JP2008001652A - Fluorine-containing compound and its manufacturing method - Google Patents

Fluorine-containing compound and its manufacturing method Download PDF

Info

Publication number
JP2008001652A
JP2008001652A JP2006173719A JP2006173719A JP2008001652A JP 2008001652 A JP2008001652 A JP 2008001652A JP 2006173719 A JP2006173719 A JP 2006173719A JP 2006173719 A JP2006173719 A JP 2006173719A JP 2008001652 A JP2008001652 A JP 2008001652A
Authority
JP
Japan
Prior art keywords
fluorine
refractive index
general formula
polycyclic compound
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006173719A
Other languages
Japanese (ja)
Inventor
Masakuni Sato
正邦 佐藤
Kazuyoshi Kurashima
和良 倉嶋
Hiroshi Yamamoto
博志 山本
Takashi Okazoe
隆 岡添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006173719A priority Critical patent/JP2008001652A/en
Publication of JP2008001652A publication Critical patent/JP2008001652A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel refractive index-modifying substance affording a plastic optical transmission fiber (POF) composition having a small light scattering loss as it is highly compatible with a non-crystalline fluorine-containing polymer having no C-H bond and has a low crystallinity, and to provide its manufacturing method. <P>SOLUTION: The fluorine-containing polycyclic compound is a perfluoro[1,3,5-tri(2-trifluoromethyl-6-substituent R<SB>4</SB>)phenyl]-2-substituent R<SB>1</SB>-4-substituent R<SB>2</SB>-6-substituent R<SB>3</SB>benzene having no C-H bond (wherein R<SB>1</SB>-R<SB>4</SB>are each independently a fluorine atom, a 1-5C perfluoroalkoxy group or a 1-5C perfluoroalkyl group). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、C−H結合を有しない非結晶性の含フッ素重合体からなるマトリックス中へ分布する屈折率調整物質として好適な含フッ素多環式化合物及びその製造方法に関し、特に、下記一般式(1)で表すことができる含フッ素多環式化合物に関する。   The present invention relates to a fluorine-containing polycyclic compound suitable as a refractive index adjusting substance distributed in a matrix composed of an amorphous fluorine-containing polymer having no C—H bond, and a method for producing the same. The present invention relates to a fluorine-containing polycyclic compound that can be represented by (1).

従来より、非結晶性の含フッ素重合体(以下、非結晶性含フッ素重合体という)は、電気特性、耐薬品性、防水性、撥水撥油性、光学特性等に優れるため、半導体をはじめとする電子部品の保護膜、インクジェットプリンタのヘッドの撥水膜、フィルタの防水防油コート、プラスチック光ファイバ等に使用されている。この非結晶性の含フッ素重合体には、用途に応じて、各種の添加剤、改質剤等が添加され、新たな機能を付加することが検討されている。   Conventionally, non-crystalline fluoropolymers (hereinafter referred to as non-crystalline fluoropolymers) have excellent electrical characteristics, chemical resistance, waterproofness, water and oil repellency, optical characteristics, etc. It is used for protective films for electronic parts, water-repellent films for heads of inkjet printers, waterproof / oil-proof coatings for filters, plastic optical fibers, and the like. Various additives, modifiers, and the like are added to this amorphous fluoropolymer depending on the application, and it has been studied to add a new function.

このうち、最近では、C−H結合を有しない非結晶性含フッ素重合体からなるマトリックス中に、屈折率調整物質として、例えば、クロロトリフルオロエチレンの5〜8量体であるオリゴマーを分散させて、屈折率分布型プラスチック光伝送ファイバ(以下、「屈折率分布型POF」ともいう)を得る方法が開示されている(特許文献1)。この方法により得られるPOFは、従来のポリメチルメタクリレート、ポリカーボネート等の樹脂をマトリックスとするプラスチック光伝送ファイバでは達し得なかった、1300〜1550nmでの波長において低損失のものが得られている。しかし、上記クロロトリフルオロエチレンの5〜8量体であるオリゴマーは、ガラス転移点(以下、「Tg」という)が約−60℃と低い。このため、上記POFにおける、開口数NA[NA=(n2−m21/2
nは屈折率分布型光学樹脂材料中の屈折率の最大値、mは屈折率分布型光学樹脂材料中の屈折率の最小値。]を大きくしようとして配合量を多くすると、POF組成物のTgが低下し、POFの耐熱性が低下するため、高温に曝されたときに屈折率分布や光伝送性能が変動するという問題がある。
Among these, recently, for example, an oligomer which is a 5 to 8 mer of chlorotrifluoroethylene is dispersed as a refractive index adjusting substance in a matrix made of an amorphous fluoropolymer having no CH bond. A method of obtaining a gradient index plastic optical transmission fiber (hereinafter also referred to as “index gradient POF”) has been disclosed (Patent Document 1). The POF obtained by this method has a low loss at a wavelength of 1300 to 1550 nm, which cannot be achieved by a conventional plastic optical transmission fiber using a resin such as polymethyl methacrylate or polycarbonate as a matrix. However, the oligomer which is a 5- to 8-mer of chlorotrifluoroethylene has a glass transition point (hereinafter referred to as “Tg”) as low as about −60 ° C. Therefore, in the POF, the numerical aperture NA [NA = (n 2 −m 2 ) 1/2 ,
n is the maximum value of the refractive index in the gradient index optical resin material, and m is the minimum value of the refractive index in the gradient index optical resin material. If the blending amount is increased in order to increase the size, the Tg of the POF composition decreases and the heat resistance of the POF decreases, so that there is a problem that the refractive index distribution and optical transmission performance fluctuate when exposed to high temperatures. .

このため、上記耐熱性の問題点を解決するために、C−H結合を有しない非結晶性含フッ素重合体からなるマトリックス中に、屈折率調整物質として、ペルフルオロフルオレン、ペルフルオロフェナレン等を分散させてPOFを得る方法が開示されている(特許文献2)。しかし、上記方法では、ペルフルオロフルオレン、ペルフルオロフェナレン等の屈折率調整物質が上記含フッ素重合体に対して、相溶性が充分でないことから、マトリックス中に適切な濃度に屈折率調整物質が分布しないため、光散乱や光伝送損失が発生するという問題が挙げられる。   Therefore, in order to solve the above heat resistance problem, perfluorofluorene, perfluorophenalene, etc. are dispersed as a refractive index adjusting substance in a matrix made of an amorphous fluorine-containing polymer having no CH bond. A method for obtaining POF by disclosing it is disclosed (Patent Document 2). However, in the above method, since the refractive index adjusting substance such as perfluorofluorene and perfluorophenalene is not sufficiently compatible with the above-mentioned fluoropolymer, the refractive index adjusting substance is not distributed at an appropriate concentration in the matrix. Therefore, there is a problem that light scattering and light transmission loss occur.

この屈折率調整物質の上記含フッ素重合体への相溶性の問題を解決するために、ペルフルオロ(1,3,5−トリフェニルベンゼン)等の新規な化合物を屈折率調整物質として使用する方法が開示されている(特許文献3)。しかし、最近では、さらに、低い伝送損失で、耐熱性が高く、曲げ損失の低減を目的とした高い開口率化が求められており、上記含フッ素重合体へのより高い相溶性を有し、低結晶化により光の散乱を抑制することができる屈折率調整物質が求められている。   In order to solve the problem of compatibility of the refractive index adjusting substance with the fluoropolymer, there is a method in which a novel compound such as perfluoro (1,3,5-triphenylbenzene) is used as the refractive index adjusting substance. (Patent Document 3). However, recently, further, low transmission loss, high heat resistance, and high aperture ratio for the purpose of reducing bending loss have been demanded, and it has higher compatibility with the above fluoropolymer, There is a need for a refractive index adjusting substance that can suppress light scattering by low crystallization.

特開平8−5848号公報JP-A-8-5848 特開平11−167030号公報JP-A-11-167030 特開平13−302935号公報Japanese Patent Laid-Open No. 13-302935 特公昭63−18964号公報Japanese Patent Publication No. 63-18964 特開昭63−238111号公報JP-A-63-238111 特開昭63−238115号公報JP-A-63-238115

本発明は、C−H結合を有しない非結晶性の含フッ素重合体(以下、単に、本含フッ素重合体という)への相溶性が高く、結晶性が低いために光の散乱損失の少ないPOF組成物を得ることのできる、新規な屈折率調整物質を提供することを目的とする。   The present invention is highly compatible with an amorphous fluoropolymer having no C—H bond (hereinafter simply referred to as the present fluoropolymer), and has low crystallinity, so that there is little light scattering loss. It is an object to provide a novel refractive index adjusting substance capable of obtaining a POF composition.

本発明は、上記の課題を解決するために以下の(A)〜(E)に記載の構成を採用した。   In order to solve the above-described problems, the present invention employs the configurations described in the following (A) to (E).

(A)本発明は、下記一般式(1)[式中、R1〜R4はそれぞれ独立にフッ素原子、炭素数1〜5のペルフルオロアルコキシル基または炭素数1〜5のぺルフルオロアルキル基である。]で表される含フッ素多環式化合物である。

Figure 2008001652
(A) In the present invention, the following general formula (1) [wherein R 1 to R 4 are each independently a fluorine atom, a C 1-5 perfluoroalkoxyl group or a C 1-5 perfluoroalkyl group. It is. ] The fluorine-containing polycyclic compound represented by this.
Figure 2008001652

(B)本発明は、一般式(1)におけるR1〜R4がフッ素原子又はトリフルオロメチル基である前記(A)に記載の含フッ素多環式化合物である。 (B) The present invention is a fluorine-containing polycyclic compound according to the (A) R 1 to R 4 is a fluorine atom or a trifluoromethyl group in the general formula (1).

(C)本発明は、一般式(1)におけるR1〜R4がフッ素原子である前記(A)又は(B)に記載の含フッ素多環式化合物である。 (C) The present invention is a fluorine-containing polycyclic compound according to the (A) or (B) R 1 to R 4 is a fluorine atom in the general formula (1).


(D)本発明は、一般式(2)[式中、R1〜R3はそれぞれ独立にフッ素原子、炭素数1〜5のペルフルオロアルコキシル基又は炭素数1〜5のペルフルオロアルキル基であり、X1〜X3は臭素原子もしくはヨウ素原子である。]で表される化合物と下記の一般式(3)[式中、R4はフッ素原子、炭素数1〜5のペルフルオロアルコキシル基又は炭素数1
〜5のペルフルオロアルキル基からなる群より選ばれるいずれかである。]で表される化合物とを溶媒中で反応させることにより得られる前記(A)〜(C)のいずれか一に記載の含フッ素多環式化合物の製造方法である。

(D) In the present invention, the general formula (2) [wherein R 1 to R 3 are each independently a fluorine atom, a C 1-5 perfluoroalkoxyl group or a C 1-5 perfluoroalkyl group, X 1 to X 3 are a bromine atom or an iodine atom. And a compound represented by the following general formula (3): wherein R 4 is a fluorine atom, a C 1-5 perfluoroalkoxyl group or a carbon number of 1;
Or any one selected from the group consisting of 5 to 5 perfluoroalkyl groups. ] The manufacturing method of the fluorine-containing polycyclic compound as described in any one of said (A)-(C) obtained by making it react with the compound represented by this.

Figure 2008001652
Figure 2008001652

Figure 2008001652
Figure 2008001652

(E)本発明は、前記溶媒が極性溶媒であることを特徴とする前記(D)に記載の含フッ素多環式化合物の製造方法である。 (E) The present invention is the method for producing a fluorine-containing polycyclic compound according to (D), wherein the solvent is a polar solvent.

本発明により、本含フッ素重合体への相溶性が高く、結晶性が低いために光の散乱損失の少ないPOF組成物を得ることのできる新規な屈折率調整物質を提供できる。
すなわち、本発明に係る含フッ素多環式化合物は本含フッ素重合体、特に非結晶性ペルフルオロ重合体に対する溶解性が良好であるため、得られるPOF組成物の透明性が良好であり、ミクロな相分離や本発明に係る含フッ素多環式化合物の微結晶などにより生じる光散乱が少ない。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a novel refractive index adjusting substance capable of obtaining a POF composition having low light scattering loss due to high compatibility with the present fluoropolymer and low crystallinity.
That is, since the fluorine-containing polycyclic compound according to the present invention has good solubility in the fluorine-containing polymer, particularly an amorphous perfluoropolymer, the obtained POF composition has good transparency and is microscopic. Light scattering caused by phase separation or fine crystals of the fluorine-containing polycyclic compound according to the present invention is small.

本発明に係る含フッ素多環式化合物においては、上記一般式(1)においてR1〜R4は、それぞれ独立に、フッ素原子、炭素数1〜5のペルフルオロアルコキシル基または炭素数1〜5のぺルフルオロアルキル基である化合物である。このような含フッ素多環式化合物は、本含フッ素重合体との相溶性が高くなる。このため、ミクロな相分離や本発明に係
る含フッ素多環式化合物の微結晶などにより生じる光散乱が少なく、透明性が良好な、光学樹脂組成物を得ることができるので好ましい。本発明に係る含フッ素多環式化合物が本含フッ素重合体に対して、相溶性の高い理由としては、本発明に係る含フッ素多環式化合物が分子内に、本含フッ素重合体に対して、親和性の高いトリフルオロメチル基を有することによる。また、本発明に係る含フッ素多環式化合物は、分子サイズが大きいため、得られた組成物のTgが高くなるほか、本含フッ素重合体中での拡散速度が小さく、得られる組成物は熱安定性に優れるので好ましい。
In the fluorine-containing polycyclic compound according to the present invention, R 1 to R 4 in the general formula (1) are each independently a fluorine atom, a C 1-5 perfluoroalkoxyl group, or a C 1-5 carbon atom. It is a compound that is a perfluoroalkyl group. Such a fluorine-containing polycyclic compound has high compatibility with the present fluorine-containing polymer. For this reason, it is preferable because an optical resin composition can be obtained with little light scattering caused by micro phase separation or microcrystals of the fluorine-containing polycyclic compound according to the present invention, and good transparency. The reason why the fluorine-containing polycyclic compound according to the present invention is highly compatible with the fluorine-containing polymer is that the fluorine-containing polycyclic compound according to the present invention is compatible with the fluorine-containing polymer in the molecule. Because of having a high affinity trifluoromethyl group. In addition, since the fluorine-containing polycyclic compound according to the present invention has a large molecular size, the resulting composition has a high Tg and a low diffusion rate in the fluorine-containing polymer. Since it is excellent in thermal stability, it is preferable.

本発明に係る含フッ素多環式化合物は、屈折率が1.40〜1.50であることが好ましい。これにより、本含フッ素重合体への添加量が少なく、熱伝送損失に優れる光学材料を提供することができる。屈折率1.40未満であると、目的の屈折率を有する光学樹脂組成物に調整するために必要な屈折率調整剤の量が増加し、屈折率の揺らぎに起因する光散乱が増加してしまうので好ましくなく、屈折率1.50超であると、本含フッ素重合体に対する相溶性が低下し、相分離による光散乱の原因になるおそれがあるので好ましくない。屈折率は1.41〜1.47であることが特に好ましい。   The fluorinated polycyclic compound according to the present invention preferably has a refractive index of 1.40 to 1.50. Thereby, it is possible to provide an optical material having a small amount of addition to the present fluoropolymer and excellent heat transfer loss. If the refractive index is less than 1.40, the amount of the refractive index adjusting agent necessary for adjusting to the optical resin composition having the target refractive index increases, and light scattering caused by refractive index fluctuation increases. Therefore, if the refractive index exceeds 1.50, the compatibility with the present fluoropolymer is lowered, which may cause light scattering due to phase separation. The refractive index is particularly preferably 1.41 to 1.47.

また、本発明に係る含フッ素多環式化合物は、Tgが−20〜10℃であることが好ましい。これにより、得られる光学樹脂組成物のTgを高く、熱安定性に優れた、光学樹脂組成物を得ることができるので好ましい。Tgが−20℃未満であると、得られる光学樹脂組成物のTgがさがり、使用している最中に、含フッ素多環式化合物が熱で拡散するため屈折率分布が変動してしまい、帯域性能やNAの性能が低下するおそれがあるので好ましくない。また、Tgが10℃超であると、成型工程で、光学樹脂組成物中で含フッ素多環式化合物の結晶が発生してしまい、組成物内で相分離が起こり、光散乱の原因となるおそれがあるので好ましくない。Tgは−15℃〜2℃であることが特に好ましい。   Moreover, it is preferable that Tg is -20-10 degreeC in the fluorine-containing polycyclic compound which concerns on this invention. This is preferable because an optical resin composition having a high Tg and excellent thermal stability can be obtained. If the Tg is less than −20 ° C., the Tg of the obtained optical resin composition is reduced, and the refractive index distribution fluctuates because the fluorine-containing polycyclic compound diffuses with heat during use. This is not preferable because there is a risk that the bandwidth performance and the NA performance may deteriorate. Further, if Tg is higher than 10 ° C., crystals of the fluorine-containing polycyclic compound are generated in the optical resin composition in the molding step, phase separation occurs in the composition, and light scattering is caused. This is not preferable because of fear. Tg is particularly preferably −15 ° C. to 2 ° C.

本発明により提供される一般式(1)に示す含フッ素多環式化合物は、分子内の立体障害により結晶性が低いため、重合体中で微結晶を形成することがないため光散乱を少なくすることができる。更に、本含フッ素重合体に対する相溶性が高いため、本発明に係る含フッ素多環式化合物を多量に含有させても相分離を生じることがないので、高屈折率な光学樹脂組成物を作製することが可能となる。中でも、本含フッ素重合体への相溶性及び分子内の立体障害が大きく光学樹脂組成物が低散乱であることから、一般式(1)において、R1〜R4が、それぞれ、独立にフッ素原子又はトリフルオロメチル基である下記一般式(4)〜(11)で表される含フッ素多環式化合物であることが好ましい。 Since the fluorine-containing polycyclic compound represented by the general formula (1) provided by the present invention has low crystallinity due to steric hindrance in the molecule, it does not form microcrystals in the polymer, and therefore light scattering is small. can do. Furthermore, since the compatibility with the present fluoropolymer is high, phase separation does not occur even when a large amount of the fluorine-containing polycyclic compound according to the present invention is contained, so an optical resin composition having a high refractive index is produced. It becomes possible to do. Among them, since compatibility with the present fluoropolymer and steric hindrance in the molecule are large and the optical resin composition has low scattering, in the general formula (1), R 1 to R 4 are each independently fluorine. A fluorine-containing polycyclic compound represented by the following general formulas (4) to (11) which is an atom or a trifluoromethyl group is preferable.

Figure 2008001652
Figure 2008001652

Figure 2008001652
Figure 2008001652

Figure 2008001652
Figure 2008001652

Figure 2008001652
Figure 2008001652

Figure 2008001652
Figure 2008001652

Figure 2008001652
Figure 2008001652

Figure 2008001652
Figure 2008001652

Figure 2008001652
Figure 2008001652

本含フッ素重合体としては、特に限定はされないが、主鎖に含フッ素脂肪族環構造を有する含フッ素重合体が好ましい。例えば、含フッ素環構造を有する単量体を重合して得られるものや、2つ以上の重合性二重結合を有する含フッ素単量体を環化重合して得られる主鎖に含フッ素脂肪族環構造を有する重合体が好適である。   The fluorine-containing polymer is not particularly limited, but a fluorine-containing polymer having a fluorine-containing aliphatic ring structure in the main chain is preferable. For example, a fluorine-containing fat can be obtained by polymerizing a monomer having a fluorine-containing ring structure or a main chain obtained by cyclopolymerizing a fluorine-containing monomer having two or more polymerizable double bonds. A polymer having a group ring structure is preferred.

含フッ素脂肪族環構造を有する単量体を重合して得られる主鎖に含フッ素脂肪族環構造を有する重合体は、特許文献4等により知られている。すなわち、ペルフルオロ(2,2−ジメチル−1,3−ジオキソール)などの含フッ素脂肪族環構造を有する単量体を単独重合することにより、またこの単量体とテトラフルオロエチレン、クロロトリフルオロエチレン、ペルフルオロ(メチルビニルエーテル)などのラジカル重合性単量体とを共重合
させることにより主鎖に含フッ素脂肪族環構造を有する重合体が得られる。
A polymer having a fluorine-containing aliphatic ring structure in the main chain obtained by polymerizing a monomer having a fluorine-containing aliphatic ring structure is known from Patent Document 4 and the like. That is, by homopolymerizing a monomer having a fluorine-containing aliphatic ring structure such as perfluoro (2,2-dimethyl-1,3-dioxole), this monomer and tetrafluoroethylene, chlorotrifluoroethylene A polymer having a fluorine-containing aliphatic ring structure in the main chain can be obtained by copolymerizing with a radically polymerizable monomer such as perfluoro (methyl vinyl ether).

また、2つ以上の重合性二重結合を有する含フッ素単量体を環化重合して得られる、主鎖に含フッ素脂肪族環構造を有する重合体は、特許文献5や特許文献6などにより知られている。すなわち、ペルフルオロ(アリルビニルエーテル)やペルフルオロ(ブテニルビニルエーテル)などを環化重合することにより、またはこのような単量体とテトラフルオロエチレン、クロロトリフルオロエチレン、ペルフルオロ(メチルビニルエーテル)などのラジカル重合性単量体とを共重合させることにより主鎖に含フッ素脂肪族環構造を有する重合体が得られる。   Polymers having a fluorinated aliphatic ring structure in the main chain obtained by cyclopolymerization of a fluorine-containing monomer having two or more polymerizable double bonds are disclosed in Patent Document 5, Patent Document 6, and the like. Is known by. That is, by cyclopolymerizing perfluoro (allyl vinyl ether) or perfluoro (butenyl vinyl ether), or radical polymerization of such monomers with tetrafluoroethylene, chlorotrifluoroethylene, perfluoro (methyl vinyl ether), etc. By copolymerizing the monomer, a polymer having a fluorine-containing aliphatic ring structure in the main chain can be obtained.

また、ペルフルオロ(2,2−ジメチル−1,3−ジオキソール)などの含フッ素脂肪族環構造を有する単量体とペルフルオロ(アリルビニルエーテル)やペルフルオロ(ブテニルビニルエーテル)などの2つ以上の重合性二重結合を有する含フッ素単量体とを共重合させることによっても主鎖に含フッ素脂肪族環構造を有する重合体が得られる。   Further, a monomer having a fluorine-containing aliphatic ring structure such as perfluoro (2,2-dimethyl-1,3-dioxole) and two or more polymerizable properties such as perfluoro (allyl vinyl ether) and perfluoro (butenyl vinyl ether). A polymer having a fluorine-containing aliphatic ring structure in the main chain can also be obtained by copolymerizing with a fluorine-containing monomer having a double bond.

本含フッ素重合体における本発明に係る含フッ素多環式化合物の含有量は、本含フッ素重合体の種類にもよるが、本含フッ素重合体(100質量部)に対して、本発明に係る含フッ素多環式化合物が5〜25質量部であることが好ましい。これにより、本含フッ素重合体中に本発明に係る含フッ素多環式化合物が充分均一に溶解することができ、適度な屈折率や、Tgの組成物を得ることができるので好ましい。本発明に係る含フッ素多環式化合物の含有量が5質量部未満であると、得られる光学樹脂組成物中において、必要な屈折率差が得られなくなるので好ましくなく、含有量が25質量部超であると、成型工程で、光学樹脂組成物中に屈折率調整剤の結晶の相分離が起こりやすく、散乱原因となるおそれがあるので好ましくない。本発明に係る含フッ素多環式化合物の含有量は、7〜15質量部であることが特に好ましい。   The content of the fluorinated polycyclic compound according to the present invention in the fluorinated polymer depends on the type of the fluorinated polymer, but the content of the fluorinated polymer (100 parts by mass) depends on the present invention. It is preferable that the fluorine-containing polycyclic compound which concerns is 5-25 mass parts. This is preferable because the fluorine-containing polycyclic compound according to the present invention can be sufficiently uniformly dissolved in the fluorine-containing polymer, and a composition having an appropriate refractive index and Tg can be obtained. If the content of the fluorine-containing polycyclic compound according to the present invention is less than 5 parts by mass, it is not preferable because the required refractive index difference cannot be obtained in the obtained optical resin composition, and the content is 25 parts by mass. If it is too high, phase separation of the crystal of the refractive index modifier is likely to occur in the optical resin composition in the molding step, which may cause scattering, which is not preferable. The content of the fluorine-containing polycyclic compound according to the present invention is particularly preferably 7 to 15 parts by mass.

本発明に係る含フッ素多環式化合物は本含フッ素重合体中に完全に溶解し、不溶解物がなくまたミクロな相分離構造が生じていないことが好ましい。不溶解物やミクロな相分離構造が存在すると、その部分が光散乱の要因となる。したがって、本発明に係る含フッ素多環式化合物は本含フッ素重合体中にその飽和溶解度量以下で存在することが好ましく、含フッ素多環式化合物が部分的に高濃度に存在する場合であってもその高濃度部分に不溶解物がないことが好ましい。本発明に係る含フッ素多環式化合物は本含フッ素重合体中に溶解させるためには、200〜300℃で加熱溶融して混合する事が好ましい。   It is preferable that the fluorine-containing polycyclic compound according to the present invention is completely dissolved in the fluorine-containing polymer, has no insoluble matter, and does not have a micro phase separation structure. If an insoluble matter or a micro phase separation structure is present, the portion causes light scattering. Therefore, the fluorine-containing polycyclic compound according to the present invention is preferably present in the fluorine-containing polymer in an amount equal to or less than its saturated solubility, and this is the case where the fluorine-containing polycyclic compound is partially present at a high concentration. However, it is preferable that there is no insoluble matter in the high concentration portion. In order to dissolve the fluorine-containing polycyclic compound according to the present invention in the fluorine-containing polymer, it is preferable to mix by heating and melting at 200 to 300 ° C.

本発明に係る含フッ素多環式化合物は、光伝送体に使用することが好ましい。ここでいう光伝送体とは、光を光学樹脂組成物中に通過させて伝送する機能を有する部材をいう。光伝送体は、プラスチック光伝送ファイバに限られるものではなく、例えば、ロッドレンズ、光導波路、光分岐器、光合波器、光分波器、光減衰器、光スイッチ、光アイソレータ、光送信モジュール、光受信モジュール、カプラ、偏向子、光集積回路などのそのものやその光伝送部分をいう。これら光伝送体の光を伝送する部分は、後述する屈折率分布構造を有するもの(以下屈折率分布型という)であることが好ましい。すなわち本含フッ素重合体中に含有される本発明に係る含フッ素多環式化合物が、光伝送体の光伝送路の中心軸から周辺方向に沿って濃度が低下する濃度勾配を有して分布している屈折率分布型光伝送体であることが好ましい。   The fluorine-containing polycyclic compound according to the present invention is preferably used for an optical transmitter. Here, the optical transmission body refers to a member having a function of transmitting light through the optical resin composition. The optical transmission body is not limited to a plastic optical transmission fiber. For example, a rod lens, an optical waveguide, an optical splitter, an optical multiplexer, an optical demultiplexer, an optical attenuator, an optical switch, an optical isolator, an optical transmission module An optical receiver module, a coupler, a deflector, an optical integrated circuit itself, and the optical transmission portion thereof. It is preferable that the light transmitting portion of these optical transmitters has a refractive index distribution structure (hereinafter referred to as a refractive index distribution type). That is, the fluorine-containing polycyclic compound according to the present invention contained in the fluorine-containing polymer is distributed with a concentration gradient in which the concentration decreases from the central axis of the optical transmission line to the peripheral direction. The refractive index distribution type optical transmitter is preferable.

本発明に係る含フッ素多環式化合物を含有する光伝送体としては特にPOFが好ましく、屈折率分布型光伝送体としては、光伝送体の光が通過する光伝送路において、本含フッ素重合体中に本発明に係る含フッ素多環式化合物が光伝送路の中心軸から周辺方向に沿って濃度が低下する濃度勾配を有して分布している屈折率分布型光POFであるのが特に好ましい。この屈折率分布は屈折率調整物質である本発明に係る含フッ素多環式化合物をマ
トリックスである本含フッ素重合体中に拡散させることにより形成される。例えば、光伝送路の中心軸となる部分にある濃度で本発明に係る含フッ素多環式化合物を存在させ、その含フッ素多環式化合物を熱拡散させて中心軸から周辺方向に沿って濃度が低下する濃度勾配を形成する。
The optical transmission body containing the fluorine-containing polycyclic compound according to the present invention is particularly preferably POF, and the refractive index distribution type optical transmission body is an optical transmission line through which the light of the optical transmission body passes. The refractive index distribution type optical POF in which the fluorine-containing polycyclic compound according to the present invention is distributed in a coalescence with a concentration gradient in which the concentration decreases from the central axis of the optical transmission line to the peripheral direction. Particularly preferred. This refractive index distribution is formed by diffusing the fluorine-containing polycyclic compound according to the present invention as a refractive index adjusting substance into the fluorine-containing polymer as a matrix. For example, the fluorine-containing polycyclic compound according to the present invention is present at a concentration at a portion serving as the central axis of the optical transmission line, and the fluorine-containing polycyclic compound is thermally diffused to increase the concentration along the peripheral direction from the central axis. Form a concentration gradient.

本含フッ素重合体と屈折率調整物質を用いて屈折率分布型POF(及びそれを製造するためのプリフォーム)を製造する方法は前記特許文献1や特許文献2などに記載されている。これら公報記載の屈折率調整物質の代わりに本発明に係る含フッ素多環式化合物を使用して、これら公報記載の方法で屈折率分布型POFを製造することができる。同様にこれら公報記載の方法で屈折率分布型POF製造用プリフォームを製造することができる。   A method for producing a refractive index distribution type POF (and a preform for producing the same) using the present fluoropolymer and a refractive index adjusting substance is described in Patent Document 1, Patent Document 2, and the like. Using the fluorine-containing polycyclic compound according to the present invention instead of the refractive index adjusting substances described in these publications, a refractive index distribution type POF can be produced by the method described in these publications. Similarly, a gradient index POF manufacturing preform can be manufactured by the method described in these publications.

尚、本発明に係る含フッ素多環式化合物を含有する光伝送体としては、屈折率分布型POFのみならずステップインデックス型POFとしても好ましく利用することができる。ステップインデックス型POFの製造方法としては円柱状の、本発明に係る含フッ素多環式化合物と本含フッ素重合体が均一に混合したコア材と、本含フッ素重合体のみからなる、内径がコア材外径よりもおおきな円筒状のクラッド材を、外嵌して、プリフォームを作成する。本発明に係る含フッ素多環式化合物がクラッド材へ拡散しないように、230℃以下の低温条件で、コア材とクラッド材のクリアランスを潰しながら紡糸することによって、POFを作製することができる。なお、コア材は、円柱状の成型容器へ本発明に係る含フッ素多環式化合物と本含フッ素重合体を仕込み、250〜300℃で加熱溶融することにより、均一な組成のコア材を容易に作製する事ができる。また、円筒状のクラッド材は、回転成型法により容易に作製できる。   In addition, as an optical transmission body containing the fluorine-containing polycyclic compound according to the present invention, not only a refractive index distribution type POF but also a step index type POF can be preferably used. As a manufacturing method of the step index type POF, a cylindrical core material in which the fluorine-containing polycyclic compound according to the present invention and the fluorine-containing polymer are uniformly mixed, and the inner diameter of the core material is composed of only the fluorine-containing polymer. A preform is created by externally fitting a cylindrical clad material larger than the outer diameter of the material. In order to prevent the fluorine-containing polycyclic compound according to the present invention from diffusing into the clad material, the POF can be produced by spinning while crushing the clearance between the core material and the clad material at a low temperature of 230 ° C. or lower. In addition, the core material is prepared by charging the fluorinated polycyclic compound according to the present invention and the fluorinated polymer into a cylindrical molded container and heating and melting at 250 to 300 ° C., thereby easily forming a core material having a uniform composition. Can be made. Further, the cylindrical clad material can be easily produced by a rotational molding method.

本発明に係る含フッ素多環式化合物を含有した光伝送体を屈折率分布型光伝送体とするためには、マトリックスとなる本含フッ素重合体と屈折率調整物質である本発明に係る含フッ素多環式化合物との屈折率の差が0.05〜0.25であることが好ましい。これにより、両者は屈折率分布を形成するに充分な屈折率差を有することができるので好ましい。本含フッ素重合体の屈折率は、その種類にもよるが、通常1.25〜1.35であるが、本発明に係る含フッ素多環式化合物の屈折率は約1.40〜1.50である。屈折率の差は、0.055〜0.20であることが特に好ましい。また、屈折率差が大きいことにより、本含フッ素重合体に対する本発明に係る含フッ素多環式化合物の割合が、最大存在部分において、本含フッ素重合体100質量部に対して、10質量部以下であっても充分な屈折率分布を形成し得る。   In order to make the optical transmission body containing the fluorine-containing polycyclic compound according to the present invention a refractive index distribution type optical transmission body, the present fluorine-containing polymer as a matrix and the refractive index-adjusting substance according to the present invention are included. The difference in refractive index from the fluorine polycyclic compound is preferably 0.05 to 0.25. This is preferable because both can have a refractive index difference sufficient to form a refractive index distribution. The refractive index of the fluorine-containing polymer is usually from 1.25 to 1.35, although depending on the type, the refractive index of the fluorine-containing polycyclic compound according to the present invention is about 1.40-1. 50. The difference in refractive index is particularly preferably 0.055 to 0.20. Further, since the difference in refractive index is large, the ratio of the fluorine-containing polycyclic compound according to the present invention to the fluorine-containing polymer is 10 parts by mass with respect to 100 parts by mass of the fluorine-containing polymer in the maximum existing portion Even if it is below, a sufficient refractive index profile can be formed.

また、得られた光伝送体は、Tgが90〜150℃であることが好ましい。Tgが90℃未満であると、通常の使用温度上限である80℃において、屈折率調整物質に熱的な拡散が生じ、組成の変化に伴って屈折率分布形状が適切な形から変化してしまい、その結果、帯域性能やNAの性能が低下するので好ましくなく、Tg150℃超であると、マトリックス中に部分的な結晶性が発生し、光散乱が発生するおそれがあるので好ましくない。中でも、Tgは90〜120℃であることが特に好ましい。本発明に係る含フッ素多環式化合物のTgは−15℃〜2℃であり、従来の屈折率調整物質に比較して比較的高いTgを有している。したがって、本発明に係る含フッ素多環式化合物は本含フッ素重合体のTgを低下させる作用が少なく、光学樹脂組成物に対して少ない量で、耐熱性の良好な光伝送体が得られるので好ましい。   Moreover, it is preferable that Tg is 90-150 degreeC in the obtained optical transmission body. When Tg is less than 90 ° C, thermal diffusion occurs in the refractive index adjusting material at 80 ° C, which is the upper limit of the normal use temperature, and the refractive index distribution shape changes from an appropriate shape as the composition changes. As a result, the band performance and NA performance are deteriorated, which is not preferable. If the Tg exceeds 150 ° C., partial crystallinity is generated in the matrix and light scattering may occur, which is not preferable. Especially, it is especially preferable that Tg is 90-120 degreeC. The fluorine-containing polycyclic compound according to the present invention has a Tg of −15 ° C. to 2 ° C., and has a relatively high Tg as compared with conventional refractive index adjusting substances. Therefore, the fluorine-containing polycyclic compound according to the present invention has little effect of lowering the Tg of the fluorine-containing polymer, and an optical transmitter having good heat resistance can be obtained in a small amount with respect to the optical resin composition. preferable.

本発明に係る含フッ素多環式化合物は、一般式(2)により表される化合物と一般式(3)により表される化合物を反応させることにより、ホモカップリング体を殆ど副生することなく、高選択的かつ高収率で製造することができるので好ましい。一般式(2)により表される化合物と一般式(3)により表される化合物は、いずれも、反応性が高い。このため、これらの化合物を混合することにより、反応が速やかに進み、ホモカップリング
体を生成することなく、高い収率で、本発明に係る含フッ素多環式化合物が得られるので好ましい。
The fluorine-containing polycyclic compound according to the present invention reacts with the compound represented by the general formula (2) and the compound represented by the general formula (3), with almost no by-product of the homo-coupled product. It is preferable because it can be produced with high selectivity and high yield. The compound represented by the general formula (2) and the compound represented by the general formula (3) are both highly reactive. For this reason, it is preferable to mix these compounds because the reaction proceeds rapidly and the fluorine-containing polycyclic compound according to the present invention can be obtained in high yield without producing a homo-coupled product.

上記一般式(2)においてそれぞれ独立に選択されるR1〜R3は、それぞれ独立にフッ素原子、炭素数1〜5のペルフルオロアルコキシル基または炭素数1〜5のペルフルオロアルキル基であり、X1〜X3はそれぞれ独立に臭素原子又はヨウ素原子であることが好ましい。また、上記一般式(3)で表される化合物においてR4は、フッ素原子、炭素数1
〜5のペルフルオロアルコキシル基または炭素数1〜5のペルフルオロアルキル基からなる群より選ばれるいずれかであることが好ましい。これらの化合物の中でも、得られる化合物の特性がよく、目的物の収率のよいことから、R1〜R3及びR4が、それぞれ、独立
にトリフルオロメチル基又はフッ素原子で、X1〜X3がヨウ素原子であることが好ましい。
R 1 to R 3 independently selected in the general formula (2) are each independently a fluorine atom, a C 1-5 perfluoroalkoxyl group or a C 1-5 perfluoroalkyl group, and X 1 it is preferred to X 3 are each independently a bromine atom or an iodine atom. In the compound represented by the general formula (3), R 4 is a fluorine atom, having 1 carbon atom.
It is preferably any one selected from the group consisting of ˜5 perfluoroalkoxyl groups or C 1-5 perfluoroalkyl groups. Among these compounds, good properties of the compounds obtained, since the good yield of the desired product, R 1 to R 3 and R 4 are each a trifluoromethyl group or a fluorine atom independently, X 1 ~ X 3 is preferably an iodine atom.

本発明では、一般式(2)により表される化合物と、一般式(3)により表される化合物を反応させるには、溶媒中で反応させることが好ましい。混合の仕方は特に限定されないが、溶媒中に、一般式(2)により表される化合物と、一般式(3)により表される化合物をそれぞれ加えることが好ましい。   In this invention, in order to make the compound represented by General formula (2) and the compound represented by General formula (3) react, it is preferable to make it react in a solvent. The method of mixing is not particularly limited, but it is preferable to add the compound represented by the general formula (2) and the compound represented by the general formula (3) to the solvent, respectively.

上記反応をさせる際には、一般式(3)で表される化合物は一般式(2)で表される化合物の3倍モル以上であることが好ましい。特に、3〜10倍モルが好ましく、更に、3〜4倍モルであることが最も好ましい。また、反応温度は、10〜160℃が好ましく、特に40〜100℃が好ましい。反応温度は、低すぎると反応に長時間を要するので好ましくなく、高すぎると副反応が起き易くなるので好ましくない。   When making the said reaction, it is preferable that the compound represented by General formula (3) is 3 times mole or more of the compound represented by General formula (2). In particular, it is preferably 3 to 10 moles, and most preferably 3 to 4 moles. Moreover, 10-160 degreeC is preferable and, as for reaction temperature, 40-100 degreeC is especially preferable. If the reaction temperature is too low, it takes a long time for the reaction, which is not preferable, and if it is too high, side reactions are likely to occur.

溶媒は、反応液中のアニオン種を安定させることから極性溶媒であることが好ましい。極性溶媒は特に限定されるものではないが、非プロトン系極性溶媒を好ましく利用することができる。極性溶媒としては、ジエチルエーテル、テトラヒドロフラン(以下、THFという)、ジメチルホルムアミドなどの非プロトン系極性溶媒が反応のアニオン種を安定させることから特に好ましい。極性溶媒の使用量は、特に限定されるものではないが、上記一般式(2)で表される化合物に対し3〜20倍モルが適当である。   The solvent is preferably a polar solvent because it stabilizes anionic species in the reaction solution. The polar solvent is not particularly limited, but an aprotic polar solvent can be preferably used. As the polar solvent, an aprotic polar solvent such as diethyl ether, tetrahydrofuran (hereinafter referred to as THF), dimethylformamide or the like is particularly preferable because it stabilizes the anion species of the reaction. Although the usage-amount of a polar solvent is not specifically limited, 3-20 times mole is suitable with respect to the compound represented by the said General formula (2).

反応終了後、溶媒と無機物を除去することによりほぼ純粋な目的物が得られ、ペルフルオロビフェニルなどの副生物は通常10質量%以下である。また、Ullmann型のカップリングでは今まで避けられなかったタール状成分がほとんど副生しないため、目的物単離のためのハンドリングも容易である。こうして得られた粗結晶は、再結晶をすることで容易に純度を上げることができる。再結晶溶媒は特に制限されないが、トルエン、ヘキサン、ペルフルオロ系有機溶媒等が好ましい。   After completion of the reaction, the solvent and the inorganic substance are removed to obtain a substantially pure target product, and by-products such as perfluorobiphenyl are usually 10% by mass or less. In addition, since the tar-like component, which has been unavoidable until now in the Ullmann type coupling, hardly occurs as a by-product, handling for isolating the target product is also easy. The purity of the crude crystal thus obtained can be easily increased by recrystallization. The recrystallization solvent is not particularly limited, but toluene, hexane, perfluoro organic solvent and the like are preferable.

上記一般式(3)で表される化合物は、従来より公知の方法により得ることができ、例えば、下記一般式(12)で表される化合物を溶媒中で、エチルマグネシウムブロマイドなどのアルキルマグネシウムブロマイドや金属マグネシウム等とのグリニヤー交換反応により、下記一般式(13)で表される化合物とした後、この反応系に臭化銅(CuBr)を添加し反応させて製造し得る。この反応は発熱の大きい反応であり、反応温度が上がりすぎると分解などの副反応が生じやすくなるため、副反応を抑制するために反応温度を低めに抑えることが好ましい。具体的には−20〜+40℃が適当で、特に0〜+10℃で行なうのが好ましい。臭化銅を分割添加し、かつ反応温度を上記範囲に維持しながら反応を行なうことが好ましい。臭化銅の量は出発物質である一般式(12)で表される化合物に対して1〜10倍モルが適当であり、特に2〜5倍モルが好ましい。   The compound represented by the general formula (3) can be obtained by a conventionally known method. For example, the compound represented by the following general formula (12) is mixed with an alkyl magnesium bromide such as ethyl magnesium bromide in a solvent. It can be produced by making a compound represented by the following general formula (13) by a Grignard exchange reaction with metal magnesium or the like, and then adding copper bromide (CuBr) to this reaction system to cause a reaction. This reaction is an exothermic reaction, and if the reaction temperature is too high, side reactions such as decomposition tend to occur. Therefore, it is preferable to keep the reaction temperature low in order to suppress side reactions. Specifically, −20 to + 40 ° C. is appropriate, and it is particularly preferably performed at 0 to + 10 ° C. It is preferable to carry out the reaction while adding copper bromide in portions and maintaining the reaction temperature within the above range. The amount of copper bromide is suitably 1 to 10 moles, particularly 2 to 5 moles, based on the compound represented by the general formula (12) which is the starting material.

Figure 2008001652
Figure 2008001652

Figure 2008001652
Figure 2008001652

また、本発明に係る含フッ素多環式化合物は異性体の混合物として合成される。例えば一般式(4)で表される化合物は下記一般式(14)及び(15)で表される化合物の混合物として得られる。このため、本発明に係る含フッ素多環式化合物は異性体の混合物のまま利用すればより結晶性が低下し、比較的高い屈折率を維持したまま、より本含フッ素重合体との高い相溶性が得られるという効果を有する。また、これらの混合物は、液体クロマトグラフ法等により各々分離することが可能である。   The fluorine-containing polycyclic compound according to the present invention is synthesized as a mixture of isomers. For example, the compound represented by the general formula (4) is obtained as a mixture of compounds represented by the following general formulas (14) and (15). Therefore, if the fluorine-containing polycyclic compound according to the present invention is used in the form of a mixture of isomers, the crystallinity is lowered, and a relatively high refractive index is maintained while maintaining a relatively high refractive index. It has the effect that solubility is obtained. In addition, these mixtures can be separated by a liquid chromatography method or the like.

Figure 2008001652
Figure 2008001652

Figure 2008001652
Figure 2008001652

以下に、例1〜3及び5(実施例)、例4、6(比較例)を示すが、本発明はこれらに限定されるものではない。なお、例1は本発明の製造方法による。   Examples 1 to 3 and 5 (Examples) and Examples 4 and 6 (Comparative Examples) are shown below, but the present invention is not limited thereto. In addition, Example 1 is based on the manufacturing method of this invention.

[例1]
[1,3,5−トリヨード−2,4,6−トリフルオロベンゼンの合成]
温度計、ジムロート冷却器、メカニカル撹拌器、滴下ロートの付いた2Lガラスフラスコに、室温にて、ヨウ素577g(2.27mol)、60質量%発煙硫酸1000gを仕込み、ここに滴下ロートより1,3,5−トリフルオロベンゼン100g(0.76mol)をゆっくり滴下した。全量を仕込んだ後、反応器内温を60〜70℃に保ち、18
時間そのまま撹拌を続けた。その後室温まで冷却し、反応液を氷水にゆっくり注ぎ込むと黒色の固体が析出した。過剰のヨウ素をチオ硫酸ナトリウム水溶液で処理した後、褐色固体をヘキサンから再結晶することにより338gの淡褐色針状結晶を得た。NMR、ガスクロマトグラフ(以下、GCとも記す)、マススペクトルの結果、純度99.1質量%の1,3,5−トリヨード−2,4,6−トリフルオロベンゼンであることを確認した。融点は155℃であった。収率は1,3,5−トリフルオロベンゼン基準で87%であった。
[Example 1]
[Synthesis of 1,3,5-triiodo-2,4,6-trifluorobenzene]
A 2 L glass flask equipped with a thermometer, a Dimroth cooler, a mechanical stirrer, and a dropping funnel was charged with 577 g (2.27 mol) of iodine and 1000 g of 60% by weight fuming sulfuric acid at room temperature. , 5-trifluorobenzene 100 g (0.76 mol) was slowly added dropwise. After charging the whole amount, the reactor internal temperature was kept at 60 to 70 ° C., and 18
Stirring was continued for a period of time. Thereafter, the mixture was cooled to room temperature, and the reaction solution was slowly poured into ice water to precipitate a black solid. Excess iodine was treated with an aqueous sodium thiosulfate solution, and the brown solid was recrystallized from hexane to obtain 338 g of light brown needle crystals. As a result of NMR, gas chromatograph (hereinafter also referred to as GC), and mass spectrum, it was confirmed to be 1,3,5-triiodo-2,4,6-trifluorobenzene having a purity of 99.1% by mass. The melting point was 155 ° C. The yield was 87% based on 1,3,5-trifluorobenzene.

なお、ガスクロマトグラフは、Agilent Technologies 社製GC
System6850にキャピラリーカラムHP−1(Thicness:0.25μm、Length:30m,Phase Ratio 320,Colum ID:0.32mm)を用いて、JISI:K114に準じて測定を行った。
マススペクトルは、Agilent Technologies 社製GC System5890にキャピラリーカラムHP−1(Thicness:0.25μm、Length:30m,Phase Ratio 320,Colum ID:0.32mm)、検出器に日本電子社製 SX−102Aをもちいて、JISI:K0123に準じて測定した。
また、NMRは、日本電子データム社製 JNM−AL300を用いて測定した。
ガスクロマトグラフ、マススペクトル、NMRは以下の各例においても同様に測定した。
The gas chromatograph is a GC manufactured by Agilent Technologies.
Measurement was performed according to JIS I: K114 using a capillary column HP-1 (Thickness: 0.25 μm, Length: 30 m, Phase Ratio 320, Column ID: 0.32 mm) on a System 6850.
The mass spectrum was obtained by using Agilent Technologies GC System 5890 and capillary column HP-1 (Thickness: 0.25 μm, Length: 30 m, Phase Ratio 320, Column ID: 0.32 mm), and detector SX-102A. Then, it was measured according to JISI: K0123.
NMR was measured using JNM-AL300 manufactured by JEOL Datum.
Gas chromatograph, mass spectrum and NMR were measured in the same manner in the following examples.

[目的物の一般式(14)および一般式(15)で表される化合物の合成]
ジムロートコンデンサ、熱電対温度計、滴下ロート、メカニカルスターラーの付いた2Lパイレックス(登録商標)製4つ口フラスコを窒素置換した。100rpmで撹拌しながら室温にて2−ブロモ−3,4,5,6−テトラフルオロベンゾトリフロライド22.3g(0.075mol)とテトラヒドロフラン(関東化学社製、以下、THFと記す)50mlをロートから仕込んだ。その後、氷水でフラスコを冷却し撹拌速度を500rpmに上昇させた。0.96mol/LのエチルマグネシウムブロマイドTHF溶液76ml(0.0730mol)を滴下ロートに仕込み、フラスコ内温が5℃以下になったら、エチルマグネシウムブロマイドを5ml/分程度の速度で滴下すると内温は3〜6℃に保たれ、約1時間で滴下終了した。滴下終了後、そのまま1時間撹拌を続けると淡青緑色懸濁溶液になった。
[Synthesis of Compound Represented by General Formula (14) and General Formula (15)]
A 2 L Pyrex (registered trademark) four-necked flask equipped with a Dimroth condenser, a thermocouple thermometer, a dropping funnel, and a mechanical stirrer was purged with nitrogen. While stirring at 100 rpm, 22.3 g (0.075 mol) of 2-bromo-3,4,5,6-tetrafluorobenzotrifluoride and 50 ml of tetrahydrofuran (manufactured by Kanto Chemical Co., Ltd., hereinafter referred to as THF) were stirred at room temperature. Prepared from the funnel. Thereafter, the flask was cooled with ice water, and the stirring speed was increased to 500 rpm. Charge a 0.96 mol / L ethylmagnesium bromide THF solution (76 ml, 0.0730 mol) into a dropping funnel, and when the flask internal temperature is 5 ° C. or lower, add ethylmagnesium bromide at a rate of about 5 ml / min. The temperature was maintained at 3 to 6 ° C., and dropping was completed in about 1 hour. When the stirring was continued for 1 hour after the completion of the dropping, a pale blue-green suspension was obtained.

つぎに固体の臭化銅(CuBr)21.53g(0.150mol)をロートから添加するが、この際発熱が大きく温度が高いと、ホモカップリングが起こりペルフルオロ(2,2−ジメチルビフェニル)が副生しやすくなるため、フラスコを氷冷したまま4回に分けて添加した。添加終了後、1時間以上そのまま撹拌を続けると淡灰色懸濁溶液となった。さらに滴下ロートからジオキサン20mlを加え、そのまま30分間撹拌した。つぎに例2の様に合成した1,3,5−トリヨード−2,4,6−トリフルオロベンゼンの固体7.65g(0.015mol)をロートから一括投入し、氷浴をオイルバスに切り替えた後、撹拌しながら16時間還流を続けた。
16時間後に反応液から溶媒を留去濃縮し、残留物を水中に入れ、急冷した。濾過して集めた固体を500gのジクロロペンタフルオロプロパン(商品名「AK225」:旭硝子(株)製。以下、R225という)で抽出した後、エバポレーターで濃縮すると、透明褐色のオイル状の液体が得られた。
Next, 21.53 g (0.150 mol) of solid copper bromide (CuBr) is added from the funnel. At this time, if the heat generation is large and the temperature is high, homocoupling occurs and perfluoro (2,2-dimethylbiphenyl) is converted to In order to facilitate the formation of by-products, the flask was added in four portions while cooling with ice. When the stirring was continued for 1 hour or more after completion of the addition, a light gray suspension was obtained. Further, 20 ml of dioxane was added from the dropping funnel and stirred as it was for 30 minutes. Next, 7.65 g (0.015 mol) of a solid of 1,3,5-triiodo-2,4,6-trifluorobenzene synthesized as in Example 2 was charged all at once from the funnel, and the ice bath was switched to an oil bath. Then, refluxing was continued for 16 hours with stirring.
After 16 hours, the solvent was distilled off from the reaction solution and concentrated, and the residue was put into water and quenched. The solid collected by filtration was extracted with 500 g of dichloropentafluoropropane (trade name “AK225” manufactured by Asahi Glass Co., Ltd., hereinafter referred to as R225), and then concentrated with an evaporator to obtain a transparent brown oily liquid. It was.

得られた透明褐色のオイル状の液体を液体クロマトグラフ法(MERK製Silicagel60/φ30×500H/n−ヘキサン)を用いて分離を行い、得られた留分を生成物ごとにまとめて、ロータリーエバポレーターを用いて80℃/400Paで濃縮することにより、純度99質量%のペルフルオロ(2,2−ジメチルビフェニル)が0.51
g分別され、更に2つの生成物が各々6.8g、3.3g得られた。
NMR、ガスクロマトグラフ、マススペクトルの結果、純度98質量%の目的物の一般式(14)と一般式(15)で表される化合物であることを確認した。
The obtained transparent brown oily liquid was separated using a liquid chromatographic method (Silica Gel 60 / φ30 × 500 H / n-hexane manufactured by MERK), and the obtained fractions were collected for each product to obtain a rotary evaporator. Is used to concentrate perfluoro (2,2-dimethylbiphenyl) having a purity of 99% by mass to 0.51 by concentrating at 80 ° C./400 Pa.
6.8 g and 3.3 g of two products were obtained respectively.
As a result of NMR, gas chromatograph, and mass spectrum, it was confirmed that the compound represented by the general formula (14) and the general formula (15) was 98% by mass.

一般式(14)で表される化合物NMRデータ:19FNMR(282.65MHz,溶媒(CDCl3,基準CFCl3):δ(ppm):−57.50(3F,d,J=22.6Hz),):−57.58(6F,d,J=22.6Hz),−105.34(2F,s) ,−105.48(1F,s),−133.94(3F,m),−136.00(3F,m)−146.88(1F,m),−147.07(2F,m),−148.93(1F,m),−18.95(2F,m) Compound NMR data represented by general formula (14): 19 FNMR (282.65 MHz, solvent (CDCl 3 , reference CFCl 3 ): δ (ppm): −57.50 (3F, d, J = 22.6 Hz) )): −57.58 (6F, d, J = 22.6 Hz), −105.34 (2F, s), −105.48 (1F, s), −133.94 (3F, m), − 136.00 (3F, m) -146.88 (1F, m), -147.07 (2F, m), -148.93 (1F, m), -18.95 (2F, m)

一般式(15)で表される化合物NMRデータ:19FNMR(282.65MHz,溶媒(CDCl3,基準CFCl3):δ(ppm):−57.60(9F,d,J=22.6Hz),−105.36(3F,s),−133.8(3F,m),−135.9(3F,m),−147.26(3F,m),−148.92(3F,m) Compound NMR data represented by general formula (15): 19 F NMR (282.65 MHz, solvent (CDCl 3 , reference CFCl 3 ): δ (ppm): −57.60 (9 F, d, J = 22.6 Hz) , −105.36 (3F, s), −133.8 (3F, m), −135.9 (3F, m), −147.26 (3F, m), −148.92 (3F, m)

融点は示差走査熱量計(以下、DSCと記す)で測定した結果、一般式(14)で表される化合物は68.4℃、一般式(15)で表される化合物では115.8℃あった。
収率は1,3,5−トリヨード−2,4,6−トリフルオロベンゼン基準で一般式(14)で表される化合物は56.9%、一般式(15)で表される化合物は27.5%であった。
なお、得られた一般式(14)で表される化合物の屈折率は1.41であり、Tgは−12℃であった。また、得られた一般式(15)で表される化合物の屈折率は1.46であり、Tgは−1℃であった。
The melting point was measured with a differential scanning calorimeter (hereinafter referred to as DSC). As a result, the compound represented by the general formula (14) was 68.4 ° C., and the compound represented by the general formula (15) was 115.8 ° C. It was.
The yield is 56.9% for the compound represented by the general formula (14) on the basis of 1,3,5-triiodo-2,4,6-trifluorobenzene, and 27 for the compound represented by the general formula (15). .5%.
In addition, the refractive index of the compound represented by General formula (14) obtained was 1.41, and Tg was −12 ° C. Further, the compound represented by the general formula (15) obtained had a refractive index of 1.46 and Tg of −1 ° C.

なお、DSCはTA Instruments社 DSC Q100を用いて測定した。Tgは、TA Instruments社 DSC Q100にて測定した。以下の各例においても同様である。
また、屈折率は、アタゴ社製 アッペ屈折率計2Tを用いてJISI:K7142に準じて、測定した。以下の各例においても同様である。
In addition, DSC was measured using TA Instruments DSC Q100. Tg was measured with DS Instruments Q100 from TA Instruments. The same applies to the following examples.
The refractive index was measured in accordance with JISI: K7142 using an Atpe refractometer 2T. The same applies to the following examples.

[例2]
[1,3,5−トリブロモ−2,4,6−トリフルオロベンゼンの合成]
温度計、滴下ロート、ジムロート冷却器、メカニカル撹拌器のついた1Lガラスフラスコに、96質量%硫酸400gと1,3−ジブロモ−5,5−ジメチルヒダントイン195g(0.682mol)を入れて撹拌した。フラスコを氷浴で冷却した後、1,3,5−トリフルオロベンゼン50g(0.379mol)を滴下ロートから滴下した。発熱があるため内温33〜37℃を保つように1時間かけて滴下を行なった。滴下終了後、水浴で50℃に加温しさらに3時間撹拌を続けた。
[Example 2]
[Synthesis of 1,3,5-tribromo-2,4,6-trifluorobenzene]
In a 1 L glass flask equipped with a thermometer, a dropping funnel, a Dimroth condenser, and a mechanical stirrer, 96 g of sulfuric acid 400 g and 1,3-dibromo-5,5-dimethylhydantoin 195 g (0.682 mol) were added and stirred. . After cooling the flask with an ice bath, 50 g (0.379 mol) of 1,3,5-trifluorobenzene was dropped from the dropping funnel. Due to the generation of heat, the dropwise addition was carried out over 1 hour so as to maintain the internal temperature of 33 to 37 ° C. After completion of the dropwise addition, the mixture was heated to 50 ° C. in a water bath and further stirred for 3 hours.

この反応液にR225を500ml加えて撹拌すると均一赤色溶液になるので、その混合液を水1Lを入れた2Lビーカー中に撹拌しながら注ぎ込んだ。下層の有機相を水1Lで3回水洗した後、硫酸マグネシウムで一晩乾燥した。硫酸マグネシウムを濾過で取り除いた後、エバポレーターで余分なR225を除去し、R225の100mlから再結晶を行ない淡黄色の結晶を得た。ガスクロマトグラフ、マススペクトルの結果、純度98質量%の1,3,5−トリブロモ−2,4,6−トリフルオロベンゼン85g(収率61質量%)であることを確認した。   When 500 ml of R225 was added to this reaction solution and stirred, a uniform red solution was formed. The mixture was poured into a 2 L beaker containing 1 L of water while stirring. The lower organic phase was washed with 1 L of water three times and then dried over magnesium sulfate overnight. After removing magnesium sulfate by filtration, excess R225 was removed by an evaporator, and recrystallization was performed from 100 ml of R225 to obtain pale yellow crystals. As a result of gas chromatography and mass spectrum, it was confirmed that the purity was 85 g (yield 61 mass%) of 1,3,5-tribromo-2,4,6-trifluorobenzene having a purity of 98 mass%.

[目的物の一般式(14)および一般式(15)で表される化合物の合成]
温度計、ジムロート冷却器、メカニカル撹拌器の付いた2Lガラスフラスコに、室温に
て、銅粉(アルドリッチ社製カッパーブロンズ)31.0g(0.49mol)、ジメチルホルムアミド50ml、2−ブロモ−3,4,5,6−テトラフルオロベンゾトリフロライド47.5g(0.16mol)、1,3,5−トリブロモ−2,4,6−トリフルオロベンゼン6.0g(0.016mol)を入れた。撹拌しながら、マントルヒーターでゆっくり加熱し昇温した。153℃で還流を3時間続けた後、反応液を濾過して濾液を回収した。さらに濾さいをアセトン50mlで洗い、濾液と混合した。混合液を水400mlに撹拌しながら投入し、更にR225を500g加えて30分攪拌を継続したのち、分液ロートを用いてR225層を回収し、3回ほど500mlの水で抽出操作を繰り返した。
その後、このR225層をロータリーエバポレーターを用いて80℃/400Paで濃縮すると、透明褐色のオイル状の液体が得られた。
[Synthesis of Compound Represented by General Formula (14) and General Formula (15)]
To a 2 L glass flask equipped with a thermometer, a Dimroth cooler, and a mechanical stirrer, 31.0 g (0.49 mol) of copper powder (Aldrich Copper Bronze), 50 ml of dimethylformamide, 2-bromo-3, 47.5 g (0.16 mol) of 4,5,6-tetrafluorobenzotrifluoride and 6.0 g (0.016 mol) of 1,3,5-tribromo-2,4,6-trifluorobenzene were added. While stirring, the temperature was raised slowly by heating with a mantle heater. After refluxing at 153 ° C. for 3 hours, the reaction solution was filtered to collect the filtrate. The filter cake was further washed with 50 ml of acetone and mixed with the filtrate. The mixed solution was added to 400 ml of water while stirring, 500 g of R225 was further added, and stirring was continued for 30 minutes. Then, the R225 layer was recovered using a separatory funnel, and the extraction operation was repeated three times with 500 ml of water. .
Thereafter, the R225 layer was concentrated at 80 ° C./400 Pa using a rotary evaporator to obtain a transparent brown oily liquid.

得られた透明褐色のオイル状の液体を液体クロマトグラフ法(MERK製 Silicagel60/φ30×500H/n−ヘキサン)を用いて分離を行い、得られた留分を生成物ごとにまとめて、ロータリーエバポレーターを用いて80℃/400Paで濃縮することにより、純度99.8質量%のペルフルオロ(2,2−ジメチルビフェニル)が25g分別され、更に2つの生成物が各々0.84g、0.40g得られた。   The obtained transparent brown oily liquid was separated using a liquid chromatographic method (Silica Gel 60 / φ30 × 500 H / n-hexane manufactured by MERK), and the obtained fractions were collected for each product, and a rotary evaporator was obtained. Is concentrated at 80 ° C./400 Pa to fractionate 25 g of 99.8% by mass of perfluoro (2,2-dimethylbiphenyl), and two products are obtained, 0.84 g and 0.40 g, respectively. It was.

NMR、ガスクロマトグラフ、マススペクトルの結果、純度99質量%の目的物の一般式(14)と一般式(15)で表される化合物であることを確認した。融点はDSCで測定した結果、一般式(14)で表される化合物は68.4℃、一般式(15)で表される化合物では115.8℃あった。
収率は1,3,5−トリブロモ−2,4,6−トリフルオロベンゼン基準で一般式(14)で表される化合物は6.8%、一般式(15)で表される化合物では3.2%あった。
なお、得られた一般式(14)で表される化合物の屈折率は1.41であり、Tgは−12℃であった。また、得られた一般式(15)で表される化合物の屈折率は1.46であり、Tgは−1℃であった。
As a result of NMR, gas chromatograph, and mass spectrum, it was confirmed to be a compound represented by general formula (14) and general formula (15) of the target compound having a purity of 99% by mass. As a result of measuring the melting point by DSC, the compound represented by the general formula (14) was 68.4 ° C., and the compound represented by the general formula (15) was 115.8 ° C.
The yield is 6.8% for the compound represented by the general formula (14) based on 1,3,5-tribromo-2,4,6-trifluorobenzene, and 3 for the compound represented by the general formula (15). .2%.
In addition, the refractive index of the compound represented by General formula (14) obtained was 1.41, and Tg was −12 ° C. Moreover, the refractive index of the compound represented with General formula (15) obtained was 1.46, and Tg was -1 degreeC.

[例3]
[一般式(14)及び(15)で表される化合物を含有した屈折率分布型POFの作製及びその耐熱性評価]
<マトリックスの作製>
750gのペルフルオロ(ブテニルビニルエーテル)[以下、PBVEという]、4kgのイオン交換水、260gのメタノールおよび3.7gのジイソプロピルペルオキシジカーボネートを、内容積5Lのガラスフラスコに入れた。系内を窒素で置換した後、40℃で22時間懸濁重合を行い、数平均分子量約5×104の重合体を690g得た。この
重合体をフッ素/窒素混合ガス(フッ素ガス濃度20容量%)雰囲気中で250℃、5時間加熱処理することにより光透過性および熱安定性の良好な重合体(以下、重合体Aという)を得た。
重合体Aの固有粘度[η]は、ペルフルオロ(2−ブチルテトラヒドロフラン)[以下、PBTHFという]中30℃で0.3であった。重合体AのTgは108℃であり、室温では強靱で透明なガラス状重合体であった。また屈折率は1.342であった。
なお、固有粘度[η]は、JIS K7367−1の規定に則り、柴田科学器械工業株式会社製のウベローデ型粘度計を用いて下記条件にて測定した。
測定温度:30℃(恒温槽)
希釈溶媒:ペルフルオロ(2−ブチルテトラヒドロフラン)
希釈濃度:1%、0.67%、0.59%
[Example 3]
[Preparation of refractive index distribution type POF containing compounds represented by general formulas (14) and (15) and evaluation of heat resistance thereof]
<Production of matrix>
750 g of perfluoro (butenyl vinyl ether) [hereinafter referred to as PBVE], 4 kg of ion-exchanged water, 260 g of methanol and 3.7 g of diisopropyl peroxydicarbonate were placed in a glass flask having an internal volume of 5 L. After the system was replaced with nitrogen, suspension polymerization was carried out at 40 ° C. for 22 hours to obtain 690 g of a polymer having a number average molecular weight of about 5 × 10 4 . By polymerizing this polymer in a fluorine / nitrogen mixed gas (fluorine gas concentration: 20 vol%) atmosphere at 250 ° C. for 5 hours, a polymer having good light transmittance and thermal stability (hereinafter referred to as polymer A) Got.
The intrinsic viscosity [η] of the polymer A was 0.3 at 30 ° C. in perfluoro (2-butyltetrahydrofuran) [hereinafter referred to as PBTHF]. The polymer A had a Tg of 108 ° C. and was a tough and transparent glassy polymer at room temperature. The refractive index was 1.342.
The intrinsic viscosity [η] was measured under the following conditions using an Ubbelohde viscometer manufactured by Shibata Kagaku Kikai Kogyo Co., Ltd. in accordance with JIS K7367-1.
Measurement temperature: 30 ° C (constant temperature bath)
Diluting solvent: perfluoro (2-butyltetrahydrofuran)
Dilution concentration: 1%, 0.67%, 0.59%

<屈折率分布型POFの作製例及びその評価>
重合体Aを100質量部に対して一般式(14)で表される化合物8.8質量部および一般式(15)で表される化合物2.2質量部の混合物をガラス封管中に仕込み、250℃で溶融成形し円柱状の成形体(以下、成形体aという)を得た。成形体aの屈折率は1.354、Tgは92℃であった。
つぎに、重合体Aのみからなる円筒管を溶融成形により作成し、この円筒管中空部に成形体aを挿入し200℃に加熱して合体させることによりプリフォームを得た。このプリフォームを230℃で溶融紡糸することにより屈折率が中心部から周辺部に向かって徐々に低下する屈折率分布型光ファイバ(i)を得た。得られた光ファイバ(i)の光伝送特性は、650nmで70dB/km、850nmで19dB/km、1300nmで19dB/km、開口数NAは0.177であり、可視光から近赤外光までの光を良好に伝達できる光ファイバであることを確かめた。
伝送損失は、JIS−C−6863に規定された評価方法に準拠した方法で測定した。評価は、以下のように行った。光源は安藤電気社製のAQ4215(085)LED UNIT、パワーメータは安藤電気社製のAQ2730OPM UNIT、励振器はアンリツ社製のMODE SCRAMBLER MZ106Cを使用した。
以下の各例においても同様である。
<Preparation example of refractive index distribution type POF and its evaluation>
A mixture of 8.8 parts by mass of the compound represented by the general formula (14) and 2.2 parts by mass of the compound represented by the general formula (15) with respect to 100 parts by mass of the polymer A is charged into a glass sealed tube. Then, it was melt-molded at 250 ° C. to obtain a cylindrical shaped body (hereinafter referred to as a shaped body a). The molded product a had a refractive index of 1.354 and Tg of 92 ° C.
Next, a cylindrical tube made only of the polymer A was prepared by melt molding, and a molded body a was inserted into the hollow part of the cylindrical tube and heated to 200 ° C. to be combined to obtain a preform. The preform was melt-spun at 230 ° C. to obtain a graded index optical fiber (i) in which the refractive index gradually decreased from the central portion toward the peripheral portion. The optical transmission characteristic of the obtained optical fiber (i) is 70 dB / km at 650 nm, 19 dB / km at 850 nm, 19 dB / km at 1300 nm, and the numerical aperture NA is 0.177. From visible light to near infrared light It was confirmed that the optical fiber was able to transmit the light.
The transmission loss was measured by a method based on the evaluation method defined in JIS-C-6863. Evaluation was performed as follows. The light source was AQ4215 (085) LED UNIT manufactured by Ando Electric Co., AQ2730OPM UNIT manufactured by Ando Electric Co., Ltd., and MODE SCRAMBLER MZ106C manufactured by Anritsu Co., Ltd. was used as the exciter.
The same applies to the following examples.

この光ファイバ(i)を80℃のオーブン中に1000時間保存した後、取り出してから屈折率分布をインターファコ干渉顕微鏡により測定し、保存前の屈折率分布と比較したところ変化は見られなかった。さらに、以下のようなパルス法により伝送帯域を測定することにより伝送特性を評価した。
すなわち、パルスジェネレータ(浜松ホトニクス社製ピコセックライトパルサPLP−01 以下の各例においても同様である。)を用いてパルスレーザ光を発振させ、これを光ファイバに入射し、出射光をサンプリングオシロスコープ(浜松ホトニクス社製オシロスコープ OOS−01 以下の各例においても同様である。)で検出した。この検出信号をフーリエ変換して周波数特性を解析することにより電送帯域を測定した。光ファイバ(i)を80℃で1000時間保存した後に電送帯域を測定したところ、保存前後ともに260MHz・kmで、帯域の低下が起こらないことから耐熱性が良好であることを確認した。
This optical fiber (i) was stored in an oven at 80 ° C. for 1000 hours, then taken out and then the refractive index distribution was measured with an interfaco interference microscope. When compared with the refractive index distribution before storage, no change was observed. It was. Furthermore, the transmission characteristics were evaluated by measuring the transmission band by the following pulse method.
That is, a pulse laser (oscillated by Hamamatsu Photonics Picosec light pulser PLP-01) is used to oscillate pulsed laser light, which is incident on an optical fiber, and the emitted light is sampled on an oscilloscope. (The same applies to the following examples of oscilloscopes manufactured by Hamamatsu Photonics Co., Ltd. OOS-01). The transmission band was measured by Fourier-transforming this detection signal and analyzing the frequency characteristics. When the transmission band was measured after the optical fiber (i) was stored at 80 ° C. for 1000 hours, it was confirmed that the heat resistance was good because the band did not decrease at 260 MHz · km before and after storage.

[例4(比較例)]
[ペルフルオロ(1,3,5−トリフェニルベンゼン)を含有した屈折率分布型POFの作製例及びその評価]
<ペルフルオロ(1,3,5−トリフェニルベンゼン)の合成>
ジムロートコンデンサ、熱電対温度計、滴下ロート、メカニカルスターラーの付いた2Lパイレックス(登録商標)製4つ口フラスコを窒素置換した。100rpmで撹拌しながら室温にてペンタフルオロブロモベンゼン148.2g(0.60mol)とTHF500mlをロートから仕込んだ。その後、氷水でフラスコを冷却し撹拌速度を500rpmに上昇させた。0.96mol/LのエチルマグネシウムブロマイドTHF溶液600ml(0.576mol)を滴下ロートに仕込み、フラスコ内温が5℃以下になったら、エチルマグネシウムブロマイドを5ml/分程度の速度で滴下すると内温は6〜7℃に保たれ、約2時間で滴下終了した。滴下終了後、そのまま1時間撹拌を続けると淡褐色均一透明溶液になった。
[Example 4 (comparative example)]
[Preparation example of refractive index distribution type POF containing perfluoro (1,3,5-triphenylbenzene) and its evaluation]
<Synthesis of perfluoro (1,3,5-triphenylbenzene)>
A 2 L Pyrex (registered trademark) four-necked flask equipped with a Dimroth condenser, a thermocouple thermometer, a dropping funnel, and a mechanical stirrer was purged with nitrogen. While stirring at 100 rpm, 148.2 g (0.60 mol) of pentafluorobromobenzene and 500 ml of THF were charged from a funnel at room temperature. Thereafter, the flask was cooled with ice water, and the stirring speed was increased to 500 rpm. When 600 ml (0.576 mol) of a 0.96 mol / L ethylmagnesium bromide THF solution was charged into a dropping funnel and the flask internal temperature became 5 ° C. or less, ethylmagnesium bromide was dropped at a rate of about 5 ml / min. The temperature was kept at 6 to 7 ° C., and dropping was completed in about 2 hours. When the stirring was continued for 1 hour after the completion of the dropping, a light brown homogeneous transparent solution was obtained.

つぎに固体の臭化銅(CuBr)172.2g(1.20mol)をロートから添加するが、この際発熱が大きく温度が高いと、ホモカップリングが起こりペルフルオロビフェニルが副生しやすくなるため、フラスコを氷冷したまま4回に分けて添加した。添加終了後、1時間以上そのまま撹拌を続けると淡青緑色懸濁溶液となった。さらに滴下ロートからジオキサン200mlを加え、そのまま30分間撹拌した。つぎに1,3,5−トリヨ
ード−2,4,6−トリフルオロベンゼンの固体をロートから一括投入し、氷浴をオイルバスに切り替えた後、撹拌しながら16時間還流を続けた。
16時間後に反応液から溶媒を留去濃縮し、残留物を水中に入れ、急冷した。濾過して集めた固体を2000gのR225で抽出した後、エバポレーターで乾固すると、92gの黄色結晶(GC純度95質量%、収率92質量%)が得られた。さらにこの結晶をヘキサンから再結晶すると白色針状結晶が得られた。NMR、ガスクロマトグラフ、マススペクトルの結果、純度99.99質量%のペルフルオロ(1,3,5−トリフェニルベンゼン)であることを確認した。融点は152℃であった。収率は1,3,5−トリヨード−2,4,6−トリフルオロベンゼン基準で85%であった。
なお、得られたペルフルオロ(1,3,5−トリフェニルベンゼン)の屈折率は1.47であり、Tgは−45℃であった。
Next, 172.2 g (1.20 mol) of solid copper bromide (CuBr) is added from the funnel. At this time, if the heat generation is large and the temperature is high, homocoupling occurs and perfluorobiphenyl is easily produced as a by-product. The flask was added in 4 portions with ice cooling. When the stirring was continued for 1 hour or more after completion of the addition, a pale blue-green suspension was obtained. Further, 200 ml of dioxane was added from the dropping funnel and stirred as it was for 30 minutes. Next, solids of 1,3,5-triiodo-2,4,6-trifluorobenzene were charged all at once from the funnel, the ice bath was switched to an oil bath, and then refluxed for 16 hours with stirring.
After 16 hours, the solvent was distilled off from the reaction solution and concentrated, and the residue was put into water and quenched. The solid collected by filtration was extracted with 2000 g of R225 and then dried with an evaporator to obtain 92 g of yellow crystals (GC purity 95 mass%, yield 92 mass%). Furthermore, when this crystal was recrystallized from hexane, white needle crystals were obtained. As a result of NMR, gas chromatograph and mass spectrum, it was confirmed to be perfluoro (1,3,5-triphenylbenzene) having a purity of 99.99% by mass. The melting point was 152 ° C. The yield was 85% based on 1,3,5-triiodo-2,4,6-trifluorobenzene.
The obtained perfluoro (1,3,5-triphenylbenzene) had a refractive index of 1.47 and Tg of −45 ° C.

<屈折率分布型POFの作製及びその評価>
重合体Aおよびペルフルオロ(1,3,5−トリフェニルベンゼン)の混合物[重合体Aの100質量部に対して、後者を混合物中7.0質量部含む]をガラス封管中に仕込み、250℃で溶融成形し円柱状の成形体(以下、成形体bという)を得た。成形体bの屈折率は1.357、Tgは90℃であった。
つぎに、重合体Aのみからなる円筒管を溶融成形により作成し、この円筒管中空部に成形体bを挿入し200℃に加熱して合体させることによりプリフォームを得た。このプリフォームを230℃で溶融紡糸することにより屈折率が中心部から周辺部に向かって徐々に低下する光ファイバ(ii)を得た。得られた光ファイバ(ii)の光伝送特性は、650nmで63dB/km、850nmで23dB/km、1300nmで20dB/kmであり、開口数NAは0.191であり、可視光から近赤外光までの光を良好に伝達できる光ファイバであることを確かめた。
<Preparation of refractive index distribution type POF and its evaluation>
A mixture of polymer A and perfluoro (1,3,5-triphenylbenzene) [with respect to 100 parts by mass of polymer A, the latter being contained in 7.0 parts by mass in the mixture] was charged into a glass sealed tube, 250 It was melt-molded at 0 ° C. to obtain a cylindrical shaped body (hereinafter referred to as a shaped body b). The refractive index of the molded body b was 1.357, and Tg was 90 ° C.
Next, a cylindrical tube made only of the polymer A was prepared by melt molding, and a molded body b was inserted into the hollow part of the cylindrical tube and heated to 200 ° C. to be combined to obtain a preform. The preform was melt-spun at 230 ° C. to obtain an optical fiber (ii) in which the refractive index gradually decreased from the central portion toward the peripheral portion. The optical transmission characteristics of the obtained optical fiber (ii) are 63 dB / km at 650 nm, 23 dB / km at 850 nm, 20 dB / km at 1300 nm, a numerical aperture NA of 0.191, and from visible light to near infrared. It was confirmed that the optical fiber can transmit light up to light well.

この光ファイバ(ii)を80℃のオーブン中に1000時間保存した後、以下のようなパルス法により伝送帯域を測定することにより伝送特性を評価した。
すなわち、パルスジェネレータを用いてパルスレーザ光を発振させ、これを光ファイバに入射し、出射光をサンプリングオシロスコープで検出した。この検出信号をフーリエ変換して周波数特性を解析することにより伝送帯域を測定した。
光ファイバを80℃、1000時間保存した後に伝送帯域を測定したところ、保存前に260MHz・kmであったものが保存後には180MHz・kmに低下していた。
After storing this optical fiber (ii) in an oven at 80 ° C. for 1000 hours, the transmission characteristics were evaluated by measuring the transmission band by the following pulse method.
That is, pulsed laser light was oscillated using a pulse generator, incident on an optical fiber, and emitted light was detected with a sampling oscilloscope. The transmission band was measured by Fourier-transforming this detection signal and analyzing the frequency characteristics.
When the transmission bandwidth was measured after storing the optical fiber at 80 ° C. for 1000 hours, the transmission band was 260 MHz · km before storage, but was reduced to 180 MHz · km after storage.

[例5]
[一般式(14)で表される化合物を含有したフィルムの作製及びその評価]
(例5−1)
重合体Aの100質量部に対して、一般式(14)で表される化合物10質量部をガラス封管中に仕込み、ガラス管ごと250℃で溶融加熱し、均一濃度になるようにガラス管を1時間加熱後、上下をひっくりかえす操作を10回実施した。その後、3時間静置した後にガラス管をゆっくりと冷却したのち、ガラス管から円柱状の成型体を得た。得られた成型体を200℃のホットプレスで200μmの厚みの透明なフィルムを得た。
このフィルムのTgは91℃であった。また、屈折率は1.355であった。
[Example 5]
[Production and Evaluation of Film Containing Compound Represented by General Formula (14)]
(Example 5-1)
With respect to 100 parts by mass of the polymer A, 10 parts by mass of the compound represented by the general formula (14) is charged into a glass sealed tube, and the glass tube is melted and heated at 250 ° C. to obtain a uniform concentration. After heating for 1 hour, the operation of flipping the top and bottom was performed 10 times. Then, after leaving still for 3 hours, after cooling a glass tube slowly, the cylindrical molded object was obtained from the glass tube. The obtained molded body was hot-pressed at 200 ° C. to obtain a transparent film having a thickness of 200 μm.
The Tg of this film was 91 ° C. The refractive index was 1.355.

(例5−2)
重合体Aの100質量部に対して、一般式(14)で表される化合物30質量部をガラス封管中に仕込み、ガラス管ごと250℃で溶融加熱し、均一濃度になるようにガラス管を1時間加熱後、上下をひっくりかえす操作を10回実施した。その後、3時間静置した後にガラス管をゆっくりと冷却したのち、ガラス管から円柱状の成型体を得た。
得られた成型体を200℃のホットプレスで200μmの厚みの透明なフィルムを得た。このフィルムのTgは65℃であった。また、屈折率は1.375であった。
このフィルムの光線透過率を測定すると350〜700nmの可視光線に対しては90%以上の透過率であったことから、一般式(14)で表される含フッ素多環式化合物は重合体Aに対する相溶性が改善されていて、これを利用した含フッ素樹脂組成物は、より高屈折率な組成でも相分離に由来する光散乱が生じない、均一な組成物であることがわかった。
(Example 5-2)
30 parts by mass of the compound represented by the general formula (14) is charged into a glass sealed tube with respect to 100 parts by mass of the polymer A, and the glass tube is melted and heated at 250 ° C. to obtain a uniform concentration. After heating for 1 hour, the operation of flipping the top and bottom was performed 10 times. Then, after leaving still for 3 hours, after cooling a glass tube slowly, the cylindrical molded object was obtained from the glass tube.
The obtained molded body was hot-pressed at 200 ° C. to obtain a transparent film having a thickness of 200 μm. The Tg of this film was 65 ° C. The refractive index was 1.375.
When the light transmittance of this film was measured, it was 90% or more with respect to visible light of 350 to 700 nm. Therefore, the fluorine-containing polycyclic compound represented by the general formula (14) was polymer A. It was found that the fluorine-containing resin composition using this has a uniform composition in which light scattering derived from phase separation does not occur even with a higher refractive index composition.

[例6(比較例)]
[ペルフルオロ(1,3,5−トリフェニルベンゼン)を含有したフィルムの作製及びその評価]
<ペルフルオロ(1,3,5−トリフェニルベンゼン)を含有したフィルムの作製>
(例6−1)
重合体Aの100質量部に対して、ペルフルオロ(1,3,5−トリフェニルベンゼン)の7.5質量部をガラス封管中に仕込み、ガラス管ごと250℃で溶融加熱し、均一濃度になるようにガラス管を1時間加熱後、上下をひっくりかえす操作を10回実施した。その後、3時間静置した後にガラス管をゆっくりと冷却したのち、ガラス管から円柱状の成型体を得た。
得られた成型体を200℃のホットプレスで200μmの厚みの透明なフィルムを得た。
このフィルムのTgは89℃であった。また、屈折率は1.355であった。
[Example 6 (comparative example)]
[Production and Evaluation of Films Containing Perfluoro (1,3,5-Triphenylbenzene)]
<Preparation of a film containing perfluoro (1,3,5-triphenylbenzene)>
(Example 6-1)
With respect to 100 parts by mass of polymer A, 7.5 parts by mass of perfluoro (1,3,5-triphenylbenzene) is charged into a glass sealed tube and melted and heated at 250 ° C. together with the glass tube to obtain a uniform concentration. After heating the glass tube for 1 hour, the operation of turning the glass tube upside down was performed 10 times. Then, after leaving still for 3 hours, after cooling a glass tube slowly, the cylindrical molded object was obtained from the glass tube.
The obtained molded body was hot-pressed at 200 ° C. to obtain a transparent film having a thickness of 200 μm.
The Tg of this film was 89 ° C. The refractive index was 1.355.

(例6−2)
重合体Aの100質量部に対して、ペルフルオロ(1,3,5−トリフェニルベンゼン)の17.6質量部をガラス封管中に仕込み、ガラス管ごと250℃で溶融加熱し、均一濃度になるようにガラス管を1時間加熱後、上下をひっくりかえす操作を10回実施した。その後、3時間静置した後にガラス管をゆっくりと冷却したのち、ガラス管から円柱状の成型体を得た。
得られた成型体を200℃のホットプレスで200μmの厚みのフィルムを得た。このフィルムは透明であったが、部分的にペルフルオロ(1,3,5−トリフェニルベンゼン)が層分離した白色な部分が存在した。
このフィルムのTgは70℃であった。また、屈折率は1.370であった。
すなわち、ペルフルオロ(1,3,5−トリフェニルベンゼン)は、本発明に係る含フッ素多環式化合物に比べて含フッ素重合体Aに対する相溶性が悪く、これを含有した含フッ素樹脂組成物は、高屈折率にした場合に相分離による光散乱が生じていることが確認された。
(Example 6-2)
With respect to 100 parts by mass of polymer A, 17.6 parts by mass of perfluoro (1,3,5-triphenylbenzene) is charged into a glass sealed tube and melted and heated at 250 ° C. together with the glass tube to obtain a uniform concentration. After heating the glass tube for 1 hour, the operation of turning the glass tube upside down was performed 10 times. Then, after leaving still for 3 hours, after cooling a glass tube slowly, the cylindrical molded object was obtained from the glass tube.
A 200 μm-thick film was obtained by hot pressing the obtained molded body at 200 ° C. This film was transparent, but there was a white portion in which perfluoro (1,3,5-triphenylbenzene) was partially separated.
The Tg of this film was 70 ° C. The refractive index was 1.370.
That is, perfluoro (1,3,5-triphenylbenzene) has poor compatibility with the fluorinated polymer A compared to the fluorinated polycyclic compound according to the present invention, and the fluorinated resin composition containing the perfluoro (1,3,5-triphenylbenzene) is It was confirmed that light scattering due to phase separation occurred when the refractive index was high.

本発明に係る含フッ素多環式化合物は機能性材料の添加剤またはその前駆体としてきわめて有用な化合物である。また、本発明に係る含フッ素多環式化合物は高屈折率であり、かつ含フッ素樹脂組成物への相溶性が高いため、光学樹脂材料の屈折率調整剤として非常に好ましく利用することができる。
本発明によって提供される含フッ素多環式化合物は、C−H結合を有しない非結晶性の含フッ素重合体からなるマトリックス中へ分布する屈折率調整物質として好適である。かかる組成物は様々な光学樹脂材料に利用することが可能である。例えば光伝送体として、芯−鞘型プラスチック光伝送ファイバ、屈折率分布型プラスチック光伝送ファイバ、ロッドレンズ、光導波路、光分岐器、光合波器、光分波器、光減衰器、光スイッチ、光アイソレータ、光送信モジュール、光受信モジュール、カプラ、偏向子、光集積回路等として好ましく利用することができる。また、自動車のエンジンルームなどでの過酷な使用条件に耐える、耐熱性、耐薬品性、耐湿性、不燃性を備える光学樹脂材料として利用し得る。さらに、透明性の高いフッ素樹脂製のフィルムやシートとしても有用であり、各種の紫外線遮蔽フィルムとしても利用し得る。
The fluorine-containing polycyclic compound according to the present invention is a very useful compound as an additive for a functional material or a precursor thereof. Further, since the fluorine-containing polycyclic compound according to the present invention has a high refractive index and high compatibility with the fluorine-containing resin composition, it can be used very preferably as a refractive index adjusting agent for optical resin materials. .
The fluorine-containing polycyclic compound provided by the present invention is suitable as a refractive index adjusting substance distributed in a matrix composed of an amorphous fluorine-containing polymer having no C—H bond. Such a composition can be used for various optical resin materials. For example, as an optical transmission body, a core-sheath type plastic optical transmission fiber, a refractive index distribution type plastic optical transmission fiber, a rod lens, an optical waveguide, an optical splitter, an optical multiplexer, an optical demultiplexer, an optical attenuator, an optical switch, It can be preferably used as an optical isolator, an optical transmission module, an optical reception module, a coupler, a deflector, an optical integrated circuit, and the like. Further, it can be used as an optical resin material having heat resistance, chemical resistance, moisture resistance, and nonflammability that can withstand severe use conditions in an engine room of an automobile. Furthermore, it is useful as a highly transparent fluororesin film or sheet, and can be used as various ultraviolet shielding films.

Claims (5)

下記の一般式(1)[式中、R1〜R4は、それぞれ独立にフッ素原子、炭素数1〜5のペルフルオロアルコキシル基または炭素数1〜5のペルフルオロアルキル基である。]で表される含フッ素多環式化合物。
Figure 2008001652
The following general formula (1) [wherein R 1 to R 4 are each independently a fluorine atom, a C 1-5 perfluoroalkoxyl group or a C 1-5 perfluoroalkyl group. ] The fluorine-containing polycyclic compound represented by this.
Figure 2008001652
前記一般式(1)におけるR1〜R4が,それぞれ独立にフッ素原子またはトリフルオロメチル基である請求項1に記載の含フッ素多環式化合物。 The fluorine-containing polycyclic compound according to claim 1, wherein R 1 to R 4 in the general formula (1) are each independently a fluorine atom or a trifluoromethyl group. 前記一般式(1)におけるR1〜R4が、フッ素原子である請求項1または2に記載の含フッ素多環式化合物。 The fluorine-containing polycyclic compound according to claim 1, wherein R 1 to R 4 in the general formula (1) are fluorine atoms. 下記の一般式(2)[式中、R1〜R3は、それぞれ独立にフッ素原子、炭素数1〜5のペルフルオロアルコキシル基または炭素数1〜5のペルフルオロアルキル基であり、X1
〜X3は、それぞれ独立に臭素原子もしくはヨウ素原子である。]で表される化合物と、
下記の一般式(3)[式中、R4は、フッ素原子、炭素数1〜5のペルフルオロアルコキ
シル基及び炭素数1〜5のペルフルオロアルキル基からなる群より選ばれるいずれかである。]で表される化合物とを溶媒中で反応させることにより得られる請求項1〜3のいずれかに記載の含フッ素多環式化合物の製造方法。
Figure 2008001652
Figure 2008001652
The following general formula (2) [wherein R 1 to R 3 are each independently a fluorine atom, a C 1-5 perfluoroalkoxyl group or a C 1-5 perfluoroalkyl group, and X 1
To X 3 are each independently a bromine atom or an iodine atom. And a compound represented by
The following general formula (3) [wherein R 4 is any one selected from the group consisting of a fluorine atom, a C 1-5 perfluoroalkoxyl group and a C 1-5 perfluoroalkyl group. ] The manufacturing method of the fluorine-containing polycyclic compound in any one of Claims 1-3 obtained by making it react with the compound represented by this in a solvent.
Figure 2008001652
Figure 2008001652
前記溶媒が極性溶媒であることを特徴とする請求項4に記載の前記含フッ素多環式化合物の製造方法。


The said solvent is a polar solvent, The manufacturing method of the said fluorine-containing polycyclic compound of Claim 4 characterized by the above-mentioned.


JP2006173719A 2006-06-23 2006-06-23 Fluorine-containing compound and its manufacturing method Pending JP2008001652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006173719A JP2008001652A (en) 2006-06-23 2006-06-23 Fluorine-containing compound and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006173719A JP2008001652A (en) 2006-06-23 2006-06-23 Fluorine-containing compound and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008001652A true JP2008001652A (en) 2008-01-10

Family

ID=39006336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006173719A Pending JP2008001652A (en) 2006-06-23 2006-06-23 Fluorine-containing compound and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008001652A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212119A1 (en) * 2017-05-15 2018-11-22 株式会社村田製作所 Stacked electronic component and method for manufacturing stacked electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212119A1 (en) * 2017-05-15 2018-11-22 株式会社村田製作所 Stacked electronic component and method for manufacturing stacked electronic component

Similar Documents

Publication Publication Date Title
KR100542784B1 (en) Refraction index distribution type optical resin materials
EP1160231B1 (en) Fluorine-containing diene, its production method and its polymer
JP5028735B2 (en) Novel fluorine-containing compound, production method thereof and polymer thereof
US7459512B2 (en) Process for preparing perfluoroalkyl vinyl ether copolymer and copolymer
JP2008001652A (en) Fluorine-containing compound and its manufacturing method
WO2021020566A1 (en) Fluorine-containing copolymer, optical resin composition, and optical resin molded body
JP4682394B2 (en) Optical resin composition and use thereof
JP2008003351A (en) Optical resin composition and application thereof
JP4132282B2 (en) Gradient index type optical resin material
JP2008001650A (en) Fluorine-containing polycyclic compound and its manufacturing method
TWI718228B (en) Bisphenol compound and aromatic polycarbonate
KR100509512B1 (en) Bis (trialkyl trimellitic anhydride) derivatives and polyesterimide for optical communication formed therefrom
JP4734807B2 (en) Diphenyl sulfide derivatives with oxetane ring
EP0738255B1 (en) 2-fluoroacrylate ester polymers and use thereof as optical materials
EP1086157B1 (en) Fluorinated diol based polyurethane acrylate or vinyl type material for covering an optical fiber
JP2007176921A (en) Benzonitrile compound, its manufacturing method and use
CN116917408A (en) Optical resin composition and optical resin molded body
KR20040100929A (en) Polymers having ctfe/vca/hfp or tfe/vca/hfp
JP2004354512A (en) Optical transmission body
JPH0680602A (en) Fluorine-containing ether oligomer and its production
JP2007039427A (en) Phthalonitrile compound, method for production thereof and use thereof
JP2010209226A (en) Polymer alloy containing aromatic polymer, and method for producing the same
JP2010209227A (en) Aromatic polymer and method for producing transparent film