JP2008007364A - Glass substrate for flat panel display and its manufacturing method - Google Patents

Glass substrate for flat panel display and its manufacturing method Download PDF

Info

Publication number
JP2008007364A
JP2008007364A JP2006178343A JP2006178343A JP2008007364A JP 2008007364 A JP2008007364 A JP 2008007364A JP 2006178343 A JP2006178343 A JP 2006178343A JP 2006178343 A JP2006178343 A JP 2006178343A JP 2008007364 A JP2008007364 A JP 2008007364A
Authority
JP
Japan
Prior art keywords
glass substrate
flat panel
warpage
panel display
work table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006178343A
Other languages
Japanese (ja)
Other versions
JP5332085B2 (en
Inventor
Kazuhiko Asahi
和彦 旭
Chiyomaro Hirata
千代麿 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2006178343A priority Critical patent/JP5332085B2/en
Publication of JP2008007364A publication Critical patent/JP2008007364A/en
Application granted granted Critical
Publication of JP5332085B2 publication Critical patent/JP5332085B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Liquid Crystal (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a positional discrepancy of a glass substrate relative to a working stage by properly setting the amount of warpage when the glass substrate is placed on the working stage within a range not to damage functions as a glass substrate for a flat panel display. <P>SOLUTION: The glass substrate 1 is for a flat panel display and given for a specified treatment in a state of being put on a working stage 2 having a flat surface for placing, where the amount of warpage (h/L) in the state of being put on the working stage 2 is set to be 0.003-0.050%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フラットパネルディスプレイ用のガラス基板に関し、詳しくは作業台上に載置された状態で所定の処理が施されるフラットパネルディスプレイ用のガラス基板に関する。   The present invention relates to a glass substrate for a flat panel display, and more particularly to a glass substrate for a flat panel display that is subjected to a predetermined treatment while being placed on a work table.

周知のように、近年の表示デバイスの多様化に伴って、液晶ディスプレイ、プラズマディスプレイ、フィールドエミッションディスプレイなどのフラットパネルディスプレイ(以下、FPDともいう)が普及されるに至っているが、この種のFPD用のガラス基板には、その製造工程の中で熱処理が施されるのが通例である。そして、かかる熱処理を施す場合には、平坦な載置面を有するセッターを用い、そのセッター上に熱処理されるガラス基板を載置した状態で、加熱炉内に搬送する手法が採用されている。   As is well known, with the diversification of display devices in recent years, flat panel displays (hereinafter also referred to as FPDs) such as liquid crystal displays, plasma displays, and field emission displays have become widespread. It is customary that the glass substrate for heat treatment is heat-treated during the production process. And when performing this heat processing, the method of using the setter which has a flat mounting surface, and conveying in a heating furnace in the state which mounted the glass substrate heat-processed on the setter is employ | adopted.

また、FPD用のガラス基板には、その製造方法等に起因して反りが生じる場合があり、このようなガラス基板の反りに対しては、種々の対策が講じられているのが実情である。その具体例としては、例えば下記の特許文献1には、液晶ディスプレイ用のガラス基板の表裏面に、膜厚の異なる化学強化処理層を形成することで予め反りを付与し、ガラス基板の両端部を支持して搬送する際に、ガラス基板が撓んで落下するのを防止する手法が開示されている。また、下記の特許文献2には、直接的にはFPD用のガラス基板に関するものではないが、FPD用のガラス基板の表面側に配置されて利用されるフィルターガラス基板の反り量を1.0%以下に設定することで、フィルターガラス基板の反りによる表示品位の低下を防止する手法が開示されている。   Further, the glass substrate for FPD may be warped due to its manufacturing method or the like, and various measures are taken against such warpage of the glass substrate. . As a specific example, for example, in Patent Document 1 below, warpage is imparted in advance by forming chemical strengthening treatment layers having different film thicknesses on the front and back surfaces of a glass substrate for a liquid crystal display, and both ends of the glass substrate. A method for preventing the glass substrate from being bent and falling when it is supported and conveyed is disclosed. Patent Document 2 below is not directly related to the glass substrate for FPD, but the amount of warpage of the filter glass substrate used by being arranged on the surface side of the glass substrate for FPD is 1.0. A method for preventing a reduction in display quality due to warping of the filter glass substrate by setting the ratio to% or less is disclosed.

特開2002−328362号公報JP 2002-328362 A 特開2002−91326号公報JP 2002-91326 A

ところで、上記のFPD用のガラス基板の熱処理工程において、加熱炉内に搬入する前と、加熱炉内から搬出した後で、ガラス基板がセッターに対して位置ずれを来たすという事態が生じる場合があった。そして、このような事態が生じた場合には、ガラス基板に適正な熱処理が施されなかったり、或いはガラス基板に擦り傷等の破損が生じるなどの不具合が生じていた。   By the way, in the heat treatment process of the glass substrate for FPD described above, there is a case where the glass substrate is displaced with respect to the setter before being carried into the heating furnace and after being carried out from the heating furnace. It was. When such a situation occurs, there has been a problem that the glass substrate is not properly heat-treated, or the glass substrate is damaged such as scratches.

このような問題は、セッターにガラス基板を載置したときのガラス基板の載置状態が不安定な場合、すなわちセッターに載置したときのガラス基板の反りが不適正な場合に起こり得る。具体的には、セッター上にガラス基板を載置した状態で、ガラス基板の反りが大き過ぎると、セッター上でのガラス基板の姿勢が不安定になることから、セッターを搬送する際の振動や、ガラス基板の加熱による撓み等によってガラス基板が動き、結果として熱処理前後でセッターに対してガラス基板が位置ずれを来たすことになる。   Such a problem may occur when the mounting state of the glass substrate when the glass substrate is placed on the setter is unstable, that is, when the warp of the glass substrate when placed on the setter is inappropriate. Specifically, when the glass substrate is placed on the setter, if the glass substrate is warped too much, the orientation of the glass substrate on the setter becomes unstable. The glass substrate moves due to the bending of the glass substrate due to heating or the like. As a result, the glass substrate is displaced from the setter before and after the heat treatment.

一方、セッター上にガラス基板を載置した状態で、ガラス基板の反りが小さ過ぎたり、或いは反りが全くなくなると、ガラス基板とセッターとの間に、薄い空気の層が介在してしまうことから、セッターにガラス基板を載置する際や、セッターを搬送する際等にガラス基板がセッター上を滑り、この場合にも上記と同様にセッターに対してガラス基板が位置ずれを来たすことになる。   On the other hand, when the glass substrate is placed on the setter and the warpage of the glass substrate is too small or no warpage occurs, a thin air layer is interposed between the glass substrate and the setter. When the glass substrate is placed on the setter or when the setter is transported, the glass substrate slides on the setter, and in this case as well, the glass substrate is displaced relative to the setter.

なお、上記の問題は、セッター上にガラス基板を載置して熱処理を施す場合に限らず、ガラス基板を所定の作業台の上に載置した状態で、冷却、電極の形成、露光などの各種処理を施す場合であっても同様に生じ得る。すなわち、作業台が可動式、非可動式を問わず、作業台上に載置されたガラス基板が、当該処理工程の間で位置ずれを来たせば、ガラス基板に、処理不良や、擦り傷等の破損が同様に生じることになる。   The above problem is not limited to the case where a glass substrate is placed on a setter and subjected to heat treatment, and cooling, electrode formation, exposure, etc., with the glass substrate placed on a predetermined work table. Even when various processes are performed, it can occur in the same manner. In other words, regardless of whether the workbench is movable or non-movable, if the glass substrate placed on the workbench is misaligned between the processing steps, the glass substrate may have processing defects, scratches, etc. The damage will occur as well.

したがって、セッター等の作業台にガラス基板を載置した状態でのガラス基板の反りは、大き過ぎても小さ過ぎても問題となるが、このような観点から、ガラス基板の反りに対する対策が何ら講じられていないのが実情である。すなわち、上記の特許文献1、2のいずれもが、このような観点からガラス基板の反りに対する有効な対策を開示するものではない。具体的には、上記の特許文献1には、予めガラス基板に反りを付与することが開示されているに過ぎない。一方、上記の特許文献2には、ガラス基板の反り量を1.0%以下、特に好ましくは0.6%以下に設定することが開示されているが、この反り量は、FPD用のガラス基板に対する規定ではなく、その前面に配置されるフィルターガラス基板に対する規定である。そして、仮にFPD用のガラス基板に1.0%或いは0.6%の反り量を付与した場合には、FPD用のガラス基板としては反りが大きくなり過ぎて、熱処理等の各種処理に支障が生じ、製品として用に供し得なくなるという致命的な問題が生じ得る。特にプラズマディスプレイ用のガラス基板であっては、上記したセッターに対するガラス基板の位置ずれの問題が著しく、その対策が望まれている。   Therefore, the warpage of the glass substrate in a state where the glass substrate is placed on a workbench such as a setter is a problem whether it is too large or too small. From this viewpoint, there is no countermeasure against the warp of the glass substrate. The fact is not taken. That is, neither of the above-mentioned patent documents 1 and 2 discloses an effective measure against the warp of the glass substrate from such a viewpoint. Specifically, the above-described Patent Document 1 merely discloses that the glass substrate is warped in advance. On the other hand, Patent Document 2 discloses that the warpage amount of the glass substrate is set to 1.0% or less, particularly preferably 0.6% or less. This warpage amount is a glass for FPD. It is not a rule for a substrate, but a rule for a filter glass substrate disposed in front of the substrate. If the warp amount of 1.0% or 0.6% is given to the glass substrate for FPD, the warp becomes too large for the glass substrate for FPD, and various treatments such as heat treatment are hindered. This can cause a fatal problem that it cannot be used as a product. In particular, in the case of a glass substrate for a plasma display, the problem of positional displacement of the glass substrate with respect to the setter described above is significant, and countermeasures are desired.

本発明の課題は、フラットパネルディスプレイ用のガラス基板としての機能を損なわない範囲内で、かかるガラス基板を作業台上に載置したときの反り量を適正に設定することで、作業台に対するガラス基板の位置ずれを抑制することにある。   An object of the present invention is to appropriately set the amount of warpage when such a glass substrate is placed on a workbench within a range that does not impair the function as a glass substrate for a flat panel display. The purpose is to suppress the displacement of the substrate.

上記課題を解決するために創案された本発明は、平坦な載置面を有する作業台上に載置された状態で所定の処理が施されるフラットパネルディスプレイ用のガラス基板であって、前記作業台上に載置された状態での反り量が、0.003%以上0.050%以下となるように設定されていることに特徴づけられる。なお、ここでいう反り量は、作業台上にガラス基板を載置した状態で、ガラス基板の長軸方向の寸法をLとし、作業台の表面からガラス基板の裏面までの最大離反距離をhとした場合に、h/L(%)で表される数値とする。   The present invention devised to solve the above problems is a glass substrate for a flat panel display that is subjected to a predetermined treatment in a state of being placed on a work table having a flat placement surface, It is characterized in that the amount of warpage when placed on the workbench is set to be 0.003% to 0.050%. The amount of warpage here refers to the maximum separation distance from the surface of the work table to the back surface of the glass substrate, where L is the dimension in the major axis direction of the glass substrate with the glass substrate placed on the work table. In this case, the value is represented by h / L (%).

このような構成によれば、作業台上に載置したフラットパネルディスプレイ用のガラス基板には、上記数値範囲の反り量の反りが付与されていることから、作業台上での位置ずれを的確に抑制することができる。したがって、作業台上でガラス基板に対して所定の処理を好適に実行することが可能となると共に、ガラス基板に擦れ傷等の破損が生じる確率を可及的に低減することが可能となる。また、上記数値範囲の反り量の反りであれば、精密な電極等をガラス基板に形成する際にも、その反りが原因となって、処理不良を招くことがないので、フラットパネルディスプレイ用のガラス基板としての製品価値を良好に維持することができる。   According to such a configuration, the glass substrate for flat panel display placed on the workbench is provided with the warpage of the warpage amount within the above numerical range, so that the positional deviation on the workbench can be accurately detected. Can be suppressed. Therefore, it is possible to suitably execute a predetermined process on the glass substrate on the work table, and it is possible to reduce as much as possible the probability that the glass substrate is damaged such as a scratch. In addition, if the warp amount is within the above numerical range, even when a precise electrode or the like is formed on the glass substrate, the warp does not cause a processing failure due to the warp. Good product value as a glass substrate can be maintained.

すなわち、ガラス基板の反り量が、0.003%未満となると、ガラス基板が平坦になり過ぎ、ガラス基板と作業台との間に薄い空気層が介在することになり、ガラス基板が作業台上を滑って位置ずれを来たすおそれがある。一方、ガラス基板の反り量が、0.050%を超えると、ガラス基板が湾曲し過ぎ、作業台上での姿勢が不安定になって位置ずれを来たし易くなる。またこの場合には、仮に位置ずれが生じなかったとしても、作業台上でガラス基板に対して精密な電極等を形成する際には、その反りが原因となって、各種精密処理を適正に行うことができず、処理不良を招くおそれがある。そして、このような事態が生じた場合には、ガラス基板が作業台上で位置ずれを来たした場合と同様に、フラットパネルディスプレイ用のガラス基板としての製品価値が低下し、ひいては製品としての用に供し得ないことになる。したがって、ガラス基板の反り量を上記数値範囲に設定することで、このような問題を好適に回避することができる。また、本発明は、特にガラス基板の板厚が1mm〜3mm、大きさが300mm〜5000mm×700mm〜5000mmのプラズマディスプレイ用のガラス基板に好適である。   That is, when the amount of warpage of the glass substrate is less than 0.003%, the glass substrate becomes too flat, and a thin air layer is interposed between the glass substrate and the work table, so that the glass substrate is placed on the work table. There is a risk of slipping. On the other hand, if the amount of warpage of the glass substrate exceeds 0.050%, the glass substrate is excessively curved, and the posture on the work table becomes unstable, and the position is likely to be displaced. In this case, even if there is no misalignment, when forming precise electrodes etc. on the glass substrate on the workbench, various warp treatments are appropriately performed due to the warpage. It cannot be performed and there is a possibility of causing a processing failure. And when such a situation occurs, the product value as a glass substrate for a flat panel display is reduced, as in the case where the glass substrate is displaced on the workbench, and as a result It will not be available for use. Therefore, such a problem can be suitably avoided by setting the amount of warpage of the glass substrate within the above numerical range. The present invention is particularly suitable for a glass substrate for a plasma display having a glass substrate thickness of 1 mm to 3 mm and a size of 300 mm to 5000 mm × 700 mm to 5000 mm.

上記課題を解決するために創案された本発明は、フラットパネルディスプレイ用のガラス基板の製造方法であって、平坦な載置面を有する作業台上に、反り量が0.003%以上0.050%以下になるようにフラットパネルディスプレイ用のガラス基板を載置して、所定の処理を施す基板処理工程を含むことに特徴づけられる。   The present invention devised to solve the above-mentioned problems is a method for producing a glass substrate for a flat panel display, wherein the amount of warpage is 0.003% or more and 0.00 on a work table having a flat mounting surface. It is characterized by including a substrate processing step of mounting a glass substrate for a flat panel display so as to be 050% or less and performing a predetermined processing.

上記の方法によれば、作業台上に載置されたガラス基板の反り量が、既に述べた数値範囲と同一の反り量になることから、かかる数値範囲の反り量の反りが付与されたガラス基板に対応する同様の作用効果を得ることができる。   According to the above method, since the warpage amount of the glass substrate placed on the work table becomes the same warpage amount as the numerical range already described, the glass provided with the warpage of the warpage amount in the numerical range. Similar effects corresponding to the substrate can be obtained.

上記の方法において、前記作業台が加熱炉内に搬送されるセッターであって、前記基板処理工程で熱処理を施すようにしてもよい。   In the above method, the work table may be a setter transported into a heating furnace, and heat treatment may be performed in the substrate processing step.

すなわち、セッターに対するガラス基板の位置ずれが規制されることから、加熱炉内にガラス基板を搬入する前と、加熱炉内からガラス基板を搬出した後とで、セッターに対するガラス基板の位置が実質的に同一に維持される。したがって、ガラス基板に対して熱処理が適正に施されると共に、ガラス基板に不当な擦れ傷等の破損が生じる確率を低減することができる。   That is, since the positional deviation of the glass substrate with respect to the setter is regulated, the position of the glass substrate with respect to the setter is substantially different between before the glass substrate is carried into the heating furnace and after the glass substrate is carried out from the heating furnace. Are kept the same. Therefore, it is possible to appropriately perform the heat treatment on the glass substrate and reduce the probability that the glass substrate is damaged due to an unfair scratch or the like.

上記の方法において、前記基板処理工程の前に、フロートバス内で溶融ガラスを板状のガラス基板元材に成形する成形工程と、前記フロートバスの後側処理位置に配設された徐冷炉内で前記ガラス基板元材を冷却する冷却工程とを含み、該冷却工程で、前記ガラス基板元材の表面側冷却温度を、その裏面側冷却温度よりも低く設定することで、前記基板処理工程における反り量に対応する反りを付与するようにしてもよい。   In the above method, before the substrate processing step, in a forming step of forming molten glass into a plate-shaped glass substrate base material in a float bath, and in a slow cooling furnace disposed at a rear processing position of the float bath A cooling step of cooling the glass substrate base material, and in the cooling step, the surface side cooling temperature of the glass substrate base material is set lower than the back surface side cooling temperature, thereby warping in the substrate processing step. You may make it provide the curvature corresponding to quantity.

このようにすれば、徐冷炉内の冷却温度を調節するという極めて簡便な手法によって、基板処理工程における反り量に対応する反りをガラス基板に簡単且つ的確に付与することが可能となる。   If it does in this way, it will become possible to give the glass substrate the curvature corresponding to the amount of curvature in a substrate processing process simply and accurately by the very simple method of adjusting the cooling temperature in a slow cooling furnace.

この場合、前記表面側冷却温度と前記裏面側冷却温度との温度差を、5℃〜25℃に設定することが好ましい。   In this case, it is preferable to set the temperature difference between the front surface side cooling temperature and the back surface side cooling temperature to 5 ° C to 25 ° C.

以上のように本発明に係るフラットパネルディスプレイ用のガラス基板によれば、反り量を上記の数値範囲に設定したことにより、セッター等の作業台上でのガラス基板の位置ずれが的確に抑制される。したがって、作業台上でガラス基板に対して行われる所定の処理を適正に実行することが可能となると共に、ガラス基板に擦れ傷等の破損が生じる確率を可及的に低減することが可能となる。また、上記数値範囲内の反り量の反りであれば、ガラス基板に精密な電極等を形成するような精密処理を施す際にも、その反りによって精密処理が阻害されることもないので、フラットパネルディスプレイ用のガラス基板に要求される機能を好適に確保することができる。   As described above, according to the glass substrate for a flat panel display according to the present invention, by setting the amount of warpage to the above numerical range, the positional deviation of the glass substrate on a workbench such as a setter is accurately suppressed. The Therefore, it is possible to properly execute a predetermined process performed on the glass substrate on the work table, and to reduce as much as possible the probability that the glass substrate will be damaged such as a scratch. Become. In addition, if the warpage is a warpage amount within the above numerical range, the precision processing is not hindered by the warpage when the precision processing such as forming precise electrodes on the glass substrate is performed. The function required for the glass substrate for panel displays can be suitably secured.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1(a)及び(b)は、本発明の一実施形態に係るFPD用のガラス基板の一例を示す概略図である。同図に示すように、このFPD用のガラス基板1は、その板厚が3.0mm以下の矩形状の板状体であって、本実施形態ではプラズマディスプレイ用のガラス基板として利用されるものである。そして、このガラス基板1は、平坦な載置面を有する作業台2上に載置された状態で、この作業台2に対して僅かに反るようになっている。このガラス基板1の反りは、ガラス基板1の長軸方向の寸法をL、作業台2の表面からガラス基板1の裏面までの最大離反距離をhとした場合に、h/L(%)で表される反り量で規定すると、0.003%≦h/L≦0.050%になるように設定されている。なお、ガラス基板1は、上記数値範囲の反り量を満たす限り、薄肉円筒の周方向一部分をなすように、一方向に対してのみ円弧状に湾曲した形状を呈しているものに限らず、お椀状に湾曲した形状を呈しているものや、一方向に凹凸が連続するようにS字状に湾曲した形状を呈しているもの等であってもよい。   1A and 1B are schematic views showing an example of a glass substrate for FPD according to an embodiment of the present invention. As shown in the figure, the glass substrate 1 for FPD is a rectangular plate having a thickness of 3.0 mm or less, and is used as a glass substrate for plasma display in this embodiment. It is. The glass substrate 1 is slightly warped with respect to the work table 2 in a state of being placed on the work table 2 having a flat placement surface. The warpage of the glass substrate 1 is expressed as h / L (%) when the dimension in the major axis direction of the glass substrate 1 is L and the maximum separation distance from the surface of the work table 2 to the back surface of the glass substrate 1 is h. When defined by the amount of warpage expressed, it is set so that 0.003% ≦ h / L ≦ 0.050%. Note that the glass substrate 1 is not limited to a glass substrate 1 that is curved in an arc shape in only one direction so as to form a part of the thin cylinder in the circumferential direction as long as the amount of warpage in the above numerical range is satisfied. It may be a shape that is curved in a shape, or a shape that is curved in an S shape so that unevenness is continuous in one direction.

なお、最大離反距離hは、作業台2上に載置されたガラス基板1と、作業台2との隙間を隙間ゲージで測定することによって求められる。具体的には、この最大離反距離hは、次のようにして規定される。例えば、図1(a)及び(b)に示すように、ガラス基板1が、作業台2の載置面に載置された状態で、上方に凸となるように一方向に対してのみ円弧状に湾曲した形状を呈する場合の最大離反距離hは、図2(a)及び(b)に示すように、ガラス基板1の表裏面を上下逆向けにして作業台2の載置面上に載置したときの作業台2の載置面からガラス基板1の表面までの最大離反距離h’によって規定される。この最大離反距離h’は、同図に示すように、作業台2上に表面側を下方に向けて載置されたガラス基板1と、作業台2との隙間を隙間ゲージ3で測定することによって求められる。すなわち、上記反り量(h/L)の数値範囲は、この最大離反距離h’に基づいて決定される。   The maximum separation distance h is obtained by measuring a gap between the glass substrate 1 placed on the work table 2 and the work table 2 with a gap gauge. Specifically, the maximum separation distance h is defined as follows. For example, as shown in FIGS. 1 (a) and 1 (b), in a state where the glass substrate 1 is placed on the placement surface of the work table 2, a circle is formed only in one direction so as to protrude upward. As shown in FIGS. 2A and 2B, the maximum separation distance h in the case of exhibiting an arcuate shape is on the mounting surface of the work table 2 with the front and back surfaces of the glass substrate 1 turned upside down. It is defined by the maximum separation distance h ′ from the placement surface of the work table 2 when placed to the surface of the glass substrate 1. As shown in the figure, the maximum separation distance h ′ is obtained by measuring the gap between the work table 2 and the glass substrate 1 placed on the work table 2 with the surface side facing downward with a clearance gauge 3. Sought by. That is, the numerical range of the warpage amount (h / L) is determined based on the maximum separation distance h ′.

また、ガラス基板1が作業台2の載置面に載置された状態で、上方に凸となるようにお椀状に湾曲した形状を呈する場合(図3(a)及び(b))や、一方向に凹凸が連続するようにS字状に湾曲した形状を呈する場合(図5(a)及び(b))の最大離反距離hも、上記の場合と同様にして、ガラス基板1の表裏面を上下逆向けにして作業台2の載置面上に載置したときの作業台2の載置面からガラス基板1の表面までの最大離反距離h’によって規定される(図4(a)及び(b)、又は図6(a)及び(b)参照)。   Further, in the state where the glass substrate 1 is placed on the placement surface of the work table 2, the glass substrate 1 exhibits a shape curved in a bowl shape so as to be convex upward (FIGS. 3A and 3B), Similarly to the above case, the maximum separation distance h in the case of exhibiting a shape curved in an S shape so that unevenness is continuous in one direction (FIGS. 5 (a) and (b)) is the same as the surface of the glass substrate 1. It is defined by the maximum separation distance h ′ from the mounting surface of the work table 2 to the surface of the glass substrate 1 when the back surface is placed upside down on the mounting surface of the work table 2 (FIG. 4A ) And (b) or FIG. 6 (a) and (b)).

そして、上記数値範囲の反り量の反りが付与されたガラス基板1は、その反りでもって作業台2との間で良好な接触状態を維持することができる。そのため、作業台2上でのガラス基板1の位置ずれの発生を的確に抑制することが可能となる。このことは、ガラス基板1に熱処理を施す際に、特に有利となる。すなわち、FPD用のガラス基板1に熱処理を施す場合には、セッターと呼ばれる作業台2上にガラス基板1を載置した状態で加熱炉内に搬送するのが通例であるが、ガラス基板1に上記数値範囲の反り量の反りを付与すれば、セッター2に対するガラス基板1の位置ずれが規制され、加熱炉内にガラス基板1を搬入する前と、加熱炉内からガラス基板1を搬出した後で、セッター2に対するガラス基板1の位置が実質的に同一に維持される。したがって、ガラス基板1に対して熱処理が適正に施されると共に、ガラス基板1に不当な擦れ傷等の破損が生じることも回避することができる。   And the glass substrate 1 to which the warpage of the warpage amount in the above numerical range was given can maintain a good contact state with the work table 2 by the warpage. For this reason, it is possible to accurately suppress the occurrence of displacement of the glass substrate 1 on the work table 2. This is particularly advantageous when the glass substrate 1 is heat treated. That is, when heat-treating the glass substrate 1 for FPD, it is customary to carry the glass substrate 1 in a state where the glass substrate 1 is placed on a work table 2 called a setter. If the warpage of the warpage amount in the above numerical range is applied, the positional deviation of the glass substrate 1 with respect to the setter 2 is regulated, and before the glass substrate 1 is carried into the heating furnace and after the glass substrate 1 is carried out from the heating furnace. Thus, the position of the glass substrate 1 with respect to the setter 2 is maintained substantially the same. Therefore, the glass substrate 1 is appropriately subjected to heat treatment, and it is possible to avoid the glass substrate 1 from being damaged such as an unfair scratch.

また、この数値範囲の反り量の反りであれば、ガラス基板1に精密な電極等を形成する精密処理において、所定の構成膜を成膜する場合であっても、ガラス基板に反りがない場合と同様に構成膜の膜厚差が生じ難く、FPD用のガラス基板として求められる機能を好適に維持することができる。もっとも、ガラス基板に反りがない場合には、ガラス基板が作業台に対して位置ずれを来たし易くなる。   Further, if the warp amount is within this numerical range, the glass substrate is not warped even in the case where a predetermined constituent film is formed in precision processing for forming a precise electrode or the like on the glass substrate 1. Similarly to the above, the difference in thickness of the constituent films hardly occurs, and the function required as a glass substrate for FPD can be suitably maintained. However, when the glass substrate is not warped, the glass substrate is likely to be displaced with respect to the work table.

上記数値範囲の反りが付与されたガラス基板1の製造方法の一例を以下に説明する。   An example of the manufacturing method of the glass substrate 1 to which the curvature of the said numerical range was provided is demonstrated below.

まず、ガラス溶解窯でガラス原料を溶融することで溶融ガラスとし、その溶融ガラスをフロートバス(錫バス)に搬入し、フロート法により板状に成形する。フロートバスで板状に成形されたガラス基板元材は、徐冷炉に搬入され、不要な歪が除去される。その後、所定の大きさに切断されると共に、研磨等の処理を施すことでガラス基板が製作される。そして、この製造工程の中で、高温のガラス基板元材を冷却する徐冷炉において、特にフロートバスに面する側の徐冷炉の入り口付近でガラス基板元材の表面側(フロートバスの錫に接触していない面側)を冷却する雰囲気温度(以下、表面側冷却温度という)を、ガラス基板元材の裏面側(フロートバスの錫に接触している面側)を冷却する雰囲気温度(以下、裏面側冷却温度という)よりも低く設定することで、ガラス基板元材から製作されるガラス基板1に上記数値範囲の反り量が付与される。具体的には、例えば表面側冷却温度(約600℃)と、裏面側冷却温度(約610℃)とに約10℃程度の温度差を付与することによって、ガラス基板1に上記数値範囲の反り量が付与される。なお、かかる温度差を5℃〜25℃の範囲内で調節することで、ガラス基板1の反り量を上記数値範囲内で調節することができる。すなわち、温度差を大きくすれば、ガラス基板1の反り量も大きくなる。   First, a glass raw material is melted in a glass melting furnace to obtain molten glass, and the molten glass is carried into a float bath (tin bath) and formed into a plate shape by a float method. The glass substrate base material formed into a plate shape by the float bath is carried into a slow cooling furnace, and unnecessary strain is removed. Thereafter, the glass substrate is cut into a predetermined size and subjected to a treatment such as polishing to produce a glass substrate. And in this manufacturing process, in the slow cooling furnace that cools the high temperature glass substrate base material, the surface side of the glass substrate base material (in contact with the tin of the float bath), particularly near the entrance of the slow cooling furnace facing the float bath. The ambient temperature (hereinafter referred to as the front side cooling temperature) for cooling the non-surface side), and the ambient temperature (hereinafter referred to as the back side) for cooling the back side of the glass substrate base material (the side in contact with the float bath tin). By setting the temperature lower than the cooling temperature, a warp amount in the above numerical range is given to the glass substrate 1 manufactured from the glass substrate base material. Specifically, for example, by giving a temperature difference of about 10 ° C. to the front side cooling temperature (about 600 ° C.) and the back side cooling temperature (about 610 ° C.), the warp in the above numerical range is applied to the glass substrate 1. Amount is given. In addition, the curvature amount of the glass substrate 1 can be adjusted within the said numerical range by adjusting this temperature difference within the range of 5 to 25 degreeC. That is, if the temperature difference is increased, the warp amount of the glass substrate 1 is also increased.

以上のように、本発明の実施形態に係るFPD用のガラス基板1によれば、反り量を上記の数値範囲に設定したことにより、セッター等の作業台2上でのガラス基板1の位置ずれを的確に抑制される。そのため、作業台2上で行われる所定の処理を適正に実行することができると共に、ガラス基板に不当に擦り傷等の破損が生じる確率を低減することができる。しかも、上記数値範囲内の反り量の反りであれば、ガラス基板1に精密な電極等を形成するような各種精密処理を施す場合であっても、処理不良を来たすこともないので、フラットパネルディスプレイ用のガラス基板に要求される機能を好適に確保することができる。   As mentioned above, according to the glass substrate 1 for FPD which concerns on embodiment of this invention, when the curvature amount was set to said numerical range, position shift of the glass substrate 1 on the work benches 2, such as a setter Is accurately suppressed. Therefore, it is possible to properly execute a predetermined process performed on the work table 2 and to reduce the probability that the glass substrate is unfairly damaged such as scratches. In addition, if the warp amount is within the above numerical range, even if various precision treatments such as forming precise electrodes on the glass substrate 1 are performed, there will be no processing defects. The function required for the glass substrate for display can be suitably secured.

なお、上記実施形態では、プラズマディスプレイ用のガラス基板に本発明を適用したものを説明したが、これ以外に、例えば、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、フィールドエミッションディスプレイ等の各種画像表示機器用のガラス基板等についても、同様にして本発明を適用することが可能である。   In the above embodiment, the glass substrate for plasma display is applied to the present invention. However, other than this, for example, glass for various image display devices such as a liquid crystal display, an electroluminescence display, and a field emission display. The present invention can be similarly applied to a substrate or the like.

本発明の実施例1〜6として、反り量が0.003%、0.004%、0.005%、0.015%、0.017%、0.050%に設定されたガラス基板をそれぞれ10枚ずつ作製し、比較例1、2として、反り量が0.002%、0.052%に設定されたガラス基板をそれぞれ10枚ずつ作製した。なお、各ガラス基板には、日本電気硝子株式会社製のPP−8Cを使用した。また、各ガラス基板の大きさは1000mm×1000mmであって、その板厚は1.8mmである。   As Examples 1 to 6 of the present invention, glass substrates having warpage amounts set to 0.003%, 0.004%, 0.005%, 0.015%, 0.017%, and 0.050%, respectively. Ten glass substrates were manufactured, and as Comparative Examples 1 and 2, ten glass substrates each having a warpage set to 0.002% and 0.052% were manufactured. Note that PP-8C manufactured by Nippon Electric Glass Co., Ltd. was used for each glass substrate. The size of each glass substrate is 1000 mm × 1000 mm, and the plate thickness is 1.8 mm.

そして、各ガラス基板を、大きさ1200mm×1200mmのセッター上に載置して、コンベア式加熱炉内に搬入して熱処理を行って、加熱炉内に搬入する前のセッターに対するガラス基板の位置を基準として、加熱炉内から搬出されたガラス基板のセッターに対する移動距離を、各試料10枚の平均値として求めた。なお、熱処理は、室温から10分掛けて550℃まで昇温して550℃で10分間保温した後、10分掛けて室温まで冷却するという温度条件によって行った。また、上記の熱処理に加えて、各ガラス基板にレジスト膜をコータ塗布し、設定膜厚に対する膜厚の最大差の百分率を、各試料10枚の平均値として求めた。これらの結果を以下の表1に示す。   Then, each glass substrate is placed on a setter having a size of 1200 mm × 1200 mm, carried into a conveyor-type heating furnace, subjected to heat treatment, and the position of the glass substrate relative to the setter before being carried into the heating furnace. As a reference, the moving distance of the glass substrate carried out of the heating furnace relative to the setter was obtained as an average value of 10 samples. The heat treatment was performed under a temperature condition that the temperature was raised from room temperature to 550 ° C. over 10 minutes, kept at 550 ° C. for 10 minutes, and then cooled to room temperature over 10 minutes. In addition to the above heat treatment, a resist film was coated on each glass substrate, and the percentage of the maximum difference in film thickness with respect to the set film thickness was determined as the average value of 10 samples. These results are shown in Table 1 below.

Figure 2008007364
Figure 2008007364

上記の表1によれば、ガラス基板の反り量が0.003%未満であると、ガラス基板の移動距離が大きくなっていることが確認できる。このように移動距離が大きくなると、ガラス基板に、熱処理不良や擦れ傷の発生等の不具合が生じるおそれがある。また、反り量が、0.050%を超えると、レジスト膜の膜厚にばらつきが大きくなることが確認できる。このようにレジスト膜の膜厚にばらつきが大きいと、FPD用のガラス基板として所定の素子を精密に形成することが困難となる。これに対して、ガラス基板の反り量が、0.003%以上0.050%以下であると、ガラス基板の移動距離とレジスト膜の膜厚のばらつきが共に小さく、FPD用のガラス基板として好適であることが確認できる。特にガラス基板の反り量が、0.005%以上0.015以下であれば、ガラス基板の移動距離とレジスト膜の膜厚のばらつきが両者バランスよく小さくなるので好ましい。   According to said Table 1, it can confirm that the movement distance of a glass substrate is large in the curvature amount of a glass substrate being less than 0.003%. When the moving distance is increased in this way, there is a possibility that the glass substrate has problems such as defective heat treatment and generation of scratches. Moreover, when the amount of warpage exceeds 0.050%, it can be confirmed that the thickness of the resist film varies greatly. As described above, if the film thickness of the resist film varies greatly, it becomes difficult to precisely form a predetermined element as a glass substrate for FPD. On the other hand, when the amount of warpage of the glass substrate is 0.003% or more and 0.050% or less, both the movement distance of the glass substrate and the variation of the film thickness of the resist film are small, and it is suitable as a glass substrate for FPD. It can be confirmed that In particular, if the amount of warpage of the glass substrate is 0.005% or more and 0.015 or less, the variation in the movement distance of the glass substrate and the film thickness of the resist film is preferably reduced in a balanced manner.

(a)は、本実施形態に係るフラットパネルディスプレイ用のガラス基板を示す斜視図であって、(b)はその縦断面図である。(A) is a perspective view which shows the glass substrate for flat panel displays which concerns on this embodiment, (b) is the longitudinal cross-sectional view. (a)は、図1のガラス基板の反り量の規定する際の載置状態を示す斜視図であって、(b)はその縦断面図である(A) is a perspective view which shows the mounting state at the time of prescribing | curing the curvature amount of the glass substrate of FIG. 1, (b) is the longitudinal cross-sectional view. (a)は、本実施形態に係るフラットパネルディスプレイ用のガラス基板の別の例を示す斜視図であって、(b)はその縦断面図である。(A) is a perspective view which shows another example of the glass substrate for flat panel displays which concerns on this embodiment, (b) is the longitudinal cross-sectional view. (a)は、図3のガラス基板の反り量の規定する際の載置状態を示す斜視図であって、(b)はその縦断面図である(A) is a perspective view which shows the mounting state at the time of prescribing | curing the curvature amount of the glass substrate of FIG. 3, (b) is the longitudinal cross-sectional view. (a)は、本実施形態に係るフラットパネルディスプレイ用のガラス基板の別の例を示す斜視図であって、(b)はその縦断面図である。(A) is a perspective view which shows another example of the glass substrate for flat panel displays which concerns on this embodiment, (b) is the longitudinal cross-sectional view. (a)は、図5のガラス基板の反り量の規定する際の載置状態を示す斜視図であって、(b)はその縦断面図である。(A) is a perspective view which shows the mounting state at the time of prescribing | curing the curvature amount of the glass substrate of FIG. 5, (b) is the longitudinal cross-sectional view.

符号の説明Explanation of symbols

1 フラットパネルディスプレイ用のガラス基板
2 作業台(セッター)
3 隙間ゲージ
1 Glass substrate for flat panel display 2 Work table (setter)
3 Clearance gauge

Claims (5)

平坦な載置面を有する作業台上に載置された状態で所定の処理が施されるフラットパネルディスプレイ用のガラス基板であって、
前記作業台上に載置された状態での反り量が、0.003%以上0.050%以下となるように設定されていることを特徴とするフラットパネルディスプレイ用のガラス基板。
A glass substrate for a flat panel display that is subjected to predetermined processing in a state of being placed on a work table having a flat placement surface,
A glass substrate for a flat panel display, wherein a warpage amount in a state of being placed on the work table is set to be 0.003% to 0.050%.
平坦な載置面を有する作業台上に、反り量が0.003%以上0.050%以下になるようにフラットパネルディスプレイ用のガラス基板を載置して、所定の処理を施す基板処理工程を含むことを特徴とするフラットパネルディスプレイ用のガラス基板の製造方法。   A substrate processing step in which a glass substrate for a flat panel display is placed on a work table having a flat placement surface so that the amount of warpage is 0.003% or more and 0.050% or less, and a predetermined treatment is performed. The manufacturing method of the glass substrate for flat panel displays characterized by including. 前記作業台が加熱炉内に搬送されるセッターであって、前記基板処理工程で熱処理が施されることを特徴とする請求項2に記載のフラットパネルディスプレイ用のガラス基板の製造方法。   The method for manufacturing a glass substrate for a flat panel display according to claim 2, wherein the work table is a setter that is transported into a heating furnace, and heat treatment is performed in the substrate processing step. 前記基板処理工程の前に、フロートバス内で溶融ガラスを板状のガラス基板元材に成形する成形工程と、前記フロートバスの後側処理位置に配設された徐冷炉内で前記ガラス基板元材を冷却する冷却工程とを含み、
該冷却工程で、前記ガラス基板元材の表面側冷却温度を、その裏面側冷却温度よりも低く設定することで、前記基板処理工程における反り量に対応する反りを付与することを特徴とする請求項2または3に記載のフラットパネルディスプレイ用のガラス基板の製造方法。
Prior to the substrate processing step, a forming step of forming molten glass into a plate-shaped glass substrate base material in a float bath, and the glass substrate base material in a slow cooling furnace disposed at a rear processing position of the float bath Cooling process for cooling,
The warping corresponding to the amount of warpage in the substrate processing step is imparted by setting the surface side cooling temperature of the glass substrate base material lower than the back surface side cooling temperature in the cooling step. Item 4. A method for producing a glass substrate for a flat panel display according to Item 2 or 3.
前記表面側冷却温度と前記裏面側冷却温度との温度差を、5℃〜25℃に設定したことを特徴とする請求項4に記載のフラットパネルディスプレイ用のガラス基板の製造方法。   5. The method for producing a glass substrate for a flat panel display according to claim 4, wherein a temperature difference between the front surface side cooling temperature and the rear surface side cooling temperature is set to 5 ° C. to 25 ° C. 5.
JP2006178343A 2006-06-28 2006-06-28 Manufacturing method of glass substrate for flat panel display Expired - Fee Related JP5332085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006178343A JP5332085B2 (en) 2006-06-28 2006-06-28 Manufacturing method of glass substrate for flat panel display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006178343A JP5332085B2 (en) 2006-06-28 2006-06-28 Manufacturing method of glass substrate for flat panel display

Publications (2)

Publication Number Publication Date
JP2008007364A true JP2008007364A (en) 2008-01-17
JP5332085B2 JP5332085B2 (en) 2013-11-06

Family

ID=39065891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006178343A Expired - Fee Related JP5332085B2 (en) 2006-06-28 2006-06-28 Manufacturing method of glass substrate for flat panel display

Country Status (1)

Country Link
JP (1) JP5332085B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136149A1 (en) * 2010-04-28 2011-11-03 旭硝子株式会社 Production method for glass plate and glass plate
JP2013006749A (en) * 2011-06-27 2013-01-10 Asahi Glass Co Ltd Float glass for chemical strengthening
JP2013130417A (en) * 2011-12-20 2013-07-04 Nippon Electric Glass Co Ltd Warpage measuring method for glass pane and manufacturing method of glass pane
JP2015187070A (en) * 2014-03-26 2015-10-29 ショット アクチエンゲゼルシャフトSchott AG Float process for producing float glass pane and float glass pane
CN110997590A (en) * 2017-09-01 2020-04-10 Agc株式会社 Method for producing glass substrate with film, and method for removing film
JP2022025147A (en) * 2015-12-17 2022-02-09 日本電気硝子株式会社 Method of manufacturing glass support plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339021A (en) * 1992-06-04 1993-12-21 Nippon Electric Glass Co Ltd Slow cooling method for glass plate
JPH08231233A (en) * 1994-12-28 1996-09-10 Hoya Corp Method for flattening sheet glass and production of magnetic recording medium using the method
JP2000247666A (en) * 1999-02-26 2000-09-12 Canon Inc Method for firing sheet glass, production of glass substrate, production of imaging device and firing jig
JP2004087382A (en) * 2002-08-28 2004-03-18 Nippon Sheet Glass Co Ltd Glass substrate for display
JP2005061747A (en) * 2003-08-18 2005-03-10 Nippon Electric Glass Co Ltd Heat-treating setter and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339021A (en) * 1992-06-04 1993-12-21 Nippon Electric Glass Co Ltd Slow cooling method for glass plate
JPH08231233A (en) * 1994-12-28 1996-09-10 Hoya Corp Method for flattening sheet glass and production of magnetic recording medium using the method
JP2000247666A (en) * 1999-02-26 2000-09-12 Canon Inc Method for firing sheet glass, production of glass substrate, production of imaging device and firing jig
JP2004087382A (en) * 2002-08-28 2004-03-18 Nippon Sheet Glass Co Ltd Glass substrate for display
JP2005061747A (en) * 2003-08-18 2005-03-10 Nippon Electric Glass Co Ltd Heat-treating setter and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136149A1 (en) * 2010-04-28 2011-11-03 旭硝子株式会社 Production method for glass plate and glass plate
JP2013006749A (en) * 2011-06-27 2013-01-10 Asahi Glass Co Ltd Float glass for chemical strengthening
JP2013130417A (en) * 2011-12-20 2013-07-04 Nippon Electric Glass Co Ltd Warpage measuring method for glass pane and manufacturing method of glass pane
JP2015187070A (en) * 2014-03-26 2015-10-29 ショット アクチエンゲゼルシャフトSchott AG Float process for producing float glass pane and float glass pane
JP2022025147A (en) * 2015-12-17 2022-02-09 日本電気硝子株式会社 Method of manufacturing glass support plate
JP7268718B2 (en) 2015-12-17 2023-05-08 日本電気硝子株式会社 Manufacturing method of supporting glass substrate
CN110997590A (en) * 2017-09-01 2020-04-10 Agc株式会社 Method for producing glass substrate with film, and method for removing film
CN110997590B (en) * 2017-09-01 2022-11-11 Agc株式会社 Method for producing glass substrate with film, and method for removing film

Also Published As

Publication number Publication date
JP5332085B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5332085B2 (en) Manufacturing method of glass substrate for flat panel display
WO2015056537A1 (en) Metal sheet, method for manufacturing metal sheet, and method for manufacturing vapor deposition mask using metal sheet
TWI520917B (en) Glass substrate manufacturing method and glass substrate
WO2015146169A1 (en) Method for reducing warpage developing in glass plate due to chemical strengthening treatment, method for producing glass plate for chemical strengthening, and method for producing chemically strengthened glass plate
KR101879052B1 (en) Metal mask material and metal mask
WO2011086868A1 (en) System of thin film forming apparatus, and thin film forming method
KR100777983B1 (en) Apparatus for Cutting Substrate
KR101830004B1 (en) Metal mask material and metal mask
US9896371B2 (en) Tempered glass cutting method and cutting apparatus
JP2020105629A (en) Alignment system, film deposition apparatus, film deposition method, and method of manufacturing electronic device
JP2009117301A (en) Glass substrate and method of inspecting warpage in glass substrate
JP2009149463A (en) Method and equipment for manufacturing glass plate
JP6454188B2 (en) Manufacturing method of glass substrate
KR101769670B1 (en) Method of making glass substrate and glass substrate
WO2016068069A1 (en) Glass base plate heat processing method and glass base plate production method
CN107235622B (en) Heat treatment method for glass substrate
JP2009227471A (en) Glass substrate for flat panel display and its manufacturing method
JP3698171B2 (en) Heat treatment method for glass plate for display device
JP6548993B2 (en) Heat treatment method for glass substrate and method for manufacturing glass substrate
WO2022097537A1 (en) Glass substrate and electronic device manufacturing method
KR102380482B1 (en) Apparatus for transporing substrate
JPH10297941A (en) Annealing of plate glass
JP3698170B2 (en) Heat treatment method for glass plate for display device
JP2009143758A (en) Glass substrate, flat display panel using the same, and method for producing glass substrate
JP2020203801A (en) Method for producing filmed glass substrate, filmed glass substrate, and film removing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees