JP2008006361A - Liquid sprinkler - Google Patents

Liquid sprinkler Download PDF

Info

Publication number
JP2008006361A
JP2008006361A JP2006177892A JP2006177892A JP2008006361A JP 2008006361 A JP2008006361 A JP 2008006361A JP 2006177892 A JP2006177892 A JP 2006177892A JP 2006177892 A JP2006177892 A JP 2006177892A JP 2008006361 A JP2008006361 A JP 2008006361A
Authority
JP
Japan
Prior art keywords
solute
flow path
liquid
solvent
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006177892A
Other languages
Japanese (ja)
Other versions
JP4882086B2 (en
Inventor
Shoichi Yuki
正一 湯木
Yoshiaki Hashimoto
良聰 橋本
Tatsushi Okumura
竜史 屋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioritz Corp
Original Assignee
Kioritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioritz Corp filed Critical Kioritz Corp
Priority to JP2006177892A priority Critical patent/JP4882086B2/en
Publication of JP2008006361A publication Critical patent/JP2008006361A/en
Application granted granted Critical
Publication of JP4882086B2 publication Critical patent/JP4882086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the back flow of a sprinkling solution to a solute source during the stop of sprinkling due to the changeover of a changeover valve. <P>SOLUTION: In this liquid sprinkler 1 equipped with a confluent part 9 where the solvent W of the solute source 3 meets with the solute S of the solute source 4, the mixing flow channel 10 communicating with the suction port 2 of a sprinkling pump 5 from the confluent part 9, the discharge flow channel 18 communicating with the discharge port 6 of the sprinkling pump 5, the changeover valve 19 interposed in the discharge flow channel 18, a return flow channel 23 for returning the sprinkling solution K to the mixing flow channel 10 from the changeover valve 19, a flow rate sensor 20 for detecting the flow rate of the sprinkling solution K and a control device 17 for automatically controlling the amount of the solute S delivered to the confluent part 9 on the basis of the signal obtained from the flow rate sensor 20, a check valve 11 for preventing the back flow of the sprinkling solution to the confluent part 9 is interposed between the connection part 24 of the return flow channel 23 to the mixing flow channel 10 and the confluent part 9. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液体散布装置に関する。   The present invention relates to a liquid spraying apparatus.

農薬等の薬液(原液)を清水で希釈しながら散布する薬液散布装置として、特許文献1には、次のような構成のものが記載されている。すなわち、清水タンクと、薬液タンクと、散布用ポンプと、前記清水タンク内の清水と前記薬液タンク内の薬液の合流部と、該合流部から前記散布用ポンプの吸入口へと連通する混合流路と、前記散布用ポンプの吐出口に連通する吐出流路と、該吐出流路に介装された切換弁と、該切換弁から前記混合流路へと散布液を戻すための戻し流路と、散布液の流量を検知する流量センサと、該流量センサから得られる信号に基づいて前記合流部への前記薬液の繰り出し量を自動制御する制御装置を備えている薬液散布装置である。前記清水タンクから前記合流部へ至る清水流路には、前記清水タンクへの前記薬液の流入を阻止するために、逆止弁が介装されている。
特開2004−216205号公報(図2参照)
As a chemical solution spraying device for spraying a chemical solution (stock solution) of agricultural chemicals or the like while diluting with clean water, Patent Document 1 describes a device having the following configuration. That is, a fresh water tank, a chemical liquid tank, a spraying pump, a fresh water in the fresh water tank and a confluent part of the chemical liquid in the chemical liquid tank, and a mixed flow communicating from the confluent part to the suction port of the sprinkling pump A discharge channel communicating with the discharge port of the spraying pump, a switching valve interposed in the discharge channel, and a return channel for returning the spray liquid from the switching valve to the mixing channel And a flow rate sensor that detects the flow rate of the spray liquid, and a control device that automatically controls the feed amount of the chemical liquid to the junction based on a signal obtained from the flow rate sensor. A check valve is interposed in the fresh water flow path from the fresh water tank to the junction to prevent the chemical liquid from flowing into the fresh water tank.
Japanese Patent Laying-Open No. 2004-216205 (see FIG. 2)

しかしながら、前記従来の構成では、次のような不都合が生ずる場合がある。散布停止時には、前記切換弁の切換操作により、前記戻し流路を介して前記混合流路へと散布液が戻される。すると必然的に、それまで負圧となっていた前記混合流路が正圧となる。よって、前記薬液タンクから前記薬液を繰り出すための薬液繰り出し手段の態様によっては、前記混合流路の散布液が前記合流部を経由して前記薬液タンク側へと逆流してしまう場合がある。これを放置すると、前記薬液タンク内の薬液の濃度が変化してしまうので、散布液の正確な濃度制御ができなくなってしまう。   However, the conventional configuration may cause the following inconvenience. When spraying is stopped, the spraying liquid is returned to the mixing channel via the return channel by the switching operation of the switching valve. Then, inevitably, the mixing flow path, which has been a negative pressure so far, becomes a positive pressure. Therefore, depending on the mode of the chemical solution delivery means for delivering the chemical solution from the chemical solution tank, the sprayed liquid in the mixing channel may flow backward to the chemical solution tank side via the junction. If this is left unattended, the concentration of the chemical solution in the chemical solution tank will change, and accurate concentration control of the spray solution will no longer be possible.

また、前記切換弁の切換えによる散布停止時には、前記散布用ポンプから吐出される散布液が前記吐出流路→前記戻し流路→前記混合流路の順に循環するので、その循環時間が長いと、循環流路内の散布液の温度が上昇してしまう場合もある。これを放置すると、循環する薬液が高温となって、循環流路内のシール部材の能力を著しく低下させたり、ホースが軟化して抜け出す等により、薬液が漏出する虞を生ずる。また、高温の薬液が散布されれば、薬液の散布を受ける作物に被害が出るほか、薬液の種類によっては薬液が変質してしまう等の不都合もある。   Further, when spraying is stopped by switching the switching valve, the spray liquid discharged from the spray pump circulates in the order of the discharge flow path → the return flow path → the mixing flow path. In some cases, the temperature of the spray liquid in the circulation flow path increases. If this is left as it is, the circulating chemical solution becomes high temperature, and the capability of the sealing member in the circulation flow path is remarkably reduced, or the hose is softened and comes out, which may cause leakage of the chemical solution. In addition, if a high temperature chemical solution is sprayed, the crops to which the chemical solution is applied are damaged, and depending on the type of the chemical solution, the chemical solution may be altered.

本発明は、前記の如き事情に鑑みてなされたもので、その第一の解決課題は、切換弁の切換えによる散布停止時に、溶質源への散布液の逆流を防止することである。   The present invention has been made in view of the circumstances as described above, and the first problem to be solved is to prevent the backflow of the spray liquid to the solute source when spraying is stopped by switching the switching valve.

また、本発明の第二の解決課題は、散布用ポンプの吐出側から吸入側へ戻される散布液の温度上昇を合理的な方法で防止することである。   The second problem to be solved by the present invention is to prevent the temperature rise of the spray liquid returned from the discharge side of the spray pump to the suction side by a rational method.

前記第一の課題を解決するため、本発明に係る液体散布装置は、溶媒源と、溶質源と、散布用ポンプと、前記溶媒源の溶媒と前記溶質源の溶質が合流する合流部と、該合流部から前記散布用ポンプの吸入口へと連通する混合流路と、前記散布用ポンプの吐出口に連通する吐出流路と、該吐出流路に介装された切換弁と、該切換弁から前記混合流路へと散布液を戻すための戻し流路と、散布液の流量を検知する流量センサと、該流量センサから得られる信号に基づいて前記合流部への前記溶質の繰り出し量を自動制御する制御装置を備えている液体散布装置であって、前記混合流路に対する前記戻し流路の連結部と前記合流部との間に、該合流部側への散布液の逆流を阻止する逆止弁が介装されていることを特徴とする(請求項1)。   In order to solve the first problem, the liquid spraying apparatus according to the present invention includes a solvent source, a solute source, a pump for spraying, a merging unit where the solvent of the solvent source and the solute of the solute source merge, A mixing flow path communicating from the junction to the suction port of the spray pump, a discharge flow path communicating with the discharge port of the spray pump, a switching valve interposed in the discharge flow path, and the switching A return flow path for returning the spray liquid from the valve to the mixing flow path, a flow rate sensor for detecting the flow rate of the spray liquid, and a delivery amount of the solute to the junction based on a signal obtained from the flow rate sensor A liquid spraying device having a control device for automatically controlling the flow, and preventing the backflow of the sprayed liquid to the joining portion side between the connecting portion of the return passage with respect to the mixing passage and the joining portion A check valve is interposed (Claim 1).

本発明においては、前記散布用ポンプが作動することにより、前記溶媒源の溶媒と前記溶質源の溶質とが前記散布用ポンプに吸入され、溶媒と溶質が混合された状態で、前記散布用ポンプから散布液として吐出される。該散布液の流量は、前記流量センサで検知される。そして、前記溶質源からの溶質の繰り出し量は、前記制御装置により、前記流量センサで検知された前記散布液の流量に応じて、例えば、該散布液の濃度が所定の濃度となるように制御される。   In the present invention, when the spray pump is operated, the solvent of the solvent source and the solute of the solute source are sucked into the spray pump, and the solvent and solute are mixed and the spray pump Discharged as a spray liquid. The flow rate of the spray liquid is detected by the flow rate sensor. Then, the amount of solute delivered from the solute source is controlled by the control device so that, for example, the concentration of the spray liquid becomes a predetermined concentration according to the flow rate of the spray liquid detected by the flow sensor. Is done.

また、本発明によれば、散布を停止させるために前記切換弁を切換えると、前記散布用ポンプで吐出される散布液が、前記吐出流路、前記戻し流路及び前記混合流路を介して、前記散布用ポンプの吸入側へと戻される。この時必然的に、それまで負圧であった前記混合流路が、前記逆止弁より下流側で正圧となるが、該逆止弁が前記合流部側への散布液の逆流を阻止するので、前記溶媒源と前記溶質源のいずれにも、前記散布液が混入してしまうことはない。   Further, according to the present invention, when the switching valve is switched to stop the spraying, the spray liquid discharged by the spraying pump is passed through the discharge flow path, the return flow path, and the mixing flow path. And returned to the suction side of the spray pump. At this time, the mixing flow path, which was previously negative pressure, becomes positive pressure downstream of the check valve, but the check valve prevents the backflow of the spray liquid to the merging section side. Therefore, the spray liquid is not mixed into either the solvent source or the solute source.

なお、本発明では、前記従来のものとは異なり、前記溶媒源から前記合流部へと連通する溶媒流路には、逆止弁は配設されない。また、散布を停止すると、前記溶質源からの溶質の繰り出しも停止するが、この時、前記合流部へと連通する溶質流路内には溶質が残留する。このため、前記溶媒源内における溶媒の液面と前記溶質源との高さ位置関係によっては、前記溶質流路内に残った前記溶媒よりも比重の大きい溶質が、前記溶媒源へと流入してしまうことも予測される。   In the present invention, unlike the conventional one, a check valve is not provided in the solvent flow path communicating from the solvent source to the merging portion. When the spraying is stopped, the feeding of the solute from the solute source is also stopped. At this time, the solute remains in the solute flow path communicating with the merging portion. For this reason, depending on the height positional relationship between the liquid level of the solvent in the solvent source and the solute source, a solute having a specific gravity greater than that of the solvent remaining in the solute flow channel flows into the solvent source. It is also predicted that.

そこで、これを防止するため、好適な実施の一形態として、前記溶媒流路を前記溶媒源の底部から前記合流部へと連通させ、前記溶媒流路の容積よりも前記溶質流路の容積を小さくすることもできる(請求項2)。このようにすれば、前記溶媒源内の溶媒の残量が少なくなり、その液面が前記底部付近まで下がった場合でも、前記溶質流路の残留溶質が前記溶媒源へと流入してしまうことはない。   Therefore, in order to prevent this, as a preferred embodiment, the solvent flow path is communicated from the bottom of the solvent source to the merging section, and the volume of the solute flow path is made larger than the volume of the solvent flow path. It can also be reduced (claim 2). In this way, the remaining amount of the solvent in the solvent source decreases, and even if the liquid level drops to near the bottom, the residual solute in the solute flow path will flow into the solvent source. Absent.

また、前記溶質流路の残留溶質の前記溶媒源への流入を防止するため、前記溶質流路の内径を、溶質の粘性に応じてその流動を抑制するように小さくすることもできる(請求項3)。このようにすれば、前記溶質の非繰り出し時に、前記溶質流路の残留溶質が前記溶媒源へ流入することがない。前記溶質流路内に溶媒層を生ずることもないので、散布再開直後であっても、散布液の濃度制御に悪影響が及ぶこともない。なお、この場合、前記溶質流路の縮径により前記溶質の円滑な繰り出しに悪影響が及ぶ虞がある場合には、溶質流路数の増加によって対応すればよい。   Further, in order to prevent the residual solute in the solute flow path from flowing into the solvent source, the inner diameter of the solute flow path can be reduced so as to suppress the flow thereof according to the viscosity of the solute (claim). 3). In this way, when the solute is not fed out, the residual solute in the solute flow path does not flow into the solvent source. Since no solvent layer is formed in the solute flow path, the concentration control of the spray liquid is not adversely affected even immediately after the spraying is resumed. In this case, if there is a possibility that the solute flow-out is adversely affected by the reduced diameter of the solute flow path, it may be dealt with by increasing the number of solute flow paths.

前記溶媒流路の容積よりも前記溶質流路の容積を小さくするについては、前記溶質源の配設位置に大きな自由度を持たせることができるように前記溶質流路の長さを長くし、その分だけ該溶質流路の径を小さくすると好適である(請求項4)。この場合、前記溶質流路の本数を増やす等により、個々の溶質流路の内径を前記溶質の流動を抑制できる径にまで小さくしておけば、確実性が増してより一層好適である。   About making the volume of the solute flow path smaller than the volume of the solvent flow path, the length of the solute flow path is lengthened so that a large degree of freedom can be given to the position of the solute source, It is preferable to reduce the diameter of the solute flow path by that amount (claim 4). In this case, if the inner diameter of each solute flow path is reduced to a diameter that can suppress the flow of the solute, for example, by increasing the number of the solute flow paths, it is more preferable because the reliability is increased.

前記第二の課題を解決するため、好適な実施の一形態として、前記戻し流路を介して前記混合流路に戻される散布液をその流路の外側から冷却する冷却手段を備えることもできる(請求項5)。このようにすれば、前記散布用ポンプの吐出側から吸入側へ戻される散布液の温度上昇が防止される。また、前記散布液は、その流路の外側から冷却されるので、構成を簡易にできて合理的である。   In order to solve the second problem, as a preferred embodiment, a cooling means for cooling the spray liquid returned to the mixing channel via the return channel from the outside of the channel can be provided. (Claim 5). In this way, the temperature rise of the spray liquid returned from the discharge side of the spray pump to the suction side is prevented. Further, since the spray liquid is cooled from the outside of the flow path, the configuration can be simplified and is rational.

前記冷却手段としては、前記流路の少なくとも一部を放熱効率の良好な素材又は構成とし、その外側にそれ自体周知の空冷式冷却ユニットを設けることもできるが、さらに合理的な実施の一形態として、次のような構成を採用することもできる。   As the cooling means, at least a part of the flow path may be made of a material or configuration having good heat dissipation efficiency, and an air cooling type cooling unit known per se may be provided on the outside thereof. The following configuration can also be adopted.

すなわち、前記溶媒源を清水タンクとし、前記冷却手段を、前記戻し流路の少なくとも一部を構成し且つ前記清水タンク内の清水に漬かるように配設されて前記混合流路へと連通する熱交換用タンク内配管とする(請求項6)。この場合、前記清水タンク内の清水により、前記熱交換用タンク内配管を流れる散布液が冷却される。前記空冷式冷却ユニットのような特別な装置を用いず、前記溶媒源内の溶媒を用いて冷却するので、構成の合理性が高い。加えて、一般に、前記戻し流路を介して前記混合流路に戻される散布液に比べると、前記清水タンク内の清水の方がはるかに大量であるので、冷却効率がきわめて良好となる。さらに、清水で冷却されるので、他の種類の液体で冷却する場合に比べて、前記熱交換用タンク内配管が腐蝕等しにくく、耐久性も良好となる。   That is, the solvent source is a fresh water tank, and the cooling means constitutes at least a part of the return flow path and is disposed so as to be immersed in fresh water in the fresh water tank and communicates with the mixing flow path. It is set as the pipe in a tank for exchange (Claim 6). In this case, the spray liquid flowing through the heat exchange tank piping is cooled by the fresh water in the fresh water tank. Since the cooling is performed using the solvent in the solvent source without using a special device such as the air-cooled cooling unit, the rationality of the configuration is high. In addition, in general, the amount of fresh water in the fresh water tank is much larger than that of the spray liquid returned to the mixing flow channel via the return flow channel, so that the cooling efficiency is very good. Furthermore, since it cools with fresh water, compared with the case where it cools with another kind of liquid, the said piping in the tank for heat exchange is hard to corrode etc., and durability also becomes favorable.

以下、添付図面を参照して、本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は、本発明の一実施の形態に係る液体散布装置の、制御回路を含む配管図である。図示は省略しているが、前記液体散布装置の具体例としては、農用トラクタ等の走行機体に搭載されて圃場内を移動しながら防除液や液肥等を散布するブームスプレーヤや、果樹園内を走行しながら送風及び薬剤散布を行うスピードスプレーヤ等を挙げることができる。但し、これらに限定されるものではない。   FIG. 1 is a piping diagram including a control circuit of a liquid spraying apparatus according to an embodiment of the present invention. Although not shown in the drawings, specific examples of the liquid spraying device include a boom sprayer that is mounted on a traveling machine such as an agricultural tractor and sprays control liquid and liquid fertilizer while moving in the field, or traveling in an orchard. Examples thereof include a speed sprayer that blows air and sprays chemicals. However, it is not limited to these.

図1において、本実施の形態に係る液体散布装置1は、その吸入口2が溶媒源3と溶質源4に連通された散布用ポンプ5を備えている。該散布用ポンプ5の吐出口6は、散布ノズル部7に連通している。そして、前記散布用ポンプ5の作動により、前記溶媒源3内の溶媒Wと前記溶質源4内の溶質Sとが混合されながら吸入され、散布液Kとなって前記散布ノズル部7から散布される。前記液体散布装置1は、図示しない適宜の走行機体に搭載され、圃場内を移動しながら散布を行うことができる。   In FIG. 1, the liquid spraying apparatus 1 according to the present embodiment includes a spraying pump 5 whose suction port 2 communicates with a solvent source 3 and a solute source 4. The discharge port 6 of the spray pump 5 communicates with the spray nozzle unit 7. Then, by the operation of the spraying pump 5, the solvent W in the solvent source 3 and the solute S in the solute source 4 are sucked in while being mixed, and sprayed as the spray liquid K from the spray nozzle unit 7. The The liquid spraying device 1 is mounted on an appropriate traveling machine (not shown) and can spray while moving in the field.

前記溶媒源3は、本実施の形態では、溶媒としての清水Wを貯留する清水タンクとされている。該清水タンク3は、その底部3aに接続された清水流路8を介して合流部9に連通し、該合流部9は、混合流路10を介して前記散布用ポンプ5の前記吸入口2に連通している。前記混合流路10には、前記合流部9側への散布液Kの逆流を阻止する逆止弁11が介装されている。   In the present embodiment, the solvent source 3 is a fresh water tank that stores fresh water W as a solvent. The fresh water tank 3 communicates with a merging portion 9 via a fresh water flow path 8 connected to the bottom 3 a, and the merging portion 9 is connected to the suction port 2 of the spray pump 5 via a mixing flow path 10. Communicating with The mixing channel 10 is provided with a check valve 11 that prevents the backflow of the spray liquid K toward the merging section 9.

一方、前記溶質源4は、本実施の形態では、溶質としての防除用薬液Sを貯留する薬液タンクとされている。該薬液タンク4は、溶質ポンプ12と薬液流路13を介して前記合流部9に連通している。前記薬液タンク4内の薬液Sは、前記薬液ポンプ12の作動によって前記薬液流路13に繰り出され、前記合流部9へと流入する。そして、該合流部9で前記清水タンク3内の清水Wと前記薬液Sとが所定比率で混合・希釈されて、散布液Kとなる。前記合流部9及び前記混合流路10においては、前記散布用ポンプ5の大きな吸入圧により、必然的に、前記清水Wと前記薬液Sとが強制的な混合攪拌作用を受けることになる。よって、前記散布液Kの濃度に偏りは生じない。   On the other hand, in the present embodiment, the solute source 4 is a chemical tank that stores the control chemical S as a solute. The chemical liquid tank 4 communicates with the merging portion 9 through a solute pump 12 and a chemical liquid flow path 13. The chemical liquid S in the chemical liquid tank 4 is fed to the chemical liquid flow path 13 by the operation of the chemical liquid pump 12 and flows into the merging portion 9. And the fresh water W and the said chemical | medical solution S in the said fresh water tank 3 are mixed and diluted by the predetermined ratio in this junction part 9, and it becomes the spraying liquid K. In the merging section 9 and the mixing channel 10, the fresh water W and the chemical S are inevitably subjected to a forced mixing and stirring action due to the large suction pressure of the spray pump 5. Therefore, there is no bias in the concentration of the spray liquid K.

前記薬液Sは、例えば、薬液の原液であってもよいし、その原液を、散布液Kより高濃度に予め水で希釈したものであってもよい。さらに、粉粒状の薬剤を水に溶かして、散布液より高濃度となるように濃度設定したものであってもよい。このため、前記薬液タンク4内には、攪拌手段としての攪拌翼14が配設されている。該攪拌翼14は、攪拌モータ15によって回転駆動される。前記薬液Sとして、薬液原液や粉粒状薬剤等の原溶質を、散布液より高濃度となるように予め溶媒で希釈した予備希釈液を用いれば、水との均質混合がより確実となるほか、前記薬液ポンプ12として、最小繰り出し量の大きな、したがって安価なものを採用できるので好適である。   The chemical solution S may be, for example, a stock solution of the chemical solution, or may be a solution obtained by diluting the stock solution with water at a higher concentration than the spray solution K in advance. Further, the powdered medicine may be dissolved in water and the concentration may be set to be higher than that of the spray liquid. Therefore, a stirring blade 14 as a stirring means is disposed in the chemical liquid tank 4. The stirring blade 14 is rotationally driven by a stirring motor 15. As the chemical solution S, if a prediluted solution obtained by diluting a raw solute such as a chemical solution stock solution or a granular drug in advance with a solvent so as to have a higher concentration than the spray solution, homogeneous mixing with water becomes more reliable, The chemical pump 12 is suitable because it can employ a pump with a large minimum feed amount and therefore an inexpensive price.

前記薬液ポンプ12としては、液体を少量ずつ量的正確さをもって送出することができるポンプを使用する。例えば、それ自体周知のチューブポンプ、特に、ローラーチューブポンプ等のバルブレスポンプを用いることができる。前記ローラーチューブポンプは、例えば、側面一方が壁とされた弾力性のあるチューブを備え、前記壁の部分を電動モータ16で駆動されるローラーが押しつぶしながら転がることにより、前記チューブ内の液を押し出す。該ローラーチューブポンプによれば、前記ローラーの転がり速度を制御することで、前記合流部への薬液Sの供給量を制御することができる。前記薬液ポンプ12の作動は、マイクロコンピュータを含む制御装置17によって自動制御される。   As the chemical liquid pump 12, a pump capable of delivering a liquid little by little with quantitative accuracy is used. For example, a tube pump known per se, in particular, a valveless pump such as a roller tube pump can be used. The roller tube pump includes, for example, an elastic tube whose one side is a wall, and pushes out the liquid in the tube by rolling the wall portion while a roller driven by an electric motor 16 is crushed. . According to the roller tube pump, the supply amount of the chemical solution S to the junction can be controlled by controlling the rolling speed of the roller. The operation of the chemical pump 12 is automatically controlled by a control device 17 including a microcomputer.

なお、前記薬液タンク4と前記清水タンク3の容量比は、前記薬液Sの希釈倍率に応じて適宜に決定すればよいが、前記薬液タンク4の容量は、前記清水タンク3の容量に比べてはるかに小さくて済む(例えば、1/100)。このため、第一の利点として、前記薬液タンク4への薬液Sの注入作業が容易となる。第二の利点として、散布作業終了時に前記薬液タンク4内に薬液が残っても、少量なのでその取り扱いが容易である。第三の利点として、使用後の前記薬液タンク4の洗浄作業が容易となる。   The capacity ratio between the chemical liquid tank 4 and the fresh water tank 3 may be appropriately determined according to the dilution ratio of the chemical liquid S. However, the capacity of the chemical liquid tank 4 is larger than the capacity of the fresh water tank 3. It is much smaller (eg 1/100). For this reason, as a first advantage, the operation of injecting the chemical S into the chemical tank 4 is facilitated. As a second advantage, even if a chemical solution remains in the chemical solution tank 4 at the end of the spraying operation, it is easy to handle because it is small. As a third advantage, the cleaning operation of the chemical solution tank 4 after use becomes easy.

前記散布用ポンプ5の前記吐出口6は、吐出流路18を介して前記散布ノズル部7に連通している。前記吐出流路18には、上流側から順に、切換弁としての三方コック19と流量センサ20が介装されている。該流量センサ20は、前記散布ノズル部7へ向けて圧送される散布液Kの流量を検知し、その検知信号を前記制御装置17へと提供する。そして該制御装置17は、前記信号に基づいて、例えば、散布液Kの濃度が予め入力した所定の濃度(希釈倍率)に維持されるように、前記薬液ポンプ4の作動を制御する。   The discharge port 6 of the spray pump 5 communicates with the spray nozzle portion 7 via a discharge flow path 18. A three-way cock 19 and a flow rate sensor 20 as a switching valve are interposed in the discharge flow path 18 in order from the upstream side. The flow rate sensor 20 detects the flow rate of the spray liquid K pumped toward the spray nozzle unit 7 and provides the detection signal to the control device 17. Based on the signal, the control device 17 controls the operation of the chemical pump 4 so that, for example, the concentration of the spray liquid K is maintained at a predetermined concentration (dilution ratio) input in advance.

前記三方コック19の二つの切換流出口21,22の内の一方21は、前記散布ノズル部7に連通しているが、他方の切換流出口22は、戻し流路23を介して前記混合流路10に連通している。したがって、散布作業中に散布を一時的に停止したい場合等には、前記走行機体の運転者が操縦席で前記三方コック19を操作して前記戻し流路23側へと流路を切り換えることにより、前記散布用ポンプ5を無負荷運転させることができる。   One of the two switching outlets 21, 22 of the three-way cock 19 communicates with the spray nozzle portion 7, while the other switching outlet 22 is connected to the mixed flow via a return channel 23. It communicates with the road 10. Therefore, when it is desired to temporarily stop spraying during the spraying operation, the driver of the traveling aircraft operates the three-way cock 19 at the cockpit and switches the flow path to the return flow path 23 side. The spray pump 5 can be operated without load.

本実施の形態では、前記戻し流路23は、前記逆止弁11の下流側で前記混合流路10に連通している。すなわち、前記逆止弁11は、前記混合流路10に対する前記戻し流路23の連結部24と前記合流部9との間に介装されている。したがって、前記散布用ポンプ5の吐出側から吸入側へと戻される散布液Kが前記合流部9へと逆流することはない。よって、散布液Kが前記清水タンク3内に逆流するようなことはない。また、前記薬液ポンプ12として、チューブポンプのようなバルブレスポンプを用いている場合でも、前記散布液Kが前記薬液タンク4の薬液Sに混入してしまう心配もない。   In the present embodiment, the return flow path 23 communicates with the mixing flow path 10 on the downstream side of the check valve 11. That is, the check valve 11 is interposed between the connecting portion 24 of the return flow path 23 with respect to the mixing flow path 10 and the merging section 9. Accordingly, the spray liquid K returned from the discharge side of the spray pump 5 to the suction side does not flow back to the junction 9. Therefore, the spray liquid K does not flow back into the fresh water tank 3. Further, even when a valveless pump such as a tube pump is used as the chemical liquid pump 12, there is no fear that the spray liquid K is mixed into the chemical liquid S in the chemical liquid tank 4.

ところで、前記三方コック19を切換えて散布を停止すると、前記流量センサ20からの信号により前記薬液ポンプ12の作動も停止されるが、この時、前記合流部9へと延びる前記薬液流路13内には薬液Sが残留する。このため、前記清水タンク3内における清水Wの液面と前記薬液ポンプ12の高さ位置関係によっては、前記薬液流路13内に残った薬液Sが、前記清水流路8を逆流して前記清水タンク3内へと混入してしまうことも予測される。   By the way, when the spraying is stopped by switching the three-way cock 19, the operation of the chemical pump 12 is also stopped by a signal from the flow sensor 20, but at this time, the inside of the chemical flow path 13 extending to the confluence portion 9 is stopped. The chemical solution S remains in For this reason, depending on the liquid surface of the fresh water W in the fresh water tank 3 and the height positional relationship of the chemical liquid pump 12, the chemical liquid S remaining in the chemical liquid flow path 13 flows backward through the fresh water flow path 8 and It is also predicted that it will be mixed into the fresh water tank 3.

そこで、これを防止するため、本実施の形態では、前記清水流路8を前記清水タンク3の底部3aから前記合流部9へと連通させ、前記清水流路8の容積よりも前記薬液流路13の容積を小さくしている。このようにすれば、前記清水タンク3内の清水Wの残量が少なくなり、その液面レベルが前記底部3a付近まで下がった場合でも、前記薬液流路13の残留薬液は、前記清水流路8を満たすだけの容量がないので、前記清水タンク3へと流入してしまうことはない。   Therefore, in order to prevent this, in the present embodiment, the fresh water flow path 8 is communicated from the bottom 3a of the fresh water tank 3 to the merge section 9, and the chemical liquid flow path is more than the volume of the fresh water flow path 8. The volume of 13 is made small. In this way, even when the remaining amount of the fresh water W in the fresh water tank 3 is reduced and the liquid level is lowered to the vicinity of the bottom portion 3a, the remaining chemical solution in the chemical liquid channel 13 remains in the fresh water channel. Since there is no capacity sufficient to satisfy 8, the water does not flow into the fresh water tank 3.

更に、本実施の形態では、清水より比重の大きい前記薬液流路13の残留薬液が、前記薬液ポンプ12の停止中に自重で流動して前記清水流路8内の清水と置換わることを抑制できるように(抑止できる程度にまで)、前記薬液流路13の内径を小さくしている。これにより、前記薬液流路13の残留薬液の前記清水タンク3への流入阻止が確実なものとされている。   Further, in the present embodiment, the residual chemical liquid in the chemical liquid flow path 13 having a specific gravity greater than that of fresh water is suppressed from flowing by its own weight while the chemical liquid pump 12 is stopped and being replaced with the fresh water in the fresh water flow path 8. The inner diameter of the chemical liquid flow path 13 is made small so that it can be (to a degree that can be suppressed). Thereby, the inflow prevention to the said fresh water tank 3 of the residual chemical | medical solution of the said chemical | medical solution flow path 13 is ensured.

なお、前記薬液流路13の断面積の減少分は、薬液流路の本数を増やして前記合流部9に並列に接続することで補うことができる。例えば、内径9mmの単一チューブポンプに代えて、内径6.5mmの二連チューブポンプを用いれば、所要の性能を得ることができる。   Note that the decrease in the cross-sectional area of the chemical liquid flow path 13 can be compensated by increasing the number of chemical liquid flow paths and connecting them in parallel to the merging portion 9. For example, if a double tube pump with an inner diameter of 6.5 mm is used instead of a single tube pump with an inner diameter of 9 mm, the required performance can be obtained.

前記清水流路8の容積よりも前記薬液流路13の容積を小さくするについては、該薬液流路13の長さを長くし、その分だけ該溶質流路13の径を小さくすると好適である。このようにすれば、前記薬液タンク4及び前記薬液ポンプ12の配設位置に大きな自由度を持たせることができ、それらのレイアウトの幅が広がるからである。この場合、前記薬液流路13の内径の小ささが適当であれば、前記薬液ポンプ12の停止時における前記薬液流路13内の残留薬液の前記清水流路8側への流動も抑制できる。   In order to make the volume of the chemical liquid flow path 13 smaller than the volume of the fresh water flow path 8, it is preferable to lengthen the length of the chemical liquid flow path 13 and decrease the diameter of the solute flow path 13 accordingly. . By doing so, it is possible to give a large degree of freedom to the arrangement positions of the chemical liquid tank 4 and the chemical liquid pump 12, and the width of their layout is widened. In this case, if the small inner diameter of the chemical liquid flow path 13 is appropriate, the flow of the residual chemical liquid in the chemical liquid flow path 13 toward the fresh water flow path 8 when the chemical liquid pump 12 is stopped can be suppressed.

前記液体散布装置1は、前記吐出流路18における前記流量センサ20の上流側に調量流路25を備えている。該調量流路25は、前記吐出流路18から分岐して前記混合流路23へと連通している。前記調量流路25には、電動式等の調量弁26が介装されている。図示例では、前記調量流路25を前記戻し流路23に連通させているが、前記逆止弁11の下流側で前記混合流路10に直接連結してもよいことは勿論である。   The liquid spraying apparatus 1 includes a metering channel 25 on the upstream side of the flow rate sensor 20 in the discharge channel 18. The metering channel 25 branches from the discharge channel 18 and communicates with the mixing channel 23. A metering valve 26 such as an electric type is interposed in the metering channel 25. In the illustrated example, the metering flow path 25 communicates with the return flow path 23, but it goes without saying that the metering flow path 25 may be directly connected to the mixing flow path 10 on the downstream side of the check valve 11.

前記液体散布装置1は、前記流量センサ20に加えて、単位面積当たりの散布量を常に均一にするために必要なデータを検知する種々のセンサ27を備えている。例えば、車速センサや散布幅検知センサ等である。これらのセンサ27の検知信号は、前記制御装置17へと提供される。そして該制御装置17は、前記各信号に基づき、前記液体散布装置1の移動速度や散布幅等の変化に応じて散布流量を変化させ、単位面積当たりの散布量が常に均一となるように前記調量弁26の調量値を制御する。   In addition to the flow rate sensor 20, the liquid spraying device 1 includes various sensors 27 that detect data necessary for always uniforming the spraying amount per unit area. For example, a vehicle speed sensor, a spreading width detection sensor, or the like. The detection signals of these sensors 27 are provided to the control device 17. Then, the control device 17 changes the spraying flow rate according to changes in the moving speed, spraying width, etc. of the liquid spraying device 1 based on the signals, so that the spraying amount per unit area is always uniform. The metering value of the metering valve 26 is controlled.

前記液体散布装置1において、前記散布ノズル部7からの散布を停止するために前記三方コック19を操作して前記戻し流路23側へと流路を切換えると、前記散布用ポンプ5から吐出される散布液Kの全量が前記混合流路10へと戻されて循環する。この散布液Kの循環時間が長いと、循環流路内の散布液Kの温度が上昇してしまう場合もある。これを放置すると、循環する薬液が高温となって、循環流路内のシール部材の能力を著しく低下させたり、ホースが軟化して抜け出す等により、薬液が漏出する虞を生ずる。また、高温の薬液が散布されれば、散布を受ける作物に被害が出る場合があるほか、薬液の種類によっては薬液が変質してしまう等の不都合もある。   In the liquid spraying apparatus 1, when the three-way cock 19 is operated to switch the flow path to the return flow path 23 side in order to stop spraying from the spray nozzle unit 7, the liquid is discharged from the spray pump 5. The entire amount of spray liquid K to be returned is returned to the mixing flow path 10 and circulated. If the circulation time of the spray liquid K is long, the temperature of the spray liquid K in the circulation channel may increase. If this is left as it is, the circulating chemical solution becomes high temperature, and the capability of the sealing member in the circulation flow path is remarkably reduced, or the hose is softened and comes out, which may cause leakage of the chemical solution. In addition, spraying high-temperature chemicals may cause damage to the crops that are sprayed, and there are other inconveniences such as alteration of chemicals depending on the type of chemical.

そこで、前記戻し流路23を介して前記混合流路10に戻される散布液Kをその流路の外側から冷却する冷却手段を設けると好適である。該冷却手段としては、図示してはいないが、前記戻し流路23の少なくとも一部を放熱効率の良好な素材又は構成とし、その外側にそれ自体周知の空冷式冷却ユニットを設けることができる。このようにすれば、循環する散布液を簡単且つ合理的に冷却することができる。   Therefore, it is preferable to provide a cooling means for cooling the spray liquid K returned to the mixing channel 10 via the return channel 23 from the outside of the channel. As the cooling means, although not shown, at least a part of the return flow path 23 can be made of a material or a structure with good heat dissipation efficiency, and a known air cooling type cooling unit can be provided on the outside thereof. In this way, the circulating spray liquid can be cooled easily and rationally.

前記冷却手段のさらに合理的な実施の一形態として、次のような構成を採用することもできる。   As a more rational embodiment of the cooling means, the following configuration may be employed.

すなわち、前記冷却手段として、前記戻し流路23の少なくとも一部を、放熱効率の良好な素材又は構成の熱交換用流路27とする。そして、該熱交換用流路27を、前記清水タンク3内の清水Wに漬かるように配設して、熱交換用タンク内配管28とする。具体的には、前記熱交換用流路27を前記清水タンク3内の底部3a付近に配設する。この場合、前記清水タンク3内の清水Wにより、前記熱交換用タンク内配管28を流れる散布液Kが冷却される。前記空冷式冷却ユニットのような特別な装置を用いず、前記清水タンク3内の清水Wを用いて冷却するので、構成の合理性がより高い。加えて、前記戻し流路23を介して前記混合流路10に戻される散布液Kに比べると、前記清水タンク3内の清水Wの方がはるかに大量であるので、冷却効率がきわめて良好となる。さらに、清水Wで冷却されるので、他の種類の液体で冷却する場合に比べて、前記熱交換用タンク内配管28が腐蝕等しにくく、耐久性も良好となる。   That is, as the cooling means, at least a part of the return flow path 23 is a heat exchange flow path 27 made of a material or a structure having good heat dissipation efficiency. Then, the heat exchange flow path 27 is arranged so as to be immersed in the fresh water W in the fresh water tank 3 to form a heat exchange tank internal pipe 28. Specifically, the heat exchange channel 27 is disposed in the vicinity of the bottom 3 a in the fresh water tank 3. In this case, the spray water K flowing through the heat exchange tank piping 28 is cooled by the fresh water W in the fresh water tank 3. Since the cooling is performed using the fresh water W in the fresh water tank 3 without using a special device such as the air-cooled cooling unit, the rationality of the configuration is higher. In addition, compared with the spray liquid K returned to the mixing channel 10 via the return channel 23, the amount of the fresh water W in the fresh water tank 3 is much larger, so that the cooling efficiency is very good. Become. Furthermore, since it is cooled by the fresh water W, the pipe 28 in the heat exchange tank is less likely to be corroded and the durability is improved as compared with the case of cooling with another type of liquid.

なお、前記冷却手段の適用対象は、図1の構成の散布装置には限定されず、背景技術の項に例示した特許文献1に記載されている構成の散布装置にも適用できることは勿論である。   It should be noted that the application target of the cooling means is not limited to the spraying device having the configuration shown in FIG. 1, but can be applied to the spraying device having the configuration described in Patent Document 1 exemplified in the background art section. .

本発明の一実施の形態に係る液体散布装置の、制御回路を含む配管図である。It is a piping diagram including the control circuit of the liquid spraying apparatus which concerns on one embodiment of this invention.

符号の説明Explanation of symbols

1 液体散布装置
2 吸入口
3 溶媒源(清水タンク)
3a 清水タンクの底部
4 溶質源(薬液タンク)
5 散布用ポンプ
6 吐出口
8 溶媒流路(清水流路)
9 合流部
10 混合流路
11 逆止弁
13 溶質流路(薬液流路)
17 制御装置
18 吐出流路
19 切換弁(三方コック)
20 流量センサ
23 戻し流路
24 連結部
28 冷却手段(熱交換用タンク内配管)
K 散布液
S 溶質(薬液)
W 溶媒(清水、冷却手段)
1 Liquid spraying device 2 Suction port 3 Solvent source (fresh water tank)
3a Bottom of fresh water tank 4 Solute source (chemical tank)
5 Dispersion pump 6 Discharge port 8 Solvent flow path (fresh water flow path)
9 Junction part 10 Mixing channel 11 Check valve 13 Solute channel (chemical solution channel)
17 Control device 18 Discharge flow path 19 Switching valve (3-way cock)
20 Flow rate sensor 23 Return flow path 24 Connecting portion 28 Cooling means (heat exchange tank piping)
K spray liquid S solute (chemical)
W Solvent (fresh water, cooling means)

Claims (6)

溶媒源(3)と、溶質源(4)と、散布用ポンプ(5)と、前記溶媒源(3)の溶媒(W)と前記溶質源(4)の溶質(S)が合流する合流部(9)と、該合流部(9)から前記散布用ポンプ(5)の吸入口(2)へと連通する混合流路(10)と、前記散布用ポンプ(5)の吐出口(6)に連通する吐出流路(18)と、該吐出流路(18)に介装された切換弁(19)と、該切換弁(19)から前記混合流路(10)へと散布液(K)を戻すための戻し流路(23)と、散布液(K)の流量を検知する流量センサ(20)と、該流量センサ(20)から得られる信号に基づいて前記合流部(9)への前記溶質(S)の繰り出し量を自動制御する制御装置(17)を備えている液体散布装置(1)であって、前記混合流路(9)に対する前記戻し流路(23)の連結部(24)と前記合流部(9)との間に、該合流部(9)側への散布液(K)の逆流を阻止する逆止弁(11)が介装されている、液体散布装置。   Solvent source (3), solute source (4), spray pump (5), solvent (W) of solvent source (3) and solute (S) of solute source (4) join together (9), a mixing channel (10) communicating from the junction (9) to the suction port (2) of the spray pump (5), and a discharge port (6) of the spray pump (5) A discharge passage (18) communicating with the discharge passage, a switching valve (19) interposed in the discharge passage (18), and a spray liquid (K) from the switching valve (19) to the mixing passage (10). ), A flow rate sensor (20) for detecting the flow rate of the spray liquid (K), and a signal obtained from the flow rate sensor (20) to the junction (9). A liquid spraying device (1) provided with a control device (17) for automatically controlling the feed amount of the solute (S) of the solute (S) before the mixing channel (9) A check valve (11) is provided between the connecting portion (24) of the return flow path (23) and the merging portion (9) to prevent the backflow of the spray liquid (K) toward the merging portion (9). A liquid spraying device. 前記合流部(9)へと連通する単一又は複数の溶質流路(13)と、前記溶媒源(3)の底部(3a)から前記合流部(9)へと連通する溶媒流路(8)を備え、該溶媒流路(8)の容積よりも前記溶質流路(13)の容積が小さくされている、請求項1に記載の液体散布装置。   One or a plurality of solute channels (13) communicating with the junction (9) and a solvent channel (8) communicating from the bottom (3a) of the solvent source (3) to the junction (9) ), And the volume of the solute flow path (13) is smaller than the volume of the solvent flow path (8). 前記合流部(9)へと連通する単一又は複数の溶質流路(13)と、前記溶媒源(3)の底部(3a)から前記合流部(9)へと連通する溶媒流路(8)を備え、前記単一又は複数の溶質流路(13)の内径が、溶質(S)の流動を抑制できるように小さくされている、請求項1又は2に記載の液体散布装置。   One or a plurality of solute channels (13) communicating with the junction (9) and a solvent channel (8) communicating from the bottom (3a) of the solvent source (3) to the junction (9) ), And the inner diameter of the single or plural solute flow paths (13) is made small so that the flow of the solute (S) can be suppressed. 前記溶質源(4)の配設位置に大きな自由度を持たせることができるように前記単一又は複数の溶質流路(13)の長さを長くし、その分だけ該溶質流路(13)の径を小さくしてある、請求項2又は3に記載の液体散布装置。   The length of the single or plural solute channels (13) is increased so that a large degree of freedom can be given to the position where the solute source (4) is arranged, and the solute channel (13) is increased by that much. 4) The liquid spraying device according to claim 2 or 3, wherein the diameter is reduced. 前記戻し流路(23)を介して前記混合流路(10)に戻される散布液(K)をその流路の外側から冷却する冷却手段(W,28)を備えている、請求項1,2,3又は4に記載の液体散布装置。   The cooling means (W, 28) for cooling the spray liquid (K) returned to the mixing channel (10) through the return channel (23) from the outside of the channel is provided. The liquid spraying device according to 2, 3 or 4. 前記溶媒源が清水タンク(3)であり、前記冷却手段が、前記戻し流路(23)の少なくとも一部を構成し且つ前記清水タンク(3)内の清水(W)に漬かるように配設されて前記混合流路(10)へと連通する熱交換用タンク内配管(28)を備えている、請求項5に記載の液体散布装置。   The solvent source is a fresh water tank (3), and the cooling means constitutes at least a part of the return flow path (23) and is soaked in fresh water (W) in the fresh water tank (3). The liquid spraying device according to claim 5, further comprising a heat exchange tank internal pipe (28) communicated with the mixing flow path (10).
JP2006177892A 2006-06-28 2006-06-28 Liquid spraying device Active JP4882086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177892A JP4882086B2 (en) 2006-06-28 2006-06-28 Liquid spraying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177892A JP4882086B2 (en) 2006-06-28 2006-06-28 Liquid spraying device

Publications (2)

Publication Number Publication Date
JP2008006361A true JP2008006361A (en) 2008-01-17
JP4882086B2 JP4882086B2 (en) 2012-02-22

Family

ID=39065061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177892A Active JP4882086B2 (en) 2006-06-28 2006-06-28 Liquid spraying device

Country Status (1)

Country Link
JP (1) JP4882086B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259964A (en) * 2009-04-30 2010-11-18 Yamabiko Corp Liquid sprinkler
WO2013070739A1 (en) * 2011-11-07 2013-05-16 Graco Minnesota Inc. Hot melt tank and check valve
CN103120061A (en) * 2013-03-05 2013-05-29 曹延明 Rice field fertilizing method
US9156053B2 (en) 2011-10-27 2015-10-13 Graco Minnesota Inc. Melter
US9174231B2 (en) 2011-10-27 2015-11-03 Graco Minnesota Inc. Sprayer fluid supply with collapsible liner
US9796492B2 (en) 2015-03-12 2017-10-24 Graco Minnesota Inc. Manual check valve for priming a collapsible fluid liner for a sprayer
US11707753B2 (en) 2019-05-31 2023-07-25 Graco Minnesota Inc. Handheld fluid sprayer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812630Y2 (en) * 1975-07-28 1983-03-10 ヤンマー農機株式会社 Yakueki Kongou Souchi
JPH01320913A (en) * 1988-06-22 1989-12-27 Kenzo Yamamoto Apparatus for mixing liquid chemicals
JPH09206638A (en) * 1995-12-01 1997-08-12 Sunstar Eng Inc Method and apparatus for foaming high viscosity material
JP2000120530A (en) * 1998-10-13 2000-04-25 Koganei Corp Chemicals supply method and device
JP2000202352A (en) * 1999-01-12 2000-07-25 Toshiba Corp Coating solution applying apparatus
JP2001129466A (en) * 1999-11-08 2001-05-15 Taikisha Ltd Dip type coating pre-treating device
JP2004216205A (en) * 2003-01-09 2004-08-05 Kioritz Corp Liquid chemical spray apparatus and liquid chemical spray wagon equipped with the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812630Y2 (en) * 1975-07-28 1983-03-10 ヤンマー農機株式会社 Yakueki Kongou Souchi
JPH01320913A (en) * 1988-06-22 1989-12-27 Kenzo Yamamoto Apparatus for mixing liquid chemicals
JPH09206638A (en) * 1995-12-01 1997-08-12 Sunstar Eng Inc Method and apparatus for foaming high viscosity material
JP2000120530A (en) * 1998-10-13 2000-04-25 Koganei Corp Chemicals supply method and device
JP2000202352A (en) * 1999-01-12 2000-07-25 Toshiba Corp Coating solution applying apparatus
JP2001129466A (en) * 1999-11-08 2001-05-15 Taikisha Ltd Dip type coating pre-treating device
JP2004216205A (en) * 2003-01-09 2004-08-05 Kioritz Corp Liquid chemical spray apparatus and liquid chemical spray wagon equipped with the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259964A (en) * 2009-04-30 2010-11-18 Yamabiko Corp Liquid sprinkler
US9156053B2 (en) 2011-10-27 2015-10-13 Graco Minnesota Inc. Melter
US9174231B2 (en) 2011-10-27 2015-11-03 Graco Minnesota Inc. Sprayer fluid supply with collapsible liner
WO2013070739A1 (en) * 2011-11-07 2013-05-16 Graco Minnesota Inc. Hot melt tank and check valve
CN103120061A (en) * 2013-03-05 2013-05-29 曹延明 Rice field fertilizing method
US9796492B2 (en) 2015-03-12 2017-10-24 Graco Minnesota Inc. Manual check valve for priming a collapsible fluid liner for a sprayer
US10315787B2 (en) 2015-03-12 2019-06-11 Graco Minnesota Inc. Manual check valve for priming a collapsible fluid liner for a sprayer
US11707753B2 (en) 2019-05-31 2023-07-25 Graco Minnesota Inc. Handheld fluid sprayer

Also Published As

Publication number Publication date
JP4882086B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4882086B2 (en) Liquid spraying device
US10631531B2 (en) Sprayer fluid operation system
US20120241533A1 (en) Agricultural sprayer and method
EA024326B1 (en) Spraying assembly, and sprayer equipped with at least one such assembly
JP2009196486A (en) Unmanned helicopter
JP2007167809A (en) Liquid spraying apparatus and liquid spraying method
EP3476491B1 (en) Distributed pump system
KR100855309B1 (en) System for cleaning of the water service pipe and nozzle used in the system
US20180373273A1 (en) Dilution adjustment system and method
RU1809750C (en) Device for application of chemical plant-protecting means
EP1294228B1 (en) Improvements relating to agricultural spray systems
US11457621B2 (en) Agricultural sprayer system and method
BR112020009038A2 (en) method for a spray device
JP4633566B2 (en) Irrigation device for passenger management machine and passenger management machine
JP5066676B2 (en) Liquid spraying device
KR101021097B1 (en) Correct injection system of medication
KR101245297B1 (en) Apparatus for Warming Road Snow Removal Solution Using a Heat-Exchanger
US20210146382A1 (en) Liquid recirculating valve
JP4406763B2 (en) Chemical spraying device and chemical spraying vehicle equipped with the same
JP7054879B2 (en) Chemical spray system and its operation method
JP2002001180A (en) Liquid spray device
KR200341885Y1 (en) communicable diseases control machine
JP2008012486A (en) Chemical spraying apparatus
JP2008125434A (en) Traveling type chemical liquid-mixing and spraying apparatus
CN216779604U (en) Cleaning device capable of preventing cross contamination of liquid medicine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4882086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250