JP2008006556A - Movement control device and movement control method in machine tool - Google Patents

Movement control device and movement control method in machine tool Download PDF

Info

Publication number
JP2008006556A
JP2008006556A JP2006181175A JP2006181175A JP2008006556A JP 2008006556 A JP2008006556 A JP 2008006556A JP 2006181175 A JP2006181175 A JP 2006181175A JP 2006181175 A JP2006181175 A JP 2006181175A JP 2008006556 A JP2008006556 A JP 2008006556A
Authority
JP
Japan
Prior art keywords
tool
workpiece
distance
movement
relative movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006181175A
Other languages
Japanese (ja)
Other versions
JP5008909B2 (en
Inventor
Satoru Ozawa
覚 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Star Micronics Co Ltd
Original Assignee
Star Micronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Star Micronics Co Ltd filed Critical Star Micronics Co Ltd
Priority to JP2006181175A priority Critical patent/JP5008909B2/en
Priority to KR1020070063754A priority patent/KR101220121B1/en
Priority to CN2007101260523A priority patent/CN101096072B/en
Priority to US11/824,519 priority patent/US7755316B2/en
Priority to TW096123847A priority patent/TWI401133B/en
Priority to EP07111424A priority patent/EP1872902B1/en
Priority to DE602007003408T priority patent/DE602007003408D1/en
Publication of JP2008006556A publication Critical patent/JP2008006556A/en
Application granted granted Critical
Publication of JP5008909B2 publication Critical patent/JP5008909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Turning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten the moving time for switching a tool by setting a rational moving route for switching the tool without the risk of interference of the tool and a work. <P>SOLUTION: A plurality of tools 27A, 27B, 27C are arranged side by side on a tool rest 26. The tool rest 26 is moved relatively to a work W1 in the tool forward and backward moving direction and in the tool arranging direction. In switching and moving the tools 27A, 27B, 27C to the work W1, relative movement along a circular-arc locus is performed between the tools 27A, 27B, 27C and the work W1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、複数の工具が並設された刃物台を有する旋盤等の工作機械において、工具の切替のために工具とワークとの間に相対移動を行わせるようにした移動制御装置及び移動制御方法に関するものである。   In a machine tool such as a lathe having a tool post in which a plurality of tools are arranged in parallel, the present invention provides a movement control device and a movement control in which relative movement is performed between a tool and a workpiece for tool switching. It is about the method.

従来、前記のような旋盤等の工作機械において、加工に使用される工具を切替える場合には、例えば図14に示すような工具切替方法が採られていた。すなわち、このような工作機械では、複数のバイト等の工具62A,62B,62Cを並設した刃物台61がワークW1に対応して、工具62A〜62Cの進退方向であるX軸方向及び工具62A〜62Cの並設方向であるY軸方向に沿って移動可能である。そして、例えば工具62AによるワークW1の加工終了後に、刃先が突出している工具62Bをスキップして工具62Cに切替える場合には、まず、図14(a)に示すように、刃物台61は工具62Aの刃先がワークW1の外周面に対して所定の隙間C1を有する第1位置P1に位置決めされる。   Conventionally, in a machine tool such as a lathe as described above, when a tool used for machining is switched, a tool switching method as shown in FIG. 14, for example, has been adopted. That is, in such a machine tool, the tool post 61 in which tools 62A, 62B, and 62C such as a plurality of tools are arranged in parallel corresponds to the workpiece W1, and the X-axis direction and the tool 62A are the forward and backward directions of the tools 62A to 62C. It is movable along the Y-axis direction which is a parallel arrangement direction of ~ 62C. For example, when the tool 62B from which the cutting edge protrudes is skipped and switched to the tool 62C after the processing of the workpiece W1 by the tool 62A is finished, first, as shown in FIG. 14A, the tool post 61 is a tool 62A. Is positioned at a first position P1 having a predetermined gap C1 with respect to the outer peripheral surface of the workpiece W1.

その後、図14(b)に示すように、刃物台61がX軸方向に移動されて、スキップされる工具62Bの刃先がワークW1の外周面に対して所定の隙間C1を有する第2位置P2に位置決めされる。この第2位置P2は、刃物台61をY軸方向に移動させた場合に、最も突出した工具62BとワークW1との干渉を回避できる経由位置である。続いて、図14(c)に示すように、刃物台61が工具62BをスキップしながらY軸方向に移動されて、工具62Cの刃先がワークW1の中心を通るX軸方向の延長線上となる第3位置P3に位置決めされる。さらに、図14(d)に示すように、刃物台61がX軸方向に前進移動されて、工具62Cの刃先がワークW1の外周面に対して所定の隙間C1を有する第4位置P4に位置決めされる。   Thereafter, as shown in FIG. 14B, the tool post 61 is moved in the X-axis direction, and the tool tip of the tool 62B to be skipped has a second position P2 having a predetermined gap C1 with respect to the outer peripheral surface of the workpiece W1. Is positioned. The second position P2 is a via position where interference between the most projecting tool 62B and the workpiece W1 can be avoided when the tool post 61 is moved in the Y-axis direction. Subsequently, as shown in FIG. 14C, the tool post 61 is moved in the Y-axis direction while skipping the tool 62B, and the cutting edge of the tool 62C is on an extension line in the X-axis direction passing through the center of the workpiece W1. Positioned at the third position P3. Further, as shown in FIG. 14D, the tool post 61 is moved forward in the X-axis direction, and the cutting edge of the tool 62C is positioned at the fourth position P4 having a predetermined gap C1 with respect to the outer peripheral surface of the workpiece W1. Is done.

このように、工具62Aから工具62Cに工具切替を行う場合、刃物台61の移動経路は、図15に示すように、第1位置P1から第2位置P2及び第3位置P3を経由して第4位置P4に至る四角形軌跡を辿る。   As described above, when the tool is switched from the tool 62A to the tool 62C, the movement path of the tool post 61 is changed from the first position P1 to the second position P2 and the third position P3 as shown in FIG. A quadratic trajectory that reaches the fourth position P4 is traced.

従って、この従来の移動制御方法では、刃物台61の移動経路が遠回りになって、工具切替に要する移動時間が長くかかることになる。加えて、X軸方向とY軸方向との間である第2位置P2及び第3位置P3において、方向転換のために工具移動が停止されるため、移動時間がさらに長くなることになる。すなわち、工具とワークとの間の相対速度を表した図16に示す実線の速度カーブから明らかなように、第1位置P1と第2位置P2との間の移動時間をt1、第2位置P2と第3位置P3との間での間の移動時間をt2、第3位置P3と第4位置P4との間の移動時間をt3とすると、工具切替のための移動時間t0は、最短であってもt1+t2+t3となり、それ以上短くすることはできない。   Therefore, in this conventional movement control method, the movement path of the tool post 61 becomes a detour and it takes a long time to move the tool. In addition, since the tool movement is stopped for the direction change at the second position P2 and the third position P3 that are between the X-axis direction and the Y-axis direction, the movement time is further increased. That is, as is apparent from the solid speed curve shown in FIG. 16 showing the relative speed between the tool and the workpiece, the movement time between the first position P1 and the second position P2 is t1, and the second position P2. When the movement time between the second position P3 and the third position P3 is t2, and the movement time between the third position P3 and the fourth position P4 is t3, the movement time t0 for tool switching is the shortest. However, it becomes t1 + t2 + t3 and cannot be further shortened.

ところで、特許文献1には、工具を所定の時間帯において2軸方向にオーバーラップして移動させることにより、移動時間を短縮するようにした工具の移動制御方法が記載されている。また、特許文献2には、工具の交換に際して、工具を現在位置から工具切替位置に移動する間に、他の部材との干渉を回避して通過させるためのアプローチ位置を設定し、そのアプローチ位置において2方向の早送り移動を停止させることなくオーバーラップさせて、移動時間を短縮するようにした工具の移動制御方法が記載されている。さらに、特許文献3には、他の部材との干渉を回避するための方向転換点まで第1軸駆動装置により移動体を早送り速度で移動させ、方向転換点に達したときから移動体を第2軸駆動装置の移動時間内で、第1軸駆動装置の最大加減速度以下の加減速度で緩やかに移動させて、移動時間を短縮するようにした移動体の移動制御方法が記載されている。
特開平9−262742号公報 特開平11−104934号公報 特開2006−24174号公報
By the way, Patent Document 1 describes a tool movement control method in which a movement time is shortened by overlapping and moving a tool in two axial directions in a predetermined time zone. Further, in Patent Document 2, when changing the tool, while moving the tool from the current position to the tool switching position, an approach position for avoiding interference with other members is set and the approach position is set. Describes a tool movement control method in which the fast-forward movements in two directions are overlapped without stopping to shorten the movement time. Further, in Patent Document 3, the moving body is moved at a fast feed speed by the first axis driving device to the turning point for avoiding interference with other members, and the moving body is moved to the turning point after reaching the turning point. There is described a movement control method for a moving body in which the movement time is shortened by gently moving at an acceleration / deceleration below the maximum acceleration / deceleration of the first axis drive device within the movement time of the biaxial drive device.
JP-A-9-262742 JP 11-104934 A JP 2006-24174 A

ところが、これらの従来の移動制御方法においては、次のような問題があった。すなわち、特許文献1には、工具を2軸方向でオーバーラップして同時に移動させる方法は記載されているが、工具をワーク等の他の部材と干渉しないように特定の移動経路を通過して移動させる方法については開示されていない。言い換えれば、この特許文献1に記載の方法においては、工具とワークとの干渉防止に対する配慮がなされていないために、この特許文献1に記載の方法を工具とワークとが近接した状態における工具切替動作に応用した場合、工具とワークとが干渉するおそれがある。   However, these conventional movement control methods have the following problems. That is, Patent Document 1 describes a method in which a tool is moved in an overlapping manner in two axial directions, but the tool passes through a specific movement path so as not to interfere with other members such as a workpiece. The method of moving is not disclosed. In other words, in the method described in Patent Document 1, no consideration is given to prevention of interference between the tool and the work. Therefore, the method described in Patent Document 1 is used for tool switching in a state where the tool and the work are close to each other. When applied to operation, there is a risk of interference between the tool and the workpiece.

また、特許文献2に記載の方法においては、実際に2方向の早送り移動をオーバーラップさせた場合、移動経路がアプローチ位置付近で曲線状に湾曲して、工具がアプローチ位置を正確に通過しなくなるおそれが多分にある。これに対し、工具が他の部材と干渉しないように、アプローチ位置を正確に通過されるためには、アプローチ位置において2方向の早送り移動を一旦停止させて方向転換させる必要があって、結果として移動時間を短縮させることができなくなる。さらに、特許文献3に記載の方法では、所定範囲における加減速制御を行うのみで、移動経路を設定して制御するものではないため、結果として方向転換後に移動経路が膨らんでしまい、狭いスペース内において工具の切替移動する場合には不向きである。   In the method described in Patent Document 2, when the fast-forward movement in two directions is actually overlapped, the movement path is curved in the vicinity of the approach position, and the tool does not accurately pass the approach position. There is probably a fear. On the other hand, in order to pass the approach position accurately so that the tool does not interfere with other members, it is necessary to temporarily stop the rapid traverse movement in two directions at the approach position and change the direction. The travel time cannot be shortened. Furthermore, in the method described in Patent Document 3, only acceleration / deceleration control within a predetermined range is performed, and the movement route is not set and controlled. As a result, the movement route swells after a change of direction, and the space is narrow. In this case, it is unsuitable when the tool is switched.

この発明は、このような従来の技術に存在する問題点に着目してなされたものである。その目的は、工具の移動に要する時間を短縮することができるとともに、工具とワークとの干渉のおそれのない合理的な工具移動経路を設定することができ、しかも、工具移動に要するスペースを狭くすることが可能な工作機械における移動制御装置及び移動制御方法を提供することにある。   The present invention has been made paying attention to such problems existing in the prior art. The purpose is to reduce the time required for moving the tool, to set a rational tool movement path without the possibility of interference between the tool and the workpiece, and to narrow the space required for tool movement. It is an object of the present invention to provide a movement control device and a movement control method in a machine tool that can be used.

上記の目的を達成するために、工作機械の移動制御装置に係る請求項1の発明は、複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替が前記第1,第2駆動部により実行されるようにした工作機械において、工具の刃先とその刃先と隣接する工具の外周面との間の離間距離を設定する距離設定手段と、前記離間距離以下の距離に対応した曲率の円弧状軌跡を設定する軌跡設定手段と、前記工具の切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させる制御手段とを備えたことを特徴とする。   In order to achieve the above object, the invention of claim 1 according to the machine tool movement control device is characterized in that a tool post in which a plurality of tools are arranged side by side and a tool advancing / retreating direction between the tool and the workpiece. A first driving unit that generates a relative movement; and a second driving unit that generates a second relative movement between the workpiece and the tool rest along the tool side-by-side direction. In a machine tool executed by the second drive unit, distance setting means for setting a separation distance between the cutting edge of the tool and the outer peripheral surface of the tool adjacent to the cutting edge, and a distance equal to or less than the separation distance The trajectory setting means for setting the arc-shaped trajectory of the curvature, and the first and second drive units so that relative movement is performed between the tool and the workpiece in accordance with the arc-shaped trajectory in the tool switching operation. And control means for operating simultaneously. To.

請求項2に記載の発明は、複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替動作が前記第1,第2駆動部により実行されるようにした工作機械において、工具の刃先とその刃先と隣接する工具の外周面との間の離間距離と、前記切替動作における前記工具進退方向への工具の移動距離とを設定する距離設定手段と、前記離間距離と移動距離とを比較して、短い方の距離に対応した曲率の円弧状軌跡を設定する軌跡設定手段と、前記切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させる制御手段とを備えたことを特徴とする。   According to a second aspect of the present invention, there is provided a tool post in which a plurality of tools are arranged side by side, a first drive unit that causes a first relative movement along the tool advancing / retreating direction between the tool and the work, and the work and the tool. A machine tool configured to perform a switching operation of the tool by the first and second drive units, and a second drive unit that causes a second relative movement along a tool juxtaposition direction between the tool and the tool. A distance setting means for setting a separation distance between the cutting edge of the tool and the outer peripheral surface of the tool adjacent to the cutting edge, and a movement distance of the tool in the tool advance / retreat direction in the switching operation, and the separation distance and movement In comparison with the distance, the trajectory setting means for setting the arc-shaped trajectory having the curvature corresponding to the shorter distance, and the relative movement according to the arc-shaped trajectory is performed between the tool and the workpiece in the switching operation. Simultaneously moving the first and second drive units Characterized by comprising a control means for.

請求項3に記載の発明は、複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替が前記第1,第2駆動部により実行されるようにした工作機械において、ワークとそれに隣接する工具の刃先との間の離間距離を設定する距離設定手段と、前記離間距離以下の距離に対応した曲率の円弧状軌跡を設定する軌跡設定手段と、前記工具の切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させる制御手段とを備えたことを特徴とする。   According to a third aspect of the present invention, there is provided a tool post in which a plurality of tools are arranged side by side, a first drive unit that causes a first relative movement along the tool advancing / retreating direction between the tool and the work, and the work and the tool. A machine tool that includes a second drive unit that generates a second relative movement along a tool juxtaposition direction between the tool and the tool, wherein the switching of the tool is performed by the first and second drive units; In distance setting means for setting a separation distance between a workpiece and a cutting edge of a tool adjacent thereto, a locus setting means for setting an arcuate locus having a curvature corresponding to a distance equal to or less than the separation distance, and the switching operation of the tool And a control means for simultaneously operating the first and second drive units so that relative movement is performed between the tool and the workpiece according to the arcuate trajectory.

請求項4に記載の発明は、複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替動作が前記第1,第2駆動部により実行されるようにした工作機械において、ワークとそれに隣接する工具の刃先との間の離間距離と、前記切替動作における前記工具進退方向への工具の移動距離とを設定する距離設定手段と、前記離間距離と移動距離とを比較して、短い方の距離に対応した曲率の円弧状軌跡を設定する軌跡設定手段と、前記切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させる制御手段とを備えたことを特徴とする。   According to a fourth aspect of the present invention, there is provided a tool post in which a plurality of tools are arranged side by side, a first drive unit that causes a first relative movement between the tool and the workpiece along the tool advance / retreat direction, the workpiece and the cutter. A machine tool configured to perform a switching operation of the tool by the first and second drive units, and a second drive unit that causes a second relative movement along a tool juxtaposition direction between the tool and the tool. The distance setting means for setting the separation distance between the workpiece and the cutting edge of the tool adjacent to the workpiece and the movement distance of the tool in the tool advance / retreat direction in the switching operation is compared with the separation distance and the movement distance. And a trajectory setting means for setting an arcuate trajectory having a curvature corresponding to the shorter distance, and the first movement so that relative movement is performed between the tool and the workpiece according to the arcuate trajectory in the switching operation. , The second drive unit is operated simultaneously Characterized by comprising a means.

請求項5に記載の発明は、請求項1〜4のうちのいずれか一項に記載の発明において、前記離間距離は、工具の切替動作においてワークに対する工具の相対移動方向後方側に存在する距離であることを特徴とする。   The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the separation distance is a distance existing on the rear side in the relative movement direction of the tool with respect to the workpiece in the switching operation of the tool. It is characterized by being.

請求項6に記載の発明は、請求項1〜4のうちのいずれか一項に記載の発明において、前記離間距離は、工具の切替動作において工具に対するワークの相対移動方向前方側に存在する距離であることを特徴とする。   The invention according to claim 6 is the invention according to any one of claims 1 to 4, wherein the separation distance is a distance existing on the front side in the relative movement direction of the workpiece with respect to the tool in the switching operation of the tool. It is characterized by being.

請求項7に記載の発明は、請求項2または4に記載の発明において、前記距離設定手段は、移動距離として、工具の刃先とワークとの干渉を回避するために刃物台が退避位置に後退するまでの距離を設定することを特徴とする。   According to a seventh aspect of the present invention, in the invention according to the second or fourth aspect, the distance setting means moves the turret back to the retracted position as a movement distance in order to avoid interference between the cutting edge of the tool and the workpiece. It is characterized by setting a distance until it is done.

請求項8に記載の発明は、請求項7に記載の発明において、前記距離設定手段は、前記移動距離として、工具が前記退避位置からワークに対する所定の接近位置に前進するまでの距離を設定することを特徴とする。   The invention according to claim 8 is the invention according to claim 7, wherein the distance setting means sets, as the movement distance, a distance until the tool advances from the retracted position to a predetermined approach position with respect to the workpiece. It is characterized by that.

工作機械における移動制御方法に係る請求項9に記載の発明は、複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替が前記第1,第2駆動部により実行されるようにした工作機械において、工具の刃先とその刃先と隣接する工具の外周面との間の離間距離を設定し、前記離間距離以下の距離に対応した曲率の円弧状軌跡を設定し、前記工具の切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させることを特徴とする。   A ninth aspect of the invention relates to a movement control method for a machine tool, wherein a first relative movement is generated between a tool post in which a plurality of tools are arranged side by side and a tool advancing / retreating direction between the tool and the workpiece. 1 drive part, and the 2nd drive part which produces the 2nd relative movement along a tool juxtaposition direction between a workpiece | work and a tool rest, The switching of the said tool is performed by the said 1st, 2nd drive part. In the machine tool configured to set a separation distance between the cutting edge of the tool and the outer peripheral surface of the tool adjacent to the cutting edge, set an arcuate trajectory having a curvature corresponding to the distance equal to or less than the separation distance, In the tool switching operation, the first and second drive units are simultaneously operated so that relative movement is performed between the tool and the workpiece according to the arcuate locus.

請求項10に記載の発明は、複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替動作が前記第1,第2駆動部により実行されるようにした工作機械において、工具の刃先とその刃先と隣接する工具の外周面との間の離間距離と、前記切替動作における前記工具進退方向への工具の移動距離とを設定し、前記離間距離と移動距離とを比較して、短い方の距離に対応した曲率の円弧状軌跡を設定し、前記切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させることを特徴とする。   The invention according to claim 10 is a tool post in which a plurality of tools are arranged side by side, a first drive unit that causes a first relative movement between the tool and the workpiece along the tool advance / retreat direction, and the workpiece and the cutter. A machine tool configured to perform a switching operation of the tool by the first and second drive units, and a second drive unit that causes a second relative movement along a tool juxtaposition direction between the tool and the tool. The separation distance between the cutting edge of the tool and the outer peripheral surface of the tool adjacent to the cutting edge and the movement distance of the tool in the tool advance / retreat direction in the switching operation are set, and the separation distance and the movement distance are compared. Then, an arc-shaped trajectory having a curvature corresponding to the shorter distance is set, and the first and second are set so that relative movement is performed between the tool and the workpiece according to the arc-shaped trajectory in the switching operation. The drive unit is operated at the same time.

請求項11に記載の発明は、複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替が前記第1,第2駆動部により実行されるようにした工作機械において、ワークとそれに隣接する工具の刃先との間の離間距離を設定し、前記離間距離以下の距離に対応した曲率の円弧状軌跡を設定し、前記工具の切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させることを特徴とする。   The invention according to claim 11 is a tool post in which a plurality of tools are arranged side by side, a first drive unit that causes a first relative movement between the tool and the workpiece along a tool advance / retreat direction, and the workpiece and the cutter. A machine tool that includes a second drive unit that generates a second relative movement along a tool juxtaposition direction between the tool and the tool, wherein the switching of the tool is performed by the first and second drive units; A separation distance between a workpiece and a cutting edge of a tool adjacent to the workpiece is set, an arc-shaped trajectory having a curvature corresponding to a distance equal to or less than the separation distance is set, and the tool switching operation is performed between the tool and the workpiece. The first and second driving units are operated simultaneously so that relative movement is performed according to the arcuate locus.

請求項12に記載の発明は、複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替動作が前記第1,第2駆動部により実行されるようにした工作機械において、ワークとそれに隣接する工具の刃先との間の離間距離と、前記切替動作における前記工具進退方向への工具の移動距離とを設定し、前記離間距離と移動距離とを比較して、短い方の距離に対応した曲率の円弧状軌跡を設定し、前記切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させることを特徴とする。   The invention according to claim 12 is a tool post in which a plurality of tools are arranged side by side, a first drive unit that causes a first relative movement along the tool advancing / retreating direction between the tool and the work, and the work and the tool. A machine tool configured to perform a switching operation of the tool by the first and second drive units, and a second drive unit that causes a second relative movement along a tool juxtaposition direction between the tool and the tool. The distance between the workpiece and the cutting edge of the tool adjacent thereto and the movement distance of the tool in the tool advancing / retreating direction in the switching operation are set, and the shorter distance is compared with the separation distance and the movement distance. The arc-shaped trajectory having a curvature corresponding to the distance is set, and in the switching operation, the first and second drive units are operated simultaneously so that relative movement is performed according to the arc-shaped trajectory between the tool and the workpiece. It is characterized by making it.

従って、この発明によれば、工具の刃先とその刃先と隣接する工具の外周面との間の離間距離あるいはワークとそれに隣接する工具の刃先との間の離間距離、またはそれらの離間距離と切替動作における前記工具進退方向への工具の移動距離との比較に基づいて、工具とワークとの干渉のおそれのない円弧状軌跡よりなる工具移動のための合理的な移動経路を作成することができる。よって、従来技術と比較して工具とワークとの干渉を避けつつ、工具切替に要する移動時間を短縮することができる。また、工具移動が設定された円弧軌跡に従って実行されるため、工具の移動経路が膨らんでしまうようなことはなく、工具移動のためのスペースを小さくすることができる。   Therefore, according to the present invention, the separation distance between the cutting edge of the tool and the outer peripheral surface of the tool adjacent to the cutting edge, the separation distance between the workpiece and the cutting edge of the tool adjacent thereto, or switching between these separation distances. Based on the comparison with the movement distance of the tool in the tool advancing / retreating direction in operation, a rational movement path for the tool movement consisting of an arc-shaped trajectory with no risk of interference between the tool and the workpiece can be created. . Therefore, the movement time required for tool switching can be shortened while avoiding interference between the tool and the workpiece as compared with the prior art. Further, since the tool movement is executed according to the set arc trajectory, the tool movement path does not swell and the space for tool movement can be reduced.

以上のように、この発明によれば、工具とワークとの干渉を避けることができるとともに、工具切替の移動時間を短縮することができ、しかも、工具移動に要するスペースを小さくすることができる。   As described above, according to the present invention, it is possible to avoid the interference between the tool and the workpiece, to shorten the time for moving the tool, and to reduce the space required for moving the tool.

以下に、この発明の実施形態を、図1〜図13に基づいて説明する。
(第1実施形態)
まず、図1〜図10に基づいてこの発明の第1実施形態について説明する。
Embodiments of the present invention will be described below with reference to FIGS.
(First embodiment)
First, a first embodiment of the present invention will be described with reference to FIGS.

図1に示すように、この第1実施形態の工作機械では、フレーム21に主軸台22がZ軸方向へ移動可能に設置され、その主軸台22にはZ軸方向に延びる主軸23が回転可能に支持されている。主軸台22に対向して位置するように、フレーム21には背面主軸台24がZ軸方向へ移動可能に設置され、その背面主軸台24にはZ軸方向に延びる背面主軸25が回転可能に支持されている。そして、主軸23及び背面主軸25にはワークW1を把持可能なコレット23a(背面主軸25側のコレットは表れていない)が取り付けられている。   As shown in FIG. 1, in the machine tool according to the first embodiment, a headstock 22 is installed on a frame 21 so as to be movable in the Z-axis direction, and a main spindle 23 extending in the Z-axis direction is rotatable on the mainstock 22. It is supported by. A rear spindle stock 24 is installed on the frame 21 so as to be movable in the Z-axis direction so as to face the spindle stock 22, and a rear spindle 25 extending in the Z-axis direction is rotatable on the rear spindle stock 24. It is supported. The main shaft 23 and the rear main shaft 25 are attached with a collet 23a (a collet on the rear main shaft 25 side does not appear) that can grip the workpiece W1.

図1に示すように、前記主軸台22と背面主軸台24との間において、機械フレーム21には刃物台26が主軸台22の移動方向であるZ軸方向と直交するX軸方向及びY軸方向へ移動可能に設置されている。刃物台26には、主軸23上のワークW1に対してその外周側から切削加工を施すようにしたX軸方向に延びる複数のバイトよりなる工具27がY軸方向に所定間隔をおいて並設されている。   As shown in FIG. 1, between the spindle stock 22 and the rear spindle stock 24, the tool frame 26 is placed on the machine frame 21 in the X-axis direction and the Y-axis orthogonal to the Z-axis direction that is the movement direction of the spindle stock 22. It is installed to be movable in the direction. On the tool post 26, tools 27 made of a plurality of cutting tools extending in the X-axis direction are provided in parallel at predetermined intervals in the Y-axis direction so as to cut the workpiece W1 on the main shaft 23 from the outer peripheral side. Has been.

前記工具27に隣接して、前記刃物台26には、主軸23上のワークW1をその端面側から加工したり、背面主軸25上のワークW1をその端面側から加工したりするようにしたZ軸方向あるいはY軸方向に延びるドリルやリーマ等よりなる工具29〜31がY軸方向あるいはX軸方向に所定間隔をおいて並設されている。   Adjacent to the tool 27, the tool post 26 is configured to machine the workpiece W1 on the spindle 23 from its end face side or to machine the workpiece W1 on the back spindle 25 from its end face side. Tools 29 to 31 made of a drill, a reamer or the like extending in the axial direction or the Y-axis direction are arranged in parallel at a predetermined interval in the Y-axis direction or the X-axis direction.

なお、この第1実施形態をはじめ、後述の各実施形態において、主軸台22及び背面主軸台24の移動,すなわちワークW1の移動や、前記刃物台26の移動は、それぞれ主軸台22及び背面主軸台24とワークW1との間に相対移動が生じればよく、ワークW1及び刃物台26が単独で移動しても、双方が同時に移動してよい。各実施形態においては、ワークW1及び刃物台26が単独で移動されるものとする。   In each of the embodiments described later, including the first embodiment, the movement of the headstock 22 and the rear spindlestock 24, that is, the movement of the workpiece W1 and the movement of the tool rest 26 are respectively the spindle stock 22 and the rear spindle. It is sufficient that relative movement occurs between the base 24 and the work W1, and even if the work W1 and the tool rest 26 move independently, both may move simultaneously. In each embodiment, it is assumed that the workpiece W1 and the tool post 26 are moved independently.

次に、前記のような構成の工作機械の動作を制御するための制御装置35等の構成について説明する。
図2に示すように、この制御装置35は、CPU36、ROM37、RAM38、入力部39、表示部40、主軸回転制御回路41、主軸送り制御回路42、第1駆動部及び第2駆動部を構成する工具送り制御回路43、背面主軸回転制御回路44及び背面主軸送り制御回路45を備えている。この実施形態においては、前記CPU36、ROM37、RAM38により距離設定手段,軌跡設定手段,制御手段が構成されている。
Next, the configuration of the control device 35 and the like for controlling the operation of the machine tool configured as described above will be described.
As shown in FIG. 2, the control device 35 includes a CPU 36, a ROM 37, a RAM 38, an input unit 39, a display unit 40, a spindle rotation control circuit 41, a spindle feed control circuit 42, a first drive unit, and a second drive unit. A tool feed control circuit 43, a back spindle rotation control circuit 44, and a back spindle feed control circuit 45. In this embodiment, the CPU 36, the ROM 37, and the RAM 38 constitute distance setting means, locus setting means, and control means.

入力部39は数値キー等を有するキーボードから構成され、ワークW1の種類や寸法のデータ等の加工に関する各種のデータ等を手動入力するものである。表示部40は液晶ディスプレイ等の表示装置からなり、入力部39から入力されたデータ等の各種のデータやステイタス等を表示する。   The input unit 39 is composed of a keyboard having numeric keys and the like, and manually inputs various data relating to processing such as the type and size data of the workpiece W1. The display unit 40 includes a display device such as a liquid crystal display, and displays various data such as data input from the input unit 39, status, and the like.

前記CPU36は、主軸回転制御回路41、主軸送り制御回路42、工具送り制御回路43、背面主軸回転制御回路44及び背面主軸送り制御回路45に作動指令を出力することにより、駆動用モータ等よりなる主軸回転駆動装置46、主軸送り駆動装置47、第1駆動部及び第2駆動部を構成する工具送り駆動装置48、背面主軸回転駆動装置49及び背面主軸送り駆動装置50を介して、前記主軸23、主軸台22、刃物台26、背面主軸25及び背面主軸台24等を作動させる。   The CPU 36 includes a driving motor and the like by outputting operation commands to the spindle rotation control circuit 41, the spindle feed control circuit 42, the tool feed control circuit 43, the back spindle rotation control circuit 44, and the back spindle feed control circuit 45. The main shaft rotation drive device 46, the main shaft feed drive device 47, the tool feed drive device 48 constituting the first drive unit and the second drive unit, the back main shaft rotation drive device 49 and the back main shaft feed drive device 50, the main shaft 23. The spindle stock 22, the tool post 26, the back spindle 25, the back spindle 24, and the like are operated.

前記工具送り駆動装置48は、ワークW1(図3〜図7に図示)に対する加工や後述する刃物台26上の工具27,31の切替動作に際して、刃物台26を駆動して、同刃物台26をX軸方向またはY軸方向へ移動させることにより、刃物台26をワークW1に対する工具27,31の進退方向と並設方向との2軸方向に沿って移動させるようになっている。   The tool feed driving device 48 drives the tool post 26 during the machining of the workpiece W1 (shown in FIGS. 3 to 7) and the switching operation of tools 27 and 31 on the tool post 26, which will be described later. Is moved in the X-axis direction or the Y-axis direction, so that the tool post 26 is moved along the two-axis directions of the tools 27 and 31 with respect to the workpiece W1 and the parallel direction.

また、別の工具29,30の切替動作に際しては、工具送り駆動装置48の駆動により、刃物台26が工具29,30の並設方向に沿ってY軸方向へ移動され、主軸送り駆動装置47または背面主軸送り駆動装置50により、主軸台22または背面主軸台24がワークW1の軸線方向であるZ軸方向に移動され、これにより工具29,30は進退方向に沿って相対的に移動される。   When the other tools 29 and 30 are switched, the tool post 26 is moved in the Y-axis direction along the direction in which the tools 29 and 30 are arranged by driving the tool feed driving device 48, and the spindle feed driving device 47. Alternatively, the back spindle feed driving device 50 moves the spindle stock 22 or the back spindle stock 24 in the Z-axis direction, which is the axial direction of the workpiece W1, whereby the tools 29 and 30 are relatively moved along the advancing / retreating direction. .

前記ROM37には、ワークW1に加工を施すための各種の制御プログラムが格納されている。そして、CPU36は、ROM37に記憶されたプログラムの進行を制御する。従って、後述の図8及び図9のフローチャートに示すプログラムはCPU36により実行される。   The ROM 37 stores various control programs for machining the workpiece W1. The CPU 36 controls the progress of the program stored in the ROM 37. Therefore, the program shown in the flowcharts of FIGS. 8 and 9 to be described later is executed by the CPU 36.

前記RAM38には、加工プログラムや、手動入力されたり、CPU36の演算により算出されたりした各種のデータ等が一時的に記憶される。例えば、RAM38には、各種工具27,29〜31に関する工具ピッチ等のデータが記憶される。そして、工具が図4〜図7に示す工具27A〜27Cの場合は、各工具27A〜27C間の工具ピッチPt1,Pt2、各工具27A〜27Cのシャンク幅L1,L2、各工具27A〜27C間の工具外周面間における離間距離D1,工具27A〜27Cの刃先27a〜27cと隣接する工具27A〜27Cの外周面との離間距離D3,各工具27A〜27Cの刃先27a〜27c間の高低差を示す距離(移動距離としての後述の退避距離及び接近距離)D2,D4、刃先27a〜27cの位置等の各種の加工に関するデータが手動入力されたり、演算されたりしてRAM38に記憶される。   The RAM 38 temporarily stores a machining program, various types of data that are manually input or calculated by the CPU 36. For example, the RAM 38 stores data such as tool pitches related to the various tools 27 and 29 to 31. When the tools are the tools 27A to 27C shown in FIGS. 4 to 7, the tool pitches Pt1 and Pt2 between the tools 27A to 27C, the shank widths L1 and L2 of the tools 27A to 27C, and between the tools 27A to 27C. The distance D1 between the outer peripheral surfaces of the tools 27A to 27C and the distance 27 between the outer peripheral surfaces of the tools 27A to 27C and the height 27a to 27c of the tools 27A to 27C. Data relating to various types of processing such as indicated distances (retraction distances and approach distances described later as movement distances) D2 and D4 and positions of the blade edges 27a to 27c are manually input or calculated and stored in the RAM 38.

次に、前記のような構成の工作機械において、ワークW1の加工に用いられる図1に図示のバイト等の固定工具27を切替える場合の動作について説明する。
はじめに、図3〜図5に基づいて、工具切替にともなう基本的な動作について説明する。すなわち、図3に示すように、工具27が例えばY軸方向に沿って並設されていて、そのY軸方向に沿って切替移動される際には、工具27はワークW1との干渉を回避するためにX軸方向に退避されるが、この場合、最も突出している工具27の先端とワークW1との間に、工具27の取付誤差等を考慮して隙間C1が確保される。このときの工具27のX軸方向の位置を退避位置と呼び、この退避位置は工具27の突出量やワークW1の外径の大小により変化する。これに対し、想定される工具27の最大突出量とワークW1の最大径とより固定的な退避位置を設定することもできる。
Next, the operation when the fixed tool 27 such as a tool shown in FIG. 1 used for machining the workpiece W1 is switched in the machine tool having the above-described configuration will be described.
First, basic operations associated with tool switching will be described with reference to FIGS. That is, as shown in FIG. 3, when the tools 27 are arranged in parallel along the Y-axis direction and are switched and moved along the Y-axis direction, the tool 27 avoids interference with the workpiece W1. However, in this case, a clearance C1 is secured between the tip of the most protruding tool 27 and the workpiece W1 in consideration of an attachment error of the tool 27 and the like. The position in the X-axis direction of the tool 27 at this time is called a retracted position, and the retracted position changes depending on the protruding amount of the tool 27 and the outer diameter of the workpiece W1. On the other hand, it is also possible to set a fixed retraction position that is assumed to be the maximum protrusion amount of the tool 27 and the maximum diameter of the workpiece W1.

図4(a)〜(d)は、工具27がY軸方向に沿って工具切替する際、工具が前述の退避位置に移動する動作を示す。
すなわち、図4(a),(b)に示すように、刃物台26の例えば左方移動により左側の工具27Aから右側の工具27Bまたは27Cに工具切替する場合であって、工具27Aの右端に位置する刃先27aに対して移動方向後方側に突出した工具27Bが隣接する場合は、その刃先27aと突出している工具27Bの外周面との間の離間距離D1と、退避移動開始位置から退避位置までの退避距離D2とが比較される。その結果、刃物台26が短い方の距離D1またはD2を半径とした円弧状軌跡を描きながら移動する。ただし、図4(b)に示すように、移動半径がD1の場合は、そのD1が退避距離D2より小さいため、まず刃物台26が離間距離D1と退避距離D2の差分だけX軸方向へ直線的に退避した後に前記円弧状軌跡を描きながら退避する。
4A to 4D show an operation in which the tool moves to the above-described retracted position when the tool 27 switches the tool along the Y-axis direction.
That is, as shown in FIGS. 4A and 4B, when the tool is switched from the left tool 27A to the right tool 27B or 27C by the leftward movement of the tool post 26, for example, at the right end of the tool 27A. When the tool 27B protruding to the rear side in the movement direction is adjacent to the positioned cutting edge 27a, the retraction position from the separation distance D1 between the cutting edge 27a and the outer peripheral surface of the protruding tool 27B and the retraction movement start position Is compared with the evacuation distance D2. As a result, the tool post 26 moves while drawing an arcuate locus with the shorter distance D1 or D2 as the radius. However, as shown in FIG. 4B, when the moving radius is D1, since D1 is smaller than the retraction distance D2, first, the tool post 26 is straight in the X-axis direction by the difference between the separation distance D1 and the retraction distance D2. After the evacuation, the evacuation is performed while drawing the arcuate locus.

また、図4(c),(d)に示すように、刃物台26の例えば右方移動により右側の工具27Cから左側の工具27Bまたは27Aに工具切替する場合であって、工具27Cの右端に位置する刃先27cに対して移動方向後方側に突出した工具27Bが隣接する場合は、その刃先27cと突出している工具27Bの外周面との間の離間距離D1と、退避移動開始位置から退避位置までの退避距離D2とが比較される。その結果、前記と同様に、刃物台26が短い方のD1またはD2を半径とした円弧状軌跡を描きながら移動する。そして、移動半径がD1の場合は、そのD1が退避距離D2より小さいため、まず刃物台26が退避距離D2と離間距離D1の差分だけX軸方向へ直線的に退避した後に前記円弧状軌跡を描きながら退避する。   Further, as shown in FIGS. 4C and 4D, when the tool is switched from the right tool 27C to the left tool 27B or 27A by the right movement of the tool post 26, for example, at the right end of the tool 27C. When the tool 27B that protrudes rearward in the movement direction is adjacent to the positioned cutting edge 27c, the separation distance D1 between the cutting edge 27c and the outer peripheral surface of the protruding tool 27B, and the retraction position from the retraction movement start position Is compared with the evacuation distance D2. As a result, in the same manner as described above, the tool post 26 moves while drawing an arcuate locus having the shorter D1 or D2 as the radius. When the moving radius is D1, since the D1 is smaller than the retraction distance D2, the tool post 26 first retreats linearly in the X-axis direction by the difference between the retraction distance D2 and the separation distance D1, and then the arcuate locus is changed. Evacuate while drawing.

次に、図5(a)〜(d)は、工具27がY軸方向に沿って工具切替する際、切替えられる工具27が退避位置からワークW1に対して接近される動作を示す。
図5(a),(b)に示すように、刃物台26の例えば左方移動により左側の工具27Aまたは27Bから右側の工具27Cに工具切替する場合であって、工具27Cの右端に位置する刃先27cの前方側に、突出した工具27Bが隣接する場合は、刃物台26はすでに退避位置に移動されている。そして、その刃先27cと移動方向前方側の工具27Bの外周面との離間距離D3と、前記退避位置から刃先27cがワークW1との間に隙間C1が確保される位置までの接近距離D4が比較される。その結果、刃物台26が短い方の距離
またはD4を半径とした円弧状軌跡を描きながら移動する。ただし、移動半径がD3の場合は、接近距離D4より移動半径が小さいため、まず刃物台26が円弧状軌跡を描きながら接近した後に接近距離D4と離間距離D3との差分だけX軸方向へ直線的に接近する。
Next, FIGS. 5A to 5D show an operation in which the tool 27 to be switched approaches the workpiece W1 from the retracted position when the tool 27 switches the tool along the Y-axis direction.
As shown in FIGS. 5A and 5B, when the tool is switched from the left tool 27A or 27B to the right tool 27C by, for example, leftward movement of the tool post 26, it is located at the right end of the tool 27C. When the protruding tool 27B is adjacent to the front side of the cutting edge 27c, the tool post 26 has already been moved to the retracted position. The distance D3 between the cutting edge 27c and the outer peripheral surface of the tool 27B on the front side in the moving direction is compared with the approach distance D4 from the retracted position to the position where the clearance C1 is secured between the cutting edge 27c and the workpiece W1. Is done. As a result, the tool post 26 moves while drawing an arcuate locus having a shorter distance or D4 as a radius. However, when the moving radius is D3, since the moving radius is smaller than the approach distance D4, first, the tool post 26 approaches while drawing an arcuate locus, and then the straight line in the X-axis direction is the difference between the approach distance D4 and the separation distance D3. Approach.

また、図5(c),(d)に示すように、刃物台26の例えば右方移動により工具27Bまたは27Cから左側の工具27Aに工具切替する場合であって、工具27Aの右端に位置する刃先27aの前方側に、突出した工具27Bが隣接する場合は、その刃先27aと移動方向前方側に位置する工具27Bの外周面との間の離間距離D3と、前記退避位置から刃先27cがワークW1との間に隙間C1が確保される位置までの接近距離D4が比較される。そして、前記と同様に、刃物台26が短い方の距離D3またはD4を半径とした円弧状軌跡を描きながら移動する。移動半径がD3の場合は、そのD3が接近距離D4より小さいため、まず刃物台26が円弧状軌跡を描きながら接近した後に接近距離D4と離間距離D3との差分だけX軸方向へ直線的に接近する。   Further, as shown in FIGS. 5C and 5D, when the tool is switched from the tool 27B or 27C to the left tool 27A by, for example, the right movement of the tool post 26, the tool 27A is located at the right end of the tool 27A. When the protruding tool 27B is adjacent to the front side of the cutting edge 27a, the cutting edge 27c is moved from the retracted position by the distance D3 between the cutting edge 27a and the outer peripheral surface of the tool 27B positioned on the front side in the moving direction. The approach distance D4 to the position where the gap C1 is ensured with W1 is compared. In the same manner as described above, the tool post 26 moves while drawing an arcuate locus having the shorter distance D3 or D4 as a radius. When the moving radius is D3, since D3 is smaller than the approach distance D4, first, the tool post 26 approaches while drawing an arcuate locus, and then linearly moves in the X-axis direction by the difference between the approach distance D4 and the separation distance D3. approach.

以上のように、工具切替する際、離間距離D1と退避距離D2、離間距離D3と接近距離D4をそれぞれ比較して退避動作と接近動作の移動半径を求め、ワークW1と干渉することなく円弧状軌跡を描きながら工具27の退避動作と接近動作とを行わせることができる。ここで、前述のように、工具切替に際して、刃物台26が退避移動する際における刃先27aまたは27cと、突出している工具27Bの外周面との間の離間距離D1は、刃先27aまたは27cに対して移動方向後方側に位置し、刃物台26がワークW1に対して接近移動する際における刃先27aまたは27cと、突出している工具27Bの外周面との間の離間距離D3は、刃先27aまたは27cに対して移動方向前方側に位置する。   As described above, when the tools are switched, the separation distance D1 and the retreat distance D2, and the separation distance D3 and the approach distance D4 are compared to determine the moving radius of the retreat operation and the approach operation, and the arc shape without interfering with the workpiece W1. The retraction operation and the approach operation of the tool 27 can be performed while drawing the locus. Here, as described above, the distance D1 between the cutting edge 27a or 27c and the outer peripheral surface of the projecting tool 27B when the tool post 26 is retracted when switching the tool is set to the cutting edge 27a or 27c. The distance D3 between the cutting edge 27a or 27c and the outer peripheral surface of the projecting tool 27B when the tool post 26 moves closer to the workpiece W1 is located on the rear side in the movement direction is the cutting edge 27a or 27c. Is located on the front side in the movement direction.

そこで、以下に、工具27の切替動作の手順の例を図6〜図10を参照して説明する。工具27の切替動作は、図8及び図9のフローチャートに従って進行するものである。また、図10(a)(b)は、工具27を切替えるための刃物台26,すなわち工具27の移動軌跡を示し、刃物台26が図6(a)〜(d)及び図7(a)〜(d)に示す手順に従って移動する場合は、同刃物台26が図10(a)に示す位置P1から位置P2まで円弧状軌跡で移動し、位置P2から位置P3までは直線状軌跡で移動し、さらに位置P3から位置P4までは円弧状軌跡で移動する。   Therefore, an example of the procedure of the switching operation of the tool 27 will be described below with reference to FIGS. The switching operation of the tool 27 proceeds according to the flowcharts of FIGS. 10 (a) and 10 (b) show a tool post 26 for switching the tool 27, that is, the movement trajectory of the tool 27. The tool post 26 is shown in FIGS. 6 (a) to 6 (d) and FIG. 7 (a). When moving according to the procedure shown in (d), the tool post 26 moves from the position P1 to the position P2 shown in FIG. 10A along an arcuate locus, and moves from the position P2 to the position P3 along a linear locus. Further, the position moves from the position P3 to the position P4 along an arcuate locus.

さて、図6(a)〜(d)及び図7(a)〜(d)は、刃物台26上に前記工具27を構成する複数の工具27A,27B,27Cが配列されるとともに、中間部の工具27Bの刃先27bが他の工具27A,27CよりもワークW1の方向に突出している場合を示している。そして、矢印Q方向に回転しているワークW1の外周面に対し左側の工具27Aにより切削加工が施された後に、その工具27Aが工具27Bをスキップして右側の別の工具27Cに切替えられて切削加工が継続される場合を示している。図7(a)〜(d)は、左側の工具27AによりワークW1に小径の加工部W1aを形成した後に、右側の別の工具27CによりワークW1の大径部の外周面を切削加工する場合を示している。ここで、工具27A〜27Cの刃先27a〜27cは、それらの工具27A〜27CのY軸方向の端部(図面の右側)に位置している。   6 (a) to 6 (d) and FIGS. 7 (a) to (d), a plurality of tools 27A, 27B, and 27C constituting the tool 27 are arranged on the tool post 26, and an intermediate portion. This shows a case where the cutting edge 27b of the tool 27B protrudes in the direction of the workpiece W1 from the other tools 27A and 27C. After the outer peripheral surface of the workpiece W1 rotating in the arrow Q direction is cut by the left tool 27A, the tool 27A skips the tool 27B and is switched to another tool 27C on the right side. The case where cutting is continued is shown. 7A to 7D show a case where the outer peripheral surface of the large-diameter portion of the workpiece W1 is cut with another tool 27C on the right side after forming the small-diameter machining portion W1a on the workpiece W1 with the left-side tool 27A. Is shown. Here, the cutting edges 27a to 27c of the tools 27A to 27C are located at the ends of the tools 27A to 27C in the Y-axis direction (right side in the drawing).

さて、図6(a)〜(d)及び図7(a)〜(d)において、工具27AによるワークW1の加工が終了すると、図6(a)及び図7(a)に示すように、刃物台26がX軸方向に移動されて、第1位置P1に位置決めされる。この第1位置P1においては、工具27Aの刃先27aがワークW1の外周面に対して所定の隙間C1をおいて対応している。   6 (a) to (d) and FIGS. 7 (a) to (d), when the processing of the workpiece W1 by the tool 27A is completed, as shown in FIGS. 6 (a) and 7 (a), The tool post 26 is moved in the X-axis direction and positioned at the first position P1. At the first position P1, the cutting edge 27a of the tool 27A corresponds to the outer peripheral surface of the workpiece W1 with a predetermined gap C1.

この第1位置P1から、工具27Aを工具27Cに切替えるという切替指令がCPU36から出力されると、図8及び図9のフローチャートの各ステップS(以下単にSという)に示す工具切替のための動作が順に実行される。   When a switching command for switching the tool 27A to the tool 27C is output from the first position P1, the operation for tool switching shown in each step S (hereinafter simply referred to as S) in the flowcharts of FIGS. Are executed in order.

すなわち、図8のS1〜S9は刃物台26を移動させるための所要のデータを得る演算処理手順を示し、図9のS10〜S18は演算結果に従って刃物台26を移動させるための動作手順を示している。   That is, S1 to S9 in FIG. 8 show a calculation processing procedure for obtaining necessary data for moving the tool rest 26, and S10 to S18 in FIG. 9 show an operation procedure for moving the tool rest 26 according to the calculation result. ing.

さて、S1においては、図6(a)(b)及び図7(a)(b)に示すように、工具切替動作に際して、スキップされる工具27Bの刃先27bを含む同工具27Bの先端とワークW1との干渉を避けるために、CPU36により刃物台26をX軸方向へ退避移動させるための退避距離D2が算出される。この退避距離D2は、工具27Bの刃先27bをワークW1の外周面に対して所定の隙間C1をおいて対応させた場合における工具27Bの刃先27bのX軸座標値と、第1位置P1における工具27Bの刃先27bのX軸座標値との間の差に基づいて算出されて、RAM38に記憶される。次のS2においては、同じく図6(a)(b)及び図7(a)(b)に示すように、CPU36により隣接する工具27A,27B間のY軸方向における離間距離D1、すなわち工具27Aの刃先27aとその刃先27aの移動方向後方側に隣接する工具27Bの外周面との間の離間距離D1が算出されて、RAM38に記憶される。この離間距離D1は、工具27A,27B間の工具ピッチPt1から工具27Bのシャンク幅L2を減算することによって算出される。   In S1, as shown in FIGS. 6A, 6B and 7A, 7B, the tip of the tool 27B including the cutting edge 27b of the tool 27B to be skipped during the tool switching operation and the workpiece In order to avoid interference with W1, the CPU 36 calculates a retraction distance D2 for retreating the tool rest 26 in the X-axis direction. The retreat distance D2 is the X-axis coordinate value of the cutting edge 27b of the tool 27B and the tool at the first position P1 when the cutting edge 27b of the tool 27B is made to correspond to the outer peripheral surface of the workpiece W1 with a predetermined gap C1. It is calculated based on the difference between the X-axis coordinate value of the 27B cutting edge 27b and stored in the RAM 38. In the next S2, similarly as shown in FIGS. 6A, 6B and 7A, 7B, the CPU 36 separates the distance D1 in the Y-axis direction between the adjacent tools 27A and 27B, that is, the tool 27A. The separation distance D1 between the cutting edge 27a and the outer peripheral surface of the tool 27B adjacent to the rear side in the movement direction of the cutting edge 27a is calculated and stored in the RAM 38. The separation distance D1 is calculated by subtracting the shank width L2 of the tool 27B from the tool pitch Pt1 between the tools 27A and 27B.

続いて、S3においては、CPU36により前記退避距離D2の長さが離間距離D1の長さ以下であるか否かが比較判別され、退避距離D2の長さが離間距離D1の長さ以下である場合にはS4に進行し、退避距離D2の長さが離間距離D1の長さを越える場合にはS5に進行する。S4においては、図6(b)に示すように、短いほうの距離である退避距離D2が半径D2として設定され、その半径D2に基づいてほぼ四半円弧状を表す曲率の工具移動軌跡のデータが作成されて、RAM38に記憶される。それとともに、円弧状移動軌跡の終了点p2に対応した刃物台26の位置が第2位置P2として算出されて記憶される。この終了点p2は工具27Bの先端がワークW1の外周面から隙間C1を隔てた距離である。これに対して、S5においては、図7(b)に示すように、短いほうの離間である離間距離D1が半径D1として設定され、その半径D1に基づいてほぼ四半円弧状の工具移動軌跡が作成されてRAM38に記憶される。この場合にも、前記の場合と同様に第2位置P2が算出されて記憶される。   Subsequently, in S3, the CPU 36 compares and determines whether or not the length of the retreat distance D2 is equal to or less than the length of the separation distance D1, and the length of the retreat distance D2 is equal to or less than the length of the separation distance D1. In this case, the process proceeds to S4, and when the length of the retreat distance D2 exceeds the length of the separation distance D1, the process proceeds to S5. In S4, as shown in FIG. 6B, the retraction distance D2, which is the shorter distance, is set as the radius D2, and the tool movement trajectory data having a curvature substantially representing a quarter arc shape based on the radius D2 is obtained. Created and stored in the RAM 38. At the same time, the position of the tool post 26 corresponding to the end point p2 of the arcuate movement trajectory is calculated and stored as the second position P2. This end point p2 is the distance at which the tip of the tool 27B is separated from the outer peripheral surface of the workpiece W1 by the gap C1. On the other hand, in S5, as shown in FIG. 7 (b), a shorter distance D1 is set as the radius D1, and a tool movement trajectory having a substantially quarter-arc shape is formed based on the radius D1. It is created and stored in the RAM 38. Also in this case, the second position P2 is calculated and stored in the same manner as described above.

次に、S6においては、図6(d)及び図7(d)に示すように、工具切替動作の最終段階において、工具27Cの刃先27cをワークW1と隙間C1を隔てて対応させるために、刃物台26をX軸方向に接近移動させるための接近距離D4が算出されて記憶される。この接近距離D4は、第2位置P2における工具27Cの刃先27cのX軸座標値と、工具27Cの刃先27cをワークW1の外周面に対して所定の隙間C1をおいて対応させた場合の刃先27cのX軸座標値との間の差によって算出される。   Next, in S6, as shown in FIGS. 6 (d) and 7 (d), in order to associate the cutting edge 27c of the tool 27C with the workpiece W1 and the gap C1 at the final stage of the tool switching operation, An approach distance D4 for moving the tool rest 26 in the X-axis direction is calculated and stored. This approach distance D4 is the cutting edge when the X-axis coordinate value of the cutting edge 27c of the tool 27C at the second position P2 and the cutting edge 27c of the tool 27C correspond to the outer peripheral surface of the workpiece W1 with a predetermined gap C1. It is calculated by the difference between the X-axis coordinate value of 27c.

続いて、S7においては、前記刃物台26のX軸方向の前記接近距離D4の長さが工具27B,27C間の工具ピッチPt2に相当する離間距離D3、すなわち、工具27Cの刃先27cとその刃先27cの移動方向前方側に隣接する工具27Bの外周面との間の離間距離D3の長さ以下あるか否かが比較判別され、接近距離D4の長さが離間距離D3の長さよりも短い場合にはS8に進行し、長い場合にはS9に進行する。S8においては、図6(d)に示すように、短いほうの距離である接近距離D4が半径D4として設定され、その半径D4に基づいて円弧状を表す曲率の工具移動軌跡のデータが作成されて記憶される。それとともに、円弧状移動軌跡の開始点に対応する刃物台26の位置及び終了点に対応する刃物台26の位置が第3位置P3及び第4位置P4として算出されて記憶される。これに対して、S9においては、図7(d)に示すように、短いほうの距離である離間距離D3が半径D3として設定され、その半径D3に基づいて円弧状を表す曲率の工具移動軌跡が作成されて記憶される。この場合にも、前記の場合と同様に第3位置P3及び第4位置P4が算出されて記憶される。   Subsequently, in S7, the length of the approach distance D4 in the X-axis direction of the tool post 26 is a separation distance D3 corresponding to the tool pitch Pt2 between the tools 27B and 27C, that is, the cutting edge 27c of the tool 27C and its cutting edge. When it is determined whether or not the distance D3 is equal to or shorter than the distance D3 between the outer peripheral surface of the tool 27B adjacent to the front side in the moving direction of 27c and the length of the approach distance D4 is shorter than the length of the distance D3 Advances to S8, and if longer, advances to S9. In S8, as shown in FIG. 6 (d), the approach distance D4, which is the shorter distance, is set as the radius D4, and the tool movement trajectory data of the curvature representing the arc shape is created based on the radius D4. Is remembered. At the same time, the position of the tool rest 26 corresponding to the start point of the arcuate movement locus and the position of the tool rest 26 corresponding to the end point are calculated and stored as the third position P3 and the fourth position P4. On the other hand, in S9, as shown in FIG. 7D, the shorter distance D3 is set as the radius D3, and the tool movement trajectory having a curvature representing an arc shape based on the radius D3. Is created and stored. Also in this case, the third position P3 and the fourth position P4 are calculated and stored in the same manner as described above.

その後、S10においては、前記S4またはS5で作成された円弧状移動軌跡の半径がD2であるか否かが判別され、半径がD2である場合にはS11に進行し、半径がD1である場合にはS12に進行する。S11においては、図6(b)に示すように、工具送り駆動装置48の駆動により、刃物台26が第1位置P1から第2位置P2に向かって、半径D2でほぼ四半円弧分だけ移動される。   Thereafter, in S10, it is determined whether or not the radius of the arcuate movement trajectory created in S4 or S5 is D2, and if the radius is D2, the process proceeds to S11, and the radius is D1. Advances to S12. In S11, as shown in FIG. 6B, the tool post 26 is moved from the first position P1 to the second position P2 by the radius D2 by approximately a quarter arc by driving the tool feed driving device 48. The

この刃物台26の第1位置P1から第2位置P2への移動時には、図6(b)に示すように、工具27BのワークW1と対応する端部が、p1点からp2点にワークW1の外周面に沿って小さい半径D2で円弧状に移動されるため、工具27Bの端部とワークW1の外周面とが干渉することはない。   When the tool rest 26 moves from the first position P1 to the second position P2, as shown in FIG. 6B, the end portion of the tool 27B corresponding to the work W1 moves from the p1 point to the p2 point. Since the arc is moved along the outer peripheral surface with a small radius D2, the end of the tool 27B and the outer peripheral surface of the workpiece W1 do not interfere with each other.

これに対して、S12においては、図7(a)(b)に示すように、離間距離D1が退避距離D2よりも短くて、円弧状移動軌跡の半径がD1に設定されているため、まず刃物台26が第1位置P1から距離D2とD1の差分だけX軸方向へ直線的に退避移動される。そして、次のS13においては、刃物台26が第2位置P2に向かって、半径D1でほぼ四半円弧分だけ移動される。この場合、工具27BのワークW1と対応する端部が、p1点からp1a点に直線移動された後に、p2点に四半円弧分だけ移動されるため、工具27Bの端部とワークW1の外周面とが干渉することはない。   On the other hand, in S12, as shown in FIGS. 7A and 7B, the separation distance D1 is shorter than the retraction distance D2 and the radius of the arcuate movement trajectory is set to D1. The tool rest 26 is retreated linearly in the X-axis direction by the difference between the distances D2 and D1 from the first position P1. Then, in the next S13, the tool post 26 is moved toward the second position P2 by a radius of D1 by approximately a quarter arc. In this case, since the end portion of the tool 27B corresponding to the workpiece W1 is linearly moved from the point p1 to the point p1a, and then moved to the point p2 by the amount of a quarter arc, the end portion of the tool 27B and the outer peripheral surface of the workpiece W1. And will not interfere.

前記S11及びS13に続くS14においては、図6(c)及び図7(c)に示すように、刃物台26が第2位置P2から第3位置P3に向かって、Y軸方向に移動される。この場合、工具27Bの刃先27bがワークW1の外周上方を通過するが、あらかじめ刃物台26がX軸方向に退避移動されて、工具27Bの刃先27bとワークW1の外周面との間に所定の隙間C1が確保されているため、それらが干渉することはない。   In S14 following S11 and S13, as shown in FIGS. 6C and 7C, the tool rest 26 is moved in the Y-axis direction from the second position P2 toward the third position P3. . In this case, the cutting edge 27b of the tool 27B passes over the outer periphery of the work W1, but the tool post 26 is retracted in advance in the X-axis direction, and a predetermined distance is provided between the cutting edge 27b of the tool 27B and the outer peripheral surface of the work W1. Since the gap C1 is secured, they do not interfere with each other.

さらに、S15においては、前記S8またはS9で作成された円弧状移動軌跡の半径がD4であるか否かが判別され、半径がD4である場合にはS16に進行し、半径がD4ではなくてD3である場合にはS17に進行する。S16においては、図6(d)に示すように、工具送り駆動装置48の第2駆動部と第1駆動部との同時駆動により、刃物台26が第3位置P3から半径D4で四半円弧分だけ移動されて、第4位置P4に配置され、工具の切替動作が終了する。この場合、工具27Bの刃先27bがp3点からp4点に四半円弧分だけ移動されるとともに、工具27Cの刃先27cがp5点からp6点に四半円弧分だけ移動されて、ワークW1の外周面に対し所定の隙間C1をおいて対向配置されるため、それらの工具27B,27Cの刃先27b,27cとワークW1の外周面とが干渉することはない。   Further, in S15, it is determined whether or not the radius of the arcuate movement trajectory created in S8 or S9 is D4. If the radius is D4, the process proceeds to S16, and the radius is not D4. If it is D3, the process proceeds to S17. In S16, as shown in FIG. 6 (d), the tool post 26 is moved from the third position P3 to the radius D4 by a quarter arc by the simultaneous drive of the second drive portion and the first drive portion of the tool feed drive device 48. Is moved to the fourth position P4, and the tool switching operation ends. In this case, the cutting edge 27b of the tool 27B is moved from the p3 point to the p4 point by a quarter arc, and the cutting edge 27c of the tool 27C is moved from the p5 point to the p6 point by a quarter arc to move to the outer peripheral surface of the workpiece W1. On the other hand, since they are arranged to face each other with a predetermined gap C1, the cutting edges 27b and 27c of these tools 27B and 27C do not interfere with the outer peripheral surface of the workpiece W1.

これに対して、S17においては、図7(c)(d)に示すように、離間距離D3が接近距離D4よりも短くて、円弧状移動軌跡の半径がD3に設定されているため、刃物台26が第3位置P3から半径D3で四半円弧分だけ移動される。その後、S18においては、刃物台26が距離D4とD3との差分だけワークW1に向かってX軸方向に接近移動されて、第4位置P4に配置され、工具の切替動作が終了する。従って、この場合、図7(d)に示すように、工具27Bの刃先27bがp6点からp3a点に四半円弧分だけ移動された後に、p4点に向かって直線移動されるとともに、工具27Cの刃先27bがp5点からp5a点に四半円弧分だけ移動された後に、p6点に向かって直線移動されて、ワークW1の外周面に対し所定の隙間C1をおいて対向配置されるため、それらの工具27B,27Cの刃先27b,27cとワークW1の外周面とが干渉することはない。   On the other hand, in S17, as shown in FIGS. 7C and 7D, the separation distance D3 is shorter than the approach distance D4, and the radius of the arcuate movement locus is set to D3. The platform 26 is moved from the third position P3 by a radius of D3 by a quarter arc. Thereafter, in S18, the tool post 26 is moved closer to the workpiece W1 in the X-axis direction by the difference between the distances D4 and D3 and is placed at the fourth position P4, and the tool switching operation is completed. Therefore, in this case, as shown in FIG. 7D, the cutting edge 27b of the tool 27B is moved from the point p6 to the point p3a by a quarter arc, and then moved linearly toward the point p4. Since the cutting edge 27b is moved from the p5 point to the p5a point by a quarter arc, it is linearly moved toward the p6 point, and is disposed opposite to the outer peripheral surface of the workpiece W1 with a predetermined gap C1. The cutting edges 27b and 27c of the tools 27B and 27C do not interfere with the outer peripheral surface of the workpiece W1.

このように、工具27Aから工具27Cに工具切替を行う場合、両工具27A,27C間に、その両工具27A,27Cよりも突出している工具27Bが存在しても、その工具27BとワークW1との干渉を回避して工具切替を行うことができる。なお、工具27Bの刃先27bとその後続の工具27Cの刃先27cとが同じ高さの場合は、図10(b)に示すように、刃物台26が一つの円弧軌跡と直線軌跡を描く移動経路を辿るようにすればよい。   As described above, when the tool is switched from the tool 27A to the tool 27C, even if the tool 27B that protrudes from both the tools 27A and 27C exists between the tools 27A and 27C, the tool 27B and the workpiece W1 Tool switching can be performed while avoiding interference. When the cutting edge 27b of the tool 27B and the cutting edge 27c of the subsequent tool 27C have the same height, as shown in FIG. 10 (b), the tool path 26 draws one arc locus and a linear locus. Should be followed.

この実施形態においては、以下の効果を有する。
(1) この実施形態では、工具27A〜27Cの退避位置への移動時に、工具切替前に使用していた工具27Aの刃先27aに対して移動方向後方側で隣接する工具27Bの外周面との距離D1以下の半径の円弧状軌跡が作成される。また、工具27A〜27CのワークW1に対する接近位置への移動時には、工具切替後に使用する工具27Cの刃先27cに対して移動方向前方側で隣接する工具27Bの外周面との距離D3以下の半径の円弧状軌跡が作成される。そして、これらの円弧状軌跡による移動が直線状の移動軌跡と繋げられる。以上のように、工具27A,27Cの刃先27a,27cと隣接する工具27Bの外周面との距離D1,D3以下の円弧半径で、工具27A〜27Cを移動させることにより、工具切替時において工具27BとワークW1との干渉を回避できる。これは、並列に配置された工具27A〜27Cの刃先27a〜27cと、それらに隣接する工具27A〜27Cの外周面とは、同時にワークW1に接触することがない距離を離して設置されていることに着目し、この位置関係を工具の移動軌跡に利用することで達成される。つまり、距離D1,D3と、距離D2,D4とが比較され、短い方の距離が円弧状軌跡の半径として設定され、言い換えれば、円弧状軌跡の半径は、最長であっても距離D1またはD3であるため、工具27A〜27Cの刃先27a〜27cと、それに隣接する工具27A〜27Cの外周面とは同時にワークW1に接触することがないという条件下においては、工具とワークとの干渉を適切に回避できるものとなる。
This embodiment has the following effects.
(1) In this embodiment, when the tools 27A to 27C are moved to the retracted position, the tool 27B used before switching the tool is cut with the outer peripheral surface of the tool 27B adjacent to the cutting edge 27a on the rear side in the moving direction. An arcuate locus having a radius equal to or less than the distance D1 is created. In addition, when the tools 27A to 27C move to the approach position with respect to the workpiece W1, the radius of the distance D3 or less from the outer peripheral surface of the tool 27B adjacent on the front side in the movement direction with respect to the cutting edge 27c of the tool 27C used after tool switching. An arc trajectory is created. And the movement by these arc-shaped locus | trajectories is connected with the linear movement locus | trajectory. As described above, by moving the tools 27A to 27C with the arc radii of the distances D1 and D3 or less between the cutting edges 27a and 27c of the tools 27A and 27C and the outer peripheral surface of the adjacent tool 27B, the tool 27B is changed during the tool switching. And the workpiece W1 can be avoided. This is because the cutting edges 27a to 27c of the tools 27A to 27C arranged in parallel and the outer peripheral surfaces of the tools 27A to 27C adjacent to them are spaced apart from each other so as not to contact the workpiece W1 at the same time. In particular, this is achieved by utilizing this positional relationship as a tool movement trajectory. That is, the distances D1 and D3 are compared with the distances D2 and D4, and the shorter distance is set as the radius of the arcuate trajectory. In other words, even if the radius of the arcuate trajectory is the longest, the distance D1 or D3 Therefore, under the condition that the cutting edges 27a to 27c of the tools 27A to 27C and the outer peripheral surfaces of the tools 27A to 27C adjacent thereto do not simultaneously contact the workpiece W1, the interference between the tool and the workpiece is appropriately Can be avoided.

(2) 刃物台26がX軸方向,Y軸方向への同時移動によりあらかじめ定められた円弧状軌跡を移動するため、遠回りを避けることができるとともに、方向転換点のような移動停止ポイントが生じることもない。従って、従来構成における刃物台とワークとの間の相対速度の速度カーブを実線で表した前述の図16において、この実施形態の速度カーブを2点鎖線で表した場合、それらの速度カーブから明らかなように、刃物台26の移動に要する時間を短縮できる。   (2) Since the tool post 26 moves along a predetermined arcuate locus by simultaneous movement in the X-axis direction and the Y-axis direction, it is possible to avoid a detour and to generate a movement stop point such as a turning point. There is nothing. Accordingly, in the above-described FIG. 16 in which the speed curve of the relative speed between the tool post and the workpiece in the conventional configuration is represented by a solid line, when the speed curve of this embodiment is represented by a two-dot chain line, it is apparent from those speed curves. Thus, the time required for the movement of the tool post 26 can be shortened.

(3) 刃物台26はあらかじめ定められた円弧状軌跡上を移動するものであるため、移動経路が膨らんだりすることがなく、従って、刃物台26を狭いスペース内で移動させることができて、工作機械の小型化に寄与できる。   (3) Since the tool post 26 moves on a predetermined arcuate locus, the movement path does not swell, and therefore the tool post 26 can be moved in a narrow space. Contributes to miniaturization of machine tools.

(第2実施形態)
次に、発明の第2実施形態を図11に基づいて説明する。なお、この第2実施形態以降の各実施形態においては、主として第1実施形態と異なる部分について説明する。
(Second Embodiment)
Next, a second embodiment of the invention will be described with reference to FIG. In each of the embodiments after the second embodiment, portions different from the first embodiment will be mainly described.

さて、図11(a)〜(d)は、図1に示す工作機械において、刃物台26に並設されたドリルやリーマ等の工具30A〜30Dよりなる工具30の工具切替動作を示したものである。このドリルやリーマ等の工具30A〜30Dは、その先端外周側あるいは先端面全体が刃先になっており、ワークW1の端面に加工を施すものである。そして、図11(a)〜(d)は、前記工具30である工具30A〜30Dの突出量がそれぞれ異なり、中央部の工具30B,30Cの少なくとも1つは、両端側の工具30A,30Dより突出量している。そして、この第2実施形態においては、前記第1実施形態における工具間の離間距離D1,D3(Y軸方向)が、ワークW1の外周面と、そのワークW1に隣接する工具30A〜30Dの外周面との間の離間距離D1,D3に変更されることが相違するのみで、図8及び図9に示すプログラムに従って進行する。   11 (a) to 11 (d) show the tool switching operation of the tool 30 including the tools 30A to 30D such as a drill and a reamer arranged in parallel with the tool rest 26 in the machine tool shown in FIG. It is. The tool 30A to 30D such as a drill or a reamer has a cutting edge on the outer peripheral side of the tip or the entire tip surface, and processes the end surface of the workpiece W1. 11 (a) to 11 (d), the protrusion amounts of the tools 30A to 30D, which are the tools 30, are different, and at least one of the central tools 30B and 30C is more than the tools 30A and 30D on both ends. The amount of protrusion. In the second embodiment, the distances D1 and D3 (Y-axis direction) between the tools in the first embodiment are the outer peripheral surface of the work W1 and the outer peripheries of the tools 30A to 30D adjacent to the work W1. The only difference is that the distances D1 and D3 between the surfaces are changed, and the process proceeds according to the programs shown in FIGS.

この第2実施形態においては、ワークW1が工具切替のために左側の工具30Aの位置から右側の工具30Dの位置に移動される。そして、ワークW1が最も突出した工具30Bと干渉するのを避けるために退避移動される場合には、工具切替移動開始側の離間距離D1としてワークW1の移動方向前方側,つまり刃物台26の移動方向後方側におけるワークW1の外周面と工具30Bの外周面との間の離間距離が採用される。また、工具切替移動終了側の離間距離D3としてワークW1の移動方向後方側,つまり刃物台26の移動方向前方側におけるワークW1の外周面と工具30Cの外周面との間の離間距離が採用される。   In the second embodiment, the workpiece W1 is moved from the position of the left tool 30A to the position of the right tool 30D for tool switching. When the workpiece W1 is retreated to avoid interference with the most projecting tool 30B, the movement distance of the workpiece W1 is set as the separation distance D1 on the tool switching movement start side, that is, the movement of the tool post 26. A separation distance between the outer peripheral surface of the workpiece W1 and the outer peripheral surface of the tool 30B on the rear side in the direction is adopted. Further, as the separation distance D3 on the tool switching movement end side, the separation distance between the outer peripheral surface of the work W1 and the outer peripheral surface of the tool 30C on the rear side in the movement direction of the workpiece W1, that is, on the front side in the movement direction of the tool post 26 is employed. The

この第2実施形態においても、図8のS1〜S8に基づいて、ワークW1と工具30A〜30Dとの干渉を避けるための移動軌跡が設定される。
すなわち、図11(a)に示す場合には、最も突出した工具30BがY軸方向に移動しても、ワークW1と干渉しない位置まで工具30Aを退避させる場合の退避距離D2(Z軸方向)が工具30BとワークW1との間の離間距離D1よりも短くて(D1>D2)、点p1〜p2の半径が距離D2で設定されるとともに、接近距離D4が工具30CとワークW1との間の離間距離D3よりも短くて(D3>D4)、点p3〜点p4の半径が接近距離D4で設定される。
Also in the second embodiment, a movement trajectory for avoiding interference between the workpiece W1 and the tools 30A to 30D is set based on S1 to S8 in FIG.
That is, in the case shown in FIG. 11A, even when the most protruding tool 30B moves in the Y-axis direction, the retraction distance D2 (Z-axis direction) when the tool 30A is retreated to a position where it does not interfere with the workpiece W1. Is shorter than the separation distance D1 between the tool 30B and the workpiece W1 (D1> D2), the radii of the points p1 to p2 are set by the distance D2, and the approach distance D4 is between the tool 30C and the workpiece W1. Shorter than the separation distance D3 (D3> D4), the radius of the points p3 to p4 is set as the approach distance D4.

従って、この工具切替動作時(S10〜S18)には、ワークW1は第1位置P1から第2位置P2まで半径D2の円弧状軌跡に沿って移動され、第2位置P2から第3位置P3までは直線状軌跡に沿って移動され、第3位置P3から第4位置P4までは半径D4の円弧状軌跡に沿って移動される。   Accordingly, during the tool switching operation (S10 to S18), the workpiece W1 is moved along the arcuate locus with the radius D2 from the first position P1 to the second position P2, and from the second position P2 to the third position P3. Is moved along a linear locus, and is moved from the third position P3 to the fourth position P4 along an arcuate locus having a radius D4.

また、図11(b)に示す場合には、点p1〜p2の半径が図11(a)の場合と同様に退避距離D2で設定されるとともに、工具30CとワークW1との間の離間距離D3が接近距離D4よりも小さくて(D3<D4)、点p3〜p4の半径が離間距離D3側に設定される。従って、この工具切替時には、第1位置P1から第2位置P2までは半径D2の円弧状軌跡で、第2位置P2から第3位置P3までは直線状軌跡で、第3位置P3から第4位置P4までは半径D3の円弧状軌跡及び距離D4とD3との差分の直線状軌跡で移動される。   In the case shown in FIG. 11 (b), the radii of the points p1 to p2 are set as the retreat distance D2 as in the case of FIG. 11 (a), and the separation distance between the tool 30C and the workpiece W1. D3 is smaller than the approach distance D4 (D3 <D4), and the radii of the points p3 to p4 are set on the separation distance D3 side. Therefore, at the time of this tool switching, the arc from the first position P1 to the second position P2 is an arc-shaped locus with a radius D2, the locus from the second position P2 to the third position P3 is a linear locus, and the third position to the fourth position. Up to P4, it is moved along an arcuate locus of radius D3 and a linear locus of the difference between distances D4 and D3.

そして、図11(c)に示す場合には、離間距離D1が退避距離D2よりも小さくて(D1<D2)、点p1〜点p2の半径が離間距離D1に設定されるとともに、点p3〜点p4の半径が図11(a)の場合と同様に接近距離D4に設定されている。従って、この工具切替動作時には、第1位置P1から第2位置P2までは距離D2とD1との差分の直線状軌跡及び半径D1の円弧状軌跡で、第2位置P2から第3位置P3までは直線状軌跡で、第3位置P3から第4位置P4までは半径D4の円弧状軌跡で移動される。   In the case shown in FIG. 11C, the separation distance D1 is smaller than the retraction distance D2 (D1 <D2), the radii of the points p1 to p2 are set to the separation distance D1, and the points p3 to p3 are set. The radius of the point p4 is set to the approach distance D4 as in the case of FIG. Therefore, at the time of this tool switching operation, the first position P1 to the second position P2 are a linear locus of the difference between the distances D2 and D1 and an arcuate locus of the radius D1, and the second position P2 to the third position P3. In the linear locus, the third position P3 to the fourth position P4 are moved along an arcuate locus having a radius D4.

さらに、図11(d)に示す場合には、点p1〜p2の半径が図11(c)の場合と同様に離間距離D1に設定されるとともに、点p3〜p4の半径が図11(b)の場合と同様に離間距離D3側に設定される。従って、この工具切替時には、第1位置P1から第2位置P2までは距離D2とD1との差分の直線状軌跡及び半径D1の円弧状軌跡で、第2位置P2から第3位置P3までは直線状軌跡で、第3位置P3から第4位置P4までは半径D3の円弧状軌跡及び距離D4とD3との差分の直線状軌跡で移動される。   Further, in the case shown in FIG. 11D, the radii of the points p1 to p2 are set to the separation distance D1 as in the case of FIG. 11C, and the radii of the points p3 to p4 are set to those shown in FIG. ) Is set on the side of the separation distance D3 as in the case of). Therefore, at the time of this tool switching, the first position P1 to the second position P2 are linear trajectory of the difference between the distances D2 and D1 and the arc-shaped trajectory of the radius D1, and the second position P2 to the third position P3 are straight lines. From the third position P3 to the fourth position P4, it is moved by an arc-shaped trajectory having a radius D3 and a linear trajectory of the difference between the distances D4 and D3.

よって、この第2実施形態における工具切替動作においても、工具とワークとの干渉のおそれのない工具切替のための合理的な移動経路を設定することができて、前記第1実施形態と同様な効果を得ることができる。ただし、この第2実施形態の場合は、ワークが平面視で四角形状等の多角形状であるため、離間距離D1,D3をワークと隣接する工具の外周面との間に設定している点において第1実施形態とは異なる。   Therefore, even in the tool switching operation in the second embodiment, it is possible to set a rational movement path for tool switching without the possibility of interference between the tool and the workpiece, and the same as in the first embodiment. An effect can be obtained. However, in the case of the second embodiment, since the workpiece has a polygonal shape such as a square shape in plan view, the separation distances D1 and D3 are set between the workpiece and the outer peripheral surface of the adjacent tool. Different from the first embodiment.

(第3実施形態)
次に、前記図8及び図9のプログラムに従って実行されるこの発明の第3実施形態を図12(a)〜(d)に示す工具切替動作について説明する。図12(a)〜(d)は、図1に示す工作機械において、刃物台26に並設されたドリルやリーマ等の回転工具よりなる工具31である工具31A〜31Cの工具切替動作を示したものである。そして、この第3実施形態では、ワークW1に対する工具31A〜31Cの干渉部位が、工具31A〜31Cの中央の刃先31a〜31c及び工具31A〜31Cの外周面となるため、離間距離D1及びD3(X軸方向)は、工具31A〜31Cの刃先31a〜31cと隣接する工具31A〜31Cの外周面との間に設定される。その他の動作は図8及び図9に示すプログラムに従って第1実施形態と同様に制御される。
(Third embodiment)
Next, a tool switching operation shown in FIGS. 12 (a) to 12 (d) will be described for a third embodiment of the present invention executed in accordance with the programs of FIGS. 12 (a) to 12 (d) show tool switching operations of tools 31A to 31C, which are tools 31 made of a rotary tool such as a drill or a reamer arranged in parallel with the tool post 26 in the machine tool shown in FIG. It is a thing. And in this 3rd Embodiment, since the interference site | part of the tools 31A-31C with respect to the workpiece | work W1 becomes the outer peripheral surface of the center cutting edges 31a-31c of the tools 31A-31C and the tools 31A-31C, the separation distances D1 and D3 ( (X-axis direction) is set between the cutting edges 31a to 31c of the tools 31A to 31C and the outer peripheral surfaces of the adjacent tools 31A to 31C. Other operations are controlled in the same manner as in the first embodiment in accordance with the programs shown in FIGS.

さて、図12(a)〜(d)及び図13(a),(b)に示す工具切替動作において、前述した図6(a)〜(d)及び図7(a)〜(d)に対応して動作が実行される。
すなわち、図12(a)〜(d)に示す場合には、退避方向への距離D2,すなわち最も突出した工具31BがX軸方向に移動してもワークW1と干渉しない位置まで工具31Aを退避させる場合の退避距離D2(Y軸方向)が工具31Aの刃先31aに対する刃物台26の移動方向後方側の離間距離D1よりも小さくて、退避距離D2を半径とした切替移動開始側の円弧状軌跡が設定される。また、工具31B,31Cの接近距離D4(Y軸方向)が工具31Cの刃先31cに対する刃物台26の移動方向前方側の離間距離D3よりも小さくて、距離D4を半径とした切替移動終了側の円弧状軌跡が設定される。
In the tool switching operation shown in FIGS. 12A to 12D and FIGS. 13A and 13B, FIGS. 6A to 6D and FIGS. 7A to 7D described above. Corresponding actions are executed.
That is, in the case shown in FIGS. 12A to 12D, the tool 31A is retracted to the distance D2 in the retracting direction, that is, the position where the most protruding tool 31B moves in the X-axis direction and does not interfere with the workpiece W1. The retraction distance D2 (Y-axis direction) is smaller than the separation distance D1 on the rear side in the movement direction of the tool post 26 with respect to the cutting edge 31a of the tool 31A, and the arcuate locus on the switching movement start side with the retraction distance D2 as the radius. Is set. Further, the approach distance D4 (Y-axis direction) of the tools 31B and 31C is smaller than the separation distance D3 on the front side in the moving direction of the tool post 26 with respect to the cutting edge 31c of the tool 31C, and the switching movement end side with the distance D4 as the radius is set. An arcuate locus is set.

これに対して、図13(a)に示す場合には、離間距離D1が退避距離D2よりも小さくて、離間距離D1を半径とした切替移動開始側の円弧状軌跡が設定されている。従って、この工具切替時には、第1位置P1から第2位置P2までの間で、距離D2とD1との差分の直線状軌跡に沿って移動された後に、半径D1の円弧状軌跡に沿って移動される。また、図13(b)に示す場合には、離間距離D3が接近距離D4よりも小さくて、離間距離D3を半径とした切替移動開始側の円弧状軌跡が設定されている。従って、この工具切替時には、第3位置P3から第4位置P4までの間で、半径D3の円弧状軌跡に沿って移動された後に、距離D4とD3との差分の直線状軌跡に沿って移動される。   On the other hand, in the case shown in FIG. 13A, the arcuate trajectory on the switching movement start side is set in which the separation distance D1 is smaller than the retraction distance D2 and the separation distance D1 is a radius. Therefore, at the time of this tool switching, after moving along the linear trajectory of the difference between the distances D2 and D1 from the first position P1 to the second position P2, it moves along the arc-shaped trajectory having the radius D1. Is done. In the case shown in FIG. 13B, the arcuate locus on the switching movement start side is set with the separation distance D3 being smaller than the approach distance D4 and the separation distance D3 being a radius. Therefore, at the time of this tool switching, after moving along the arcuate locus of radius D3 from the third position P3 to the fourth position P4, it moves along the linear locus of the difference between the distances D4 and D3. Is done.

よって、この図12(a)〜(d)及び図13(a),(b)に示す工具切替動作においても、前記の各実施形態の工具切替動作と同様に、工具切替のための移動時間を短縮することができる。   Therefore, also in the tool switching operation shown in FIGS. 12A to 12D and FIGS. 13A and 13B, the movement time for tool switching is the same as the tool switching operation of each of the embodiments described above. Can be shortened.

(他の実施形態)
なお、この発明の実施形態は、次のように変更して具体化することも可能である。
・ 前記各実施形態においては、離間距離D1,D3と、退避または接近距離D2,D4とが比較され、短い方の距離が円弧状軌跡の半径として設定されるようにして、円弧状軌跡の半径は、最長であっても離間距離D1またはD3に設定されるようにしている。これに対し、円弧状軌跡の半径が離間距離D1またはD3を下まわるように設定すること。このためには、例えば、離間距離D1,D3と、退避または接近距離D2,D4とを比較して、短い方の距離を抽出し、その距離の値に1未満の係数を乗して、その値を円弧状軌跡の半径とすることが考えられる。
(Other embodiments)
The embodiment of the present invention can be modified and embodied as follows.
In each of the above embodiments, the distances D1 and D3 are compared with the retreat or approach distances D2 and D4, and the shorter distance is set as the radius of the arcuate trajectory so that the radius of the arcuate trajectory is set. Is set to the separation distance D1 or D3 even at the longest. On the other hand, the radius of the arcuate locus should be set so as to fall below the separation distance D1 or D3. For this purpose, for example, the distances D1 and D3 are compared with the retreat or approach distances D2 and D4, the shorter distance is extracted, the value of the distance is multiplied by a coefficient less than 1, and the distance It is conceivable that the value is the radius of the arcuate trajectory.

・ 前記実施形態の工具切替において、半径D2、D1及び半径D4、D3の円弧状軌跡を、2軸の早送り移動の加減速を組み合わせた近似円弧によって設定すること。この場合には、例えば、刃物台26のX軸,Y軸方向への移動開始タイミングを制御することにより、所要の曲率の円弧状軌跡を描くことができる。   In the tool switching according to the above-described embodiment, the arc-shaped trajectories having the radii D2 and D1 and the radii D4 and D3 are set by an approximate arc that combines acceleration and deceleration of two-axis fast-forward movement. In this case, for example, by controlling the movement start timing of the tool post 26 in the X-axis and Y-axis directions, it is possible to draw an arcuate locus having a required curvature.

・ 前記各実施形態においては、離間距離D1等を演算により算出するようにしたが、数値をあらかじめRAM等の記憶部に設定しておくこと。
・ 前記第1実施形態において、工具の刃先が同工具の中央部に位置する場合は、離間距離D1としてワークの外周面と工具の刃先との間の距離を設定すること。
In each of the above embodiments, the separation distance D1 and the like are calculated by calculation, but numerical values are set in advance in a storage unit such as a RAM.
In the first embodiment, when the cutting edge of the tool is located at the center of the tool, the distance between the outer peripheral surface of the workpiece and the cutting edge of the tool is set as the separation distance D1.

一実施形態の移動制御装置を備えた工作機械を示す要部斜視図。The principal part perspective view which shows the machine tool provided with the movement control apparatus of one Embodiment. 図1の工作機械における移動制御装置の回路構成を示すブロック図。The block diagram which shows the circuit structure of the movement control apparatus in the machine tool of FIG. ワークに対して刃物台が切替方向に移動する状態を示す簡略図。The simplified diagram which shows the state which a tool post moves to a switching direction with respect to a workpiece | work. (a)〜(b)は工具台の退避位置への移動における基本的な動作を示す説明図。(A)-(b) is explanatory drawing which shows the fundamental operation | movement in the movement to the evacuation position of a tool stand. (a)〜(b)は工具台の前進位置への移動における基本的な動作を示す説明図。(A)-(b) is explanatory drawing which shows the fundamental operation | movement in the movement to the advance position of a tool stand. (a)〜(d)は工具の切替移動動作を順に示す説明図。(A)-(d) is explanatory drawing which shows the switching movement operation | movement of a tool in order. (a)〜(b)は図6とは異なる工具の切替移動動作を順に示す説明図。(A)-(b) is explanatory drawing which shows the switching movement operation | movement of the tool different from FIG. 6 in order. 工具の切替移動動作における円弧状軌跡の設定を示すフローチャート。The flowchart which shows the setting of the arc-shaped locus | trajectory in the switching movement operation | movement of a tool. 図8の設定に従った工具の切替移動動作を示すフローチャート。The flowchart which shows the switching movement operation | movement of the tool according to the setting of FIG. (a)(b)は工具の切替移動時の刃物台の移動経路を示す線図。(A) (b) is a diagram which shows the movement path | route of the tool post at the time of the switching movement of a tool. (a)〜(d)は第2実施形態における工具の切替移動動作を順に示すそれぞれ部分拡大正面図。(A)-(d) is each partial expansion front view which shows the switching movement operation | movement of the tool in 2nd Embodiment in order. (a)〜(d)は第3実施形態における工具の切替移動動作を順に示すそれぞれ部分拡大正面図。(A)-(d) is a partial expanded front view which respectively shows the switching movement operation | movement of the tool in 3rd Embodiment in order. (a)(b)は同じく第3実施形態における工具の切替移動動作を順に示すそれぞれ部分拡大正面図。(A) and (b) are the partial enlarged front views which respectively show the switching movement operation | movement of the tool in 3rd Embodiment in order. (a)〜(d)は従来の工具の切替移動動作を順に示すそれぞれ部分拡大正面図。(A)-(d) is each partial expansion front view which shows the switching movement operation | movement of the conventional tool in order. 従来の工具の切替移動時における刃物台の移動経路を示す線図。The diagram which shows the movement path | route of the tool post at the time of the switching movement of the conventional tool. 従来の工具切替動作における移動速度の変化を示すグラフ。The graph which shows the change of the moving speed in the conventional tool switching operation | movement.

符号の説明Explanation of symbols

22…主軸台、23…主軸、24…背面主軸台、25…背面主軸、26…刃物台、27,27A〜27C…工具、27a〜27c…刃先、29…工具、30,30A〜30D…工具、31,31A〜31C…工具、31a〜31c…刃先、35…制御装置、36…距離設定手段,軌跡設定手段,制御手段としてのCPU、37…距離設定手段,軌跡設定手段,制御手段としてのROM、38…距離設定手段,軌跡設定手段,制御手段としてのRAM、48…工具送り駆動装置、W1…ワーク、D1…離間距離、D3…離間距離、D2…移動距離としての退避距離、D4…移動距離としての接近距離。   DESCRIPTION OF SYMBOLS 22 ... Main spindle, 23 ... Main spindle, 24 ... Back main spindle, 25 ... Rear main spindle, 26 ... Turret, 27, 27A-27C ... Tool, 27a-27c ... Cutting edge, 29 ... Tool, 30, 30A-30D ... Tool 31, 31A to 31C ... tool, 31a to 31c ... cutting edge, 35 ... control device, 36 ... distance setting means, locus setting means, CPU as control means, 37 ... distance setting means, locus setting means, control means ROM, 38 ... RAM as distance setting means, trajectory setting means, control means, 48 ... Tool feed driving device, W1 ... Workpiece, D1 ... Separation distance, D3 ... Separation distance, D2 ... Retraction distance as movement distance, D4 ... Approach distance as travel distance.

Claims (12)

複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替が前記第1,第2駆動部により実行されるようにした工作機械において、
工具の刃先とその刃先と隣接する工具の外周面との間の離間距離を設定する距離設定手段と、
前記離間距離以下の距離に対応した曲率の円弧状軌跡を設定する軌跡設定手段と、
前記工具の切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させる制御手段とを備えたことを特徴とする工作機械における移動制御装置。
A tool post in which a plurality of tools are arranged in parallel, a first drive unit that causes a first relative movement between the tool and the workpiece in the tool advance / retreat direction, and a tool juxtaposition direction between the workpiece and the tool rest A second drive unit that causes a second relative movement along the machine tool, and the switching of the tool is performed by the first and second drive units,
Distance setting means for setting a separation distance between the cutting edge of the tool and the outer peripheral surface of the tool adjacent to the cutting edge;
A trajectory setting means for setting an arc trajectory having a curvature corresponding to a distance equal to or less than the separation distance;
Control means for simultaneously operating the first and second drive units so that relative movement is performed between the tool and the workpiece according to the arcuate locus in the tool switching operation. A movement control device for machine tools.
複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替動作が前記第1,第2駆動部により実行されるようにした工作機械において、
工具の刃先とその刃先と隣接する工具の外周面との間の離間距離と、前記切替動作における前記工具進退方向への工具の移動距離とを設定する距離設定手段と、
前記離間距離と移動距離とを比較して、短い方の距離に対応した曲率の円弧状軌跡を設定する軌跡設定手段と、
前記切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させる制御手段とを備えたことを特徴とする工作機械における移動制御装置。
A tool post in which a plurality of tools are arranged in parallel, a first drive unit that causes a first relative movement between the tool and the workpiece in the tool advance / retreat direction, and a tool juxtaposition direction between the workpiece and the tool rest A second drive unit that causes a second relative movement along the machine tool, and the tool switching operation is performed by the first and second drive units,
Distance setting means for setting a separation distance between the cutting edge of the tool and the outer peripheral surface of the tool adjacent to the cutting edge, and a movement distance of the tool in the tool advancing / retreating direction in the switching operation;
A trajectory setting means for comparing the separation distance and the movement distance and setting an arc-shaped trajectory having a curvature corresponding to the shorter distance;
A machine tool comprising control means for simultaneously operating the first and second drive units so that relative movement is performed between the tool and the workpiece in accordance with the arcuate locus in the switching operation. Movement control device.
複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替が前記第1,第2駆動部により実行されるようにした工作機械において、
ワークとそれに隣接する工具の刃先との間の離間距離を設定する距離設定手段と、
前記離間距離以下の距離に対応した曲率の円弧状軌跡を設定する軌跡設定手段と、
前記工具の切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させる制御手段とを備えたことを特徴とする工作機械における移動制御装置。
A tool post in which a plurality of tools are arranged in parallel, a first drive unit that causes a first relative movement between the tool and the workpiece in the tool advance / retreat direction, and a tool juxtaposition direction between the workpiece and the tool rest A second drive unit that causes a second relative movement along the machine tool, and the switching of the tool is performed by the first and second drive units,
Distance setting means for setting a separation distance between the workpiece and the cutting edge of the tool adjacent thereto;
A trajectory setting means for setting an arc trajectory having a curvature corresponding to a distance equal to or less than the separation distance;
Control means for simultaneously operating the first and second drive units so that relative movement is performed between the tool and the workpiece according to the arcuate locus in the tool switching operation. A movement control device for machine tools.
複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替動作が前記第1,第2駆動部により実行されるようにした工作機械において、
ワークとそれに隣接する工具の刃先との間の離間距離と、前記切替動作における前記工具進退方向への工具の移動距離とを設定する距離設定手段と、
前記離間距離と移動距離とを比較して、短い方の距離に対応した曲率の円弧状軌跡を設定する軌跡設定手段と、
前記切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させる制御手段とを備えたことを特徴とする工作機械における移動制御装置。
A tool post in which a plurality of tools are arranged in parallel, a first drive unit that causes a first relative movement between the tool and the workpiece in the tool advance / retreat direction, and a tool juxtaposition direction between the workpiece and the tool rest A second drive unit that causes a second relative movement along the machine tool, and the tool switching operation is performed by the first and second drive units,
Distance setting means for setting a separation distance between a workpiece and a cutting edge of a tool adjacent to the workpiece, and a movement distance of the tool in the tool advance / retreat direction in the switching operation;
A trajectory setting means for comparing the separation distance and the movement distance and setting an arc-shaped trajectory having a curvature corresponding to the shorter distance;
A machine tool comprising control means for simultaneously operating the first and second drive units so that relative movement is performed between the tool and the workpiece in accordance with the arcuate locus in the switching operation. Movement control device.
前記離間距離は、工具の切替動作においてワークに対する工具の相対移動方向後方側に存在する距離であることを特徴とする請求項1〜4のうちのいずれか一項に記載の工作機械における移動制御装置。 The movement control in the machine tool according to any one of claims 1 to 4, wherein the separation distance is a distance existing on the rear side in the relative movement direction of the tool with respect to the workpiece in the tool switching operation. apparatus. 前記離間距離は、工具の切替動作において工具に対するワークの相対移動方向前方側に存在する距離であることを特徴とする請求項1〜4のうちのいずれか一項に記載の工作機械における移動制御装置。 The movement control in the machine tool according to any one of claims 1 to 4, wherein the separation distance is a distance existing on a front side in a relative movement direction of the workpiece with respect to the tool in the switching operation of the tool. apparatus. 前記距離設定手段は、移動距離として、工具の刃先とワークとの干渉を回避するために刃物台が退避位置に後退するまでの距離を設定することを特徴とする請求項2または4に記載の工作機械における移動制御装置。 The distance setting means sets the distance until the tool post is retracted to the retracted position in order to avoid interference between the cutting edge of the tool and the workpiece as the moving distance. A movement control device for machine tools. 前記距離設定手段は、前記移動距離として、工具が前記退避位置からワークに対する所定の接近位置に前進するまでの距離を設定することを特徴とする請求項7に記載の工作機械における移動制御装置。 The said distance setting means sets the distance until a tool advances to the predetermined | prescribed approach position with respect to a workpiece | work from the said retracted position as said movement distance, The movement control apparatus in the machine tool of Claim 7 characterized by the above-mentioned. 複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替が前記第1,第2駆動部により実行されるようにした工作機械において、
工具の刃先とその刃先と隣接する工具の外周面との間の離間距離を設定し、
前記離間距離以下の距離に対応した曲率の円弧状軌跡を設定し、
前記工具の切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させることを特徴とする工作機械における移動制御方法。
A tool post in which a plurality of tools are arranged in parallel, a first drive unit that causes a first relative movement between the tool and the workpiece in the tool advance / retreat direction, and a tool juxtaposition direction between the workpiece and the tool rest A second drive unit that causes a second relative movement along the machine tool, and the switching of the tool is performed by the first and second drive units,
Set the separation distance between the cutting edge of the tool and the outer peripheral surface of the tool adjacent to the cutting edge,
Set an arcuate trajectory of curvature corresponding to the distance less than the separation distance,
A movement control method in a machine tool, wherein the first and second drive units are simultaneously operated so that relative movement is performed between the tool and the workpiece according to the arcuate locus in the tool switching operation. .
複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替動作が前記第1,第2駆動部により実行されるようにした工作機械において、
工具の刃先とその刃先と隣接する工具の外周面との間の離間距離と、前記切替動作における前記工具進退方向への工具の移動距離とを設定し、
前記離間距離と移動距離とを比較して、短い方の距離に対応した曲率の円弧状軌跡を設定し、
前記切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させることを特徴とする工作機械における移動制御方法。
A tool post in which a plurality of tools are arranged in parallel, a first drive unit that causes a first relative movement between the tool and the workpiece in the tool advance / retreat direction, and a tool juxtaposition direction between the workpiece and the tool rest A second drive unit that causes a second relative movement along the machine tool, and the tool switching operation is performed by the first and second drive units,
A separation distance between the cutting edge of the tool and the outer peripheral surface of the tool adjacent to the cutting edge, and a movement distance of the tool in the tool advance / retreat direction in the switching operation,
Comparing the separation distance and the movement distance, and setting an arcuate locus of curvature corresponding to the shorter distance,
In the switching operation, the movement control method in a machine tool is characterized in that the first and second drive units are simultaneously operated so that relative movement is performed between the tool and the workpiece according to the arcuate locus.
複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替が前記第1,第2駆動部により実行されるようにした工作機械において、
ワークとそれに隣接する工具の刃先との間の離間距離を設定し、
前記離間距離以下の距離に対応した曲率の円弧状軌跡を設定し、
前記工具の切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させることを特徴とする工作機械における移動制御方法。
A tool post in which a plurality of tools are arranged in parallel, a first drive unit that causes a first relative movement between the tool and the workpiece in the tool advance / retreat direction, and a tool juxtaposition direction between the workpiece and the tool rest A second drive unit that causes a second relative movement along the machine tool, and the switching of the tool is performed by the first and second drive units,
Set the distance between the workpiece and the cutting edge of the adjacent tool,
Set an arcuate trajectory of curvature corresponding to the distance less than the separation distance,
A movement control method in a machine tool, wherein the first and second drive units are simultaneously operated so that relative movement is performed between the tool and the workpiece according to the arcuate locus in the tool switching operation. .
複数の工具が並設された刃物台と、前記工具とワークとの間に工具進退方向に沿う第1相対移動を生じさせる第1駆動部と、ワークと刃物台との間に工具並設方向に沿う第2相対移動を生じさせる第2駆動部とを備え、前記工具の切替動作が前記第1,第2駆動部により実行されるようにした工作機械において、
ワークとそれに隣接する工具の刃先との間の離間距離と、前記切替動作における前記工具進退方向への工具の移動距離とを設定し、
前記離間距離と移動距離とを比較して、短い方の距離に対応した曲率の円弧状軌跡を設定し、
前記切替動作において、工具とワークとの間に前記円弧状軌跡に従う相対移動が行われるように、前記第1,第2駆動部を同時に動作させることを特徴とする工作機械における移動制御方法。
A tool post in which a plurality of tools are arranged in parallel, a first drive unit that causes a first relative movement between the tool and the workpiece in the tool advance / retreat direction, and a tool juxtaposition direction between the workpiece and the tool rest A second drive unit that causes a second relative movement along the machine tool, and the tool switching operation is performed by the first and second drive units,
Set the separation distance between the workpiece and the cutting edge of the tool adjacent to the workpiece, and the movement distance of the tool in the tool advance / retreat direction in the switching operation,
Comparing the separation distance and the movement distance, and setting an arcuate locus of curvature corresponding to the shorter distance,
In the switching operation, the movement control method in a machine tool is characterized in that the first and second drive units are simultaneously operated so that relative movement is performed between the tool and the workpiece according to the arcuate locus.
JP2006181175A 2006-06-30 2006-06-30 Movement control device and movement control method in machine tool Active JP5008909B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006181175A JP5008909B2 (en) 2006-06-30 2006-06-30 Movement control device and movement control method in machine tool
KR1020070063754A KR101220121B1 (en) 2006-06-30 2007-06-27 Apparatus and method for movement controlling a movement body and movement control apparatus for a machine tool
US11/824,519 US7755316B2 (en) 2006-06-30 2007-06-29 Moving member movement control apparatus, moving member movement control method and machine tool movement control apparatus
TW096123847A TWI401133B (en) 2006-06-30 2007-06-29 A moving control device for a moving body, a moving control method for a moving body, and a moving control device for a working machine
CN2007101260523A CN101096072B (en) 2006-06-30 2007-06-29 Moving member movement control apparatus, moving member movement control method and machine tool movement control apparatus
EP07111424A EP1872902B1 (en) 2006-06-30 2007-06-29 Movement control apparatus and method
DE602007003408T DE602007003408D1 (en) 2006-06-30 2007-06-29 Device and method for motion control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181175A JP5008909B2 (en) 2006-06-30 2006-06-30 Movement control device and movement control method in machine tool

Publications (2)

Publication Number Publication Date
JP2008006556A true JP2008006556A (en) 2008-01-17
JP5008909B2 JP5008909B2 (en) 2012-08-22

Family

ID=39010266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181175A Active JP5008909B2 (en) 2006-06-30 2006-06-30 Movement control device and movement control method in machine tool

Country Status (2)

Country Link
JP (1) JP5008909B2 (en)
CN (1) CN101096072B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017004300A (en) * 2015-06-11 2017-01-05 株式会社Kmc Numerical control device for machine tool, machine tool, control method for machine tool, and program
CN112672838A (en) * 2018-10-10 2021-04-16 西铁城时计株式会社 Machine tool
CN114260475A (en) * 2022-01-04 2022-04-01 宁夏共享精密加工有限公司 Narrow groove turning method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5594685B2 (en) * 2010-03-30 2014-09-24 国立大学法人名古屋大学 Tool path generation device, tool path calculation method, and tool path generation program
JP5813058B2 (en) * 2013-07-02 2015-11-17 ファナック株式会社 Numerical controller with a function for shortening the starting point path of a complex fixed cycle
JP6396275B2 (en) * 2015-11-19 2018-09-26 ファナック株式会社 Numerical control device that overlaps operation by table format data
CN106249691B (en) * 2016-08-26 2019-02-19 浙江海澄德畅机械有限公司 A kind of intelligence control system of the planer with three-dimensional space locomotive function
CN113453849A (en) * 2019-02-26 2021-09-28 株式会社富士 Machine tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10161728A (en) * 1996-11-29 1998-06-19 Toyota Motor Corp Method for calculating mobile locus and method for calculating mobile speed
JP2004058227A (en) * 2002-07-30 2004-02-26 Citizen Watch Co Ltd Tool selection method and control device in numerically controlled lathe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10161728A (en) * 1996-11-29 1998-06-19 Toyota Motor Corp Method for calculating mobile locus and method for calculating mobile speed
JP2004058227A (en) * 2002-07-30 2004-02-26 Citizen Watch Co Ltd Tool selection method and control device in numerically controlled lathe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017004300A (en) * 2015-06-11 2017-01-05 株式会社Kmc Numerical control device for machine tool, machine tool, control method for machine tool, and program
CN112672838A (en) * 2018-10-10 2021-04-16 西铁城时计株式会社 Machine tool
CN112672838B (en) * 2018-10-10 2024-03-26 西铁城时计株式会社 Machine tool
CN114260475A (en) * 2022-01-04 2022-04-01 宁夏共享精密加工有限公司 Narrow groove turning method

Also Published As

Publication number Publication date
CN101096072B (en) 2010-08-11
JP5008909B2 (en) 2012-08-22
CN101096072A (en) 2008-01-02

Similar Documents

Publication Publication Date Title
JP5008909B2 (en) Movement control device and movement control method in machine tool
JP5556971B1 (en) Numerical controller
WO2011111088A1 (en) Numerical control device and control method of numerical control device
JPH09120310A (en) Method and system for moving axis
EP2482155A2 (en) Machine tool, machining method, program and NC data generation device
CN109725602B (en) Numerical controller, CNC machine tool, computer-readable information recording medium, and numerical control method
JP6747916B2 (en) Numerical control device with tool retract function to avoid interference
WO2004011193A1 (en) Tool selection method for machine tool, control devcie, and numerically controlled lathe
JP2017004300A (en) Numerical control device for machine tool, machine tool, control method for machine tool, and program
TWI401133B (en) A moving control device for a moving body, a moving control method for a moving body, and a moving control device for a working machine
US20090036280A1 (en) Movement control apparatus for machine tool
JP4921115B2 (en) Movement control apparatus for moving body, movement control method for moving body, and movement control apparatus for machine tool
US20240131600A1 (en) Vibration-cutting condition setting device for machine tool
JP4666675B2 (en) Machining method of workpiece on numerically controlled lathe
JP2007319971A (en) Threading method and machine tool
JP2009142915A (en) Machine tool and machining method using the same
JP6444923B2 (en) Numerical controller
JP6396346B2 (en) Numerical control device with cutting control function by turret rotation
JP3827922B2 (en) Automatic lathe control device
EP1909153B1 (en) Apparatus for creating a turning program
JP2008009758A (en) Machine tool
JP2006024174A (en) Movement controller for controlling movement of mobile body of machine tool, machine tool provided with movement controller and mobile body moving method
JP6457588B2 (en) Numerical controller
JPH05305540A (en) Tool exchange method for working device
JP7401665B2 (en) Numerical control device and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5008909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250