、大気中にて 330℃で3時間焼成してPt担持触媒を調製した。Ptの担持量は、触媒1Lあたり2gである。   A Pt-supported catalyst was prepared by selectively adsorbing and supporting Pt on a monolith substrate having this coating layer using a dinitrodiammine platinum nitric acid solution having a predetermined concentration and calcining in the atmosphere at 330 ° C. for 3 hours. The amount of Pt supported is 2 g per liter of catalyst.

一方、クエン酸(和光純薬工業製)をイオン交換水に溶解し、75℃に加熱した。この溶液にチタンイソプロポキシド(和光純薬工業製)を加え、溶解後に室温まで冷却して、チタンクエン酸錯体水溶液を調製した。この溶液に30%H2O2水溶液を加え、これを撹拌しながら酢酸バリウム水溶液を滴下して撹拌し、複合酸化物前駆体水溶液を調製した。この複合酸化物前駆体水溶液のpHは4〜7の範囲にあり、複合酸化物前駆体水溶液中のモル比(Ti/Ba)は 1.0である。 On the other hand, citric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in ion exchange water and heated to 75 ° C. Titanium isopropoxide (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this solution, and after dissolution, it was cooled to room temperature to prepare a titanium citrate complex aqueous solution. A 30% aqueous solution of H 2 O 2 was added to this solution, and while stirring this, an aqueous barium acetate solution was added dropwise and stirred to prepare a composite oxide precursor aqueous solution. The pH of this complex oxide precursor aqueous solution is in the range of 4 to 7, and the molar ratio (Ti / Ba) in the complex oxide precursor aqueous solution is 1.0.

上記で調製されたPt担持触媒に上記した複合酸化物前駆体水溶液の所定量を吸水含浸させ、熱風乾燥炉にて 330℃で5分間乾燥後、大気中にて 330℃で3時間焼成してBa−Ti複合酸化物を担持した。モノリス基材の1Lあたり、Ba及びTiはそれぞれ 0.2モル担持された。   The Pt-supported catalyst prepared above is impregnated with a predetermined amount of the above complex oxide precursor aqueous solution, dried in a hot air drying oven at 330 ° C for 5 minutes, and then calcined in the atmosphere at 330 ° C for 3 hours. Ba-Ti composite oxide was supported. 0.2 mol of Ba and Ti were supported on each liter of the monolith substrate.

(比較例1)
pHを2としたこと以外は実施例1と同様にして複合酸化物前駆体水溶液を調製した。そして実施例1と同様に調製されたPt担持触媒を用い、この複合酸化物前駆体水溶液の所定量を吸水含浸させ、熱風乾燥炉にて 330℃で5分間乾燥後、大気中にて 330℃で3時間焼成してBa−Ti複合酸化物を担持した。しかし担持量が不足したため、Pt担持触媒の含浸方向を逆にして再び吸水含浸させ、熱風乾燥炉にて 330℃で5分間乾燥後、大気中にて 330℃で3時間焼成してBa−Ti複合酸化物を担持した。モノリス基材の1Lあたり、Ba及びTiはそれぞれ 0.2モル担持された。
(Comparative Example 1)
A composite oxide precursor aqueous solution was prepared in the same manner as in Example 1 except that the pH was 2. Then, using a Pt-supported catalyst prepared in the same manner as in Example 1, a predetermined amount of this composite oxide precursor aqueous solution was impregnated with water, dried at 330 ° C. for 5 minutes in a hot air drying furnace, and then at 330 ° C. in the atmosphere. And baked for 3 hours to carry a Ba-Ti composite oxide. However, since the supported amount was insufficient, the impregnation direction of the Pt supported catalyst was reversed and water was impregnated again, dried in a hot air drying oven at 330 ° C. for 5 minutes, and then calcined in air at 330 ° C. for 3 hours to Ba—Ti A composite oxide was supported. 0.2 mol of Ba and Ti were supported on each liter of the monolith substrate.

<試験・評価>
実施例1及び比較例1で調製されたNOx 吸蔵還元型触媒について、一端面近傍(Fr)、軸方向の中央部(Ce)、他端面近傍(Rr)におけるコート層中のBaの濃度を元素分析装置にて測定し、結果を図1に示す。
<Test and evaluation>
For NO x storage-and-reduction type catalyst prepared in Example 1 and Comparative Example 1, one end face neighborhood (Fr), the central portion in the axial direction (Ce), the concentration of Ba coat layer at the other end the vicinity (Rr) Measurement was performed with an elemental analyzer, and the results are shown in FIG.

図から明らかなように、比較例1で調製された触媒では中央部(Ce)のBa濃度と他端面近傍(Rr)のBa濃度との差が大きいのに対し、実施例1で調製された触媒ではBa濃度は全体に均一である。   As is apparent from the figure, the catalyst prepared in Comparative Example 1 was prepared in Example 1 while the difference between the Ba concentration in the central portion (Ce) and the Ba concentration in the vicinity of the other end surface (Rr) was large. In the catalyst, the Ba concentration is uniform throughout.

また実施例1及び比較例1で調製された触媒の触媒に対して、 750℃の空気を1L/分の流量で5時間流通させる耐久処理を行った。続いて、各触媒をそれぞれ評価装置に配置し、直噴ガソリンエンジンのスタート触媒の下流の排気組成を模擬したモデルガス評価法によって硫黄脱離性を評価した。   Moreover, the durability treatment which distribute | circulates the air of 750 degreeC with the flow volume of 1 L / min for 5 hours with respect to the catalyst of the catalyst prepared in Example 1 and Comparative Example 1 was performed. Subsequently, each catalyst was placed in an evaluation device, and the sulfur desorption property was evaluated by a model gas evaluation method simulating the exhaust composition downstream of the start catalyst of the direct injection gasoline engine.

Figure 2008012501
Figure 2008012501

表1に示すモデルガスを用い、図2に示すパターンに従って前処理、S被毒処理及び再生処理を行った。前処理は、表1に示す前処理ガスを用い、 650℃で10分間行った。S被毒処理は、表1に示すS被毒処理ガスを用い、リーン/リッチを 120秒/3秒で交互に繰り返しながら 400℃で41分間行った。また再生処理は、表1に示す再生処理ガスを用い、 650℃にてリーンガスで5分間処理した後、 650℃にてリッチガスで10分間処理した。   Using the model gas shown in Table 1, pretreatment, S poisoning treatment and regeneration treatment were performed according to the pattern shown in FIG. The pretreatment was performed at 650 ° C. for 10 minutes using the pretreatment gas shown in Table 1. The S poisoning treatment was performed at 400 ° C. for 41 minutes using the S poisoning treatment gas shown in Table 1 while alternately repeating lean / rich at 120 seconds / 3 seconds. In the regeneration treatment, the regeneration treatment gas shown in Table 1 was used, and after treatment with lean gas at 650 ° C. for 5 minutes, treatment was performed with rich gas at 650 ° C. for 10 minutes.

再生処理時における触媒出ガス中のSOx 濃度を経時で分析し、結果を図3に示す。図3より、実施例1で調製された触媒の方がSOx の排出量が多く、硫黄脱離性に優れていることが明らかである。 The SO x concentration in the catalyst outgas during the regeneration treatment was analyzed over time, and the results are shown in FIG. From FIG. 3, it is clear that the catalyst prepared in Example 1 has a higher SO x emission amount and is superior in sulfur desorption.

Figure 2008012501
Figure 2008012501

また上記処理後、表2に示すモデルガスを用い、SV=51400h-1の条件下、リーン/リッチを 120秒/3秒で交互に繰り返しながら、 300℃、 400℃、 500℃のそれぞれの温度にて触媒出ガス中のNOx 濃度を測定しNOx 浄化率を測定した。結果を図4に示す。図4より、実施例1で調製された触媒の方が高いNOx 浄化率を示していることがわかる。 In addition, after the above treatments, using the model gas shown in Table 2, each temperature of 300 ° C, 400 ° C, and 500 ° C was repeated under the condition of SV = 51400h -1 while alternately repeating lean / rich at 120 seconds / 3 seconds. measuring the concentration of NO x catalyst exiting gas at the measured the NO x purification rate. The results are shown in FIG. FIG. 4 shows that the catalyst prepared in Example 1 shows a higher NO x purification rate.

すなわち実施例1と比較例1でそれぞれ調製された触媒におけるこれらの差異は、複合酸化物前駆体水溶液のpHの差異に起因していることが明らかである。   That is, it is clear that these differences in the catalysts prepared in Example 1 and Comparative Example 1 are caused by the difference in pH of the composite oxide precursor aqueous solution.

(試験例)
各原料の比率を調整することで、pH値が種々異なる複合酸化物前駆体水溶液を調製した。実施例1と同様に調製されたPt担持触媒を複合酸化物前駆体水溶液にそれぞれ浸漬し、吸水含浸後に引き上げて熱風乾燥炉にて 330℃で5分間乾燥後、大気中にて 330℃で3時間焼成してそれぞれBa−Ti複合酸化物を担持した。この工程をそれぞれ2回繰り返し、浸漬容器に残った複合酸化物前駆体水溶液中のBaイオン濃度をそれぞれ測定した。そして担持前の水溶液中のBa濃度に対する割合を算出し、結果をBa溶出割合として図5に示す。
(Test example)
By adjusting the ratio of each raw material, composite oxide precursor aqueous solutions having different pH values were prepared. Each Pt-supported catalyst prepared in the same manner as in Example 1 was dipped in a composite oxide precursor aqueous solution, pulled up after water absorption impregnation, dried at 330 ° C. for 5 minutes in a hot air drying furnace, and then at 330 ° C. in the atmosphere at 3 ° C. Ba-Ti composite oxide was supported by firing for a time. This process was repeated twice, and the Ba ion concentration in the composite oxide precursor aqueous solution remaining in the immersion vessel was measured. And the ratio with respect to Ba density | concentration in the aqueous solution before carrying | support is calculated, and a result is shown in FIG. 5 as Ba elution ratio.

図5より、pH値が4〜7の範囲であればBa溶出割合がほぼゼロとなり、先に担持されているBa−Ti複合酸化物の構造の破壊がほとんど生じていないことがわかる。しかしpH値が4から少しでも低くなると、Ba溶出割合が急激に増大し、担持されているBa−Ti複合酸化物の構造が破壊されてしまう。なおpH値が7を超えると、複合酸化物前駆体水溶液中に含まれているH2O2が分解しやすくなり、ゲル化を遅延させる効果が失われてしまう。 From FIG. 5, it can be seen that when the pH value is in the range of 4 to 7, the Ba elution ratio is almost zero, and the structure of the Ba—Ti composite oxide previously supported is hardly destroyed. However, when the pH value is lowered from 4 to a little, the Ba elution ratio increases rapidly, and the structure of the supported Ba—Ti composite oxide is destroyed. When the pH value exceeds 7, H 2 O 2 contained in the complex oxide precursor aqueous solution is easily decomposed, and the effect of delaying gelation is lost.

(実施例2)
実施例1と同様に調製されたPt担持触媒を用い、実施例1と同様に調製された複合酸化物前駆体水溶液の所定量を吸水含浸させた。これを出力1200kW、波長 105μmのマイクロ波乾燥装置にて10分間処理して水分を乾燥させた(乾燥工程)。その後、大気中にて 300℃で3時間焼成してBa−Ti複合酸化物を担持した。モノリス基材の1Lあたり、Ba及びTiはそれぞれ 0.2モル担持された。
(Example 2)
Using a Pt-supported catalyst prepared in the same manner as in Example 1, a predetermined amount of the complex oxide precursor aqueous solution prepared in the same manner as in Example 1 was impregnated with water. This was treated for 10 minutes in a microwave drying apparatus with an output of 1200 kW and a wavelength of 10 5 μm to dry the moisture (drying process). Then, it baked at 300 degreeC in air | atmosphere for 3 hours, and Ba-Ti complex oxide was carry | supported. 0.2 mol of Ba and Ti were supported on each liter of the monolith substrate.

<試験・評価>
上記焼成中における触媒の温度を経時で測定し、結果を図6に示す。また図6には、実施例1の方法における焼成中の触媒温度も示している。図6より、実施例2の方法で乾燥した触媒の方が温度の上昇度合いが低いことがわかる。すなわちマイクロ波で乾燥することで、焼成時の触媒温度を低温とすることができることが明らかであり、これは錯体から派生する有機物が均一に分布した結果、局部的な昇温が抑制されたためと推察される。
<Test and evaluation>
The temperature of the catalyst during the calcination was measured over time, and the results are shown in FIG. FIG. 6 also shows the catalyst temperature during calcination in the method of Example 1. FIG. 6 shows that the catalyst dried by the method of Example 2 has a lower temperature rise. In other words, it is clear that the catalyst temperature at the time of firing can be lowered by drying with microwaves. This is because the organic matter derived from the complex is uniformly distributed, and as a result, local temperature rise is suppressed. Inferred.

また上記推察を裏付けるために、実施例1及び実施例2で調製された触媒において、コート層中の多孔質酸化物のBET表面積の平均値を測定するとともに、コート層中のPtの分散度をCOパルス法にて測定した。結果をそれぞれ図7と図8に示す。実施例2で調製された触媒は、実施例1で調製された触媒に比べて担体である多孔質酸化物の表面積が大きく、Ptの分散度も高い。すなわち、局部的な昇温が抑制されたことが裏付けられた。   In order to support the above inference, in the catalysts prepared in Example 1 and Example 2, the average value of the BET surface area of the porous oxide in the coating layer was measured, and the degree of dispersion of Pt in the coating layer was determined. It was measured by the CO pulse method. The results are shown in FIGS. 7 and 8, respectively. Compared with the catalyst prepared in Example 1, the catalyst prepared in Example 2 has a larger surface area of the porous oxide as a support and a higher degree of dispersion of Pt. That is, it was confirmed that local temperature rise was suppressed.

実施例1及び実施例2で調製された触媒を用い、前述と同様の耐久処理を行った後、表2に示したモデルガスを用い、SV=51400h-1の条件下、リーン/リッチを 120秒/3秒で交互に繰り返しながら、 250℃〜 450℃の各温度にて触媒出ガス中のNOx 濃度を測定しNOx 還元量を測定した。結果を図9に示す。図9より、実施例2で調製された触媒の方がNOx 還元量が多く、これは実施例2で調製された触媒の方が担体表面積が大きく、Ptの分散度も高いことに起因すると考えられる。 The catalysts prepared in Example 1 and Example 2 were subjected to the same durability treatment as described above, and then the model gas shown in Table 2 was used and the lean / rich ratio was 120 under the condition of SV = 51400 h −1. repeatedly alternately in seconds / 3 seconds, to measure the measured the NO x reduction amount concentration of NO x catalyst exiting gas at each temperature of 250 ℃ ~ 450 ℃. The results are shown in FIG. 9 that many are the NO x reduction amount towards the catalyst prepared in Example 2, which it is large carrier surface area of the catalyst prepared in Example 2, when due to high degree of dispersion of Pt Conceivable.

(実施例3)
実施例1で調製された触媒に対して、酢酸リチウムと酢酸カリウムとを所定濃度で溶解した水溶液の所定量を含浸させ、熱風乾燥炉にて 330℃で5分間乾燥後、大気中にて 330℃で3時間焼成してLi及びKをさらに担持した。得られた触媒では、モノリス基材の1Lあたり、Ba及びTiはそれぞれ 0.2モル、Liは 0.1モル、Kは0.15モル担持されている。
(Example 3)
The catalyst prepared in Example 1 was impregnated with a predetermined amount of an aqueous solution in which lithium acetate and potassium acetate were dissolved at a predetermined concentration, dried in a hot air drying oven at 330 ° C. for 5 minutes, and then in the atmosphere. Li and K were further supported by calcination at 0 ° C. for 3 hours. In the obtained catalyst, 0.2 mol of Ba and Ti, 0.1 mol of Li and 0.15 mol of K are supported per liter of the monolith substrate.

(比較例2)
実施例1と同様にして、複合酸化物前駆体水溶液を調製した。ここへさらに酢酸リチウムと酢酸カリウムの水溶液を添加して撹拌した。複合酸化物前駆体水溶液中のモル比(Ti/Ba)は 1.0である。
(Comparative Example 2)
In the same manner as in Example 1, a complex oxide precursor aqueous solution was prepared. To this, an aqueous solution of lithium acetate and potassium acetate was further added and stirred. The molar ratio (Ti / Ba) in the composite oxide precursor aqueous solution is 1.0.

この複合酸化物前駆体水溶液の所定量を、実施例1と同様に調製されたPt担持触媒に、複合酸化物前駆体水溶液がゲル化する前に吸水含浸させた。これを実施例1と同様に乾燥・焼成して、Ba−Ti複合酸化物、Li及びKを担持した。モノリス基材の1Lあたり、Ba及びTiはそれぞれ 0.2モル、Liは 0.1モル、Kは0.15モル担持されている。   A predetermined amount of this complex oxide precursor aqueous solution was impregnated with water by the Pt-supported catalyst prepared in the same manner as in Example 1 before the complex oxide precursor aqueous solution gelled. This was dried and fired in the same manner as in Example 1 to carry Ba-Ti composite oxide, Li and K. Each liter of monolith substrate carries 0.2 mol of Ba and Ti, 0.1 mol of Li, and 0.15 mol of K, respectively.

<試験・評価>
実施例3と比較例2で調製された触媒についてコート層を掻き取り、X線回折によってBa化合物種を分析した。その結果、実施例3で調製された触媒では BaTiO3相のみが存在していたのに対し、比較例2で調製された触媒では BaTiO3相と BaCO3相とが混在していた。すなわち比較例2の製造方法では、複合酸化物前駆体水溶液中にLiイオン及びKイオンが存在し、これによってBa−Ti複合酸化物前駆体の構造が破壊され、Baイオンが遊離したと考えられる。
<Test and evaluation>
The coating layers of the catalysts prepared in Example 3 and Comparative Example 2 were scraped off, and Ba compound species were analyzed by X-ray diffraction. As a result, only the BaTiO 3 phase was present in the catalyst prepared in Example 3, whereas the BaTiO 3 phase and BaCO 3 phase were mixed in the catalyst prepared in Comparative Example 2. That is, in the production method of Comparative Example 2, it is considered that Li ions and K ions exist in the complex oxide precursor aqueous solution, thereby destroying the structure of the Ba-Ti complex oxide precursor and releasing Ba ions. .

次に、実施例3と比較例2で調製された触媒について、前述したと同様の前処理、S被毒処理及び再生処理を行った。この処理後、表2に示すモデルガスを用い、SV=51400h-1の条件下、リーン/リッチを 120秒/3秒で交互に繰り返しながら、 300℃、 400℃、 5000℃の各温度にて触媒出ガス中のNOx 濃度を測定しNOx 浄化率を測定した。結果を図10に示す。 Next, the catalyst prepared in Example 3 and Comparative Example 2 was subjected to the same pretreatment, S poisoning treatment and regeneration treatment as described above. After this treatment, the model gas shown in Table 2 was used, and the conditions of SV = 51400h- 1 were repeated at each temperature of 300 ° C, 400 ° C, and 5000 ° C while repeating lean / rich at 120 seconds / 3 seconds. The NO x concentration in the catalyst output gas was measured to measure the NO x purification rate. The results are shown in FIG.

図10より、比較例2で調製された触媒は実施例3で調製された触媒に比べてNOx 浄化率が低いことがわかる。これは、 BaCO3として存在しているBaが硫黄被毒し、再生処理を行っても再生できなかったことを意味している。したがってLi、Kなどのアルカリ金属系のNOx 吸蔵材をさらに担持する場合は、Ba−Ti複合酸化物を担持した後に担持するのが望ましいことが明らかである。 FIG. 10 shows that the catalyst prepared in Comparative Example 2 has a lower NO x purification rate than the catalyst prepared in Example 3. This means that Ba, which is present as BaCO 3 , was sulfur-poisoned and could not be regenerated even after regeneration treatment. Therefore, when further supporting an alkali metal-based NO x storage material such as Li or K, it is apparent that it is preferable to support it after supporting the Ba-Ti composite oxide.

上記実施例では、ストレートフロー構造のモノリス基材を用いたが、本発明のNOx 吸蔵材の担持方法はこれに限るものではなく、ウォールフロー構造のフィルタ触媒、フォーム触媒、ペレット触媒などの製造にも利用することができる。 In the above examples, a monolith substrate having a straight flow structure was used, but the method for supporting the NO x storage material of the present invention is not limited to this, and production of a filter catalyst, a foam catalyst, a pellet catalyst, etc. having a wall flow structure Can also be used.

コート層中のBa濃度の分布を相対値で示す棒グラフである。It is a bar graph which shows distribution of Ba density | concentration in a coat layer by a relative value. 実施例における触媒の処理パターンを示すタイムチャートである。It is a time chart which shows the processing pattern of the catalyst in an Example. 再生処理時における触媒出ガス中のSOx 濃度の時間変化を示すグラフである。Is a graph showing temporal changes of the SO x concentration of the catalyst exiting gas at the time of reproduction processing. 各温度におけるNOx 浄化率を示すグラフである。Is a graph showing the NO x purification rate at each temperature. 複合酸化物前駆体水溶液のpH値とBa溶出割合との関係を示すグラフである。It is a graph which shows the relationship between pH value of complex oxide precursor aqueous solution, and Ba elution ratio. 焼成時における時間と触媒温度との関係を示すグラフである。It is a graph which shows the relationship between time at the time of baking, and catalyst temperature. 焼成後の多孔質酸化物の表面積を示すグラフである。It is a graph which shows the surface area of the porous oxide after baking. 焼成後のPt分散度を示すグラフである。It is a graph which shows Pt dispersion degree after baking. 各温度におけるNOx 還元量を示すグラフである。It is a graph showing the NO x reduction amount at each temperature. 各温度におけるNOx 浄化率を示すグラフである。Is a graph showing the NO x purification rate at each temperature.

Claims (3)

アルカリ土類金属及び希土類元素から選ばれる少なくとも一種の元素を含む第1化合物と、第3族元素,第4族元素及び遷移金属から選ばれる少なくとも一種の元素を含む第2化合物と、多座配位子を有する第3化合物と、過酸化水素と、が水に溶解してなりpHが4〜7に調整された複合酸化物前駆体水溶液を調製し、
該複合酸化物前駆体水溶液を多孔質酸化物に含浸させ乾燥後に焼成して該多孔質酸化物に複合酸化物を担持することを特徴とするNOx 吸蔵材の担持方法。
A first compound containing at least one element selected from alkaline earth metals and rare earth elements; a second compound containing at least one element selected from Group 3 elements, Group 4 elements and transition metals; and multidentate Preparing a complex oxide precursor aqueous solution in which a third compound having a ligand and hydrogen peroxide are dissolved in water and the pH is adjusted to 4 to 7,
A method for supporting a NO x storage material, comprising impregnating a porous oxide with the aqueous solution of the composite oxide, drying and firing to support the composite oxide on the porous oxide.
前記乾燥工程は、波長が 100μm以上の電磁波照射により行う請求項1に記載のNOx 吸蔵材の担持方法。 The method for supporting a NO x storage material according to claim 1, wherein the drying step is performed by irradiation with electromagnetic waves having a wavelength of 100 μm or more. 前記多孔質酸化物に前記複合酸化物を担持した後に、アルカリ金属を含む第4化合物が水に溶解した水溶液を含浸させ焼成してアルカリ金属をさらに担持する請求項1に記載のNOx 吸蔵材の担持方法。 2. The NO x storage material according to claim 1, wherein, after the composite oxide is supported on the porous oxide, the alkali metal is further supported by impregnating and baking an aqueous solution in which a fourth compound containing an alkali metal is dissolved in water. Loading method.
JP2006189332A 2006-07-10 2006-07-10 Method for supporting NOx storage material Expired - Fee Related JP4786442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189332A JP4786442B2 (en) 2006-07-10 2006-07-10 Method for supporting NOx storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189332A JP4786442B2 (en) 2006-07-10 2006-07-10 Method for supporting NOx storage material

Publications (2)

Publication Number Publication Date
JP2008012501A true JP2008012501A (en) 2008-01-24
JP4786442B2 JP4786442B2 (en) 2011-10-05

Family

ID=39070061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189332A Expired - Fee Related JP4786442B2 (en) 2006-07-10 2006-07-10 Method for supporting NOx storage material

Country Status (1)

Country Link
JP (1) JP4786442B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285604A (en) * 2008-05-30 2009-12-10 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2010142741A (en) * 2008-12-19 2010-07-01 Cataler Corp Catalyst for purifying exhaust gas, and method for producing the same
JP2013181502A (en) * 2012-03-02 2013-09-12 Toyota Motor Corp Exhaust emission control device
JP2015223560A (en) * 2014-05-28 2015-12-14 株式会社豊田中央研究所 NOx OCCLUSION REDUCTION CATALYST AND METHOD FOR PRODUCING THE SAME

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899034A (en) * 1993-12-07 1996-04-16 Toyota Motor Corp Catalyst for purifying exhaust gas
WO2002049963A1 (en) * 2000-12-19 2002-06-27 Idemitsu Kosan Co., Ltd. Titanium compound, aqueous solution containing titanium, and process for producing the same
JP2003071298A (en) * 2001-09-05 2003-03-11 Toyota Central Res & Dev Lab Inc COMPOSITE MATERIAL, PRODUCTION METHOD THEREFOR, CATALYST, PRODUCTION METHOD THEREFOR, NOx SORPTION METHOD, AND NOx SORPTIVE REDUCTION METHOD
JP2005060147A (en) * 2003-08-08 2005-03-10 Toyota Central Res & Dev Lab Inc AQUEOUS SOLUTION OF COMPOUND OXIDE PRECURSOR AND METHOD FOR CARRYING NOx OCCLUSION MATERIAL
JP2005152775A (en) * 2003-11-25 2005-06-16 Cataler Corp Method for manufacturing catalyst for cleaning exhaust gas and catalyst for cleaning exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899034A (en) * 1993-12-07 1996-04-16 Toyota Motor Corp Catalyst for purifying exhaust gas
WO2002049963A1 (en) * 2000-12-19 2002-06-27 Idemitsu Kosan Co., Ltd. Titanium compound, aqueous solution containing titanium, and process for producing the same
JP2003071298A (en) * 2001-09-05 2003-03-11 Toyota Central Res & Dev Lab Inc COMPOSITE MATERIAL, PRODUCTION METHOD THEREFOR, CATALYST, PRODUCTION METHOD THEREFOR, NOx SORPTION METHOD, AND NOx SORPTIVE REDUCTION METHOD
JP2005060147A (en) * 2003-08-08 2005-03-10 Toyota Central Res & Dev Lab Inc AQUEOUS SOLUTION OF COMPOUND OXIDE PRECURSOR AND METHOD FOR CARRYING NOx OCCLUSION MATERIAL
JP2005152775A (en) * 2003-11-25 2005-06-16 Cataler Corp Method for manufacturing catalyst for cleaning exhaust gas and catalyst for cleaning exhaust gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285604A (en) * 2008-05-30 2009-12-10 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2010142741A (en) * 2008-12-19 2010-07-01 Cataler Corp Catalyst for purifying exhaust gas, and method for producing the same
JP2013181502A (en) * 2012-03-02 2013-09-12 Toyota Motor Corp Exhaust emission control device
WO2013128261A3 (en) * 2012-03-02 2013-12-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus, exhaust gas control method and exhaust gas purification catalyst
JP2015223560A (en) * 2014-05-28 2015-12-14 株式会社豊田中央研究所 NOx OCCLUSION REDUCTION CATALYST AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
JP4786442B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
WO2002066155A1 (en) Exhaust gas clarification catalyst
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP2002331238A (en) Composite oxide, method for manufacturing the same, exhaust gas cleaning catalyst and method for manufacturing the same
JP3855426B2 (en) Method for producing exhaust gas purifying catalyst
WO2005046865A1 (en) Exhaust gas purification catalyst and process for producing the same
JP4786442B2 (en) Method for supporting NOx storage material
JP2007289921A (en) Exhaust-gas cleaning catalyst and its regeneration method
JP5616382B2 (en) Oxidation catalyst and exhaust gas purification method using the same
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4599817B2 (en) Method for supporting NOx storage material
JP2003020227A (en) Fine mixed oxide powder, production method thereor and catalyst
JPH08281116A (en) Catalyst for purifying exhaust gas
JP4836187B2 (en) Exhaust gas purification catalyst, production method thereof and regeneration method thereof
JP2013072334A (en) Exhaust gas purifying device and exhaust gas purifying catalyst unit
JP2008279319A (en) Catalyst for cleaning exhaust gas and method for producing acidic oxide-deposited alumina to be used therefor
JP2009285620A (en) Exhaust gas purification catalyst
JP2003010646A (en) Apparatus and method for cleaning diesel exhaust
JP4103407B2 (en) NOx storage reduction catalyst
JP4822049B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP5082558B2 (en) Method for producing exhaust gas purification catalyst
JP6392704B2 (en) PM oxidation catalyst for oxidizing and removing particulate matter (PM) in exhaust gas, exhaust gas purification filter and exhaust gas purification method using the same
JP2007260567A (en) Catalyst for purifying exhaust gas and its regenerating method
JP2001232208A (en) Catalyst for cleaning exhaust gas and method of manufacturing it
JP4631360B2 (en) Method for producing exhaust gas purification catalyst
JP4534749B2 (en) NOx storage material, method for supporting the same, and NOx storage reduction catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110713

R151 Written notification of patent or utility model registration

Ref document number: 4786442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees