JP2008002771A - 冷凍サイクル用部品 - Google Patents

冷凍サイクル用部品 Download PDF

Info

Publication number
JP2008002771A
JP2008002771A JP2006174390A JP2006174390A JP2008002771A JP 2008002771 A JP2008002771 A JP 2008002771A JP 2006174390 A JP2006174390 A JP 2006174390A JP 2006174390 A JP2006174390 A JP 2006174390A JP 2008002771 A JP2008002771 A JP 2008002771A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
expansion valve
refrigeration cycle
internal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006174390A
Other languages
English (en)
Inventor
Shinji Kakehashi
伸治 梯
Yoshitaka Tomatsu
義貴 戸松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006174390A priority Critical patent/JP2008002771A/ja
Publication of JP2008002771A publication Critical patent/JP2008002771A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】膨張弁と内部熱交換器との間で高圧冷媒が流れる配管構成を簡素にすることができ、これによりコンパクト化が図られ、スペースの狭い車両などへの搭載性が高められる冷凍サイクル用部品を提供する。
【解決手段】蒸気圧縮式冷凍サイクルのガスクーラとエバポレータとの間に配置され、ガスクーラから流出する冷媒の温度に基づいて、エバポレータへ流入する冷媒の圧力を制御する冷凍サイクル用部品において、ガスクーラからエバポレータへ流れる高圧冷媒の圧力を制御する膨張弁4と、膨張弁4から外側に導出するように設けられ、高圧冷媒をアキュムレータからコンプレッサへ流れる低圧冷媒との間で熱交換して、高圧冷媒を冷却する内部熱交換器9と、を備え、内部熱交換器9の一対の開口端部33a,33bを、一対の開口端部33a,33bのそれぞれに対応して膨張弁4の壁部に開口形成された開口部23b,23cに直接的に接続する。
【選択図】図2

Description

本発明は、蒸気圧縮式冷凍サイクルのガスクーラとエバポレータとの間に配置され、ガスクーラから流出する冷媒の温度に基づいて、エバポレータへ流入する冷媒の圧力を制御する冷凍サイクル用部品に関する。
一般に、空調装置として用いられる冷凍サイクル用部品は、蒸気圧縮式冷凍サイクルの構成部品であるガスクーラとエバポレータとの間に配置されて用いられる。この冷凍サイクル用部品は、ガスクーラから流出する冷媒の温度に基づいて、エバポレータへ流入する冷媒の圧力を制御する機能を発揮する圧力制御弁と、エバポレータへ流入する冷媒を熱交換によって冷却する機能を発揮する内部熱交換器と、を備えている。この種の冷凍サイクル用部品としては、一例として、特許文献1及び2に開示されているものが知られている。
特許文献1及び2に開示されている圧力制御弁は、ダイヤフラムを冷媒の圧力で変位させることで、ダイヤフラムに裏面側に一体形成された弁体を移動させ、ケースに設けられた弁口を開閉する構造を備えている。弁体は、ケース内で弁口を自在に開閉する位置に設けられている。ダイヤフラムの表面側では、ダイヤフラムと蓋との間で密閉空間が形成され、この密閉空間には冷媒としてのガスが所定の圧力で封入され、弁口に弁体の先端部を当接させることができる。
弁口に対する弁体の当接力は、密閉空間に封入されたガスがダイヤフラムを変形させる力と、コイルばねによるばね力との合計した力に相当する。ケースには、ガスクーラ側から任意の温度の冷媒が流れ込み、ガスクーラの出口側で検出された冷媒の温度に基づいて冷媒の圧力が制御され、この圧力による力が弁口に対する弁体の上記当接力を超えたときに、弁体が押し上げられて開弁状態となり、圧力制御弁を介してエバポレータに冷媒が流出するようになっている。
また、特許文献1及び2に開示されている内部熱交換器は、冷媒としてCO2を用いた場合に、エバポレータに流入する冷媒のエンタルピを低下させて、エバポレータの効率を向上させ、また、圧縮機に流入する冷媒のエンタルピを増加させて、圧縮機の効率を向上させるものである。これにより、冷凍サイクルの運転効率(COP)が高められるようになっている。
特開2000−179959号公報 特開2002−206823号公報
しかしながら、特許文献1の冷凍サイクル用部品の構成では、内部熱交換器の高圧用パイプが中間部材を介して圧力制御弁に接続されているため、構成部品の数が増えて、製造が複雑になるという問題があった。また、中間部材と膨張弁との当たり面、及び中間部材と内部熱交換器との当たり面を、それぞれ隙間無く密着させることが難しいという問題があった。
また、特許文献2では、アキュムレータタンクに圧力制御弁としての機能を有する減圧装置が固定され、減圧装置に内部熱交換器が固定された冷凍サイクル用部品が開示されている。すなわち、アキュムレータタンクと、減圧装置と、内部熱交換器は一体化されている。しかしながら、この冷凍サイクル用部品は、構造が肥大化するため、車両又は空調機のシャーシのような制限された搭載環境には適さない場合があった。
そこで、本発明は、上記した点に鑑み、膨張弁と内部熱交換器との間で高圧冷媒が流れる配管構成を簡素にすることができ、これによりコンパクト化が図られ、スペースの狭い車両などへの搭載性が高められる冷凍サイクル用部品を提供することを目的とする。
また、膨張弁と内部熱交換器との間で冷媒漏れを確実に防止でき、品質信頼性の高い冷凍サイクル用部品を提供することを目的とする。
上記目的を達成するために、請求項1記載の発明は、蒸気圧縮式冷凍サイクルのガスクーラとエバポレータとの間に配置され、前記ガスクーラから流出する冷媒の温度に基づいて、前記エバポレータへ流入する前記冷媒の圧力を制御する冷凍サイクル用部品において、前記ガスクーラから前記エバポレータへ流れる高圧冷媒の圧力を制御する膨張弁と、該膨張弁から外側に導出するように設けられ、前記高圧冷媒をアキュムレータからコンプレッサへ流れる低圧冷媒との間で熱交換して、前記高圧冷媒を冷却する内部熱交換器と、を備え、該内部熱交換器の一対の開口端部が、該一対の開口端部のそれぞれに対応して前記膨張弁の壁部に開口形成された開口部に直接的に接続されたことを特徴とする。
また、請求項2記載の発明は、請求項1に記載の冷凍サイクル用部品において、前記内部熱交換器は、前記高圧冷媒を流すために、一方の開口端部から他方の開口端部にかけてUターン状に折り返して延出する通路を備えている。
また、請求項3記載の発明は、請求項1又は2に記載の冷凍サイクル用部品において、前記一対の開口端部が前記開口部にろう付けで接続されている。
また、請求項4記載の発明は、請求項1〜3の何れか1項に記載の冷凍サイクル用部品において、前記膨張弁内を一方の側壁から他方の側壁に向かって貫通する流路が形成され、一側壁に形成された前記流路の開口端が、前記ガスクーラ側から前記高圧冷媒が流入する冷媒流入口であり、他側壁に形成された前記流路の開口端が、前記冷媒流入口から流出した前記高圧冷媒が前記内部熱交換器側に流出する冷媒流出口である。
また、請求項5記載の発明は、請求項2〜4の何れか1項に記載の冷凍サイクル用部品において、前記通路は扁平形状のチューブで形成され、該チューブの外側に前記低圧冷媒を流す低圧用チューブが添設されている。
以上の如く、請求項1記載の発明によれば、膨張弁と内部熱交換器とを備えた冷凍サイクル用部品において、内部熱交換器の一対の開口端部が、この一対の開口端部のそれぞれに対応して膨張弁の壁部に開口形成された開口部に直接的に接続されることで、膨張弁と内部熱交換器との間でジョイント用の中間部材を不要にすることができる。直接的な接続方法としては、圧入、ろう付け、溶接など種々の方法を採用することができる。したがって、高圧冷媒が流れる配管構成を簡素にすることができ、コンパクト化が図られ、スペースの狭い車両などへの搭載性を高めることができる。また、膨張弁と内部熱交換器との間で冷媒漏れを確実に防止でき、空調装置としての品質信頼性を高めることができる。
また、請求項2記載の発明によれば、高圧冷媒が一方の開口端部から他方の開口端部にかけてUターン状に折り返して延出する通路を流れることで、通路の外側に存する媒体との間で熱交換を行うことが可能になる。媒体には、高圧冷媒より低い温度の冷媒を用いることで、高圧冷媒が通路を一方から他方へ流れる間に高圧冷媒の温度を低下させることができる。
また、請求項3記載の発明によれば、通路の一対の開口端部が開口部にろう付けで接続されているから、ジョイント用の中間部材を介さずに簡単な構成で膨張弁の壁部に通路を直接的に接続することができる。また、接続部分から冷媒が漏出することを確実に防止することができる。
また、請求項4記載の発明によれば、ガスクーラ側から高圧冷媒が流入する冷媒流入口と、この冷媒流入口から流出した高圧冷媒が内部熱交換器側に流出する冷媒流出口とが、膨張弁内を貫通する流路の両端にそれぞれ形成されているから、膨張弁にこの流路を押し出し加工(鍛造)で製作することができる。このため、高圧冷媒の流れる流路を穴明け加工により製作した場合に比べて、製造が容易となって生産性が高まり、安価に製造することが出来る。
また、請求項5記載の発明によれば、扁平チューブ上に低圧冷媒を流す低圧用チューブが添設されているから、低圧冷媒の取り出し方向に自由度が増し、冷凍サイクル用部品の搭載性を向上できる。さらに、チューブの曲げ部半径を大きくとれるため、冷媒の曲げ部圧力損失を小さく抑えることができ、冷凍サイクルの性能を損なうことなく、高圧冷媒を効率良く冷却することができる。
以下、本発明に係る冷凍サイクル用部品の一実施形態を図面に基づいて説明する。図1は、CO2を冷媒として循環させる蒸気圧縮式冷凍サイクル(超臨界冷凍サイクル)を説明する図である。図1において、符号2は冷媒(CO2)を吸入圧縮するコンプレッサ(圧縮機)であり、符号3はコンプレッサ2により圧縮された高圧の冷媒を冷却するガスクーラ(放熱器)である。ガスクーラ3の出口側には、ガスクーラ3の出口側の冷媒温度に基づいて冷媒圧力を制御する膨張弁(圧力制御弁)4が配設されている。膨張弁4は、高圧の冷媒を減圧する減圧機としても機能するようになっている。膨張弁4には、ガスクーラ3の出口側の冷媒通路に設けられた感温部6が接続し、感温部6に封入されたガスの冷媒温度に基づく内圧変化によって弁開度が制御されるようになっている。
符号7は、膨張弁4で減圧された気液2相冷媒を蒸発させるエバポレータ(蒸発機)であり、符号8は気相冷媒と液相冷媒とを分離すると共に、冷凍サイクル中の余剰冷媒を一時的に蓄えるアキュムレータである。符号9は、膨張弁4の手前側に設けられ、ガスクーラ3から膨張弁4へ向かう高温高圧の冷媒と、アキュムレータ8からコンプレッサ2へ戻る低温低圧の冷媒とを熱交換する内部熱交換器である。これらのコンプレッサ2、ガスクーラ3,内部熱交換器9、膨張弁4、エバポレータ7及びアキュムレータ8は、それぞれ冷媒通路5によって接続されて閉回路を形成している。膨張弁4と内部熱交換器9とから、本発明に係る冷凍サイクル用部品10が構成されている。
次に、図2及び3を参照して、本発明に係る冷凍サイクル用部品10の第1の実施形態について説明する。本実施形態の冷凍サイクル用部品10は、ガスクーラ3からエバポレータ7へ流れる高圧冷媒の圧力を制御する膨張弁4と、膨張弁4から外側に導出するように設けられ、高圧冷媒をアキュムレータ8からコンプレッサ2へ流れる低圧冷媒との間で熱交換して、高圧冷媒を冷却する内部熱交換器9と、から構成されている。
膨張弁4は、内部に冷媒通路が形成されたハウジングとしてのブロック15と、ブロック15内に設けられたバルブサポート16と、バルブサポート16内に移動自在に収容されている弁体17と、弁体17の上端に一体的に形成されたダイヤフラム19との間で封入されたガスの密閉空間を形成するカバー18とからなっている。
ブロック15は、外観が四角柱形状を成しており、隣接する側壁は互いに直交している。ブロック15内には、一側の側壁22aに形成されたガスクーラ3側の第1の開口部(冷媒流入口)23aから流入した高圧冷媒を他側の側壁22bに形成された第2の開口部(冷媒流出口)23bから流出して内部熱交換器9へ流す一直線状の第1の流路24と、内部熱交換器9のパイプ33内をUターン状に折り返した冷媒を他側の側壁22bに形成された第3の開口部23cからブロック15内に流入して一側の側壁22aに形成された第4の開口部23dからエバポレータ7側へ流出する第2の流路25とがそれぞれ形成されている。また、第1の流路24と第2の流路25とを横断する方向(上下方向)で、バルブサポート16を上壁側から受け入れるサポート収容部27が形成されている。
本実施形態のように、ブロック15(膨張弁4)の一側壁22aに、ガスクーラ3側から高圧冷媒が流入する開口部23aを設け、ブロック15(膨張弁4)の他側壁22bに、内部熱交換器9側へ高圧冷媒が流出する開口部23bを設けることで、押し出し加工(鍛造)によりブロック15に第1の流路24を貫通形成することができる。具体的には、押し出し加工で長尺のブロック素材に貫通孔を形成し、切断加工でこのブロック素材を所定寸法に切断することで中間製品としての個々のブロックを得ることができる。このため、穴明け加工により個々のブロックに第1の流路24を製作した場合に比べて、ブロックの製作が容易となって生産性が高まり、安価に製造することが出来る。
なお、本実施形態において、ブロック15(膨張弁4)の一側壁22aに設けられた開口部23dと、ブロック15(膨張弁4)の他側壁22bに設けられた開口部23cは、上下方向に互いにずれており一直線上に位置していないため、第2の流路25は2方向からの穴明け加工により形成されるようになっているが、弁口の形状を変えて第2の流路25を一直線状にすることで、押し出し加工を適用することもできる。両方の流路24,25を押し出し加工で形成した場合は、ブロック15の製作をより一層高めることができる。
第1の流路24では、ガスクーラ3出口側の高圧冷媒の熱が弁体17上部に形成された感温部6に伝達するようになっている。第2の流路25には、弁体17の先端部42によって開閉される弁口38が設けられている。弁口38が弁体17の先端部42によって開閉されることで、第2の流路25を流れる冷媒の流量・圧力が調整されるようになっている。サポート収容部27は、下側に閉壁27aを有し、上側に開口27bを有して、筒状に形成されている。
サポート収容部27には、バルブサポート16が挿入され、サポート収容部27の内壁とバルブサポート16の壁部とに設けられたシール部材30a,30cによって、サポート収容部27の内面とバルブサポート16の外面との間に隙間が形成されないようになっている。バルブサポート16内面と弁体17は、シール部材30bによってシーリングされるようになっている。
第1の流路24の第2の開口部23bには、内部熱交換器9のパイプ33の一端33a(開口端部)が圧入されると共に、隙間から冷媒が液漏れしないようにろう付けにて液密に隙間が塞がれるようになっている。同様にして、第2の流路25の第3の開口部23cには、パイプ33の他端33b(開口端部)が圧入され、ろう付けにて液密に隙間が塞がれるようになっている。このため、膨張弁4が機能している状態で、第1の流路24と第2の流路25とが連通することが防止され、一方から他方へ冷媒が漏出しないようになっている。
バルブサポート16は、軸方向の一方に、サポート収容部27に略対応する形状に形成された筒部35aを有し、他方にブロック15上面に固定されるフランジ部35bを有している。筒部35aの根元側にねじ部が形成ており、フランジ部35bとブロック15の壁部との間にガスケット36を挟んだ状態で、筒部35aのねじ部をサポート収容部27のねじ部に螺合させることにより、バルブサポート17がブロック15に固定されるようになっている。バルブサポート16の軸中心には、軸方向の一端から他端にかけて貫通形成された貫通孔37が形成されている。貫通孔37の下端開口が弁口38となっている。筒部35aには、貫通孔37に直交する方向で第1の流路24に連通する第1の連通孔40aと、第4の開口部23d及び弁口38に連通して熱交換された冷媒を流す第2の連通孔40bとが形成されている。高圧冷媒は、第1の連通孔40aを通ってブロック15側から内部熱交換器9側へ流れ、第2の連通孔40bを通って内部熱交換器9側からフロック15側へ流れる。フランジ部35bは、サポート収容部27に対するバルブサポート16の挿入深さを規定すると共に、バルブサポート16をブロック15に固定するためのものである。
弁体17は、棒状をなしており、上側に位置する基部41がダイヤフラム19の裏面に溶接固定され、下側に位置する先端部42が弁口38を開閉自在に塞ぐように、バルブサポート16に配設されている。基部41はフランジ状をなしており、バルブサポート16のフランジ部35bの切欠部分35cに軸方向に変位可能に係合している。弁体17は、ダイヤフラム19と共に、基部41と切欠部分35cの隙間寸法に相当する分だけ変位できるようになっている。弁体17の棒状部分の外面とバルブサポート16の内面との間には、第1の流路24に連通する環状間隙が形成されるようになっている。このため、第1の開口部23aから流入した高圧冷媒は、第1の流路24を通って環状間隙に流れ込み、高圧冷媒の熱が感温部6内の冷媒に伝達されると同時に、高圧冷媒の圧力がダイヤフラム19に作用するようになっている。
弁体17の棒状部分の上側には、ダイヤフラム19の裏面との間で密閉空間11bが形成されている。この密閉空間11bが、ダイヤフラム19の表面とカバー18との間に形成された密閉空間11aと連通することで、密閉空間が広くなり、感温部6の精度が向上するようになっている。
弁体17の棒状部分の下側部分は、シール部材30bを介してバルブサポート16内面に液密状態に摺動自在に接触しているため、第1の流路24と第2の流路25との間で冷媒が一方から他方へ漏れないようになっている。
カバー18は、バルブサポート16の上面に設けられたダイヤフラム19との間で密閉空間11aを形成する。カバー18の中心部には、密閉空間11aに所定圧力で冷媒を封入するための封入管43が設けられている。互いに連通する密閉空間11aと密閉空間11bを形成するダイヤフラム19及びカバー18は、膨張弁4の感温部6を構成する構成要素となっている。
ダイヤフラム19は、ステンレス材からなる薄膜状をしており、密閉空間11a,11bの内外の圧力差に応じて変形・変位する。ダイヤフラム19は、その周縁がバルブサポート16のフランジ部35b上面とカバー18下面との間で狭持されて固定され、中央部分が変形・変位可能になっている。
内部熱交換器9は、押し出し成形により一体形成され、Uターン状に折り返して延出するパイプ(通路)33を有している。パイプ33の断面形状は、図7に示されるように二重パイプであり、パイプ33の中心に形成された中心孔34aを高温高圧の冷媒が流れ、中心孔34aの周囲に形成された複数の周辺孔34bを低温低圧の冷媒が逆方向に流れるようになっている。このため、中心孔34aを流れる高温高圧の冷媒は、周辺孔34bを流れる低温低圧の冷媒により熱交換され、冷却されるようになっている。これにより、エバポレータ7に流入する冷媒のエンタルピを低下させることができ、エバポレータ7両側のエンタルピ差が大きくなり、エバポレータ7の冷却効率が高められ、コンプレッサ2の負荷を低減することができるようになっている。
パイプ33は、端部側において外周部分が除去されている。除去された部分には、周辺孔34bを流れる低圧冷媒を冷媒通路に接続するためのジョイント部材45が設けられている。周辺孔34bが除去されたパイプ33の一対の開口端部33a,33bは、上述したように、膨張弁4のブロック15の第2の開口部23bと第3の開口部23cに圧入後、ろう付けにて直接的に接続される。
以上のように、本実施形態によれば、膨張弁4のブロック15にパイプ33の端部を直接的に接続することで、中間部材を用いることなく、膨張弁4と内部熱交換器9との間で冷媒漏れを確実に防止できる。中間部材を不要にすることができるから、冷媒が流れる内部熱交換器9の配管構成を簡素にすることができる。また、U字状パイプ33の端部におけるずれを吸収することができ、組み立てを容易に行うことができる。また、パイプ接続時に生じる内部応力を低減することができ、長期に亘り信頼性を維持できる製品を提供できる。
次に、図4に基づいて、冷凍サイクル用部品の第2の実施形態について説明する。本実施形態は、高圧冷媒が流れる内部熱交換器9Aの扁平チューブ33A上に低圧冷媒が流れる低圧用扁平チューブ33Bが設けられている点と、弁体17Aが調整用コイルばね50により閉弁方向に付勢されている点で第1の実施形態と相違する。図8には、内部に複数の孔51a,51bが形成された扁平状のチューブ断面構造が示されている。図において、上側に低圧冷媒が流れる低圧用扁平チューブ33Bが位置し、下側に高圧冷媒が流れる扁平チューブ33Aが位置している。上下のチューブ33A,33Bは互いに接着されていて、接着部分を介して高温の冷媒と低温の冷媒の熱移動が行われるようになっている。
図5に示すように、高圧冷媒が流れる扁平チューブ33Aの両端(図5では一端のみが示されている)には、横一列に並ぶ複数の通路を絞り込んで、通路を一つに集中させるためのチューブキャップ47が設けられている。すなわち、チューブキャップ47は、扁平チューブ33A側の一端47aが広口(大口)に形成され、ブロック15の壁部に形成された開口部23b,23cに接続する側の他端47bが狭口(小口)に形成されている。チューブキャップ47の一端47aと扁平チューブ33Aの接続、及びチューブキャップ47の他端47bとブロック15の開口部23b,23cとの接続は、接続部分から冷媒が漏出しないようにそれぞれろう付けにより行われる。
低圧用扁平チューブ33Bの両端には、低圧冷媒を冷媒通路に接続するためのジョイント部材45Aが設けられている。チューブ33Bとジョイント部材45Aとの接続は、冷媒の漏出を確実に防止するために、圧入及びろう付けにより行うことが好ましい。
本実施形態のように扁平チューブ33A上に低圧冷媒を流す低圧用チューブ33Bを添設することで、第1の実施形態と同様の効果を奏する。扁平チューブの外面上に低圧冷媒を流す低圧用チューブが添設されているから、低圧側冷媒の取り出し方向に自由度が増し、搭載性を向上することができる。更に、チューブの曲げ部半径を大きくとれるため、曲げ部における冷媒の圧力損失を小さく抑えることができ、冷凍サイクルの性能を損なうことなく、高圧冷媒を効率良く冷却することができる。
また、調整コイルばね50を設けることによって、弁体17Aの閉弁力を任意に調整することができ、膨張弁4Aの適用範囲を広げることが可能になる。その他の構成部分については、第1の実施形態と同様であるため、重複した説明を省略することとする。
次に、図6に基づいて、冷凍サイクル用部品の第3の実施形態について説明する。本実施形態は、膨張弁4Bの内部構造を簡素化したものであり、第1、2の実施形態のようにカセット式ではなく、ブロック15Aに形成された弁口38Bが弁体17Bで直接閉じるようにされたものである。このように、膨張弁4Bの内部構造が異なるものであっても、内部熱交換器9のパイプ33をブロックの壁部に直接接続することができる。
なお、本発明は上記実施形態に限定されるものではなく、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。例えば、本実施形態では、膨張弁4,4A,4Bと内部熱交換器9,9A,9Bは圧入後、ろう付けにて接続されているが、直接ろう付けで接続することもでき、またろう付け以外の他の方法で接続することもできる。ここで、内部熱交換器の一対の開口端部33a、33bと、膨張弁4のブロック15の壁部に開口形成された一対の開口部23b、23cとの直接的な接続は、分解不能な接続部によって提供されている。この直接的な接続は、高温の炎あるいは電気放電を用いるろう付けあるいは溶接といった、金属を溶融させた後に再度凝固させて得られる接続部によって提供されうる。この直接的な接続は、特殊な工具を用いずには分解できないような分解不能な接続部によっても提供されうる。膨張弁4には高圧通路と弁通路との両方がひとつのブロック15内に形成された構成である。このため、一対の接続は、共通の接続工程によって接続されうる。
また、本実施形態では、ブロック15の一側壁22aに、ガスクーラ3側から高圧冷媒が流入する第1の開口部23a及びエバポレータ側へ熱交換された冷媒が流出する第4の開口部23dが設けられ、ブロック15の他側壁22bに、内部熱交換器9側へ高圧冷媒が流出する第2の開口部23b及び熱交換された冷媒をブロック15内に流入させる第3の開口部23cが設けられているが、本発明は、第1〜4の開口部23aの位置を本実施形態の態様に制限するものではなく、任意の位置に設けることができる。例えば、高圧冷媒が流れるブロック15内の第1の流路24が直角に曲がるように、第1の開口部23aと第2の開口部23bをブロック15の隣接する側壁に設け、熱交換された冷媒が流れるブロック15内の第2の流路25が直角に曲がるように、第3の開口部23cと第4の開口部23dをブロック15の隣接する側壁に設けることもできる。このように、第1〜4の開口部23aの位置を変えることで、冷凍サイクル用部品のレイアウトの自由度を高めることができ、部品搭載性を向上することができる。
CO2を冷媒として循環させる蒸気圧縮式冷凍サイクルを説明する図である。 図1に示す冷凍サイクルに使用される本発明の第1の実施形態の冷凍サイクル用部品の断面図である。 図2に示す冷凍サイクル用部品の分解断面図である。 図1に示す冷凍サイクルに使用される本発明の第2の実施形態の冷凍サイクル用部品の断面図である。 図4に示すチューブキャップの平面図である。 図1に示す冷凍サイクルに使用される本発明の第3の実施形態の冷凍サイクル用部品の断面図である。 図2に示す内部熱交換器のパイプの断面図である。 図4に示す内部熱交換器のチューブの断面図である。
符号の説明
2 コンプレッサ
3 ガスクーラ
4 膨張弁
7 エバポレータ
9 熱交換器
10 熱サイクル用部品
15 ブロック
22a 一側の側壁
22b 他側の側壁
23a 第1の開口部
23b 第2の開口部
23c 第3の開口部
23d 第4の開口部
33 パイプ
33A チューブ
33a,33b 開口端部

Claims (5)

  1. 蒸気圧縮式冷凍サイクルのガスクーラ(3)とエバポレータ(7)との間に配置され、前記ガスクーラ(3)から流出する冷媒の温度に基づいて、前記エバポレータ(7)へ流入する前記冷媒の圧力を制御する冷凍サイクル用部品において、
    前記ガスクーラ(3)から前記エバポレータ(7)へ流れる高圧冷媒の圧力を制御する膨張弁(4)と、
    該膨張弁(4)から外側に導出するように設けられ、前記高圧冷媒をアキュムレータ(8)からコンプレッサ(2)へ流れる低圧冷媒との間で熱交換して、前記高圧冷媒を冷却する内部熱交換器(9,9A,9B)と、を備え、
    該内部熱交換器(9,9A,9B)の一対の開口端部(33a,33b)が、該一対の開口端部(33a,33b)のそれぞれに対応して前記膨張弁(4)の壁部に開口形成された開口部(23b,23c)に直接的に接続されたことを特徴とする冷凍サイクル用部品。
  2. 前記内部熱交換器(9,9A,9B)は、一方の開口端部(33a)から他方の開口端部(33b)にかけてUターン状に折り返して延出する通路(33)を備えている請求項1に記載の冷凍サイクル用部品。
  3. 前記一対の開口端部(33a,33b)が前記開口部(23b,23c)にろう付けで接続されている請求項1又は2に記載の冷凍サイクル用部品。
  4. 前記膨張弁(4)内を一方の側壁(22a)から他方の側壁(22b)に向かって貫通する流路(24)が形成され、一側壁(22a)に形成された前記流路(24)の開口端が、前記ガスクーラ(3)側から前記高圧冷媒が流入する冷媒流入口(23a)であり、他側壁(22b)に形成された前記流路(24)の開口端が、前記冷媒流入口(23a)から流出した前記高圧冷媒が前記内部熱交換器(9,9A,9B)側に流出する冷媒流出口(23c)である請求項1〜3の何れか1項に記載の冷凍サイクル用部品。
  5. 前記通路(33)は扁平形状のチューブで形成され、該チューブの外側に前記低圧冷媒を流す低圧用チューブ33Bが添設されている請求項2〜4の何れか1項に記載の冷凍サイクル用部品。
JP2006174390A 2006-06-23 2006-06-23 冷凍サイクル用部品 Withdrawn JP2008002771A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006174390A JP2008002771A (ja) 2006-06-23 2006-06-23 冷凍サイクル用部品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174390A JP2008002771A (ja) 2006-06-23 2006-06-23 冷凍サイクル用部品

Publications (1)

Publication Number Publication Date
JP2008002771A true JP2008002771A (ja) 2008-01-10

Family

ID=39007303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174390A Withdrawn JP2008002771A (ja) 2006-06-23 2006-06-23 冷凍サイクル用部品

Country Status (1)

Country Link
JP (1) JP2008002771A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190564A (ja) * 2009-01-20 2010-09-02 Daikin Ind Ltd 水熱交換器および温水熱源装置
WO2013080754A1 (ja) * 2011-11-30 2013-06-06 ダイキン工業株式会社 二重管式熱交換器及びこれを備えた空気調和装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190564A (ja) * 2009-01-20 2010-09-02 Daikin Ind Ltd 水熱交換器および温水熱源装置
JP4666104B2 (ja) * 2009-01-20 2011-04-06 ダイキン工業株式会社 水熱交換器および温水熱源装置
WO2013080754A1 (ja) * 2011-11-30 2013-06-06 ダイキン工業株式会社 二重管式熱交換器及びこれを備えた空気調和装置
JP2013113559A (ja) * 2011-11-30 2013-06-10 Daikin Industries Ltd 二重管式熱交換器及びこれを備えた空気調和装置
CN103930744A (zh) * 2011-11-30 2014-07-16 大金工业株式会社 双重管式热交换器及包括该双重管式热交换器的空调装置
AU2012345060B2 (en) * 2011-11-30 2015-08-06 Daikin Industries, Ltd. Double-pipe heat exchanger and air conditioner using same
CN103930744B (zh) * 2011-11-30 2016-01-06 大金工业株式会社 双重管式热交换器及包括该双重管式热交换器的空调装置

Similar Documents

Publication Publication Date Title
US8272233B2 (en) Heat exchanger and refrigerating air conditioner
JP4569508B2 (ja) 超臨界サイクル及び冷凍サイクルに用いられる膨張弁
KR100378536B1 (ko) 팽창밸브 부착 리시버 탱크
JP2006003071A (ja) 熱交換器
KR20150004177A (ko) 쉘 튜브 열교환기 및 그 제조방법
JP2008057949A (ja) 膨張弁の装着構造
KR100764926B1 (ko) 일체형 바이패스 시스템을 구비한 냉동 시스템
JP2008002771A (ja) 冷凍サイクル用部品
KR20040086241A (ko) 냉동 시스템 및 그의 응축 장치
JP2004058863A (ja) 車両用空調装置
JP4842022B2 (ja) 蒸気圧縮式冷凍回路及び当該回路を用いた車両用空調システム
JP2008249157A (ja) 可逆温度式膨張弁
JP4385999B2 (ja) 内部熱交換器
JP2007315727A (ja) 膨張弁
JP2015190690A (ja) 車両用冷却装置、及び、これに使用される膨張弁
JP2008039262A (ja) 膨張弁
JP2006105491A (ja) アキュムレータと内部熱交換器との一体化構造
US10712059B2 (en) Distributor assembly for space conditioning systems
JP4923181B2 (ja) 膨張弁
KR101461077B1 (ko) 열교환기
JP2017003107A (ja) スライド式切換弁及び冷凍サイクルシステム
JP6507071B2 (ja) 気液分離器および冷凍サイクル装置
JP2004354042A (ja) 冷凍サイクルの安全弁装置
JP2010255945A (ja) 膨張弁および内部熱交換器
JP2008082685A (ja) 内部熱交換器およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081017

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091222