JP2008005595A - Protective relay - Google Patents

Protective relay Download PDF

Info

Publication number
JP2008005595A
JP2008005595A JP2006171211A JP2006171211A JP2008005595A JP 2008005595 A JP2008005595 A JP 2008005595A JP 2006171211 A JP2006171211 A JP 2006171211A JP 2006171211 A JP2006171211 A JP 2006171211A JP 2008005595 A JP2008005595 A JP 2008005595A
Authority
JP
Japan
Prior art keywords
phase
current
phase current
zero
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006171211A
Other languages
Japanese (ja)
Inventor
Shigeto Oda
重遠 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006171211A priority Critical patent/JP2008005595A/en
Publication of JP2008005595A publication Critical patent/JP2008005595A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protective relay which surely determines faulty phase, for the purpose of the solving a conventional current deferential protective relay, wherein it cannot discriminate between a one-phase grounding fault and a two-phase grounding fault though it selects a faulty phase, when the differential output between the zero-phase current at its own end and the zero-phase current at the other party's end amounts to a certain value or larger. <P>SOLUTION: This protective relay is equipped with positive phase/reverse phase/zero phase current generating means for a faulty phase determining, circuit installed in itself. First and second phase judging means are connected to the positive phase current generating means, and first to third phase determining means are connected to the reverse phase current generating means, and first and third phase determining means are connected to the zero phase current generating means and is further equipped with a short-circuited faulty phase determining element which determines the short-circuited faulty phase from the output of the first phase determining means and a grounded faulty phase determining element which determines one-phase/two-phase grounding and the determination of the faulty phase from the output of the second and third phase determining means. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、直接接地系における電力送電線路を保護する保護継電装置に係るもので、特に送電線路に発生した故障の種類と故障相の判別を行う保護継電装置に関するものである。   The present invention relates to a protective relay device that protects a power transmission line in a direct grounding system, and more particularly to a protective relay device that determines the type and failure phase of a failure that has occurred in a transmission line.

従来の3相送電線の電流差動保護装置において、自端の零相電流と相手端零相電流の差動演算を行う第1の手段と、故障相を判別する第2の手段を備え、第1の手段により零相電流差動出力が一定値以上となったとき、第2の手段により故障相を選択し、故障相のみを選択遮断する電流差動保護装置が示されている(例えば、特許文献1参照)。   In a current differential protection device for a conventional three-phase power transmission line, the device includes a first means for performing a differential operation of a zero-phase current at the end and a zero-phase current at the other end, and a second means for determining a failure phase A current differential protection device is shown in which when a zero-phase current differential output exceeds a certain value by a first means, a fault phase is selected by a second means and only the fault phase is selectively cut off (for example, , See Patent Document 1).

特開昭57−119613号公報Japanese Patent Laid-Open No. 57-119613

しかしながら前記特許文献1に示されたものは、1線地絡事故発生時の零相電流と、逆相電流の相対位相関係から故障相を判別するものであり、2相地絡、2相短絡故障の発生時には故障相の判別を行うことは出来ないという問題点がある。
この発明は前記のような課題を解決するためになされたもので、1相地絡、2相地絡、2相短絡故障のいずれかが発生した場合においても、故障相の判定を確実に行う保護継電装置を得ることを目的としている。
However, what is disclosed in Patent Document 1 is to determine the failure phase from the relative phase relationship between the zero-phase current at the time of occurrence of the one-wire ground fault and the reverse-phase current. There is a problem that the failure phase cannot be determined when a failure occurs.
The present invention has been made to solve the above-described problems. Even when one-phase ground fault, two-phase ground fault, or two-phase short-circuit fault occurs, the fault phase is reliably determined. The purpose is to obtain a protective relay device.

この発明に係る保護継電装置は、送電線に設置されたCTにより計測された3相の電流を入力として、零相電流と、3相のそれぞれを基準相とする正相電流及び逆相電流とを生成する電流生成手段と、
零相電流が所定の零相電流値より小さく、かつ、3相の何れかの相を基準相とする正相電流と逆相電流との間の位相差が所定の第1の位相差基準値より大きい場合に、その相でない2相間の短絡故障と判定する短絡故障判定要素と、
3相の何れかの相を基準相とする正相電流及び逆相電流と零相電流の位相に関して、逆相電流または零相電流と正相電流との間の位相差が所定の第2の位相差基準値より小さく、かつ、逆相電流と零相電流との間の位相差が所定の第3の位相差範囲内にある場合に、その相が故障相である1相地絡故障と判定する1相地絡故障判定要素と、
3相の何れかの相を基準相とする正相電流及び逆相電流と零相電流の位相に関して、逆相電流または零相電流と正相電流との間の位相差が所定の第2の位相差基準値より大きく、かつ、逆相電流と零相電流との間の位相差が所定の第3の位相差範囲内にある場合に、その相が健全相である2相地絡故障と判定する2相地絡故障判定要素とを有する故障相判定回路を備えたものである。
The protective relay device according to the present invention has a three-phase current measured by CT installed in a transmission line as an input, and a zero-phase current and a positive-phase current and a negative-phase current with each of the three phases as a reference phase. Current generating means for generating
A zero-phase current is smaller than a predetermined zero-phase current value, and a phase difference between a positive-phase current and a negative-phase current having any one of the three phases as a reference phase is a predetermined first phase difference reference value A short-circuit fault determination element that determines a short-circuit fault between two phases that are not the phases when the phase is greater than
The phase difference between the negative phase current or the zero phase current and the positive phase current with respect to the phase of the positive phase current and the negative phase current and the zero phase current with any one of the three phases as a reference phase is a predetermined second value. When the phase difference is smaller than the phase difference reference value and the phase difference between the negative-phase current and the zero-phase current is within a predetermined third phase difference range, A one-phase ground fault determination element for determining;
The phase difference between the negative phase current or the zero phase current and the positive phase current with respect to the phase of the positive phase current and the negative phase current and the zero phase current with any one of the three phases as a reference phase is a predetermined second value. If the phase difference between the negative phase current and the zero phase current is larger than the phase difference reference value and is within a predetermined third phase difference range, the two-phase ground fault that is a healthy phase A fault phase determination circuit having a two-phase ground fault determination element for determination is provided.

この発明に係る保護継電装置には、3相の電流を入力として、零相電流と、3相のそれぞれを基準相とする正相電流及び逆相電流とを生成する電流生成手段と、
零相電流が所定の零相電流基準値より小さく、かつ、3相の何れかの相を基準相とする正相電流と逆相電流との間の位相差が、所定の第1の位相差基準値より大きい場合に、その相でない2相間の短絡故障と判定する短絡故障判定要素と、
3相の何れかの相を基準相とする逆相電流または零相電流と正相電流との間の位相差が、所定の第2の位相差基準値より小さく、かつ、逆相電流と零相電流との間の位相差が、所定の第3の位相差範囲内にある場合に、その相が故障相である1相地絡故障と判定する1相地絡故障判定要素と、
3相の何れかの相を基準相とする逆相電流または零相電流と正相電流との間の位相差が、所定の第2の位相差基準値より大きく、かつ、逆相電流と零相電流との間の位相差が、所定の第3の位相差範囲内にある場合に、基準相が健全相である2相地絡故障と判定する2相地絡故障判定要素と、
を有する故障相判定回路を備えているので、1相地絡、2相地絡、2相短絡の故障区別が出来るとともに、故障相の判定を確実に行えるという効果がある。
In the protective relay device according to the present invention, current generation means for generating a zero-phase current and a positive-phase current and a reverse-phase current with each of the three phases as a reference phase, using a three-phase current as an input,
The zero-phase current is smaller than a predetermined zero-phase current reference value, and the phase difference between the positive-phase current and the negative-phase current having any one of the three phases as a reference phase is a predetermined first phase difference. A short-circuit failure determination element that determines a short-circuit failure between two phases that are not the phase when greater than the reference value;
The phase difference between the negative phase current or the zero phase current and the positive phase current with any one of the three phases as a reference phase is smaller than a predetermined second phase difference reference value, and the negative phase current and zero phase current are zero. A one-phase ground fault determination element for determining that the phase is a one-phase ground fault when the phase difference between the phase currents is within a predetermined third phase difference range;
The phase difference between the negative phase current or the zero phase current and the positive phase current with any one of the three phases as a reference phase is larger than a predetermined second phase difference reference value, and the negative phase current and zero phase current are zero. A two-phase ground fault determination element that determines that the reference phase is a healthy two-phase ground fault when the phase difference between the phase currents is within a predetermined third phase difference range;
Therefore, there is an effect that the fault phase can be discriminated from one-phase ground fault, two-phase ground fault, and two-phase short circuit, and the fault phase can be determined reliably.

実施の形態1.
以下、この発明による実施の形態1を図に基づいて説明する。
図1は実施の形態1による保護継電装置内に設けられた送電線の故障相判定回路の構成図である。また、図2に後述する各電流生成手段および各位相判定手段の詳細構成を示す。
図1において、送電線1に設置されたCT2の3相電流出力IA、IB、ICを電流入力手段4にて故障相判定回路3に取り込み、その3相電流IA、IB、ICから正相電流I、逆相電流I、零相電流Iの各々を、正相電流生成手段5、逆相電流生成手段6、零相電流生成手段7によって、A相を基準相とした場合には下式により演算することで生成する。
=1/3(IA+aIB+aIC)・・・・・正相電流
=1/3(IA+aIB+aIC)・・・・・逆相電流
=1/3(IA+IB+IC) ・・・・・・・零相電流
ここで、aは、120°の移相演算、aは240°の移相演算である。
なお、B相基準では、
=1/3(aIA+IB+aIC)・・・・・正相電流
=1/3(aIA+IB+aIC)・・・・・逆相電流
また、C相基準では、
=1/3(aIA+aIB+IC)・・・・・正相電流
=1/3(aIA+aIB+IC)・・・・・逆相電流
の式により演算される。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a configuration diagram of a fault phase determination circuit for a power transmission line provided in the protective relay device according to the first embodiment. FIG. 2 shows a detailed configuration of each current generating means and each phase determining means described later.
In FIG. 1, the CT 2 three-phase current outputs IA, IB, IC installed in the transmission line 1 are taken into the fault phase determination circuit 3 by the current input means 4, and the positive-phase currents are obtained from the three-phase currents IA, IB, IC. When each of I 1 , negative phase current I 2 , and zero phase current I 0 is converted into a reference phase by the positive phase current generation means 5, the negative phase current generation means 6, and the zero phase current generation means 7, Generated by calculating with the following formula.
I 1 = 1/3 (IA + aIB + a 2 IC)... Positive phase current I 2 = 1/3 (IA + a 2 IB + aIC)... Reverse phase current I 0 = 1/3 (IA + IB + IC). ... Zero-phase current where a is a 120 ° phase shift calculation and a 2 is a 240 ° phase shift calculation.
In the B phase standard,
I 1 = 1/3 (a 2 IA + IB + aIC) ... Positive phase current I 2 = 1/3 (aIA + IB + a 2 IC) ... Reverse phase current
I 1 = 1/3 (aIA + a 2 IB + IC)... Positive phase current I 2 = 1 (a 2 IA + aIB + IC)...

詳細は後述するように上式で得られたI、I、Iを入力する第1の位相判定手段51の出力結果に基づいて、短絡故障相判定手段61にて故障が短絡故障の場合の故障相を判定する。第2の位相判定手段52と第3の位相判定手段53の出力に基づいて、地絡故障相判定手段62にて、故障が地絡故障の場合の故障種類、すなわち1相地絡か2相地絡かの判定と、その故障相の判定を行うよう構成されている。 As will be described in detail later, the short-circuit fault phase determination unit 61 determines that the fault is a short-circuit fault based on the output result of the first phase determination unit 51 that inputs I 1 , I 2 , and I 0 obtained by the above formula. Determine the failure phase of the case. Based on the outputs of the second phase determination unit 52 and the third phase determination unit 53, the ground fault fault phase determination unit 62 determines the fault type when the fault is a ground fault, that is, one phase ground fault or two phase. It is configured to determine whether there is a ground fault and the failure phase.

次に、この構成の故障相判定回路3の動作の理解をより易くするため、その動作原理を図3に基づいて説明する。
図3(a)は、A相1相地絡故障時の等価回路を、図3(b)はBC相2相地絡故障時の等価回路を、図3(c)はBC相短絡故障時の等価回路を示す。いずれの図3(a)〜図3(c)においても、故障相判定回路3のCT設置点での正相電流I、逆相電流I、零相電流Iを矢印記号にて示す。
Next, in order to make it easier to understand the operation of the failure phase determination circuit 3 having this configuration, the operation principle will be described with reference to FIG.
3 (a) shows an equivalent circuit when a phase A / phase one ground fault occurs, FIG. 3 (b) shows an equivalent circuit when a BC phase / two phase ground fault occurs, and FIG. 3 (c) shows a case when a BC phase short circuit fault occurs. The equivalent circuit of is shown. 3A to 3C, the positive phase current I 1 , the negative phase current I 2 , and the zero phase current I 0 at the CT installation point of the failure phase determination circuit 3 are indicated by arrow symbols. .

図3(a)から明らかなように、正相電流Iと逆相電流Iとは電流方向がほぼ同位相である。また、逆相電流Iと零相電流Iも電流方向がほぼ同位相である。図3(b)で明らかなように正相電流Iと逆相電流Iは電流方向が逆位相であり、逆相電流Iと零相電流Iは電流方向がほぼ同位相である。つまり、地絡故障時において、正相電流Iと逆相電流Iが同位相の場合には、1相地絡故障であり、逆位相の場合には2相地絡故障である。 FIGS. 3 (a) As is apparent from the positive phase current I 1 and the reverse-phase current I 2 current direction is substantially the same phase. Further, the reverse-phase current I 2 and the zero-phase current I 0 also have substantially the same current direction. As is apparent from FIG. 3B, the current direction of the positive phase current I 1 and the negative phase current I 2 is opposite in phase, and the current direction of the negative phase current I 2 and zero phase current I 0 is substantially in phase. . That is, at the time of a ground fault, when the normal phase current I 1 and the reverse phase current I 2 are in the same phase, it is a one-phase ground fault and when it is in the reverse phase, it is a two-phase ground fault.

また、逆相電流Iと零相電流Iが同位相の場合、1相地絡故障では逆相電流I演算の基準相が故障相と判定できる。2相地絡故障ではI演算の基準相が健全相と判定できるので、地絡の故障種類(1相地絡、2相地絡)と故障相の判定が可能になる。また短絡故障と地絡故障の区別は、零相電流Iの有無により判定できる。すなわち零相電流Iがある場合は地絡故障、零相電流Iが無い場合には短絡故障となる。 Further, when the reverse phase current I 2 and the zero phase current I 0 are in the same phase, it is possible to determine that the reference phase of the reverse phase current I 2 calculation is a fault phase in the case of a one-phase ground fault. In the two-phase ground fault, since the reference phase of the I 2 calculation can be determined as a healthy phase, it is possible to determine the fault type (one-phase ground fault, two-phase ground fault) and the fault phase. The distinction between short-circuit failure and the ground fault can be determined by the presence or absence of the zero-phase current I 0. That is, when there is a zero-phase current I 0-ground fault, a short-circuit fault when there is no zero-phase current I 0.

図3(c)に示すBC相短絡故障時の等価回路から、正相電流I、逆相電流Iの位相が、A相基準の正相電流I、逆相電流Iで逆位相となることがわかる。この様子を図4(a)〜図4(c)により説明する。
図4(a)はA相基準のBC相短絡故障時の電流ベクトル関係を示し、I(正相電流)、I(逆相電流)は逆位相であることが分かる。図4(b)はB相基準のBC相短絡故障時の電流ベクトル関係を示し、I、Iは逆位相ではなく、120°以内の位相関係に位置することが分かる。図4(c)はC相基準のBC相短絡故障時の電流ベクトル関係を示し、I、Iは逆位相ではなく、120°以内の位相関係に位置することが分かる。即ち、I、Iの位相関係により、例えば、A相基準演算の場合、逆位相であれば、BC相が故障相であり、逆にA相が健全相であることが判断できる。
From the equivalent circuit at the time of the BC phase short-circuit failure shown in FIG. 3C, the phase of the positive phase current I 1 and the negative phase current I 2 is the negative phase of the positive phase current I 1 and the negative phase current I 2 based on the A phase. It turns out that it becomes. This will be described with reference to FIGS. 4 (a) to 4 (c).
FIG. 4A shows the current vector relationship when the BC phase short-circuit fault is based on the A phase, and it can be seen that I 1 (positive phase current) and I 2 (reverse phase current) are in reverse phase. FIG. 4B shows the current vector relationship at the time of the BC phase short-circuit fault based on the B phase, and it can be seen that I 1 and I 2 are not in opposite phases but in a phase relationship within 120 °. FIG. 4C shows the current vector relationship when the C-phase reference BC-phase short-circuit fault occurs, and it can be seen that I 1 and I 2 are not in opposite phases but in a phase relationship within 120 °. That is, from the phase relationship between I 1 and I 2 , for example, in the case of the A phase reference calculation, if the phase is opposite, it can be determined that the BC phase is a failure phase and conversely the A phase is a healthy phase.

上記に基づいて、I(正相電流)、I(逆相電流)、I(零相電流)の各電流信号によって、故障相を判定するこの実施の形態1による回路の詳細説明を図5に基づいて行う。
図5は、前述した図1の故障相判定回路3に示された各手段から、第1〜第3の位相判定手段51〜53と、短絡故障相判定要素61、地絡故障相判定要素62の部分のみを取り出し、その内部構成の概要を示す図であり、第1、第2、第3の位相判定手段51、52、53のブロック図と、短絡故障相判定要素61、地絡故障相判定要素62のブロック図を示す。図6は各電流生成手段5〜6と、各位相判定手段51〜53との信号授受を示す詳細図である。正相電流生成手段5は、図6に示すようにA相、B相、C相の3相それぞれを基準相として正相電流Iを生成する。逆相電流生成手段6は、同じ相を基準相とする逆相電流Iを生成する。零相電流生成手段7は、A相、B相、C相の零相電流Iを生成する。
図5に示した第1の位相判定手段51は、逆位相判定手段21と、短絡故障判定手段22と、第1のAND回路23により構成されており、さらに詳しくは図6に示すように、逆位相判定手段21は各相を基準相とする3個の逆位相判定手段21−A、21−B、21−Cより構成されている。すなわち第1の位相判定手段51は、正相、逆相、零相各電流生成手段5、6、7から入力される正相電流Iと逆相電流Iとの位相差が、所定の第1の位相差基準値である角度θ3(例えば120°)より大きい、即ち逆位相を判定する逆位相差判定21−A〜21−Cと、零相電流I<K1(零相電流基準値である電流なしを判定する所定の設定値)により短絡故障と判定する短絡故障判定手段22とのAND条件を判定する第1のAND手段23により構成され、この第1の位相判定手段51に接続される短絡故障相判定要素61が3相の中の何れかの相において、前記第1のAND手段23が1(真)を出力する場合に、1(真)を出力する前記第1のAND手段23に対応する相が健全相である2相短絡故障と判断する。
Based on the above, a detailed description of the circuit according to the first embodiment in which a fault phase is determined based on current signals of I 1 (positive phase current), I 2 (reverse phase current), and I 0 (zero phase current) will be described. Based on FIG.
FIG. 5 shows the first to third phase determination means 51 to 53, the short-circuit fault phase determination element 61, and the ground fault fault phase determination element 62 from the means shown in the fault phase determination circuit 3 of FIG. FIG. 5 is a diagram showing an outline of the internal configuration of the first, second, and third phase determination means 51, 52, and 53, a short-circuit fault phase determination element 61, and a ground fault phase A block diagram of the decision element 62 is shown. FIG. 6 is a detailed diagram showing signal transmission / reception between each of the current generating means 5-6 and each of the phase determining means 51-53. As shown in FIG. 6, the positive phase current generating means 5 generates a positive phase current I 1 using the three phases of A phase, B phase, and C phase as reference phases. Reverse-phase current generating means 6 generates a negative sequence current I 2 for the same phase as the reference phase. Zero phase current generation means 7 generates zero phase current I 0 of A phase, B phase, and C phase.
The first phase determination means 51 shown in FIG. 5 includes an anti-phase determination means 21, a short circuit failure determination means 22, and a first AND circuit 23. More specifically, as shown in FIG. The anti-phase determining means 21 is composed of three anti-phase determining means 21-A, 21-B, 21-C having each phase as a reference phase. That is, the first phase determination means 51 has a predetermined phase difference between the positive phase current I 1 and the negative phase current I 2 input from the positive phase, negative phase, and zero phase current generation means 5, 6, and 7. More than the first phase difference reference value angle θ3 (for example, 120 °), that is, reverse phase difference determinations 21-A to 21-C for determining a reverse phase, and zero phase current I 0 <K1 (zero phase current reference) The first AND means 23 for judging the AND condition with the short-circuit fault judging means 22 for judging the short-circuit fault according to the predetermined set value for judging that there is no current as a value. When the first AND means 23 outputs 1 (true) in any one of the three phases of the short-circuit fault phase determination element 61 to be connected, the first output that outputs 1 (true) It is determined that the two-phase short-circuit fault in which the phase corresponding to the AND means 23 is a healthy phase.

図5に示した第2の位相判定手段52は、第1の同位相差判定手段24が設けられており、さらに詳しくは図6に示すように各相を基準相とする3個の第1の位相差判定手段24−A、24−B、24−Cにより構成されている。そしてこの第1の位相差判定手段24−A〜24−Cは、正相電流生成手段5が生成する3相のそれぞれを基準相とする正相電流Iと、逆相電流生成手段6が生成する同じ相を基準相とする逆相電流Iとの間の位相差が所定の第2の位相差基準値である角度θ2(例えば120度)以内である場合に、同位相と判定する。 The second phase determination means 52 shown in FIG. 5 is provided with the first same phase difference determination means 24, and more specifically, as shown in FIG. The phase difference determination means 24-A, 24-B, and 24-C are configured. And this first phase difference determination unit 24-A~24-C includes a positive-phase current I 1 as a reference phase of each three-phase positive phase current generating means 5 for generating, reverse-phase current generating means 6 When the phase difference between the generated opposite phase current I 2 having the same phase as the reference phase is within a predetermined second phase difference reference value angle θ2 (for example, 120 degrees), the phase is determined to be the same phase. .

また、図5に示した第3の位相判定手段53は、第2の同位相差判定手段25が設けられており、さらに詳しくは図6に示すように各相を基準相とする3個の第2の同位相差判定手段25−A、25−B、25−Cにより構成されている。そしてこの第2の位相差判定手段25−A〜25−Cは、逆相電流生成手段6が生成する同じ相を基準相とする逆相電流Iと、零相電流生成手段7の生成する零相電流Iとの間の位相差が所定の第3の位相差である角度θ1(例えば120度)以内である場合に、同位相と判定する。 Further, the third phase determination means 53 shown in FIG. 5 is provided with a second same phase difference determination means 25, and more specifically, as shown in FIG. 2 in-phase difference determination means 25-A, 25-B, 25-C. And this second phase difference determination unit 25-A~25-C includes a negative sequence current I 2 for the same phase negative sequence current generating means 6 generates a reference phase, and generates a zero-phase current generating means 7 When the phase difference from the zero-phase current I 0 is within a predetermined third phase difference angle θ1 (for example, 120 degrees), it is determined that the phase is the same.

前記第2、第3の位相判定手段52、53に接続される地絡故障相判定要素62は、前記第1の同位相差判定手段24と、前記同位相差判定手段25の出力がともに1(真)であるため1(真)を出力する第3のAND手段27がある場合に1相故障であり、かつ、1(真)を出力する第3のAND手段27に対応する相が1相地絡故障相であると判定する1相地絡故障相判定手段29と、前記第2の同位相差判定手段25の出力と、前記第1の同位相差判定手段24の出力を否定したものとを入力とする第2のAND手段26の中で、1(真)を出力するものがある場合に、1(真)を出力する第3のAND手段27に対応する相が2相地絡故障の健全相であるという判定をする健全相判定手段28で構成される。なお第2、第3の位相判定手段52、53における位相判定は、例えば正相電流Iと零相電流Iの場合、図7に示すような論理式にて計算を行っている。
この図7のような構成とする目的は、位相差を検出する対象の電流が零に近い場合は位相が不定になり位相差が正しく判断できないので、位相差が正しく判断できない場合は条件が成立しないようにするためである。εとεは、それぞれIとIが電流ゼロ付近の誤差分に対して十分に大きい値であることを判断するための所定値である。εとεは、適切に判断できるように適宜調整する。第1の位相差判定手段51に関しても、同様な構成とする。
The ground fault failure phase determination element 62 connected to the second and third phase determination units 52 and 53 has outputs of 1 (true) for both the first phase difference determination unit 24 and the phase difference determination unit 25. ), There is a one-phase failure when there is a third AND means 27 that outputs 1 (true), and the phase corresponding to the third AND means 27 that outputs 1 (true) is one phase. 1 phase ground fault failure phase determination means 29 for determining that it is a fault fault phase, the output of the second in-phase difference determination means 25, and the negation of the output of the first in-phase difference determination means 24 Among the second AND means 26 that outputs 1 (true), the phase corresponding to the third AND means 27 that outputs 1 (true) is a healthy two-phase ground fault. It is composed of sound phase determination means 28 for determining that the phase is a phase. Note that the phase determination in the second and third phase determination means 52 and 53 is performed by a logical expression as shown in FIG. 7 in the case of the positive phase current I 1 and the zero phase current I 0 , for example.
The purpose of the configuration as shown in FIG. 7 is that if the current to be detected is close to zero, the phase becomes indefinite and the phase difference cannot be judged correctly. If the phase difference cannot be judged correctly, the condition is satisfied. This is to prevent it from happening. ε 1 and ε 2 are predetermined values for determining that I 1 and I 0 are sufficiently large with respect to an error near zero current, respectively. ε 1 and ε 2 are adjusted as appropriate so that they can be appropriately determined. The first phase difference determination unit 51 has the same configuration.

なお、上記した所定の位相角θ1〜θ3に関して、
逆相電流Iと零相電流Iの位相差<θ1におけるθ1の望しい値として、
逆相電流Iは零相電流Iに対して+60°〜−90°
の範囲に設定する。
より具体的には、例えば+60°〜−60°の範囲、あるいは+30°〜−90°の範囲、もしくは前記2つの動作範囲の間の間隔120°の動作範囲に設定する。この理由は、2相地絡の場合には、図3(b)に示すように逆相回路と零相回路が並列になるので、逆相電流Iは逆相インピーダンスで決まり、零相電流Iは零相インピーダンスで決まる。そのため、逆相電流Iと零相電流Iの位相は同じになるとは限らず、零相インピーダンスの方が抵抗分の割合が大きいため、逆相電流Iの方が零相電流Iより遅れ位相の場合が多いので、逆相電流Iが零相電流Iに対して遅れ90度〜進み60度の範囲と、遅れの方の範囲を大きくしている。
また、正相電流Iと逆相電流Iの位相差<θ2におけるθ2の望ましい値として、
|IとIの位相差|<θ2、90°<θ2≦120°
の範囲に設定し、
さらに、正相電流Iと逆相電流Iの位相差<θ3におけるθ3の望ましい値として、
|IとIの位相差|<θ3、90°<θ3≦120°
の範囲に設定する。なお、位相角θ1〜θ3は前記の値に限られるものではなく、系統の有する諸定数によって変更されるものである。
In addition, regarding the above-described predetermined phase angles θ1 to θ3,
As a desired value of θ1 when the phase difference between the negative phase current I 2 and the zero phase current I 0 <θ1,
The reverse phase current I 2 is + 60 ° to −90 ° with respect to the zero phase current I 0 .
Set to the range.
More specifically, for example, a range of + 60 ° to −60 °, a range of + 30 ° to −90 °, or an operating range of 120 ° between the two operating ranges is set. This is because, in the case of 2-phase ground fault, since the reverse-phase circuit and the zero-phase circuit as shown in FIG. 3 (b) becomes in parallel, negative sequence current I 2 is determined by reversed-phase impedance, zero-phase current I 0 is determined by zero phase impedance. Therefore, the phase of the negative-phase current I 2 and the zero-phase current I 0 is not necessarily the same, and the zero-phase impedance has a larger resistance ratio, so that the negative-phase current I 2 is the zero-phase current I 0. Since there are many cases where the phase is delayed, the reverse phase current I 2 is larger than the zero phase current I 0 in the range of 90 ° to 60 ° and the range of the delay.
Further, as the desired value of .theta.2 in the positive phase current I 1 and the reverse-phase current phase difference of I 2 <.theta.2,
| Phase difference between I 1 and I 2 | <θ2, 90 ° <θ2 ≦ 120 °
To the range of
Further, as a desirable value of θ3 when the phase difference between the positive phase current I 1 and the negative phase current I 2 <θ3,
| Phase difference between I 1 and I 2 | <θ3, 90 ° <θ3 ≦ 120 °
Set to the range. The phase angles θ1 to θ3 are not limited to the above values, but are changed according to various constants of the system.

以上のように、この実施の形態1による保護継電装置に設けられた故障相判定回路は、CT2から入力する3相電流から正相、逆相、零相電流を生成して、それらの位相関係から故障相の判定をするとともに零相電流で短絡,地絡故障区別を実施し、故障相判定を行うように構成したものである。したがって、1相地絡、2相地絡、2相短絡故障のいずれかが発生したとしても、電流情報のみで故障相の判定を確実に実施することができるという効果がある。   As described above, the fault phase determination circuit provided in the protection relay device according to the first embodiment generates the positive phase, the negative phase, and the zero phase current from the three-phase current input from CT2, and the phase The fault phase is determined from the relationship, and the fault phase is determined by distinguishing between short-circuit and ground faults with zero-phase current. Therefore, even if any one-phase ground fault, two-phase ground fault, and two-phase short-circuit fault occurs, there is an effect that the fault phase can be reliably determined only by the current information.

実施の形態2.
実施の形態1では、第2の位相判定手段52において正相電流Iと逆相電流Iの位相差により判定したが、逆相電流Iと零相電流Iはほぼ同位相であるので、図8に示すように逆相電流Iの代わりに零相電流Iを用いて、正相電流Iと零相電流Iの位相差を第1の同位相差判定手段24aで判定することでも同様に故障相判定が実現できる。図8において52aは、地絡故障の種類を判定する正相電流I、零相電流Iの第2の位相判定手段である。前記以外は実施の形態1と同様であるので説明省略する。このようにして実施の形態1と同様に電流情報により故障相の判定が可能となる。なお、所定の位相角θ1〜θ3は前述した実施の形態1と同程度の値を設定する。
Embodiment 2. FIG.
In the first embodiment, has been determined by the phase difference of the positive phase current I 1 and the reverse-phase current I 2 in the second phase determination means 52, the reverse-phase current I 2 and the zero-phase current I 0 is nearly the same phase Therefore, as shown in FIG. 8, the phase difference between the positive phase current I 1 and the zero phase current I 0 is determined by the first in-phase difference determination means 24a using the zero phase current I 0 instead of the reverse phase current I 2. The failure phase determination can be realized in the same manner. In FIG. 8, 52a is the second phase determination means for the positive phase current I 1 and the zero phase current I 0 for determining the type of ground fault. Since other than the above is the same as in the first embodiment, description thereof is omitted. In this way, the failure phase can be determined from the current information as in the first embodiment. The predetermined phase angles θ1 to θ3 are set to values similar to those in the first embodiment.

実施の形態3.
実施の形態1では、正相電流Iの演算としてI=1/3(IA+aIB+aIC)により算出したが、実際には、入力3相電流には故障電流だけでなく、故障前の負荷電流も重ね合わされているので、負荷電流の影響を受け、位相角が変化する。そのために、図9に示すように故障相判定回路3に電流入力手段4に接続される負荷電流削除手段30を設け、3相入力電流から故障前の負荷電流を差し引いた電流をもとに正相電流IA’を算出することで位相角がより正しくなる。即ち、例えばA相を基準相とした場合には、
IA’=IA−ILA
IB’=IB−ILB
IC’=IC−ILC
=1/3(IA’+aIB’+aIC’)
ここで、ILA,ILB,ILCは、故障前負荷電流である。
なお、逆相電流/零相電流生成手段6、7は、電流入力手段4に接続されている。前記以外は実施の形態1と同様であるので説明省略する。尚、この実施の形態3と前記実施の形態2を組み合わせてもよい。このような実施の形態3の構成を採用することにより精度よい正相電流Iが得られ、故障相判定の信頼性が向上する効果がある。
Embodiment 3 FIG.
In the first embodiment, I 1 = 1/3 (IA + aIB + a 2 IC) is calculated as the calculation of the positive phase current I 1 , but actually, the input three-phase current is not only the fault current but also the load before the fault. Since the current is also superimposed, the phase angle changes under the influence of the load current. For this purpose, as shown in FIG. 9, the failure phase determination circuit 3 is provided with a load current deletion unit 30 connected to the current input unit 4, and is corrected based on the current obtained by subtracting the load current before the failure from the three-phase input current. By calculating the phase current IA ′, the phase angle becomes more correct. That is, for example, when the A phase is set as the reference phase,
IA '= IA-ILA
IB '= IB-ILB
IC '= IC-ILC
I 1 = 1/3 (IA ′ + aIB ′ + a 2 IC ′)
Here, ILA, ILB, and ILC are pre-failure load currents.
The negative phase current / zero phase current generating means 6 and 7 are connected to the current input means 4. Since other than the above is the same as in the first embodiment, description thereof is omitted. The third embodiment and the second embodiment may be combined. By adopting such a configuration of the third embodiment, an accurate positive phase current I 1 can be obtained, and the reliability of failure phase determination is improved.

この発明の実施の形態1〜3は、電力送電線を保護する保護継電装置に利用できる。   Embodiments 1 to 3 of the present invention can be used for a protective relay device that protects a power transmission line.

実施の形態1の保護継電装置に設けられた故障相判定回路の概要を示す構成図である。FIG. 3 is a configuration diagram showing an overview of a fault phase determination circuit provided in the protective relay device of the first embodiment. 実施の形態1の故障判定回路の詳細を示す図である。FIG. 3 is a diagram illustrating details of a failure determination circuit according to the first embodiment. 実施の形態1の故障相判定回路の動作原理を説明する図である。FIG. 3 is a diagram for explaining an operation principle of the failure phase determination circuit according to the first embodiment. 実施の形態1の故障相判定回路の動作原理を説明する図である。FIG. 3 is a diagram for explaining an operation principle of the failure phase determination circuit according to the first embodiment. 実施の形態1の故障相判定回路内の位相判定手段、短絡/地絡故障相判定回路の内部手段を示す図である。It is a figure which shows the internal means of the phase determination means in the fault phase determination circuit of Embodiment 1, and a short circuit / ground fault fault phase determination circuit. 実施の形態1の故障相判定回路の詳細を示す図である。FIG. 3 is a diagram illustrating details of a failure phase determination circuit according to the first embodiment. 実施の形態1の位相判定手段の論理を示す図である。FIG. 3 is a diagram illustrating the logic of a phase determination unit according to the first embodiment. 実施の形態2の故障相判定回路内の位相判定手段、短絡/地絡故障相判定回路の内部手段を示す図である。It is a figure which shows the internal means of the phase determination means in the fault phase determination circuit of Embodiment 2, and a short circuit / ground fault fault phase determination circuit. 実施の形態3の故障相判定回路内の位相判定手段、短絡/地絡故障相判定回路の内部手段を示す図である。It is a figure which shows the internal means of the phase determination means in the fault phase determination circuit of Embodiment 3, and a short circuit / ground fault fault phase determination circuit.

符号の説明Explanation of symbols

1 送電線、2 CT、3 故障相判定回路、4 電流入力手段、
5 正相電流生成手段、6 逆相電流生成手段、7 零相電流生成手段、
21 逆位相差判定手段、22 短絡故障判定手段、23 第1のAND手段、
24 第1の同位相差判定手段、25 第2の同位相差判定手段、
26 第2のAND手段、27 第3のAND手段、28 2相地絡健全相判定手段、
29 1相地絡故障相判定手段、30 負荷電流削除手段、
51 第1の位相判定手段、52,52a 第2の位相判定手段、
53 第3の位相判定手段、61 短絡故障相判定要素、62 地絡故障相判定要素。
1 transmission line, 2 CT, 3 fault phase determination circuit, 4 current input means,
5 positive phase current generating means, 6 reverse phase current generating means, 7 zero phase current generating means,
21 anti-phase difference determination means, 22 short-circuit failure determination means, 23 first AND means,
24 first in-phase difference determining means, 25 second in-phase difference determining means,
26 second AND means, 27 third AND means, 28 two-phase ground fault healthy phase determination means,
29 1-phase ground fault fault phase determination means, 30 load current deletion means,
51 1st phase determination means, 52,52a 2nd phase determination means,
53 3rd phase determination means, 61 Short-circuit fault phase determination element, 62 Ground fault fault phase determination element

Claims (5)

送電線に設置されたCTにより計測された3相の電流を入力として、零相電流と、3相のそれぞれを基準相とする正相電流及び逆相電流とを生成する電流生成手段と、
前記零相電流が所定の零相電流値より小さく、かつ、前記3相の何れかの相を基準相とする前記正相電流と前記逆相電流との間の位相差が所定の第1の位相差基準値より大きい場合に、その相でない2相間の短絡故障と判定する短絡故障判定要素と、
前記3相の何れかの相を基準相とする前記正相電流及び前記逆相電流と前記零相電流の位相に関して、前記逆相電流または前記零相電流と前記正相電流との間の位相差が所定の第2の位相差基準値より小さく、かつ、前記逆相電流と前記零相電流との間の位相差が所定の第3の位相差範囲内にある場合に、その相が故障相である1相地絡故障と判定する1相地絡故障判定要素と、
前記3相の何れかの相を基準相とする前記正相電流及び前記逆相電流と前記零相電流の位相に関して、前記逆相電流または前記零相電流と前記正相電流との間の位相差が所定の第2の位相差基準値より大きく、かつ、前記逆相電流と前記零相電流との間の位相差が所定の第3の位相差範囲内にある場合に、その相が健全相である2相地絡故障と判定する2相地絡故障判定要素とを有する故障相判定回路を備えたことを特徴とする保護継電装置。
Current generation means for generating a zero-phase current and a positive-phase current and a reverse-phase current with each of the three phases as a reference phase, using as input the three-phase current measured by the CT installed in the transmission line;
The zero-phase current is smaller than a predetermined zero-phase current value, and a phase difference between the positive-phase current and the negative-phase current having any one of the three phases as a reference phase is a predetermined first A short-circuit fault determination element that determines a short-circuit fault between two phases that are not the phase when the phase difference reference value is greater than the phase difference reference value;
Regarding the phase of the positive phase current and the negative phase current and the zero phase current with any one of the three phases as a reference phase, the phase between the negative phase current or the zero phase current and the positive phase current If the phase difference is smaller than a predetermined second phase difference reference value and the phase difference between the negative phase current and the zero phase current is within a predetermined third phase difference range, the phase is faulty. A one-phase ground fault determination element for determining a one-phase ground fault that is a phase;
Regarding the phase of the positive phase current and the negative phase current and the zero phase current with any one of the three phases as a reference phase, the phase between the negative phase current or the zero phase current and the positive phase current When the phase difference is larger than a predetermined second phase difference reference value and the phase difference between the negative phase current and the zero phase current is within a predetermined third phase difference range, the phase is healthy. A protective relay device comprising a fault phase determination circuit having a two-phase ground fault determination element that determines a two-phase ground fault as a phase.
送電線のCTにより計測される3相の電流から故障前の負荷電流を除く負荷電流削除手段を備え、少なくとも前記正相電流を求める際に、前記電流生成手段が前記負荷電流削除手段により処理された各相の電流を使用することを特徴とする請求項1に記載の保護継電装置。 Load current deleting means for removing the load current before the failure from the three-phase current measured by CT of the transmission line is provided, and at least when obtaining the positive phase current, the current generating means is processed by the load current deleting means. The protective relay device according to claim 1, wherein a current of each phase is used. 前記第1の位相差基準値を90度より大きく120度以下の所定の値とすることを特徴とする請求項1に記載の保護継電装置。 2. The protective relay device according to claim 1, wherein the first phase difference reference value is a predetermined value greater than 90 degrees and equal to or less than 120 degrees. 前記第2の位相差基準値を90度より大きく120度以下の所定の値とすることを特徴とする請求項1に記載の保護継電装置。 2. The protective relay device according to claim 1, wherein the second phase difference reference value is a predetermined value greater than 90 degrees and equal to or less than 120 degrees. 前記第3の位相差範囲を、前記逆相電流が前記零相電流に対して90度の遅れから60度の進みまでの範囲とすることを特徴とする請求項1に記載の保護継電装置。 2. The protective relay device according to claim 1, wherein the third phase difference range is a range in which the reverse-phase current is from a delay of 90 degrees to an advance of 60 degrees with respect to the zero-phase current. .
JP2006171211A 2006-06-21 2006-06-21 Protective relay Pending JP2008005595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171211A JP2008005595A (en) 2006-06-21 2006-06-21 Protective relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171211A JP2008005595A (en) 2006-06-21 2006-06-21 Protective relay

Publications (1)

Publication Number Publication Date
JP2008005595A true JP2008005595A (en) 2008-01-10

Family

ID=39009507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171211A Pending JP2008005595A (en) 2006-06-21 2006-06-21 Protective relay

Country Status (1)

Country Link
JP (1) JP2008005595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194988A (en) * 2008-02-13 2009-08-27 Mitsubishi Electric Corp Zero-phase current differential relay
CN113945858A (en) * 2021-02-02 2022-01-18 保定钰鑫电气科技有限公司 Three-phase non-effective grounding power supply system convenient for processing single-phase grounding fault

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194988A (en) * 2008-02-13 2009-08-27 Mitsubishi Electric Corp Zero-phase current differential relay
CN113945858A (en) * 2021-02-02 2022-01-18 保定钰鑫电气科技有限公司 Three-phase non-effective grounding power supply system convenient for processing single-phase grounding fault
CN113945858B (en) * 2021-02-02 2024-03-01 保定钰鑫电气科技有限公司 Three-phase non-effective grounding power supply system convenient for processing single-phase grounding fault

Similar Documents

Publication Publication Date Title
US7123459B2 (en) Protective relay capable of protection applications without protection settings
Jamali A fast adaptive digital distance protection
MX2007010546A (en) An apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system.
KR102460706B1 (en) Apparatus and method detecting direction of fault current
EP1929602B1 (en) Method and system for fault detection in electrical power devices
TWI227067B (en) Directional ground relay system
CA2735726C (en) Short-circuit distance relay
US6661630B1 (en) Distance relay for protection of transmission line having minimized reactance effect
JP2008005595A (en) Protective relay
JP2009005565A (en) Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method
CN111025080B (en) Method and system for determining fault line based on station domain information
EP2590287B1 (en) Current differential relay apparatus
JP4272171B2 (en) Power system operation method
JP2005184956A (en) Electric feeder line protection method and device
JP2007252155A (en) Digital directional ground relay
JP2004364376A (en) Ground distance relay
JP2011254626A (en) Transmission line protector
JP2009254036A (en) Ground fault protecting relay system
WO2020217292A1 (en) Switchgear and switchgear group
JPH07231555A (en) Line selection relay
JPH06303720A (en) Fault point locating apparatus
JP2003047145A (en) Out-of-step detection relay apparatus
JP2004032859A (en) Distance relay system and distance relay device
JP2014036522A (en) Protection relay system of parallel double transmission lines
JP2008161009A (en) Protective relay device