JP2008007839A - Cu-Zn ALLOY WITH HIGH STRENGTH AND EXCELLENT BENDABILITY - Google Patents

Cu-Zn ALLOY WITH HIGH STRENGTH AND EXCELLENT BENDABILITY Download PDF

Info

Publication number
JP2008007839A
JP2008007839A JP2006181516A JP2006181516A JP2008007839A JP 2008007839 A JP2008007839 A JP 2008007839A JP 2006181516 A JP2006181516 A JP 2006181516A JP 2006181516 A JP2006181516 A JP 2006181516A JP 2008007839 A JP2008007839 A JP 2008007839A
Authority
JP
Japan
Prior art keywords
alloy
grain size
crystal grain
mgs
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006181516A
Other languages
Japanese (ja)
Other versions
JP5247010B2 (en
Inventor
Tatsuji Egashira
竜児 江頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2006181516A priority Critical patent/JP5247010B2/en
Priority to PCT/JP2007/063012 priority patent/WO2008001852A1/en
Priority to CN2007800244517A priority patent/CN101479396B/en
Priority to KR1020087030585A priority patent/KR101088666B1/en
Publication of JP2008007839A publication Critical patent/JP2008007839A/en
Application granted granted Critical
Publication of JP5247010B2 publication Critical patent/JP5247010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu-Zn type copper alloy having high strength and excellent bendability for use in electronic parts such as terminals and connectors. <P>SOLUTION: The Cu-Zn alloy with high strength and excellent bendability is characterized in that it has a composition consisting of 20 to 40 mass% Zn and the balance Cu with inevitable impurities, in that it has such crystal grain characteristics that mean grain size (mGS) ranges from 1 to 4μm and the standard deviation of the grain size, (σGS) is ≤1/3 mGS, and in that the relational expression of X-ray diffraction intensities from rolling surface, äI(220)+I(111)}/I(200)=2.0 to 5.0 is satisfied. The alloy can further contain 0.01 to 0.3 mass% of one or more elements among Ni, Si, Fe, Ti, Co and Sn, and it is preferable that S content is ≤30 ppm and surface roughness Ra is ≤0.2μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、端子・コネクタ等の電子部品用に用いられる高強度で曲げ加工性に優れたCu−Zn系銅合金に関するものである。   The present invention relates to a Cu—Zn-based copper alloy having high strength and excellent bending workability used for electronic parts such as terminals and connectors.

近年は電子部品の軽薄・短小化の進展が従前にもまして著しく、これに対応して、電子部品用の銅合金条にも、薄い厚さの材料が要求されている。しかし、材料が薄くなった場合、コネクタの接圧等を維持するため、材料自体の強度は高いことが必要とされる。一方、電子部品の小型化のためには、小さなスペースでその機能を果たすために、曲げ加工も小さな曲げ半径で施され、高い曲げ加工性が要求される。従って、高強度で且つ曲げ加工性が良好であるという、相矛盾した特性が材料に要求されている。
これに伴い、ベリリウム銅、チタン銅、コルソン合金系等の高強度銅合金が開発され、使用されてきているが、これら高強度銅合金は、黄銅等の従来型銅合金より高価であるため、コスト削減の要求の厳しい分野の使用は好まれない。
この観点から、従来銅合金の中でも比較的高い機械的強度を有するといわれてきた黄銅といった一般的な銅合金について、強度や加工性のさらなる改良が求められるようになった。加工性としては、とりわけ曲げ加工性が良好であることが要求される。
このような要求に対して、例えば特許文献1では、黄銅の結晶粒を微細化することが記載されており、非特許文献1にはα黄銅の結晶粒微細化による特性改善の研究が報告されている。
In recent years, the progress of miniaturization and shortening of electronic parts has been remarkable, and accordingly, a copper alloy strip for electronic parts is required to have a thin thickness. However, when the material becomes thinner, the strength of the material itself is required to be high in order to maintain the contact pressure of the connector. On the other hand, in order to reduce the size of an electronic component, in order to perform its function in a small space, bending is performed with a small bending radius, and high bending workability is required. Therefore, the material is required to have contradictory properties such as high strength and good bending workability.
Along with this, high strength copper alloys such as beryllium copper, titanium copper, and Corson alloy have been developed and used, but these high strength copper alloys are more expensive than conventional copper alloys such as brass, Use in areas where cost reduction is demanding is not preferred.
From this point of view, further improvements in strength and workability have been required for general copper alloys such as brass, which have been said to have a relatively high mechanical strength among conventional copper alloys. As workability, it is required that bending workability is particularly good.
In response to such a demand, for example, Patent Document 1 describes that the crystal grains of brass are refined, and Non-Patent Document 1 reports a study on characteristic improvement by refinement of α brass crystal grains. ing.

特開2004−292875公報JP 2004-292875 A 「銅と銅合金」第41巻1号、第29〜34頁、2002年"Copper and copper alloy" Vol. 41, No. 1, pp. 29-34, 2002

しかしながら、上記特許文献1及び非特許文献1の結晶粒微細化黄銅は、高強度及び優れた曲げ加工性を求める昨今の厳しい要求品質を満足するものではない。特許文献1の70/30黄銅は結晶粒度が2μm以下のものであり、均一かつ微細な結晶粒度を目的としているが、その最終焼鈍後の結晶は、大径の結晶粒と小径の結晶粒とが混在する混粒組織である(特許文献1の実施例結果を示す図2、4〜5参照)。又、非特許文献1に記載の細粒化は金属材料に大ひずみを与え、焼鈍により再結晶させる特殊プロセス(ECAP法、ARB法、Torsion Mechanical Alloying法等)によるものであるが、大型材料の作成が難しく形状に制限があり、製造コストが非常に高くつく(非特許文献1第29〜30頁)。更にひずみは粒界、粒内共に大きくばらついており(非特許文献1結論(7))、その結果発生する再結晶粒の分布及び粒径はばらつきがあるため均一な微細化は達成されていない。
しかし、結晶粒径にばらつきがある混粒組織が存在する合金に曲げ変形や引っ張り等の塑性加工を施すと、局所的な変形量の差異を生じ、変形しやすい箇所に集中して部分的変形が生じて、亀裂が発生して伝播する。即ち局部的に粗大粒子を含む結晶組織では粗大粒子が割れの起点となる。このように、混粒組織が存在する場合は同じ平均粒径で均一粒径(整粒)組織の合金に比べて強度及び曲げ加工性に劣るものとなる。上記従来技術では黄銅の結晶粒微細化で得られる特性を主目的としており、結晶粒径の均一化を達成し更に優れた強度及び曲げ加工性を得ることはあまり意識されていなかった。
更に黄銅の結晶方位に着目して曲げ加工性を調整することは、上記従来技術では全く意識されていなかった。
本発明は、そのような状況を鑑みて、電子機器用において好適な強度と曲げ加工性を有する黄銅条を提供する。
However, the crystal grain refined brass described in Patent Document 1 and Non-Patent Document 1 does not satisfy the recent strict quality requirements for high strength and excellent bending workability. The 70/30 brass of Patent Document 1 has a crystal grain size of 2 μm or less and is aimed at a uniform and fine crystal grain size, but the crystal after the final annealing is composed of large crystal grains and small crystal grains. (See FIGS. 2, 4 to 5 showing the results of Examples of Patent Document 1). The fine graining described in Non-Patent Document 1 is a special process (ECAP method, ARB method, Torsion Mechanical Alloying method, etc.) that gives a large strain to the metal material and recrystallizes by annealing. It is difficult to produce and the shape is limited, and the manufacturing cost is very high (Non-Patent Document 1, pages 29-30). Furthermore, the strain varies widely both at the grain boundary and within the grain (Conclusion (7) of Non-Patent Document 1). As a result, the distribution and grain size of recrystallized grains vary, and uniform refinement is not achieved. .
However, if plastic processing such as bending deformation or tension is applied to an alloy with a mixed grain structure with a variation in crystal grain size, a difference in local deformation occurs, and partial deformation is concentrated in areas where deformation is likely to occur. Occurs and cracks are generated and propagated. That is, in a crystal structure including coarse particles locally, the coarse particles are the starting point of cracking. Thus, when a mixed grain structure exists, it is inferior in strength and bending workability as compared with an alloy having the same average particle diameter and a uniform particle diameter (sized particle) structure. The above-mentioned prior art mainly aims at characteristics obtained by refining brass crystal grains, and was not very conscious of achieving uniform crystal grain size and further obtaining excellent strength and bending workability.
Furthermore, adjusting the bending workability by paying attention to the crystal orientation of brass has not been recognized at all in the above prior art.
In view of such a situation, the present invention provides a brass strip having strength and bending workability suitable for electronic equipment.

発明者らは、高強度で曲げ加工性に優れた黄銅について鋭意研究を行った結果、本発明を見出した。本発明は、以下の通りである。
1.Znを20〜40質量%、残部Cu及び不可避的不純物からなり、平均結晶粒径(mGS)が1〜4μm、かつその結晶粒径の標準偏差(σGS)が1/3mGS以下となる結晶粒特性を有し、圧延面からのX線回折強度の関係式 {I(220)+I(111)}/I(200)が2.0〜5.0であることを特徴とする高強度で曲げ加工性に優れたCu−Zn系合金。
2.Znを20〜40質量%、残部Cu及び不可避的不純物からなり、平均結晶粒径(mGS)が1〜4μm、かつその結晶粒径の標準偏差(σGS)が1/3mGS以下となる結晶粒特性を有し、圧延面からのX線回折強度の関係式 {I(220)+I(111)}/I(200)が2.0〜5.0であるCu−Zn系合金を冷間圧延して得られることを特徴とする高強度で曲げ加工性に優れたCu−Zn系合金。
3.Znを20〜40質量%、Ni、Si、Fe、Ti、Co、Snのいずれか1種類以上を0.01〜0.3質量%含み、残部Cu及び不可避的不純物からなり、平均結晶粒径(mGS)が1〜4μm、かつその結晶粒径の標準偏差(σGS)が1/3mGS以下となる結晶粒特性を有し、圧延面からのX線回折強度の関係式 {I(220)+I(111)}/I(200)が2.0〜5.0であることを特徴とする高強度で曲げ加工性に優れたCu−Zn系合金。
4.Znを20〜40質量%、Ni、Si、Fe、Ti、Co、Snのいずれか1種類以上を0.01〜0.3質量%含み、残部Cu及び不可避的不純物からなり、平均結晶粒径(mGS)が1〜4μm、かつその結晶粒径の標準偏差(σGS)が1/3mGS以下となる結晶粒特性を有し、圧延面からのX線回折強度の関係式 {I(220)+I(111)}/I(200)が2.0〜5.0であるCu−Zn系合金を冷間圧延して得られることを特徴とする高強度で曲げ加工性に優れたCu−Zn系合金。
5.Sを30ppm以下で含む上記1〜4いずれか1項記載の高強度で曲げ加工性に優れたCu−Zn系合金。
6.表面粗さRaが0.2μm以下である上記1〜5いずれか1項記載の高強度で曲げ加工に優れたCu−Zn系合金。
The inventors have found the present invention as a result of intensive studies on brass having high strength and excellent bending workability. The present invention is as follows.
1. Crystal grain characteristics comprising 20 to 40% by mass of Zn, the balance Cu and inevitable impurities, an average grain size (mGS) of 1 to 4 μm, and a standard deviation (σGS) of the grain size of 1/3 mGS or less And a relational expression of the X-ray diffraction intensity from the rolled surface {I (220) + I (111)} / I (200) is 2.0 to 5.0 and is bent with high strength Cu-Zn alloy with excellent properties.
2. Crystal grain characteristics comprising 20 to 40% by mass of Zn, the balance Cu and inevitable impurities, an average grain size (mGS) of 1 to 4 μm, and a standard deviation (σGS) of the grain size of 1/3 mGS or less A Cu—Zn alloy in which the relational expression {I (220) + I (111)} / I (200) of the X-ray diffraction intensity from the rolled surface is 2.0 to 5.0 is cold-rolled A Cu-Zn alloy having high strength and excellent bending workability, which is obtained by
3. Zn is contained in an amount of 20 to 40% by mass, Ni, Si, Fe, Ti, Co, Sn is contained in an amount of 0.01 to 0.3% by mass, and the balance is made of Cu and inevitable impurities. (MGS) is 1 to 4 μm, and the standard deviation (σGS) of the crystal grain size is 1/3 mGS or less, and the relational expression of the X-ray diffraction intensity from the rolled surface {I (220) + I (111)} / I (200) is 2.0 to 5.0, a Cu—Zn alloy having high strength and excellent bending workability.
4). Zn is contained in an amount of 20 to 40% by mass, Ni, Si, Fe, Ti, Co, Sn is contained in an amount of 0.01 to 0.3% by mass, and the balance is made of Cu and inevitable impurities. (MGS) is 1 to 4 μm, and the standard deviation (σGS) of the crystal grain size is 1/3 mGS or less, and the relational expression of the X-ray diffraction intensity from the rolled surface {I (220) + I (111)} / I (200) is obtained by cold rolling a Cu—Zn alloy having a value of 2.0 to 5.0. alloy.
5. The Cu-Zn-based alloy having high strength and excellent bending workability according to any one of the above 1 to 4, comprising S at 30 ppm or less.
6). The Cu-Zn alloy having high strength and excellent bending work according to any one of 1 to 5 above, wherein the surface roughness Ra is 0.2 µm or less.

本発明は、平均結晶粒径(mGS)、その結晶粒径の標準偏差(σGS)を特定のものとし、かつ、圧延面からのX線回折強度の関係式{I(220)+I(111)}/I(200)が2.0〜5.0となるCu−Zn系合金を製造することにより、高強度及び優れた曲げ加工性を同時に達成した。本発明の高強度で曲げ加工性に優れたCu−Zn系合金は、従来のベリリウム銅、チタン銅、コルソン合金系等の高強度銅合金よりも安価に提供できるため電子部品用の銅合金条として広く利用可能である。   In the present invention, the average crystal grain size (mGS) and the standard deviation (σGS) of the crystal grain size are specified, and the relational expression {I (220) + I (111) of the X-ray diffraction intensity from the rolled surface } / I (200) produced a Cu—Zn alloy having 2.0 to 5.0, thereby simultaneously achieving high strength and excellent bending workability. Since the Cu—Zn alloy having high strength and excellent bending workability of the present invention can be provided at a lower cost than conventional high strength copper alloys such as beryllium copper, titanium copper, and Corson alloy, it is a copper alloy strip for electronic parts. As widely available.

(1)銅合金の組成について
(a)本発明の対象とする銅合金は、Cu−Zn系合金、いわゆる黄銅である。具体的には、Znを20〜40質量%を含む残部Cu及び不可避的不純物からなるCu−Zn系合金であり、例えばJISで規定されている黄銅1種、黄銅2種を対象とする。
尚、上記(a)に記載のCu−Zn系合金へNi、Si、Fe、Ti、Co、Snのいずれか1種類以上を0.01〜0.3質量%で添加された場合も本発明のCu−Zn系合金に該当する。
(b)Ni、Si、Fe、Ti、Co、Snのいずれか1種類以上は、固溶強化を目的としてCu−Zn系合金へ添加される。添加量は好ましくは0.01〜0.3質量%、更に好ましくは0.05〜0.25質量%であり、0.01質量%未満であると所望の強度が得られず、0.3質量%を超えると熱間加工性、冷間加工性、プレス性、ヤング率、コスト面等で不利であり好ましくない。
(c)不純物のうちSはできるだけ少ない方が望ましい。Sを少量含有しても、熱間圧延における材料の変形能が著しく低下するからである。特に、電解銅などをそのまま鋳造原料に使用した場合などにSが多く含まれることがあるが、この値を規制することにより、熱間圧延における割れ防止につなげることができる。更に、Sの固溶量が多くなると脆化し靱性が損なわれるため、不可避不純物として含まれる可能性のある硫黄成分は、好ましくは30質量ppm以下、更に好ましくは15質量ppm以下である。従って、本発明のCu−Zn系合金の製造時に用いる原料にも充分に配慮し、スクラップ原料の使用に当たっては、定法に従いSの混入を可能な限り抑制すべきである。又、溶湯に接する木炭、カーボン原料等にも含まれているため、これらからの混入を意図的に制御することも有効である。
(1) About composition of copper alloy (a) The copper alloy made into the object of this invention is a Cu-Zn type alloy, what is called brass. Specifically, it is a Cu-Zn alloy composed of the balance Cu containing 20 to 40% by mass of Zn and unavoidable impurities, for example, one type of brass and two types of brass defined by JIS.
In addition, the present invention also includes a case where at least one of Ni, Si, Fe, Ti, Co, and Sn is added to the Cu—Zn alloy described in (a) at 0.01 to 0.3 mass%. This corresponds to the Cu—Zn alloy.
(B) One or more of Ni, Si, Fe, Ti, Co, and Sn are added to the Cu—Zn-based alloy for the purpose of solid solution strengthening. The addition amount is preferably 0.01 to 0.3% by mass, more preferably 0.05 to 0.25% by mass, and if it is less than 0.01% by mass, the desired strength cannot be obtained, and 0.3 Exceeding mass% is not preferable because it is disadvantageous in terms of hot workability, cold workability, pressability, Young's modulus, cost, and the like.
(C) Of impurities, it is desirable that S is as small as possible. This is because even if a small amount of S is contained, the deformability of the material in hot rolling is significantly reduced. In particular, when electrolytic copper or the like is used as a raw material for casting as it is, a large amount of S may be contained. By regulating this value, cracking in hot rolling can be prevented. Furthermore, since the brittleness and toughness are impaired when the solid solution amount of S increases, the sulfur component that may be included as an inevitable impurity is preferably 30 ppm by mass or less, more preferably 15 ppm by mass or less. Therefore, sufficient consideration should be given to the raw material used in the production of the Cu—Zn-based alloy of the present invention, and when using the scrap raw material, the incorporation of S should be suppressed as much as possible according to a conventional method. Moreover, since it is also contained in charcoal, carbon raw material, etc. in contact with the molten metal, it is also effective to intentionally control mixing from these.

(2)平均結晶粒径(mGS)及びその結晶粒径の標準偏差(σGS)
本発明の一態様で、中間冷間圧延、中間焼鈍、最終冷間圧延、最終焼鈍と続く製造工程の、最終冷間圧延後の最終焼鈍における再結晶挙動が、強度と曲げ加工性とを共に備える銅合金最終製品(焼鈍上がり)の特性と相関があることを見出した。即ち、本発明は、最終冷間圧延後の最終焼鈍中の再結晶により得られる平均結晶粒径(mGS)が1〜4μm以下、かつその結晶粒径の標準偏差(σGS)が1/3mGS以下となる結晶粒特性による優れた曲げ加工性を兼備する銅合金を提供するものである。一般に、最終焼鈍後の平均結晶粒径(mGS)を1μm未満とする場合、結晶粒径が大きくならないような低温、短時間の焼鈍では未再結晶が残ってしまう。そして、1μm未満でかつ未再結晶が残らないような結晶粒を得るための最終焼鈍を実施するには充分な時間をかけかつ温度管理を必要とするため工業的に採用しにくい。一方、4μmを超える平均結晶粒径では充分な強度を得ることができない。以上から、平均結晶粒径は1〜4μm、好ましくは1.5〜4μm、更に好ましくは2μm程度であることが望ましい。
更に4μm以下であってもその標準偏差(σGS)が1/3mGSを超えると、曲げ加工性の改善効果が小さく目的の性能を達成することができない。従って本発明の結晶粒径の分散性を結晶粒径の標準偏差で表すと、1/3mGS以下、好ましくは1/5mGS以下である。
尚、本発明において、結晶粒径の測定は、JIS H 0501に準じた切断法により行う。具体的には、所定長さの直線線分により完全に横断される結晶粒数を数え、その切断長さの平均値を結晶粒径とした。そのばらつきの指標である標準偏差は、切断長さの標準偏差ではなく、その結晶粒径の標準偏差である。
(2) Average crystal grain size (mGS) and standard deviation of crystal grain size (σGS)
In one aspect of the present invention, the recrystallization behavior in the final annealing after the final cold rolling of the intermediate cold rolling, the intermediate annealing, the final cold rolling, and the manufacturing process that follows the final annealing has both strength and bending workability. It was found that there is a correlation with the characteristics of the copper alloy final product (annealing finish) provided. That is, according to the present invention, the average crystal grain size (mGS) obtained by recrystallization during final annealing after the final cold rolling is 1 to 4 μm or less, and the standard deviation (σGS) of the crystal grain size is 1/3 mGS or less. The present invention provides a copper alloy having excellent bending workability due to the crystal grain characteristics. Generally, when the average crystal grain size (mGS) after the final annealing is less than 1 μm, unrecrystallized remains at low temperature and short time annealing where the crystal grain size does not increase. In addition, it is difficult to employ industrially because it takes a sufficient time to carry out the final annealing for obtaining crystal grains that are less than 1 μm and that no unrecrystallized grains remain. On the other hand, sufficient strength cannot be obtained with an average crystal grain size exceeding 4 μm. From the above, it is desirable that the average crystal grain size is 1 to 4 μm, preferably 1.5 to 4 μm, and more preferably about 2 μm.
Furthermore, even if it is 4 μm or less, if the standard deviation (σGS) exceeds 1/3 mGS, the effect of improving the bending workability is small and the target performance cannot be achieved. Therefore, when the dispersibility of the crystal grain size of the present invention is expressed by the standard deviation of the crystal grain size, it is 1/3 mGS or less, preferably 1/5 mGS or less.
In the present invention, the crystal grain size is measured by a cutting method according to JIS H 0501. Specifically, the number of crystal grains completely traversed by a straight line segment of a predetermined length was counted, and the average value of the cut lengths was taken as the crystal grain size. The standard deviation that is an indicator of the variation is not the standard deviation of the cutting length but the standard deviation of the crystal grain size.

本発明の別の一態様では、中間冷間圧延、最終焼鈍、最終冷間圧延と続く、圧延上がり製品の製造工程も、実施形態に含まれる。すなわち、最終焼鈍中の再結晶により得られる最終冷間圧延前の平均結晶粒径(mGS)が1〜4μm以下、かつその結晶粒径の標準偏差(σGS)が1/3mGS以下となる結晶粒特性による優れた曲げ加工性を兼備する銅合金に最終圧延を行う場合でも強度と曲げ加工性に優れる銅合金が提供される。なお、最終冷間加工により転位強化された最終製品では、明確な結晶粒界を特定することが出来ず正確な結晶粒径が計測できないため、最終冷間圧延前の平均結晶粒径及び標準偏差を規定するこの相関は、最終製品の性質の調整に有効である。   In another aspect of the present invention, an embodiment includes a production process of a rolled product, which is followed by intermediate cold rolling, final annealing, and final cold rolling. That is, a crystal grain having an average crystal grain size (mGS) before final cold rolling obtained by recrystallization during final annealing of 1 to 4 μm or less and a standard deviation (σGS) of the crystal grain size of 1/3 mGS or less. Provided is a copper alloy having excellent strength and bending workability even when final rolling is performed on a copper alloy having excellent bending workability due to characteristics. In the final product strengthened by dislocation by the final cold working, it is not possible to specify a clear grain boundary and an accurate crystal grain size cannot be measured, so the average grain size and standard deviation before the final cold rolling This correlation that defines is useful in adjusting the properties of the final product.

(3)X線回折強度の関係式
曲げ加工性に有効な板面方位は(100)であり、有害な板面方位は(111)と(220)である。発明者らは従来の黄銅条に対して曲げ加工性を改善するためには、以下のX線回折強度の関係式を満たす必要があることを見出した。すなわち、(I(220)+I(111))/I(200)が2.0〜5.0であることである。(I(220)+I(111))/I(200)が2.0より小さい場合には、充分な強度が得られず、5.0を超える場合には、曲げ加工性が悪化する。好ましくは(I(220)+I(111))/I(200)の範囲は2.0〜4.0である。
ここで、I(hkl)は圧延面に対しCo管球を用いてX線回折を行なったときの(hkl)面の回折強度の積分値である。
(3) Relational expression of X-ray diffraction intensity The plate surface orientation effective for bending workability is (100), and harmful plate surface orientations are (111) and (220). The inventors have found that in order to improve the bending workability with respect to the conventional brass strip, it is necessary to satisfy the following relational expression of X-ray diffraction intensity. That is, (I (220) + I (111)) / I (200) is 2.0 to 5.0. When (I (220) + I (111)) / I (200) is smaller than 2.0, sufficient strength cannot be obtained, and when it exceeds 5.0, bending workability deteriorates. The range of (I (220) + I (111)) / I (200) is preferably 2.0 to 4.0.
Here, I (hkl) is an integral value of the diffraction intensity of the (hkl) plane when X-ray diffraction is performed on the rolled surface using a Co tube.

(4)結晶粒径と結晶方位(X線回折強度の関係式)の制御
上記本発明の黄銅は、通常当業者が黄銅の一般的製造において採用する、鋳造、熱間加工、その後の冷間加工率を調整しながらの冷間加工と焼鈍との繰り返しで製造できる。本発明では適宜加熱温度、時間、冷却速度、圧延加工度等を選択できる。
下記制御を行うと、平均結晶粒径(mGS)が1〜4μm以下、その結晶粒径の標準偏差(σGS)が1/3mGS以下の結晶粒を得、I(220)+I(111))/I(200)が2.0〜5.0とすることができる。本発明の黄銅原料を縦型連続鋳造法で鋳込んだ鋳塊を熱間圧延の後、冷間加工度が75%以上の冷間圧延を施す。その後600℃〜800℃で焼鈍したのち、冷間加工度が70%以上の冷間圧延を実施したものを400℃〜700℃焼鈍を実施する。さらに、この時最後の熱処理後の冷却を好ましくは20℃/s〜60℃/sで実施することは、結晶粒径の標準偏差(σGS)を1/3mGS以下とすることに効果的である。
(4) Control of crystal grain size and crystal orientation (relational expression of X-ray diffraction intensity) The brass of the present invention is usually cast, hot-worked, and then cold-worked by those skilled in the art in general production of brass. It can be manufactured by repeating cold working and annealing while adjusting the working rate. In the present invention, the heating temperature, time, cooling rate, rolling degree, etc. can be selected as appropriate.
When the following control is performed, a crystal grain having an average crystal grain size (mGS) of 1 to 4 μm or less and a standard deviation (σGS) of the crystal grain size of 1/3 mGS or less is obtained, and I (220) + I (111)) / I (200) can be set to 2.0 to 5.0. An ingot in which the brass raw material of the present invention is cast by the vertical continuous casting method is hot-rolled, and then cold-rolled with a cold work degree of 75% or more. After annealing at 600 ° C. to 800 ° C., 400 ° C. to 700 ° C. annealing is performed on the cold rolled steel having a cold work degree of 70% or more. Further, at this time, the cooling after the final heat treatment is preferably performed at 20 ° C./s to 60 ° C./s, which is effective for setting the standard deviation (σGS) of the crystal grain size to 1/3 mGS or less. .

(5)表面粗さ(Ra)
本発明品の課題は曲げ加工性に優れた材料を提供することにあるが、曲げの局率が小さい、曲げ角度が大きい等の厳しい曲げ加工が行なわれる場合には、実際には割れていなくとも、しわが発生しやすく、しわが発生した場合には割れと見間違われることがあり、品質評価の障害になる。
従って、厳しい曲げ加工を行なった場合にもしわの発生しにくい材料を提供することが望まれる。そこで、本発明は材料の表面粗さ(Ra)を規定することで、しわの発生しにくい曲げ加工性の優れた材料を提供するものである。即ち、Raが0.2μm以下、好ましくは、0.15μm以下である。
材料の表面粗さの調整は、最終圧延機のワークロールの表面粗さを管理することにより行われ、ロール表面が転写された材料表面は所望の表面粗さとなる。又、所定の圧延後の焼鈍工程におけるスケール除去等の目的で行なう機械研磨又は化学研磨などによっても最終製品における所望の表面粗さを得ることができる。
(5) Surface roughness (Ra)
The object of the present invention is to provide a material having excellent bending workability, but when severe bending work such as a low bending rate or a large bending angle is performed, it is not actually cracked. In both cases, wrinkles are likely to occur, and if wrinkles occur, they may be mistaken for cracks, which is an obstacle to quality evaluation.
Therefore, it is desirable to provide a material that is less likely to wrinkle even when severe bending is performed. Therefore, the present invention provides a material excellent in bending workability in which wrinkles are hardly generated by defining the surface roughness (Ra) of the material. That is, Ra is 0.2 μm or less, preferably 0.15 μm or less.
The adjustment of the surface roughness of the material is performed by managing the surface roughness of the work roll of the final rolling mill, and the material surface onto which the roll surface has been transferred has a desired surface roughness. The desired surface roughness of the final product can also be obtained by mechanical polishing or chemical polishing performed for the purpose of removing scales in an annealing process after predetermined rolling.

(6)引張強さ、曲げ加工性及び導電率
本発明の黄銅は高強度で曲げ加工性に優れ、更に優れた導電性を兼備する。本発明の銅合金の引張強さは、焼鈍上がり材では、好ましくは450MPa以上、圧延上がり材では、好ましくは540MPa以上である。その上限は通常680MPa程度である。
本発明の黄銅の曲げ加工性は、10mmw×100mm1の寸法の試験片を圧延方向と直角に採取し、W曲げ試験(JIS H 3110)を行って、日本伸銅協会技術標準JBTA T307:1999による評価基準Cランク以上の良好な外観が得られる。本発明では、焼鈍上がり材はCランク以上が良好なものと評価した。一方、最後に冷間圧延を施す圧延上がり材については、最小の曲げ半径比(r(曲げ半径)/t(試験片厚さ))を評価基準とすると、好ましくはr/t≦2、更に好ましくはr/t≦1であり、さらにより好ましくはr/t=0である。
(6) Tensile strength, bending workability and conductivity The brass of the present invention has high strength and excellent bending workability, and also has excellent conductivity. The tensile strength of the copper alloy of the present invention is preferably 450 MPa or more for the annealed material, and preferably 540 MPa or more for the rolled material. The upper limit is usually about 680 MPa.
The brass workability of the brass of the present invention is obtained by taking a test piece having a size of 10 mmw × 100 mm1 at right angles to the rolling direction, performing a W bending test (JIS H 3110), and according to Japan Copper and Brass Association Technical Standard JBTA T307: 1999. A good appearance with an evaluation standard of C rank or higher is obtained. In the present invention, the annealed material was evaluated as having a C rank or higher. On the other hand, the rolled material that is finally subjected to cold rolling is preferably r / t ≦ 2, when the minimum bending radius ratio (r (bending radius) / t (test specimen thickness)) is used as an evaluation criterion. Preferably r / t ≦ 1, and even more preferably r / t = 0.

本発明の実施例1及び実施例2の製造方法を以下に示す。
(1)実施例1
表1に示す組成の銅合金を、低周波誘導炉で溶解し、その後、厚さ180mmの鋳型に縦型連続鋳造法で鋳込み、鋳塊を作成した。その後、9mmまで熱間圧延を行った。その後、冷間加工度83%の冷間圧延を行い、1.5mmとし、更に、焼鈍、冷間圧延を行い、最終焼鈍を実施した。各工程の製造条件を実施例1として表1に示す。
Production methods of Example 1 and Example 2 of the present invention are shown below.
(1) Example 1
The copper alloy having the composition shown in Table 1 was melted in a low frequency induction furnace, and then cast into a 180 mm thick mold by the vertical continuous casting method to create an ingot. Thereafter, hot rolling was performed up to 9 mm. Thereafter, cold rolling with a cold working degree of 83% was performed to 1.5 mm, and annealing and cold rolling were further performed, and final annealing was performed. The manufacturing conditions for each step are shown in Table 1 as Example 1.

本発明に関する特性値の測定方法は以下の通りである。
(a)引張強さ(TS:MPa)、0.2%耐力(YS:MPa)は13B号試験片(JIS Z 2201)を圧延方向と並行に採取し、引張試験(JIS Z2241)により求めた。
The method for measuring the characteristic value according to the present invention is as follows.
(A) Tensile strength (TS: MPa) and 0.2% proof stress (YS: MPa) were obtained by taking a 13B test piece (JIS Z 2201) in parallel with the rolling direction and by a tensile test (JIS Z2241). .

(b)結晶粒径は、切断法(JIS H 0501)により、所定長さの線分により完全に切られる結晶粒数を数え、その切断長さの平均値を結晶粒径とし、結晶粒径の標準偏差(σGS)は、その結晶粒径の標準偏差である。すなわち、圧延方向に直角方向の断面組織を走査型電子顕微鏡像(SEM像)により、4000倍に拡大し、50μmの長さの線分において、線と粒界との交点の数で線分を割った値を結晶粒径とし、10本の線分について測定して得られた各々の結晶粒径の平均を本願における平均結晶粒径(mGS)、各々の結晶粒径の標準偏差を本願における標準偏差(σGS)とした。 (B) The crystal grain size is determined by counting the number of crystal grains that are completely cut by a line segment of a predetermined length by the cutting method (JIS H 0501), and setting the average value of the cut lengths as the crystal grain size. The standard deviation (σGS) is a standard deviation of the crystal grain size. That is, a cross-sectional structure perpendicular to the rolling direction is magnified 4000 times by a scanning electron microscope image (SEM image), and a line segment of 50 μm length is divided by the number of intersections between the line and the grain boundary. The value obtained by dividing the crystal grain size is the average grain size (mGS) in the present application, and the standard deviation of each crystal grain size in the present application. The standard deviation (σGS) was used.

(c)結晶方位は、圧延面において、X線回折により、(111)、(220)および(200)の各面の回折強度の積分値を測定し、I={(220)+I(111)}/I(200)の値を求めた。この測定はCo管球を使用し、各面の測定範囲は、(111):2θ=47.0°〜52.0°、(220):2θ=84.0°〜89.0°、(200):2θ=55.5°〜60.5°(θは回折角度)とした。 (C) The crystal orientation was determined by measuring the integrated value of the diffraction intensities of the (111), (220) and (200) surfaces on the rolled surface by X-ray diffraction, and I = {(220) + I (111) } / I (200) was determined. This measurement uses a Co tube, and the measurement ranges of each surface are (111): 2θ = 47.0 ° to 52.0 °, (220): 2θ = 84.0 ° to 89.0 °, ( 200): 2θ = 55.5 ° to 60.5 ° (θ is a diffraction angle).

(d)曲げ加工性(r/t)は、10mmw×100mm1の寸法の試験片を圧延方向と直角に採取し、W曲げ試験(JIS H 3110)を各種曲げ半径で行い、日本伸銅協会技術標準JBTA T307:1999による評価基準Cランク以上の良好な外観が得られる、割れ、肌荒れの発生しない最小の曲げ半径比(r(曲げ半径)/t(試験片厚さ))を求めた。評価基準はランクA:しわ無し、ランクB:しわ小、ランクC:しわ大、ランクD:割れ小、ランクE:割れ大と5ランクに分けられており、良好品は、ランクA、B、Cとして評価されるものをいう。尚、W曲げ試験の曲げ軸は圧延方向と平行方向である。
(e)表面粗さ(Ra)は、JIS−B0601(1994年)に従い、測定を行った。
実施例1の効果の結果を表1に示す。
(D) For bending workability (r / t), a test piece having a size of 10 mmw × 100 mm1 was taken at right angles to the rolling direction, and a W bending test (JIS H 3110) was performed at various bending radii. A minimum bend radius ratio (r (bending radius) / t (test specimen thickness)) that does not cause cracking or rough skin and that gives a good appearance of the evaluation standard C rank or higher according to standard JBTA T307: 1999 was obtained. Evaluation criteria are divided into rank A: no wrinkle, rank B: small wrinkle, rank C: large wrinkle, rank D: small crack, rank E: large crack, and good products are ranks A, B, What is evaluated as C. In addition, the bending axis of the W bending test is parallel to the rolling direction.
(E) The surface roughness (Ra) was measured according to JIS-B0601 (1994).
The results of the effects of Example 1 are shown in Table 1.

Figure 2008007839
表中の単位「%」、「ppm」は「質量%」、「質量ppm」を表し、「−」は元素無添加を示す。
Figure 2008007839
The units “%” and “ppm” in the table represent “mass%” and “mass ppm”, and “−” represents no addition of elements.

発明例1〜8は、平均結晶粒径(mGS)その結晶粒径の標準偏差(σGS)、X線回折強度の関係式{(220)+I(111)}/I(200)が請求項1或いは請求項3を満たす範囲にあるため、高強度で、曲げ加工性に優れたCu−Zn系合金を得ることができた。   Inventive Examples 1 to 8 have an average crystal grain size (mGS), a standard deviation (σGS) of the crystal grain size, and a relational expression {(220) + I (111)} / I (200) of X-ray diffraction intensity. Or since it exists in the range which satisfy | fills Claim 3, it was able to obtain the Cu-Zn type alloy which was high intensity | strength and excellent in bending workability.

一方、比較例9、11では、平均結晶粒径が1μm未満であるが、部分的には未再結晶の部分が残存しているところがあった。そのため、曲げ部にクラックが発生した。比較例10、12では、平均結晶粒径が4μmを超えるため、充分な強度が得られなかった。比較例13は、平均結晶粒径が1〜4μmではあるが、標準偏差が平均結晶粒径の1/3を超えるため、同じ平均結晶粒径で平均結晶粒径の1/3以下である発明例1に比べて曲げ加工性が劣っていた。
比較例14は、X線回折強度の関係式{(220)+I(111)}/I(200)が2.0より小さいため、充分な強度が得られず、比較例15は5.0より大きいため、曲げ加工性の試験において割れが発生した。
On the other hand, in Comparative Examples 9 and 11, although the average crystal grain size was less than 1 μm, there was a portion where an unrecrystallized portion remained partially. Therefore, a crack occurred in the bent part. In Comparative Examples 10 and 12, since the average crystal grain size exceeded 4 μm, sufficient strength could not be obtained. In Comparative Example 13, although the average crystal grain size is 1 to 4 μm, the standard deviation exceeds 1/3 of the average crystal grain size, so that the invention has the same average crystal grain size and 1/3 or less of the average crystal grain size. Compared to Example 1, bending workability was inferior.
In Comparative Example 14, since the relational expression {(220) + I (111)} / I (200) of the X-ray diffraction intensity is smaller than 2.0, sufficient intensity cannot be obtained, and Comparative Example 15 from 5.0 Due to the large size, cracks occurred in the bending workability test.

更に、発明例7はS濃度が30質量ppmを超えるため、曲げ加工性が他の発明例より悪かった。発明例8は、表面粗さRaが、0.2μmを超えるため、曲げ加工性の試験において他の発明例よりもしわが目立っていた。
(2)実施例2
実施例2では、実施例1の最終焼鈍上がりの各材料を加工度0〜40%で最終圧延を行った。例えば、発明例1の材料(焼鈍上がり)に最終冷間圧延を行った実施例が発明例16(圧延上がり)であり、比較例9の材料(焼鈍上がり)に最終冷間圧延を行った実施例が比較例24(圧延上がり)である。発明例17〜23、比較例25〜30も同様である。その製造条件を表2に示し、実施例2の効果の結果を表2に示す。
Further, in Invention Example 7, since the S concentration exceeded 30 mass ppm, the bending workability was worse than the other Invention Examples. In Invention Example 8, since the surface roughness Ra exceeded 0.2 μm, the wrinkle was more conspicuous than the other Invention Examples in the bending workability test.
(2) Example 2
In Example 2, each material after the final annealing of Example 1 was subjected to final rolling at a working degree of 0 to 40%. For example, the example of performing the final cold rolling on the material of Invention Example 1 (annealing rise) is Invention Example 16 (rolling up), and the example of performing the final cold rolling on the material of Comparative Example 9 (annealing rise). An example is Comparative Example 24 (rolling up). The same applies to Invention Examples 17 to 23 and Comparative Examples 25 to 30. The production conditions are shown in Table 2, and the results of the effects of Example 2 are shown in Table 2.

Figure 2008007839
Figure 2008007839

発明例16〜23は、最終冷間圧延前の平均結晶粒径(mGS)、その結晶粒径の標準偏差(σGS)、X線回折強度の関係式{(220)+I(111)}/I(200)が請求項2或いは請求項4を満たす範囲にあるため、高強度で、曲げ加工性に優れたCu−Zn系合金を得ることができた。
一方、比較例24、26では、最終冷間圧延前の平均結晶粒径が1μm未満であるが、部分的には未再結晶の部分が残存しているところがあったため、最終冷間圧延後でも曲げ部にクラックが発生した。比較例25、27では、最終冷間圧延前の平均結晶粒径が4μmを超えるため、最終冷間圧延後も充分な強度が得られなかった。比較例28は、最終冷間圧延前の平均結晶粒径が1〜4μmではあるが、その標準偏差が平均結晶粒径の1/3を超えるため、同じ平均結晶粒径で平均結晶粒径の1/3以下である発明例16に比べて最終冷間圧延後の曲げ加工性が劣っていた。
Inventive Examples 16 to 23 show the relational expression {(220) + I (111)} / I of the average crystal grain size (mGS) before the final cold rolling, the standard deviation of the crystal grain size (σGS), and the X-ray diffraction intensity. Since (200) is in the range satisfying claim 2 or claim 4, a Cu-Zn alloy having high strength and excellent bending workability could be obtained.
On the other hand, in Comparative Examples 24 and 26, the average crystal grain size before the final cold rolling was less than 1 μm, but there was a portion where the non-recrystallized portion remained, so even after the final cold rolling. Cracks occurred in the bent part. In Comparative Examples 25 and 27, since the average crystal grain size before the final cold rolling exceeded 4 μm, sufficient strength was not obtained even after the final cold rolling. In Comparative Example 28, the average crystal grain size before the final cold rolling is 1 to 4 μm, but the standard deviation exceeds 1/3 of the average crystal grain size. The bending workability after the final cold rolling was inferior to that of Invention Example 16 which was 1/3 or less.

比較例29は、最終冷間圧延前のX線回折強度の関係式{(220)+I(111)}/I(200)が2.0より小さいため、最終冷間圧延後も充分な強度が得られず、比較例30は5.0より大きいため、曲げ加工性の試験において割れが発生した。
更に、発明例22はS濃度が30質量ppmを超えるため、曲げ加工性が他の発明例より悪かった。発明例23は、表面粗さRaが、0.2μmを超えるため、曲げ加工性の試験において他の発明例よりもしわが目立っていた。
In Comparative Example 29, since the relational expression {(220) + I (111)} / I (200) of the X-ray diffraction intensity before the final cold rolling is smaller than 2.0, sufficient strength is obtained even after the final cold rolling. Since it was not obtained and Comparative Example 30 was larger than 5.0, cracks occurred in the bending workability test.
Furthermore, in Invention Example 22, since the S concentration exceeded 30 mass ppm, the bending workability was worse than the other Invention Examples. In Invention Example 23, the surface roughness Ra exceeded 0.2 μm, so that the wrinkle was more conspicuous than the other Invention Examples in the bending workability test.

Claims (6)

Znを20〜40質量%、残部Cu及び不可避的不純物からなり、平均結晶粒径(mGS)が1〜4μm、かつその結晶粒径の標準偏差(σGS)が1/3mGS以下となる結晶粒特性を有し、圧延面からのX線回折強度の関係式 {I(220)+I(111)}/I(200)が2.0〜5.0であることを特徴とする高強度で曲げ加工性に優れたCu−Zn系合金。   Crystal grain characteristics comprising 20 to 40% by mass of Zn, the balance Cu and inevitable impurities, an average grain size (mGS) of 1 to 4 μm, and a standard deviation (σGS) of the grain size of 1/3 mGS or less And a relational expression of the X-ray diffraction intensity from the rolled surface {I (220) + I (111)} / I (200) is 2.0 to 5.0 and is bent with high strength Cu-Zn alloy with excellent properties. Znを20〜40質量%、残部Cu及び不可避的不純物からなり、平均結晶粒径(mGS)が1〜4μm、かつその結晶粒径の標準偏差(σGS)が1/3mGS以下となる結晶粒特性を有し、圧延面からのX線回折強度の関係式 {I(220)+I(111)}/I(200)が2.0〜5.0であるCu−Zn系合金を冷間圧延して得られることを特徴とする高強度で曲げ加工性に優れたCu−Zn系合金。   Crystal grain characteristics comprising 20 to 40% by mass of Zn, the balance Cu and inevitable impurities, an average crystal grain size (mGS) of 1 to 4 μm, and a standard deviation (σGS) of the crystal grain size of 1/3 mGS or less A Cu—Zn alloy in which the relational expression {I (220) + I (111)} / I (200) of the X-ray diffraction intensity from the rolled surface is 2.0 to 5.0 is cold-rolled A Cu-Zn alloy having high strength and excellent bending workability, which is obtained by Znを20〜40質量%、Ni、Si、Fe、Ti、Co、Snのいずれか1種類以上を0.01〜0.3質量%含み、残部Cu及び不可避的不純物からなり、平均結晶粒径(mGS)が1〜4μm、かつその結晶粒径の標準偏差(σGS)が1/3mGS以下となる結晶粒特性を有し、圧延面からのX線回折強度の関係式 {I(220)+I(111)}/I(200)が2.0〜5.0であることを特徴とする高強度で曲げ加工性に優れたCu−Zn系合金。   Zn is contained in an amount of 20 to 40% by mass, Ni, Si, Fe, Ti, Co, Sn is contained in an amount of 0.01 to 0.3% by mass, and the balance is made of Cu and inevitable impurities. (MGS) is 1 to 4 μm, and the standard deviation (σGS) of the crystal grain size is 1/3 mGS or less, and the relational expression of the X-ray diffraction intensity from the rolled surface {I (220) + I (111)} / I (200) is 2.0 to 5.0, a Cu—Zn alloy having high strength and excellent bending workability. Znを20〜40質量%、Ni、Si、Fe、Ti、Co、Snのいずれか1種類以上を0.01〜0.3質量%含み、残部Cu及び不可避的不純物からなり、平均結晶粒径(mGS)が1〜4μm、かつその結晶粒径の標準偏差(σGS)が1/3mGS以下となる結晶粒特性を有し、圧延面からのX線回折強度の関係式 {I(220)+I(111)}/I(200)が2.0〜5.0であるCu−Zn系合金を冷間圧延して得られることを特徴とする高強度で曲げ加工性に優れたCu−Zn系合金。   Zn is contained in an amount of 20 to 40% by mass, Ni, Si, Fe, Ti, Co, or Sn is contained in an amount of 0.01 to 0.3% by mass, and the balance is made of Cu and unavoidable impurities. (MGS) is 1 to 4 μm, and the standard deviation (σGS) of the crystal grain size is 1/3 mGS or less, and the relational expression of the X-ray diffraction intensity from the rolled surface {I (220) + I (111)} / I (200) is obtained by cold rolling a Cu—Zn alloy having 2.0 to 5.0 Cu—Zn alloy having high strength and excellent bending workability alloy. Sを30ppm以下で含む請求項1〜4いずれか1項記載の高強度で曲げ加工性に優れたCu−Zn系合金。   The Cu-Zn alloy having high strength and excellent bending workability according to any one of claims 1 to 4, comprising S at 30 ppm or less. 表面粗さRaが0.2μm以下である請求項1〜5いずれか1項記載の高強度で曲げ加工に優れたCu−Zn系合金。
The Cu-Zn alloy having high strength and excellent bending work according to any one of claims 1 to 5, wherein the surface roughness Ra is 0.2 µm or less.
JP2006181516A 2006-06-30 2006-06-30 Cu-Zn alloy with high strength and excellent bending workability Active JP5247010B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006181516A JP5247010B2 (en) 2006-06-30 2006-06-30 Cu-Zn alloy with high strength and excellent bending workability
PCT/JP2007/063012 WO2008001852A1 (en) 2006-06-30 2007-06-28 Cu-Zn ALLOY WITH HIGH STRENGTH AND EXCELLENT BENDABILITY
CN2007800244517A CN101479396B (en) 2006-06-30 2007-06-28 Cu-zn alloy with high strength and excellent bendability
KR1020087030585A KR101088666B1 (en) 2006-06-30 2007-06-28 Cu-Zn ALLOY WITH HIGH STRENGTH AND EXCELLENT BENDABILITY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181516A JP5247010B2 (en) 2006-06-30 2006-06-30 Cu-Zn alloy with high strength and excellent bending workability

Publications (2)

Publication Number Publication Date
JP2008007839A true JP2008007839A (en) 2008-01-17
JP5247010B2 JP5247010B2 (en) 2013-07-24

Family

ID=38845616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181516A Active JP5247010B2 (en) 2006-06-30 2006-06-30 Cu-Zn alloy with high strength and excellent bending workability

Country Status (4)

Country Link
JP (1) JP5247010B2 (en)
KR (1) KR101088666B1 (en)
CN (1) CN101479396B (en)
WO (1) WO2008001852A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062610A (en) * 2007-08-13 2009-03-26 Dowa Metaltech Kk Cu-Zn-Sn BASED COPPER ALLOY SHEET MATERIAL, METHOD FOR PRODUCING THE SAME, AND CONNECTOR
WO2010013790A1 (en) * 2008-07-31 2010-02-04 古河電気工業株式会社 Copper alloy material for electrical and electronic components, and manufacturing method therefor
JP2010059543A (en) * 2008-08-05 2010-03-18 Furukawa Electric Co Ltd:The Copper alloy material
JP2013209676A (en) * 2012-03-30 2013-10-10 Kobe Steel Ltd Cu-Zn ALLOY PLATE EXCELLENT IN STRESS RELAXATION RESISTANCE
WO2014181555A1 (en) * 2013-05-08 2014-11-13 住友電気工業株式会社 Lead conductor and electrical energy storage device
EP3363922A4 (en) * 2015-07-23 2019-08-21 Ningbo Powerway Alloy Material Co., Ltd Cobalt silicide-containing copper alloy
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063416A (en) * 2015-07-22 2015-11-18 芜湖楚江合金铜材有限公司 Environmental-friendly economical copper alloy wire and processing method thereof
JP6829179B2 (en) * 2017-11-15 2021-02-10 Jx金属株式会社 Corrosion resistant CuZn alloy
CN110117735A (en) * 2019-05-07 2019-08-13 浙江天河铜业股份有限公司 A kind of low-cost high-strength copper strips and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170953A (en) * 1988-12-22 1990-07-02 Nippon Mining Co Ltd Production of copper alloy having good bendability
JPH02173230A (en) * 1988-12-24 1990-07-04 Nippon Mining Co Ltd Copper alloy having good direct bonding properties
JP2004002989A (en) * 2002-03-29 2004-01-08 Nippon Mining & Metals Co Ltd Copper alloy stock having satisfactory press working property and its production method
JP2004292875A (en) * 2003-03-26 2004-10-21 Sumitomo Kinzoku Kozan Shindo Kk 70/30 brass with crystal grain refined, and production method therefor
JP2007046101A (en) * 2005-08-09 2007-02-22 Mitsui Mining & Smelting Co Ltd HARD alpha-BRASS, AND MANUFACTURING METHOD OF THE HARD alpha-BRASS

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335865A (en) * 2000-03-22 2001-12-04 Nippon Mining & Metals Co Ltd Brass strip excellent in deep drawability and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170953A (en) * 1988-12-22 1990-07-02 Nippon Mining Co Ltd Production of copper alloy having good bendability
JPH02173230A (en) * 1988-12-24 1990-07-04 Nippon Mining Co Ltd Copper alloy having good direct bonding properties
JP2004002989A (en) * 2002-03-29 2004-01-08 Nippon Mining & Metals Co Ltd Copper alloy stock having satisfactory press working property and its production method
JP2004292875A (en) * 2003-03-26 2004-10-21 Sumitomo Kinzoku Kozan Shindo Kk 70/30 brass with crystal grain refined, and production method therefor
JP2007046101A (en) * 2005-08-09 2007-02-22 Mitsui Mining & Smelting Co Ltd HARD alpha-BRASS, AND MANUFACTURING METHOD OF THE HARD alpha-BRASS

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062610A (en) * 2007-08-13 2009-03-26 Dowa Metaltech Kk Cu-Zn-Sn BASED COPPER ALLOY SHEET MATERIAL, METHOD FOR PRODUCING THE SAME, AND CONNECTOR
WO2010013790A1 (en) * 2008-07-31 2010-02-04 古河電気工業株式会社 Copper alloy material for electrical and electronic components, and manufacturing method therefor
JP5224415B2 (en) * 2008-07-31 2013-07-03 古河電気工業株式会社 Copper alloy material for electric and electronic parts and manufacturing method thereof
JP2010059543A (en) * 2008-08-05 2010-03-18 Furukawa Electric Co Ltd:The Copper alloy material
JP2013209676A (en) * 2012-03-30 2013-10-10 Kobe Steel Ltd Cu-Zn ALLOY PLATE EXCELLENT IN STRESS RELAXATION RESISTANCE
WO2014181555A1 (en) * 2013-05-08 2014-11-13 住友電気工業株式会社 Lead conductor and electrical energy storage device
JP2014220129A (en) * 2013-05-08 2014-11-20 住友電気工業株式会社 Lead conductor and electric power storage device
EP3363922A4 (en) * 2015-07-23 2019-08-21 Ningbo Powerway Alloy Material Co., Ltd Cobalt silicide-containing copper alloy
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same

Also Published As

Publication number Publication date
WO2008001852A1 (en) 2008-01-03
KR101088666B1 (en) 2011-12-01
KR20090028526A (en) 2009-03-18
CN101479396B (en) 2011-07-06
JP5247010B2 (en) 2013-07-24
CN101479396A (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP5247010B2 (en) Cu-Zn alloy with high strength and excellent bending workability
JP5847987B2 (en) Copper alloy containing silver
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP5158909B2 (en) Copper alloy sheet and manufacturing method thereof
JP4584692B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
TWI447239B (en) Copper alloy sheet and method of manufacturing the same
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
JP5972484B2 (en) Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
WO2012121109A1 (en) Cu-Ni-Si BASED ALLOY AND PROCESS FOR MANUFACTURING SAME
CN102112641B (en) Copper alloy material for electrical/electronic component
WO2013018228A1 (en) Copper alloy
JP2011026635A (en) Copper alloy sheet and method for manufacturing the same, and electric and electronic component
JP2011508081A (en) Copper-nickel-silicon alloy
JP2017179568A (en) Copper alloy sheet material and manufacturing method of copper alloy sheet material
CN112739838B (en) Cu-Ni-Al based copper alloy sheet material, method for producing same, and conductive spring member
JP2008038231A (en) High-strength sheet material of copper alloy superior in bendability, and manufacturing method therefor
EP3640354A1 (en) Copper alloy and use thereof
JP4200082B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2005344143A (en) Titanium copper having excellent strength, conductivity, and bending workability, and its production method
JP2005171295A (en) Aluminum alloy sheet to be formed and manufacturing method therefor
JP2006037148A (en) Aluminum alloy hard sheet for can barrel and its production method
KR101895558B1 (en) Cu-Ti-based copper alloy sheet material and method of manufacturing same
JP2009108392A (en) High-strength nickel silver superior in bendability, and manufacturing method therefor
JP2005082827A (en) Aluminum alloy sheet for forming and its production method
WO2016056240A1 (en) Superplastic-forming aluminium alloy plate and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120727

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Ref document number: 5247010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250