JP2008007861A - Surface-treating method for aluminum - Google Patents

Surface-treating method for aluminum Download PDF

Info

Publication number
JP2008007861A
JP2008007861A JP2007252799A JP2007252799A JP2008007861A JP 2008007861 A JP2008007861 A JP 2008007861A JP 2007252799 A JP2007252799 A JP 2007252799A JP 2007252799 A JP2007252799 A JP 2007252799A JP 2008007861 A JP2008007861 A JP 2008007861A
Authority
JP
Japan
Prior art keywords
aluminum
ozone
oxide film
gas
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007252799A
Other languages
Japanese (ja)
Inventor
Kunihiko Koike
国彦 小池
Goichi Inoue
吾一 井上
Atsushi Hisamoto
淳 久本
Koji Wada
浩司 和田
Toshiyuki Tanaka
敏行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Iwatani International Corp
Original Assignee
Kobe Steel Ltd
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Iwatani International Corp filed Critical Kobe Steel Ltd
Priority to JP2007252799A priority Critical patent/JP2008007861A/en
Publication of JP2008007861A publication Critical patent/JP2008007861A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently forming an oxide film on the surface of aluminum or its alloy. <P>SOLUTION: The method is for forming an oxide film on the surface of aluminum or its alloy with an ozone gas and comprises bringing an ozone-containing gas with an ozone concentration of 20-100 vol.% into contact with the surface of aluminum or its alloy kept at 200-450°C to thereby form an oxide film thereon. In the case of using a CVD apparatus, an oxide film is formed on the surface of aluminum or its alloy placed in the apparatus by feeding the ozone-containing gas into the apparatus which is evacuated and heated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アルミニウム又はアルミニウム合金(以下、単に『アルミニウム』と記載する)の表面に、オゾンガスを用いて酸化皮膜を形成する表面処理方法に関するもので、特に半導体や液晶製造で使用するCVD装置、ドライエッチング装置、PVD装置、イオン注入装置、スパッタリング装置の内部、およびこれら装置に接続するアルミニウム配管やアルミニウム部材表面の不働態膜形成に好適な酸化皮膜を形成する方法に関するものである。     The present invention relates to a surface treatment method for forming an oxide film using ozone gas on the surface of aluminum or an aluminum alloy (hereinafter simply referred to as `` aluminum ''), and in particular, a CVD apparatus used in semiconductor and liquid crystal production, The present invention relates to a dry etching apparatus, a PVD apparatus, an ion implantation apparatus, a sputtering apparatus, an aluminum pipe connected to these apparatuses, and a method for forming an oxide film suitable for forming a passive film on the surface of an aluminum member.

半導体製造装置、例えばプラズマCVD装置において、SiH等のシランガスを原料ガスとして供給し、これをプラズマ分解して基材の表面にシリコン皮膜を形成する際に、副生物としてアモルファスシリコン(Si)等の反応性のシリコン化合物が生成し、該副生物が前記CVD装置内や該装置に接続された配管内面に付着堆積する。この堆積物が基板の製膜面に付着すると製品の品質低下を招くおそれがあるので、定期的に該CVD装置内と配管内にCFやNF等のフッ素系クリーニングガスを供給して、或いはF プラズマを用いてクリーニングを行っている。このクリーニング工程において、前記CVD装置内面等に付着堆積した固体の副生物は、SiF やHFとなってガス化して系外に排出され、これによって装置のクリーニングが完了する事になる。 In a semiconductor manufacturing apparatus, for example, a plasma CVD apparatus, a silane gas such as SiH 4 is supplied as a raw material gas, and this is plasma-decomposed to form a silicon film on the surface of the substrate. As a by-product, amorphous silicon (Si x H A reactive silicon compound such as y ) is generated, and the by-product is deposited and deposited in the CVD apparatus or on the inner surface of the pipe connected to the apparatus. If this deposit adheres to the film-forming surface of the substrate, the quality of the product may be deteriorated. Therefore, a fluorine-based cleaning gas such as CF 4 or NF 4 is periodically supplied into the CVD apparatus and the pipe, Alternatively, cleaning is performed using F 2 plasma. In this cleaning process, the solid by-product adhering and depositing on the inner surface of the CVD apparatus becomes SiF 4 or HF and is gasified and discharged out of the system, thereby completing the cleaning of the apparatus.

また、ドライエッチング装置においては、塩素ガス等の塩素系ガス、四フッ化炭素等のフッ素系ガスを導入し、これをプラズマ分解して活性な塩素ラジカルやフッ素ラジカルを生成し、半導体基板上に成膜したアルミニウムなどの金属膜や酸化膜にアタックさせ、揮発性のAlClやSiFとなってエッチング除去する。 In dry etching equipment, chlorine-based gas such as chlorine gas and fluorine-based gas such as carbon tetrafluoride are introduced and plasma decomposed to generate active chlorine radicals and fluorine radicals on the semiconductor substrate. The deposited metal film such as aluminum or an oxide film is attacked to form volatile AlCl 3 or SiF 4 and removed by etching.

一方、最近ではCVD装置の構成材料としてアルミニウムが用いられる場合があるが、係るアルミニウムは、塩素ガス、フッ素ガスなどのハロゲンガスに対する耐ガス腐食性に乏しく、反応生成物や腐食生成物がパーティクルやコンタミネーションとなって成膜等半導体製造工程に取り込まれ半導体特性を劣化させたり、アルミニウム配管やアルミニウム部材の機械的強度が低下し寿命を短くする。また、配管や半導体製造装置のメンテナンスなどで大気中の水分が混入した状態で塩素ガス等のハロゲンガスを供給すると、該水分と該ガスとで酸性溶液を生じたり、あるいは部材の水拭きなどのメンテナンス時に半導体製造プロセス(CVD、ドライエッチングなど)で生成付着している塩化化合物などと該水分が反応して酸性溶液を生じ、この酸性溶液が前記と同様なアルミニウムと腐食反応を起こす。   On the other hand, recently, aluminum is sometimes used as a constituent material of a CVD apparatus. However, such aluminum has poor gas corrosion resistance against halogen gas such as chlorine gas and fluorine gas, and reaction products and corrosion products are particles or Contamination is incorporated into a semiconductor manufacturing process such as film formation to deteriorate semiconductor characteristics, or the mechanical strength of aluminum pipes and aluminum members is reduced to shorten the life. In addition, when halogen gas such as chlorine gas is supplied in a state where moisture in the atmosphere is mixed in maintenance of piping and semiconductor manufacturing equipment, an acidic solution is generated with the moisture and the gas, or a member is wiped with water, etc. The moisture reacts with the chloride compound produced and adhered in the semiconductor manufacturing process (CVD, dry etching, etc.) during maintenance to produce an acidic solution, and this acidic solution causes a corrosion reaction with the same aluminum as described above.

さらに、塩素ガスやフッ素ガス等のハロゲンガスが存在しなくとも、配管や半導体製造装置のメンテナンスなどで大気中の水分が混入してアルミニウム配管やアルミニウム部材表面に吸着すると、アルミニウム合金成分が水中に溶出し、その溶出元素がコンタミネーションとなって同様に半導体特性を劣化させる。また、フッ素と反応して表面にフッ化アルミニウム(AlF)を形成して腐食し、装置構成材料の強度低下のみならず、該フッ化アルミニウムが剥離して新たな不純物発生原因となっている。 Furthermore, even if there is no halogen gas such as chlorine gas or fluorine gas, if water in the atmosphere is mixed and adsorbed on the surface of aluminum pipes or aluminum members during maintenance of piping or semiconductor manufacturing equipment, the aluminum alloy components are submerged in the water. It elutes, and the eluted element becomes a contamination, which similarly deteriorates the semiconductor characteristics. In addition, it reacts with fluorine to form aluminum fluoride (AlF 3 ) on the surface and corrodes, not only reducing the strength of the material constituting the apparatus but also causing the aluminum fluoride to peel off and cause new impurities. .

そこで、アルミニウムの腐食防止策として、従来から知られているアルミニウムの陽極酸化法によるアルマイト処理を行ってアルミニウム表面にアルマイトの不働態化膜を形成する方法があるが、アルマイト皮膜は数μmから数十μmと比較的膜厚が厚く且つポーラスであるので、微細孔内に吸蔵されたガスの脱ガス特性が悪く、又、高温と常温との繰り返しによる熱ショックに弱く、使用過程でひび割れや剥離が生じる問題がある。そこで、真空装置用のアルミニウムのアルマイト処理技術として、特殊なアルマイト処理法によりひび割れを防止した方法も行われている(例えば非特許文献1参照)。   Therefore, as a measure for preventing the corrosion of aluminum, there is a method of forming an alumite passivated film on the aluminum surface by performing a known anodizing treatment of aluminum by anodizing method of aluminum. Since the film thickness is relatively thick at 10 μm and porous, the degassing characteristics of the gas occluded in the micropores are poor, and it is vulnerable to heat shock caused by repeated high and normal temperatures. There is a problem that occurs. Therefore, as a technique for treating aluminum with alumite for vacuum equipment, a method in which cracking is prevented by a special alumite treatment method has also been carried out (for example, see Non-Patent Document 1).

又、金属表面に酸化皮膜を形成する他の方法として、例えば、ステンレス鋼の表面にオゾン含有ガスを接触させて不働態化処理する方法(例えば特許文献1)やステンレス鋼やアルミニウムの表面にオゾンガスを接触させて不働態化処理する方法(オゾン処理方法,例えば特許文献2)も提案されている。   Further, as other methods for forming an oxide film on the metal surface, for example, a method in which an ozone-containing gas is brought into contact with the surface of stainless steel (for example, Patent Document 1) or ozone gas is applied to the surface of stainless steel or aluminum. There is also proposed a method of making a passivating treatment by contacting (ozone treatment method, for example, Patent Document 2).

特許第3018029号公報(特許請求の範囲の記載及び実施例の記載参照)Japanese Patent No. 3018029 (refer to claims and examples) 特許第3250002号公報(特許請求の範囲の記載及び実施例の記載参照)Japanese Patent No. 3250002 (refer to description of claims and description of examples) アルバックテクノ株式会社製品カタログ(『VACAL(バッカル)−OX』参照)ULVAC TECHNO CORPORATION Product Catalog (Refer to “VACAL-OX”)

ところで、上述した非特許文献1のアルマイト処理法によって得られた酸化皮膜では、通常のアルマイト処理に比して繰り返しの熱ショックによるクラックの発生は抑制され、これによる耐食性の向上効果は認められるが、プラズマCVD装置で前記フッ素系ガスを用いる環境や近年の強力なプラズマを用いる環境では微細クラック内に侵入したフッ素とアルミニウムとの反応によるAlFパーティクルの発生(腐食)は抑制し難く、且つ、膜厚が30μm程度と比較的厚いため、該AlFパーティクルの発生による皮膜の剥離も避け難く、プラズマCVDの如き過酷な環境下での耐食性は不十分である。 By the way, in the oxide film obtained by the alumite treatment method of Non-Patent Document 1 described above, the occurrence of cracks due to repeated heat shocks is suppressed as compared with normal alumite treatment, and the effect of improving the corrosion resistance is recognized. In an environment using the above-mentioned fluorine-based gas in a plasma CVD apparatus or an environment using a powerful plasma in recent years, generation (corrosion) of AlF 3 particles due to the reaction between fluorine and aluminum that has entered the fine crack is difficult to suppress, and Since the film thickness is comparatively thick at about 30 μm, peeling of the film due to the generation of the AlF 3 particles is unavoidable, and the corrosion resistance in a harsh environment such as plasma CVD is insufficient.

また、アルミニウムとフッ素が反応する事は、有効なフッ素ラジカルの消費を意味し、フッ素源の無駄使いにもなっている。   In addition, the reaction between aluminum and fluorine means effective consumption of fluorine radicals, and wasteful use of a fluorine source.

また、前記特許文献1に記載の金属不働態化処理方法は、ステンレス鋼の表面にオゾン濃度が50vol%以上のオゾン含有ガスを作用させて不働態化処理を施すオゾン処理方法であるが、そのままアルミニウムに適用しても、有効な不働態膜を形成することは不可能である。すなわち、一般空気中下で生成している極薄のアルミニウムの自然酸化膜は、ステンレス鋼や鉄のそれに比べ緻密であり、さらなる酸化被膜の形成には、より強いエネルギーを必要とする。   In addition, the metal passivation treatment method described in Patent Document 1 is an ozone treatment method in which an ozone-containing gas having an ozone concentration of 50 vol% or more is applied to the surface of stainless steel to perform the passivation treatment. Even when applied to aluminum, it is impossible to form an effective passive film. That is, the natural oxide film of ultra-thin aluminum generated in general air is denser than that of stainless steel or iron, and requires stronger energy to form a further oxide film.

また、特許文献2には、オゾンガス配管等のオゾンガスとの接触部分のオゾンガスによる酸化を防止するための不働態化処理方法であって、上記したプラズマCVDの如き過酷なフッ素ラジカル存在下での耐食性は不十分である。   Further, Patent Document 2 discloses a passivation treatment method for preventing oxidation by ozone gas at a portion in contact with ozone gas such as ozone gas piping, which has corrosion resistance in the presence of severe fluorine radicals such as the above-mentioned plasma CVD. Is insufficient.

本発明はこのように事情に鑑み、アルミニウムの表面にフッ素ラジカル存在下等の過酷な環境下でも十分に耐食性を有する酸化皮膜を形成する事のできるオゾンガスによるアルミニウムの表面処理方法を提供することを目的とする。   In view of the circumstances as described above, the present invention provides an aluminum surface treatment method using ozone gas that can form an oxide film having sufficient corrosion resistance even in harsh environments such as the presence of fluorine radicals on the surface of aluminum. Objective.

本発明は上記目的を達成するためになされたもので、請求項1に記載の発明は、200〜450℃に保持されているアルミニウムの表面に、オゾン濃度が20vol%以上のオゾン含有ガスを接触させることにより、該アルミニウム又はアルミニウム合金の表面にオゾンガスによる酸化皮膜を形成することを特徴とする。   This invention was made | formed in order to achieve the said objective, and invention of Claim 1 contacts the ozone containing gas whose ozone concentration is 20 vol% or more on the surface of the aluminum hold | maintained at 200-450 degreeC. Thus, an oxide film by ozone gas is formed on the surface of the aluminum or aluminum alloy.

請求項2に記載の発明は、200〜450℃に保持されているアルミニウム又はアルミニウム合金の表面に、オゾン濃度が20vol%以上のオゾン含有ガスを流通させつつ接触させる事により、前記アルミニウム又はアルミニウム合金の表面にオゾンガスによる酸化皮膜を形成する事を特徴とする。   The invention according to claim 2 is such that the aluminum or aluminum alloy is brought into contact with the surface of aluminum or aluminum alloy maintained at 200 to 450 ° C. while circulating an ozone-containing gas having an ozone concentration of 20 vol% or more. It is characterized by forming an oxide film with ozone gas on the surface.

請求項3に記載の発明は、前記オゾン濃度が20vol%以上のオゾン含有ガスを、5Torr以上大気圧未満の負圧雰囲気下で接触させて前記アルミニウム又はアルミニウム合金の表面に酸化皮膜を形成することを特徴とする。   The invention according to claim 3 forms an oxide film on the surface of the aluminum or aluminum alloy by contacting an ozone-containing gas having an ozone concentration of 20 vol% or more in a negative pressure atmosphere of 5 Torr or more and less than atmospheric pressure. It is characterized by.

以上に詳述した如く、請求項1に記載の本発明では、酸化力の強いオゾン濃度20vol%以上の高濃度オゾン含有ガスをアルミニウムの表面が200〜450℃に保持されている高温度環境下でアルミニウムに作用させることでアルミニウムの表面に酸化皮膜を形成することにより、薄く且つ緻密で均一な酸化皮膜が形成される結果、フッ素ガス雰囲気下でも安定な不働態膜が得られることになる。   As described above in detail, in the present invention according to claim 1, a high-concentration ozone-containing gas having a strong oxidizing power with an ozone concentration of 20 vol% or higher is maintained in a high temperature environment where the aluminum surface is maintained at 200 to 450 ° C. By forming an oxide film on the surface of aluminum by acting on aluminum, a thin, dense and uniform oxide film is formed. As a result, a stable passive film can be obtained even in a fluorine gas atmosphere.

請求項2に記載の本発明では、アルミニウムの表面にオゾンガスによって酸化皮膜を形成するに当り、200〜450℃に加熱保持されているアルミニウム又はアルミニウム合金の表面に、オゾン濃度が20〜100vol%のオゾン含有ガスを、静止状態で接触させるのではなく、流通状態で接触させるので、オゾンの分解を回避しつつ、短時間で効率よく酸化皮膜を形成することが可能である。   In this invention of Claim 2, when forming an oxide film with the ozone gas on the surface of aluminum, ozone concentration is 20-100 vol% on the surface of the aluminum or aluminum alloy currently heated and maintained at 200-450 degreeC. Since the ozone-containing gas is not brought into contact in a stationary state but in a flowing state, it is possible to efficiently form an oxide film in a short time while avoiding the decomposition of ozone.

請求項3に記載の本発明では、オゾン濃度が20〜100vol%のオゾン含有ガスを、5Torr以上大気圧未満の負圧雰囲気下で流通させて前記加熱されているアルミニウム又はアルミニウム合金の表面に酸化皮膜を形成することから、有害なオゾンガスが装置外に漏出することがなく、且つ、オゾンガスの使用量を大幅に節約でき、オゾンガスの使用効率を著しく高めることが可能となり、酸化処理コストの大幅な低減も可能になる。   In the present invention according to claim 3, an ozone-containing gas having an ozone concentration of 20 to 100 vol% is oxidized on the surface of the heated aluminum or aluminum alloy by flowing under a negative pressure atmosphere of 5 Torr or more and less than atmospheric pressure. Since the film is formed, harmful ozone gas does not leak out of the device, and the amount of ozone gas used can be greatly saved, the efficiency of using ozone gas can be significantly increased, and the oxidation treatment cost is greatly increased. Reduction is also possible.

ステンレス鋼や鉄に比べて高密度で高強度の酸化皮膜を短時間で形成するという観点から、本発明の最良の形態について詳細に説明する。
先ず、本発明で使用されるアルミニウムは、一般的な構造部材或いは配管部材としてのアルミニウムであり、このアルミニウムを、200〜450℃に保持した状態で、高濃度のオゾン含有ガスに接触させることによって、該アルミニウムの表面にオゾンガスによる酸化皮膜の形成(以下単に『オゾン処理』という場合がある)を行う。
The best mode of the present invention will be described in detail from the viewpoint of forming a high-density and high-strength oxide film in a short time compared to stainless steel and iron.
First, aluminum used in the present invention is aluminum as a general structural member or piping member, and is brought into contact with a high-concentration ozone-containing gas while being kept at 200 to 450 ° C. Then, an oxide film is formed on the surface of the aluminum with ozone gas (hereinafter sometimes simply referred to as “ozone treatment”).

オゾン含有ガスとアルミニウム又はアルミニウム合金との接触は、流通させて行うことが好ましい。流通状態で接触させることにより、オゾンの分解を回避し、常に高濃度のオゾン含有ガスと接触させることができるため、緻密な酸化皮膜を短時間で効率よく形成することが可能となる。ここで、オゾン含有ガスを流通させない場合は、オゾンとの接触効率が低下し、短時間での酸化皮膜の形成が認められなくなる。好ましい流通流量は、50〜100cc/min(標準状態)であり、この範囲であれはオゾンとアルミニウム表面の酸化反応が効率よく進行する。   The contact between the ozone-containing gas and aluminum or aluminum alloy is preferably carried out by circulation. By contacting in a circulating state, decomposition of ozone can be avoided and contact with a high-concentration ozone-containing gas can be achieved at all times, so that a dense oxide film can be efficiently formed in a short time. Here, when the ozone-containing gas is not circulated, the contact efficiency with ozone is lowered, and the formation of an oxide film in a short time is not recognized. A preferable flow rate is 50 to 100 cc / min (standard state), and within this range, the oxidation reaction between ozone and the aluminum surface proceeds efficiently.

アルミニウム又はアルミニウム合金は、200〜450℃に加熱された状態でオゾン含有ガスと接触させることが好ましい。
ここで、オゾン処理温度が200℃以下であると、酸化反応が遅くなって短時間では酸化皮膜の生成が認められず、生成する酸化皮膜も薄くなって実用に耐え難い。従って、予め200℃超にアルミニウムを加熱保持しておくのが望ましい。また、450℃を越えるとアルミニウムの強度が低下してくるため、特に、予めアルミニウムを用いて成形した構造物の表面をオゾン処理して酸化皮膜を形成する様な場合には、成形体に歪みや変形が生じるおそれが出てくるので、450℃以下に抑えておく必要がある。更に好ましい範囲は、100〜450℃であり、最も好ましい範囲は200〜400℃である。又、この温度は、オゾン処理されるべきアルミニウムを予め所定の温度に加熱しておく事が肝要であり、オゾン含有ガスを加熱して供給する方法は、オゾンの分解を促進するため好ましい方法ではない。
Aluminum or an aluminum alloy is preferably brought into contact with an ozone-containing gas while being heated to 200 to 450 ° C.
Here, when the ozone treatment temperature is 200 ° C. or lower, the oxidation reaction is slowed down, and the formation of an oxide film is not recognized in a short time, and the generated oxide film becomes thin and difficult to withstand practical use. Therefore, it is desirable to heat and hold aluminum in advance at over 200 ° C. In addition, since the strength of aluminum decreases when the temperature exceeds 450 ° C., particularly when an oxide film is formed by applying ozone treatment to the surface of a structure previously molded using aluminum, the molded body is distorted. It is necessary to keep the temperature at 450 ° C. or lower. A more preferable range is 100 to 450 ° C., and a most preferable range is 200 to 400 ° C. In addition, it is important to preheat the aluminum to be ozone-treated to a predetermined temperature at this temperature, and the method of heating and supplying the ozone-containing gas is a preferable method in order to promote the decomposition of ozone. Absent.

Figure 2008007861
Figure 2008007861

表1は、3種のアルミニウム合金(JIS:A1050、A5052およびA6061)のサンプル平板を用意し、その一方にオゾン処理を施し、そのサンプルそれぞれを40℃に保った純水中に24時間浸漬させ、その純水についてサンプルより溶出した金属濃度を分析したものである。なお、オゾン処理方法は次のように行った;オゾン濃度20%(残り酸素)を150cc/min(標準状態)にて、150℃、15Torrの加熱負圧下で1時間流通暴露したもの。オゾン処理を行ったものでは、顕著な溶出金属量の低減が認められている。これはオゾン処理によって、表面に緻密な不働態化皮膜が形成され純水中へイオン化溶出する反応が抑えられたためと考えられる。   Table 1 shows sample plates of three types of aluminum alloys (JIS: A1050, A5052, and A6061), one of which is subjected to ozone treatment, and each sample is immersed in pure water kept at 40 ° C. for 24 hours. The metal concentration eluted from the sample for the pure water was analyzed. In addition, the ozone treatment method was performed as follows: Ozone concentration 20% (remaining oxygen) at 150 cc / min (standard state) and exposed to circulation for 1 hour at 150 ° C. under a negative heating pressure of 15 Torr. In the case of the ozone treatment, a remarkable reduction in the amount of eluted metal is recognized. This is presumably because the ozone treatment suppressed the reaction of ionizing and eluting into pure water by forming a dense passivation film on the surface.

Figure 2008007861
Figure 2008007861

表2は、表1と同様に3種のアルミニウム合金(JIS:A1050、A5052およびA6061)のサンプル平板を用意し、その一方にオゾン処理を施し、まずそのサンプルそれぞれを腐食性の強いClF3ガス(濃度100%)に、圧力0.072MPa、40℃にて24時間暴露し、次いで40℃に保った純水中に24時間浸漬させ、その純水についてサンプルより溶出した金属濃度を分析したものである。オゾン処理を行ったものでは、顕著な溶出金属量の低減が認められている。これはオゾン処理によって、表面に緻密な不働態化皮膜が形成され、ClF3ガスからの腐食反応が抑制され、純水中へイオン化溶出する反応が抑えられたためと考えられる。 Table 2, similarly to Table 1 Three aluminum alloys (JIS: A1050, A5052 and A6061) Sample plates were prepared, and subjected to ozone treatment on one, first strong ClF 3 gas corrosive respectively the sample (Concentration 100%) exposed to pressure 0.072 MPa at 40 ° C. for 24 hours, then immersed in pure water kept at 40 ° C. for 24 hours, and analyzed the concentration of metal eluted from the sample with respect to the pure water It is. In the case of the ozone treatment, a remarkable reduction in the amount of eluted metal is recognized. This is probably because the ozone treatment formed a dense passivated film on the surface, and the corrosion reaction from the ClF 3 gas was suppressed, and the reaction that ionized and eluted into pure water was suppressed.

次に、オゾン濃度は、高濃度ほど好ましいので理論的には100%の純オゾンガスでも問題はない。下限としては、少なくとも5%は必要であり、5%以下では酸化処理時間が長くなり過ぎると共に、酸化皮膜も薄くなる傾向が認められるので実用性に問題が残る。特に好ましいのは20%以上であり、これ以上のオゾン濃度では、厚めの酸化皮膜が速やかに形成される傾向が認められている。尚、オゾン以外の成分は酸素ガス又は不活性ガスでよく、オゾンガス製造に使用した純酸素ガスをそのまま用いるのが好ましい。   Next, since the ozone concentration is preferably as high as possible, there is no problem even with 100% pure ozone gas theoretically. As a lower limit, at least 5% is necessary, and if it is 5% or less, the oxidation treatment time becomes too long and the oxide film tends to become thin, so that there remains a problem in practicality. Particularly preferred is 20% or more, and a thicker oxide film tends to be rapidly formed at ozone concentrations higher than this. In addition, components other than ozone may be oxygen gas or inert gas, and it is preferable to use pure oxygen gas used for ozone gas production as it is.

上記オゾン処理の雰囲気圧力としては、5Torr以上大気圧未満の負圧雰囲気が好ましい。これは、有害な高濃度オゾン含有ガスが雰囲気外に漏れるのを防止すると共に、本発明が対象とするCVD装置等の半導体製造装置は全て真空容器であるので、その装置の最適な使用状態でオゾン処理を行う事ができるからである。尚、オゾン含有ガスの圧力が5Torrより低いと、真空維持に経費が掛かると共に、反応時間も長く成り過ぎて実用性の面で好ましくない。又、大気圧以上の正圧にすると有害なオゾンガスが漏洩するおそれが生じるので、負圧下でオゾン処理するのが好ましい方法と言える。更に好ましくは、10〜380Torrである。   The atmospheric pressure for the ozone treatment is preferably a negative pressure atmosphere of 5 Torr or more and less than atmospheric pressure. This prevents harmful high-concentration ozone-containing gas from leaking out of the atmosphere, and the semiconductor manufacturing apparatus such as a CVD apparatus targeted by the present invention is a vacuum container, so that the apparatus can be used in an optimum state of use. This is because ozone treatment can be performed. If the pressure of the ozone-containing gas is lower than 5 Torr, it will be expensive to maintain the vacuum, and the reaction time will be too long, which is not preferable in terms of practicality. Moreover, since a harmful ozone gas may be leaked if the positive pressure is higher than the atmospheric pressure, it can be said that the ozone treatment is preferably performed under a negative pressure. More preferably, it is 10 to 380 Torr.

次に、本発明で形成されるオゾンガスによる酸化皮膜は、150〜500オングストローム(Å)の極めて薄い膜厚であり、高濃度のオゾン含有ガスによって緻密で強度の高い酸化膜となっている。この膜厚は、従来のアルマイトの膜厚が数十μmである事を考慮すると、その膜厚の薄さは特筆すべきである。オゾンガスによって形成された酸化膜は緻密で強度が高いため、膜厚が薄くても耐食性が十分に確保でき、アルミニウム本来の特性を損なうことなく耐食性を向上させることができる。   Next, the oxide film formed by ozone gas according to the present invention has an extremely thin film thickness of 150 to 500 angstrom (Å), and is a dense and high-strength oxide film formed by a high-concentration ozone-containing gas. In consideration of the fact that the film thickness of the conventional alumite is several tens of μm, the thin film thickness should be noted. Since the oxide film formed by ozone gas is dense and high in strength, the corrosion resistance can be sufficiently ensured even if the film thickness is thin, and the corrosion resistance can be improved without impairing the original characteristics of aluminum.

この膜厚が150Åよりも薄いと、フッ素ラジカルの存在する過酷な環境下では耐食性が十分ではなく、又、500Åを越える膜厚は不働態化の観点では余り意味がなくオゾンガスの無駄使いとなるので、酸化皮膜は150〜500Åの範囲となる様に調整するのが望ましい。尚、この膜厚は、オゾン濃度,反応温度,反応時間によって異なり、オゾン濃度が高いほど、反応温度が高いほど、又、反応時間が長いほど、膜厚は厚くなるので、実験的にこれらの条件を変えて得られた酸化皮膜の膜厚データから最適な条件を選定する事になる。以下、本発明の実施例について説明する。   If this film thickness is less than 150 mm, the corrosion resistance is not sufficient in a harsh environment where fluorine radicals are present, and a film thickness exceeding 500 mm is not meaningful in terms of passivation and wastes ozone gas. Therefore, it is desirable to adjust the oxide film to be in the range of 150 to 500 mm. The film thickness varies depending on the ozone concentration, reaction temperature, and reaction time. The higher the ozone concentration, the higher the reaction temperature, and the longer the reaction time, the thicker the film thickness. The optimum conditions are selected from the film thickness data of the oxide film obtained by changing the conditions. Examples of the present invention will be described below.

アルミニウム合金A1050材(Cu≦0.05重量%(以下同じ),Si≦0.25%,Fe≦0.40%,Mn≦0.05%,Mg≦0.05%,Zn≦0.05%,Ti≦0.03%,Al≧99.50%)を電解研磨した縦45mm,横45mm,厚さ5mmの試験片を真空容器内に封入し、該容器内を15Torrに減圧して250℃に加熱した状態で、オゾン濃度20%(残部酸素)のオゾン含有ガスを150cc/min(標準状態)の流速で供給し、前記試験片の表面にオゾンガスを流通状態で1時間接触させて酸化皮膜を形成した。得られた酸化皮膜の膜厚をオージエ分光分析法により測定したところ230Åであった(以下の膜厚測定法も同法による)。因みに、オゾン処理する前の該試験片には、大気中の酸素による自然酸化皮膜が形成されており、その膜厚は95Åであった。この試験から、1時間で135Åの酸化膜が形成されたことが分かる。   Aluminum alloy A1050 (Cu ≦ 0.05% by weight (hereinafter the same), Si ≦ 0.25%, Fe ≦ 0.40%, Mn ≦ 0.05%, Mg ≦ 0.05%, Zn ≦ 0.05 %, Ti ≦ 0.03%, Al ≧ 99.50%), a test piece having a length of 45 mm, a width of 45 mm, and a thickness of 5 mm was sealed in a vacuum vessel, and the inside of the vessel was depressurized to 15 Torr and 250 Ozone-containing gas having an ozone concentration of 20% (remaining oxygen) is supplied at a flow rate of 150 cc / min (standard state) while being heated to ℃, and ozone gas is brought into contact with the surface of the test piece in a circulating state for 1 hour to oxidize. A film was formed. When the film thickness of the obtained oxide film was measured by Auger spectroscopy, it was 230 mm (the following film thickness measurement method was also the same). Incidentally, a natural oxide film formed by oxygen in the atmosphere was formed on the test piece before the ozone treatment, and the film thickness was 95 mm. From this test, it can be seen that an oxide film of 135 mm was formed in one hour.

実施例1で用いたのと同一の試験片を用いて、試験片の加熱温度を400℃に設定する以外は実施例1と同一条件でオゾン処理を行ったところ、得られた酸化皮膜の膜厚は290Åであり、処理前の状態に比して195Åの膜厚増加が認められた。又、この結果から、処理温度が高いほど得られる膜厚が厚くなる事が分かる。
(比較例1)
When the same test piece as used in Example 1 was used and the ozone treatment was performed under the same conditions as in Example 1 except that the heating temperature of the test piece was set to 400 ° C., the resulting oxide film was obtained. The thickness was 290 mm, and an increase in film thickness of 195 mm was observed compared to the state before the treatment. Also, from this result, it can be seen that the higher the processing temperature, the thicker the film thickness obtained.
(Comparative Example 1)

実施例1で用いたのと同一の試験片を用いて、オゾン含有ガスに替えて純酸素を用いる以外は実施例1と同一条件で、純酸素ガスによる酸化皮膜の形成試験を行った。得られた酸化皮膜の膜厚は170Åであり、酸化処理前に比して75Åの膜厚増加が認められたが、オゾン含有ガスを用いた実施例1に比して60Åも薄い膜厚しか得られていない。
(比較例2)
Using the same test piece as used in Example 1, an oxide film formation test using pure oxygen gas was performed under the same conditions as in Example 1 except that pure oxygen was used instead of the ozone-containing gas. The film thickness of the obtained oxide film was 170 mm, and an increase in film thickness of 75 mm was recognized compared with that before the oxidation treatment, but the film thickness was only 60 mm thinner than that in Example 1 using the ozone-containing gas. Not obtained.
(Comparative Example 2)

実施例2で用いたのと同一の試験片を用いて、オゾン含有ガスに替えて純酸素を用いる以外は実施例2と同一条件で、純酸素ガスによる酸化皮膜の形成試験を行った。得られた酸化皮膜の膜厚は150Åであり、酸化処理前に比して55Åの膜厚増加が認められたが、オゾン含有ガスを用いた実施例2に比して140Åも薄い膜厚しか得られていない。   Using the same test piece as used in Example 2, an oxide film formation test using pure oxygen gas was performed under the same conditions as in Example 2 except that pure oxygen was used instead of the ozone-containing gas. The film thickness of the obtained oxide film was 150 mm, and an increase in film thickness of 55 mm was recognized compared with that before the oxidation treatment, but the film thickness was only 140 mm thinner than that in Example 2 using the ozone-containing gas. Not obtained.

上記実施例1、2及び比較例1、2から、純酸素による酸化皮膜形成よりも、オゾン含有ガスによる酸化皮膜形成の方が短時間で厚い酸化皮膜が得られ、酸化皮膜の形成効率が高い事が理解される。   From Examples 1 and 2 and Comparative Examples 1 and 2, a thick oxide film can be obtained in a shorter time by forming an oxide film with ozone-containing gas than by forming an oxide film with pure oxygen, and the formation efficiency of the oxide film is high. Things are understood.

又、上記実施例1、2及び比較例1、2の酸化皮膜について、FT−IR(フーリエ変換赤外分光分析法)により各試験片の表面構造解析を行った。その結果を図1に示す。同図に示されている様に、横軸のWavenumbers(cm-1) の最大値の吸収ピークにおける値は、実施例2の400℃オゾン処理で960〜970cm-1であり、実施例1の250℃オゾン処理と比較例2の400℃酸素処理で共に約950cm-1であり、比較例1の250℃酸素処理で約930cm-1である。この事から、高温処理ほど形成された酸化皮膜の密度が高くなる傾向がある。これは、アルミニウムの表面層に単純なAl23ではなくAlx y のアモルファス状のアルミニウム酸化物が生成しているものと考えられる。又、形成された酸化皮膜の密度は、酸素処理の場合よりもオゾン処理の場合の方が高密度の酸化皮膜が得られる事が理解される。これらの事から、処理温度が高温になる程、酸化皮膜の厚さも密度も高くなり、酸化皮膜の強度も向上する事が理解される。
(比較例3)
Moreover, about the oxide film of the said Examples 1 and 2 and Comparative Examples 1 and 2, the surface structure analysis of each test piece was performed by FT-IR (Fourier transform infrared spectroscopy). The result is shown in FIG. As shown in the figure, the value at the absorption peak of the maximum value of the horizontal axis Wavenumbers (cm -1) are 960~970Cm -1 at 400 ° C. ozone treatment of Example 2, Example 1 Both the 250 ° C. ozone treatment and the 400 ° C. oxygen treatment of Comparative Example 2 are about 950 cm −1 , and the 250 ° C. oxygen treatment of Comparative Example 1 is about 930 cm −1 . For this reason, the density of the oxide film formed tends to increase as the temperature is increased. This is considered to be because Al x O y amorphous aluminum oxide is formed on the surface layer of aluminum instead of simple Al 2 O 3 . Further, it is understood that the density of the formed oxide film is higher in the case of ozone treatment than in the case of oxygen treatment. From these facts, it is understood that the higher the processing temperature, the higher the thickness and density of the oxide film and the higher the strength of the oxide film.
(Comparative Example 3)

実施例1で用いたのと同一試験片を用い、該試験片を大気に開放したホットプレート上に載置し、400℃に設定して長時間放置して大気による酸化皮膜の形成を行った。得られた酸化皮膜の膜厚は190Åであり、大気中での酸化皮膜形成は、この膜厚で飽和に達しているものと考えられる。尚、この事実からも、実施例1、2によるオゾン含有ガスによる酸化皮膜形成は、高温で大気中に長時間曝したときに得られる酸化皮膜よりも厚い酸化皮膜が短時間で得られる事が理解される。   Using the same test piece as used in Example 1, the test piece was placed on a hot plate opened to the atmosphere, and set to 400 ° C. and left for a long time to form an oxide film by the atmosphere. . The film thickness of the obtained oxide film is 190 mm, and the formation of the oxide film in the atmosphere is considered to have reached saturation at this film thickness. In addition, also from this fact, the oxide film formation by the ozone-containing gas according to Examples 1 and 2 can obtain a thick oxide film in a short time than the oxide film obtained when exposed to the atmosphere at a high temperature for a long time. Understood.

アルミニウム合金A1050材のパイプ(φ12.7mm×長さ4m)内を15Torrに減圧すると共に該パイプを250℃に加熱した状態で、オゾン濃度20%(残部酸素)のオゾン含有ガスを150cc/min(標準状態)の流速で1時間流通させて該パイプ内面に酸化皮膜を形成した。このオゾン処理パイプと、オゾン処理をしていない同一材料、同一寸法のパイプとを用意し、両パイプに15%フッ素ガス(残部ヘリウム)を室温にて封入密閉して両パイプの内圧の変化(フッ素による腐食の進行状態)を測定した。その結果を図2に示している。図2の縦軸はパイプの内圧(Torr)を示し、横軸は経過時間(時間)を示している。   While reducing the pressure inside the pipe of aluminum alloy A1050 (φ12.7 mm × length 4 m) to 15 Torr and heating the pipe to 250 ° C., an ozone-containing gas having an ozone concentration of 20% (remaining oxygen) is 150 cc / min ( An oxide film was formed on the inner surface of the pipe by flowing for 1 hour at a flow rate in the standard state. Prepare this ozone-treated pipe and a pipe of the same material and the same size that have not been treated with ozone. Both pipes are sealed with 15% fluorine gas (remaining helium) at room temperature, and the internal pressure of both pipes changes ( The progress of corrosion by fluorine) was measured. The result is shown in FIG. The vertical axis in FIG. 2 indicates the internal pressure (Torr) of the pipe, and the horizontal axis indicates the elapsed time (time).

同図から明らかな様に、オゾンガスによる酸化皮膜を形成したパイプ(本発明に係るアルミニウム)の場合には、フッ素ガス注入後、当初の数時間は、フッ素ガスとアルミニウムとの反応によるフッ素ガスの消費によって内圧の低下が認められたが、以後の圧力低下は極めて緩やかである。即ち、アルミニウムとフッ素ガスとの反応によるアルミニウムの腐食の進行が抑制されている。これに対し、オゾン処理を施していないパイプの場合には、最初の数時間は、オゾン処理パイプと同様の圧力低下を示し、その後も圧力低下は止まらない。400時間経過後には、オゾン処理していないパイプでは内圧が660Torr強であるのに対してオゾン処理パイプでは740Torrである。このことから、オゾン処理パイプでは、フッ素による腐食が著しく抑制されている事が分かる。   As is clear from the figure, in the case of a pipe (aluminum according to the present invention) in which an oxide film is formed by ozone gas, after the fluorine gas is injected, the initial few hours of fluorine gas generated by the reaction of fluorine gas and aluminum Although a decrease in internal pressure was observed due to consumption, the subsequent pressure decrease is very gradual. That is, the progress of corrosion of aluminum due to the reaction between aluminum and fluorine gas is suppressed. On the other hand, in the case of a pipe that has not been subjected to ozone treatment, the first few hours show a pressure drop similar to that of the ozone treatment pipe, and the pressure drop does not stop thereafter. After the elapse of 400 hours, the internal pressure of the pipe not subjected to ozone treatment is slightly higher than 660 Torr, whereas that of the ozone treated pipe is 740 Torr. From this, it can be seen that corrosion by fluorine is remarkably suppressed in the ozone treatment pipe.

本実施例はアルミニウム合金の塩素ガスに対する耐腐食性を評価したもので、その結果を表3に示す。尚、アルミニウム合金A1050の試験片(20mm×20mm)は、いずれも♯400研磨紙で研磨した後、水洗とアセトン脱脂を施し、それぞれ、処理無し、酸素処理、オゾン処理したものについて、次に示す条件にて耐腐食性を評価した。   In this example, the corrosion resistance of an aluminum alloy to chlorine gas was evaluated, and the results are shown in Table 3. The test pieces (20 mm × 20 mm) of aluminum alloy A1050 were each polished with # 400 abrasive paper, then washed with water and degreased with acetone, respectively, and after treatment, oxygen treatment, and ozone treatment, respectively. Corrosion resistance was evaluated under the conditions.

試験装置として、耐塩素ガス性を有する試験容器(石英)を囲むように該容器傍らに加熱ヒータを設置し、該容器内に均一に加熱されるようにすると共に、温度測定及び温度制御するために該容器内に熱電対を設置したものを用いた。試験片を試験容器内(室温)に設置した後、加熱した。このときの加熱条件は、試験片挿入後(室温)、20〜30分間で145〜155℃まで昇温し、更に60分間該温度(145〜155℃)を保持した。その後、5%(±0.2%)Cl−Arガスを130cmの流速で供給するとともに、同時に試験容器内を加熱し、15〜25分間で345℃〜355℃に昇温し、該温度を保持した。なお、このときの試験容器内の圧力は大気圧とした。Cl2−Arガスは2時間供給を続けた。Cl−Arガス供給を停止して残圧によって系内に残留するCl2−Arガスを排気した後、窒素ガスを供給した。また、Cl2−Arガス供給停止と同時に加熱を停止して室温になるまで放冷した(このとき要した時間は2.5〜3.5時間であった。)試験容器内が室温に達した後、窒素ガスの供給を停止して試験片を取り出し、試験表面の腐食発生面積を測定した。
その結果、本発明に係るオゾン処理によってアルミの耐腐食性について大幅な改善が認められる。
As a test device, a heater is installed beside the vessel so as to surround a chlorine-resistant test vessel (quartz) so that the vessel is heated uniformly and temperature measurement and temperature control are performed. And a thermocouple installed in the container. The test piece was placed in a test container (room temperature) and then heated. As heating conditions at this time, after inserting the test piece (room temperature), the temperature was raised to 145 to 155 ° C in 20 to 30 minutes, and the temperature (145 to 155 ° C) was further maintained for 60 minutes. Thereafter, 5% (± 0.2%) Cl 2 —Ar gas was supplied at a flow rate of 130 cm, and at the same time, the inside of the test vessel was heated to 345 ° C. to 355 ° C. in 15 to 25 minutes. Held. The pressure in the test container at this time was atmospheric pressure. The Cl 2 -Ar gas was continuously supplied for 2 hours. After the Cl 2 -Ar gas supply was stopped and the Cl 2 -Ar gas remaining in the system was exhausted by the residual pressure, nitrogen gas was supplied. In addition, the heating was stopped simultaneously with the supply of Cl 2 -Ar gas stopped, and the mixture was allowed to cool to room temperature (the time required was 2.5 to 3.5 hours). The inside of the test container reached room temperature. Then, the supply of nitrogen gas was stopped, the test piece was taken out, and the corrosion occurrence area on the test surface was measured.
As a result, a significant improvement in the corrosion resistance of aluminum is recognized by the ozone treatment according to the present invention.

Figure 2008007861
Figure 2008007861

以上の実施例では、アルミニウム合金としてA0150とA5052を用いた例を示しているが、本発明はこの合金系に限定されるものではなく、構造材やパイプ材或いは板材、線材として用いられている各種アルミニウム材に適用できる事は言うまでもない。   In the above examples, A0150 and A5052 are used as the aluminum alloy, but the present invention is not limited to this alloy system, and is used as a structural material, pipe material, plate material, or wire material. Needless to say, it can be applied to various aluminum materials.

また、本発明に係るオゾンガスによるアルミニウムの表面に酸化皮膜を形成する方法は、上記実施例に示した如き板材やパイプ材に限定されるのではなく、その形状は任意である。又、構造物の素材としてアルミニウムを用いる場合には、加工前のアルミニウム或いは成形加工後のアルミニウムにオゾン処理を施しても良いが、構造物がCVD装置の如く一種の真空容器の場合には、オゾン処理を施す事なく成形加工して所定の真空容器に組み立てた後に、該容器内を所定の減圧状態となすと共に所定の温度に加熱した状態でオゾン含有ガスを供給して該真空容器内部に露出しているアルミニウム部材の表面にオゾンガスを接触させる事によって、該真空容器内面のアルミニウムの表面に酸化皮膜を形成する方法が好ましい方法である。係る方法を採用する事により、CVD装置等の真空容器のメンテナンスの一環として定期的にオゾン含有ガスを供給して酸化皮膜の更新を行う事が可能となる。   Further, the method for forming an oxide film on the surface of aluminum by ozone gas according to the present invention is not limited to the plate material and the pipe material as shown in the above embodiment, and the shape thereof is arbitrary. In addition, when aluminum is used as the material of the structure, ozone treatment may be performed on aluminum before processing or aluminum after forming, but in the case where the structure is a kind of vacuum container such as a CVD apparatus, After forming and assembling into a predetermined vacuum container without applying ozone treatment, the inside of the container is brought to a predetermined reduced pressure state and an ozone-containing gas is supplied in a state heated to a predetermined temperature to enter the inside of the vacuum container. A preferable method is to form an oxide film on the aluminum surface on the inner surface of the vacuum vessel by bringing ozone gas into contact with the exposed surface of the aluminum member. By adopting such a method, it becomes possible to renew the oxide film by periodically supplying an ozone-containing gas as part of maintenance of a vacuum vessel such as a CVD apparatus.

オゾンガスによる酸化皮膜と酸素ガスによる酸化皮膜の表面構造の特性の差異を示すFT−IR解析図である。It is a FT-IR analysis figure which shows the difference in the characteristic of the surface structure of the oxide film by ozone gas, and the oxide film by oxygen gas. オゾンガスによる酸化皮膜を形成したアルミニウム合金製パイプと未処理パイプとのフッ素ガスによる腐食の進行状態の相違を示すグラフである。It is a graph which shows the difference in the advancing state of the corrosion by the fluorine gas of the aluminum alloy pipe which formed the oxide film by ozone gas, and an untreated pipe.

Claims (3)

アルミニウム又はアルミニウム合金にオゾンガスを作用させて該アルミニウム又はアルミニウム合金の表面に酸化皮膜を形成するアルミニウムの表面処理方法であって、
200〜450℃に保持されているアルミニウム又はアルミニウム合金の表面に、オゾン濃度が20〜100vol%のオゾン含有ガスを接触させることにより、前記アルミニウム又はアルミニウム合金の表面に酸化皮膜を形成することを特徴とするアルミニウムの表面処理方法。
An aluminum surface treatment method in which ozone gas is allowed to act on aluminum or an aluminum alloy to form an oxide film on the surface of the aluminum or aluminum alloy,
An oxide film is formed on the surface of the aluminum or aluminum alloy by bringing an ozone-containing gas having an ozone concentration of 20 to 100 vol% into contact with the surface of the aluminum or aluminum alloy maintained at 200 to 450 ° C. A surface treatment method of aluminum.
前記アルミニウム又はアルミニウム合金の表面に、前記オゾン含有ガスを、流通させつつ接触させるものである請求項1に記載のアルミニウムの表面処理方法。 The aluminum surface treatment method according to claim 1, wherein the ozone-containing gas is brought into contact with the surface of the aluminum or aluminum alloy while being circulated. 前記オゾン含有ガスを、5Torr以上大気圧未満の負圧雰囲気下で接触させて、前記アルミニウム又はアルミニウム合金の表面に酸化皮膜を形成させる請求項1〜3のいずれか1項に記載のアルミニウムの表面処理方法。 The surface of aluminum according to any one of claims 1 to 3, wherein the ozone-containing gas is contacted in a negative pressure atmosphere of 5 Torr or more and less than atmospheric pressure to form an oxide film on the surface of the aluminum or aluminum alloy. Processing method.
JP2007252799A 2007-09-28 2007-09-28 Surface-treating method for aluminum Withdrawn JP2008007861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252799A JP2008007861A (en) 2007-09-28 2007-09-28 Surface-treating method for aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252799A JP2008007861A (en) 2007-09-28 2007-09-28 Surface-treating method for aluminum

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003346773A Division JP4366169B2 (en) 2003-10-06 2003-10-06 Aluminum surface treatment method

Publications (1)

Publication Number Publication Date
JP2008007861A true JP2008007861A (en) 2008-01-17

Family

ID=39066323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252799A Withdrawn JP2008007861A (en) 2007-09-28 2007-09-28 Surface-treating method for aluminum

Country Status (1)

Country Link
JP (1) JP2008007861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016037630A (en) * 2014-08-07 2016-03-22 有限会社コンタミネーション・コントロール・サービス Corrosion prevention method
USRE45993E1 (en) 2010-06-16 2016-05-03 Seiko Epson Corporation Polarization device, method of manufacturing the same, liquid crystal device, and electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45993E1 (en) 2010-06-16 2016-05-03 Seiko Epson Corporation Polarization device, method of manufacturing the same, liquid crystal device, and electronic apparatus
USRE47179E1 (en) 2010-06-16 2018-12-25 Seiko Epson Corporation Polarization device, method of manufacturing the same, liquid crystal device, and electronic apparatus
USRE49885E1 (en) 2010-06-16 2024-03-26 Seiko Epson Corporation Polarization device, method of manufacturing the same, liquid crystal device, and electronic apparatus
JP2016037630A (en) * 2014-08-07 2016-03-22 有限会社コンタミネーション・コントロール・サービス Corrosion prevention method

Similar Documents

Publication Publication Date Title
JP4456378B2 (en) Method for producing conductive diamond electrode
US5494713A (en) Method for treating surface of aluminum material and plasma treating apparatus
US6783863B2 (en) Plasma processing container internal member and production method thereof
JP4669605B2 (en) Cleaning method for semiconductor manufacturing equipment
JP5738987B2 (en) Reduction of copper or trace metal contaminants in plasma electrolytic oxidation coatings
US7323230B2 (en) Coating for aluminum component
JP2003218198A (en) Method and device for manufacturing semiconductor device
CN110352267A (en) Protective oxide coatings with reduced metal concentration
JP4366169B2 (en) Aluminum surface treatment method
JPH01319665A (en) Ion nitriding method for aluminum material
JP2008007861A (en) Surface-treating method for aluminum
JP3148878B2 (en) Aluminum plate, method of manufacturing the same, and anti-adhesive cover using the aluminum plate
JP2020132895A (en) Method for regenerating oxide film of component made of aluminum
JP3929140B2 (en) Corrosion resistant member and manufacturing method thereof
WO2021065327A1 (en) Corrosion-resistant member
JP2023509603A (en) Metal body formed by magnesium fluoride region
JPH0499282A (en) Electrode for generating high frequency plasma
CN113891960B (en) Corrosion resistant member
Kyzioł et al. Surfaces modification of Al-Cu alloys by plasma-assisted CVD
KR102489717B1 (en) Container for storing high-purity hydrogen fluoride using a metal substrate having low corrosion resistance, and a method for manufacturing the same
JPH09326384A (en) Plasma processing system
JPH03215656A (en) Metallic material with passivating fluoride film and its production and equipment using same
JP2004509461A (en) Apparatus and method for reducing contamination of a heat treated semiconductor substrate
JP3262696B2 (en) Silica glass member having glassy carbon coating
JP3908291B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090917