JP2008000075A - Method for producing distilled liquor - Google Patents

Method for producing distilled liquor Download PDF

Info

Publication number
JP2008000075A
JP2008000075A JP2006172915A JP2006172915A JP2008000075A JP 2008000075 A JP2008000075 A JP 2008000075A JP 2006172915 A JP2006172915 A JP 2006172915A JP 2006172915 A JP2006172915 A JP 2006172915A JP 2008000075 A JP2008000075 A JP 2008000075A
Authority
JP
Japan
Prior art keywords
mash
distilled liquor
distilled
lactococcus lactis
ferulic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006172915A
Other languages
Japanese (ja)
Other versions
JP4732970B2 (en
Inventor
Masatoshi Tsukahara
正俊 塚原
Tadaaki Tokashiki
唯章 渡嘉敷
Yasutomo Tamaki
康智 玉城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SHUZO KUMIAI CHIYUUOUKA
NIPPON SHUZO KUMIAI CHIYUUOUKAI
Tropical Technology Center Ltd
Original Assignee
NIPPON SHUZO KUMIAI CHIYUUOUKA
NIPPON SHUZO KUMIAI CHIYUUOUKAI
Tropical Technology Center Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SHUZO KUMIAI CHIYUUOUKA, NIPPON SHUZO KUMIAI CHIYUUOUKAI, Tropical Technology Center Ltd filed Critical NIPPON SHUZO KUMIAI CHIYUUOUKA
Priority to JP2006172915A priority Critical patent/JP4732970B2/en
Publication of JP2008000075A publication Critical patent/JP2008000075A/en
Application granted granted Critical
Publication of JP4732970B2 publication Critical patent/JP4732970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Alcoholic Beverages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing cereal distilled liquor having a rich aroma by a simpler method than that of conventional ones by elucidating a microorganism converting ferulic acid to 4-VG (vinylguaiacol) and using the same microorganism. <P>SOLUTION: This method for producing the distilled liquor obtained by fermenting raw materials derived from plants with Koji mold and/or yeast to make mash and distilling is provided by effecting Lactococcus lactis on the mash. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、香味豊かな蒸留酒の製造方法に関し、更に詳細には、泡盛、焼酎等の蒸留酒の製造において、もろみ中に含まれるフェルラ酸の4−ビニルグアヤコール(4−VG)への転化を促進することによる、香味の豊かな蒸留酒の製造方法に関する。   The present invention relates to a method for producing a flavored distilled liquor, and more specifically, in the production of distilled liquor such as awamori and shochu, conversion of ferulic acid contained in moromi into 4-vinyl guaiacol (4-VG). It is related with the manufacturing method of rich distilled spirits by promoting.

近年、健康志向の高まりから、清酒等のいわゆる醸造酒よりも、泡盛、焼酎等の蒸留酒を愛好する人が多くなっている。この蒸留酒は、長期間の保存が可能であり、長期間保存(熟成)した後の蒸留酒は、製造直後のものよりも香味が高く、古酒として高い評価を得ている。   In recent years, due to an increase in health consciousness, more and more people like distilled sake such as awamori and shochu than brewed sake such as sake. This distilled liquor can be stored for a long period of time, and the distilled liquor after being stored (aged) for a long period of time has a higher flavor than that immediately after production and has been highly evaluated as an old liquor.

ところで、沖縄県には47泡盛酒造所と1酒造組合があり、沖縄本島内のみならず周辺離島において、蒸留酒である泡盛が広く製造されている。その中でも、最近では特に「泡盛古酒」が注目されており、その芳醇な香りとまろやかな口あたりが人気を集めている。   By the way, there are 47 Awamori Brewery and 1 Brewery Association in Okinawa Prefecture, and Awamori, a distilled liquor, is widely produced not only on the main island of Okinawa but also on the surrounding remote islands. Among them, “Awamori Koshu” has recently attracted attention, and its rich fragrance and mellow taste are gaining popularity.

この泡盛古酒の香り成分は100種類以上あると言われ、それぞれの含有量やバランスが泡盛の個性を決定しているが、泡盛に含まれる重要な香味成分の一つにバニリンがある。バニリンはバニラに含まれる甘い芳香を持つ物質で、泡盛古酒が有する甘い香りの起因成分の一つとなっている。   It is said that there are over 100 kinds of fragrance components of Awamori Koshu, and each content and balance determines the individuality of Awamori. Vanillin is one of the important flavor components contained in Awamori. Vanillin is a substance with a sweet fragrance contained in vanilla, and is one of the components that cause the sweet scent of Awamori Koshu.

泡盛製造過程において下記式1に示されるようにバニリンは原料米由来のフェルラ酸が遊離し、これがもろみの酸や蒸留過程の熱により4−VGへと変化して泡盛中に移行する。さらに熟成により4−VGがバニリンへと変化することで泡盛中のバニリンが生成すると考えられている(非特許文献1〜3)。
[式1]

Figure 2008000075
In the awamori manufacturing process, as shown in the following formula 1, vanillin releases ferulic acid derived from the raw rice, which changes into 4-VG due to moromi acid and heat of the distillation process, and moves into awamori. Furthermore, it is thought that vanillin in Awamori is generated by changing 4-VG into vanillin by aging (Non-patent Documents 1 to 3).
[Formula 1]
Figure 2008000075

このような知見に基づき本出願人はもろみ中の4−VG量と蒸留後の泡盛の4−VG量との関係を調べたところ、もろみ中の4−VG量が高い場合には蒸留後の泡盛の4−VG量も高くなる傾向があることを知った。また、本出願人は通常もろみの発酵に用いられる酵母にはフェルラ酸を4−VGに転化する能力がないので、もろみ中の4−VG生成に対してはもろみ中の酵母以外の何らかの微生物が関与していると判断した。   Based on such knowledge, the applicant examined the relationship between the amount of 4-VG in the mash and the amount of 4-VG in Awamori after the distillation. I learned that Awamori's 4-VG amount also tends to increase. In addition, since the yeast usually used for fermentation of moromi does not have the ability to convert ferulic acid into 4-VG, any microorganism other than the yeast in the mash is used to produce 4-VG in mash. Judged to be involved.

小関ら、醸協、89、p.409−411、1994Koseki et al., Brewery, 89, p.409-411, 1994. 小関ら、醸協、93、p.510−517、1998Koseki et al., Brewery, 93, p. 510-517, 1998 小関卓也、生物工学会誌、78、p.465−467、2000Takuya Koseki, Journal of Biotechnology, 78, p.465-467, 2000

本発明は、もろみ中でフェルラ酸を4−VGに転化する微生物を明らかにし、その微生物を用い、従来よりも簡便な方法で香味豊かな蒸留酒を製造する方法を提供することをその課題とするものである。   An object of the present invention is to clarify a microorganism that converts ferulic acid into 4-VG in moromi and to provide a method for producing a flavored distilled liquor using the microorganism in a simpler method than before. To do.

本発明者らは、もろみの4−VG量と、この中に存在する微生物との関係を探索した結果、フェルラ酸を4−VGに転化すると思われる微生物を見出した。そしてもろみにこの微生物を作用させると、もろみ中の4−VG量が高くなることおよびこのもろみを蒸留した後の蒸留酒中の4−VG量も高くなることを見出し、本発明を完成した。   As a result of searching for the relationship between the amount of 4-VG in moromi and the microorganisms present therein, the present inventors have found a microorganism that seems to convert ferulic acid into 4-VG. And when this microorganism was made to act on the mash, the amount of 4-VG in the mash was increased, and the amount of 4-VG in the distilled liquor after the mash was distilled was also found, and the present invention was completed.

すなわち本発明は、植物由来の酒造原料を、麹菌および/または酵母で発酵させてもろみとし、これを蒸留する蒸留酒の製造方法において、もろみにラクトコッカス・ラクチス(Lactococcus lactis)を作用させることを特徴とする蒸留酒の製造方法である。   That is, the present invention relates to a method for producing distilled liquor in which a plant-derived brewing raw material is fermented with koji mold and / or yeast, and distilled from the mash, and the mash is allowed to act with Lactococcus lactis. It is the manufacturing method of the distilled spirit characterized by the above.

また本発明は、植物由来の酒造原料を、麹菌および/または酵母で発酵させてもろみとし、このもろみにラクトコッカス・ラクチスを作用させた後、これを蒸留することにより得られる蒸留酒である。   In addition, the present invention is a distilled liquor obtained by distilling a brewing material derived from a plant from mash by fermentation with koji mold and / or yeast, and reacting the mash with lactococcus lactis.

更に本発明は、植物由来の酒造原料を、麹菌および/または酵母で発酵させてもろみとし、これを蒸留する蒸留酒の製造方法において、もろみにラクトコッカス・ラクチスを作用させることを特徴とする蒸留酒に香味を付与する方法である。   Furthermore, the present invention provides a distilled liquor characterized by allowing lactococcus lactis to act on moromi in a method for producing distilled liquor in which a brewing material derived from a plant is fermented with koji mold and / or yeast and distilled. It is a method of imparting flavor to sake.

また更に本発明は、フェルラ酸にラクトコッカス・ラクチスを作用させることを特徴とする4−VGの製造方法である。   Furthermore, the present invention is a method for producing 4-VG, characterized in that Lactococcus lactis acts on ferulic acid.

本発明の蒸留酒の製造方法によれば、もろみの原料に含まれるフェルラ酸の4−VGへの転化が、ラクトコッカス・ラクチスの作用により促進されるため、もろみ中の4−VG量を高めることができる。その結果、もろみを蒸留後の蒸留酒中においても蒸留酒の香味の一つであるバニリンの前駆体である4−VG量を有意に高めることができる。   According to the method for producing distilled liquor of the present invention, the conversion of ferulic acid contained in the raw material of moromi into 4-VG is promoted by the action of Lactococcus lactis, so the amount of 4-VG in the mash is increased. be able to. As a result, the amount of 4-VG, which is a precursor of vanillin, which is one of the flavors of distilled spirits, can be significantly increased even in distilled spirits after distillation of moromi.

従って、この製造方法により得られる蒸留酒は、通常の製法で得られる蒸留酒と同期間熟成させた場合であっても、甘い芳香と香味の増強された蒸留酒となる。   Therefore, the distilled liquor obtained by this production method becomes a distilled liquor with enhanced sweet aroma and flavor even when it is aged for the same period as that obtained by a normal production method.

また、本発明の蒸留酒に香味を付与する方法によれば、簡便な方法で蒸留酒に香味を付与することができる。   Further, according to the method for imparting flavor to the distilled liquor of the present invention, flavor can be imparted to distilled spirit by a simple method.

更に、本発明の4−VGの製造方法によれば、フェルラ酸からバニリンの前駆体となる4−VGを効率よく製造することができる。   Furthermore, according to the method for producing 4-VG of the present invention, 4-VG that is a precursor of vanillin can be efficiently produced from ferulic acid.

本発明の蒸留酒の製造方法(以下、「本発明製法」という)は、もろみにラクトコッカス・ラクチスを作用させる以外は、発酵したもろみを蒸留する公知の蒸留酒の製造方法により実施することができる。   The method for producing a distilled liquor of the present invention (hereinafter referred to as “the method of the present invention”) can be carried out by a known method for producing distilled liquor that distills fermented mash, except that Lactococcus lactis is allowed to act on moromi. it can.

本発明製法に用いられるラクトコッカス・ラクチスは、自然界に広く分布するホモ発酵型乳酸菌の1種で、古くからゴーダーチーズ、チェダーチーズ等の半硬質タイプのチーズ、バター、発酵乳等の発酵食品の製造に用いられており、極めて安全な菌株である。このラクトコッカス・ラクチスの生理、生化学性状等は例えば、「乳酸菌の科学と技術」(乳酸菌研究談会編、学会出版センター、1996年)等に記載されている。また、ラクトコッカス・ラクチスの16S rDNAは細胞基準株データベース(http://www.nbrc.nite.go.jp)に登録されている。本発明製法においてはこれら生理、生化学性状および16S rDNAから、ラクトコッカス・ラクチスに分類される菌株であれば特に制限無く、例えば、ラクトコッカス・ラクチス・サブスピーシーズ・ラクチス、ラクトコッカス・ラクチス・サブスピーシーズ・クレモリス等の何れの亜種も使用することができる。なお、ラクトコッカス・ラクチスにフェルラ酸を4−VGに転化する能力があることはこれまで知られていない。   Lactococcus lactis used in the production method of the present invention is a kind of homo-fermenting lactic acid bacteria widely distributed in nature, and has been producing fermented foods such as gourd cheese, cheddar cheese and other semi-rigid cheeses, butter, fermented milk, etc. It is an extremely safe strain. The physiology, biochemical properties, etc. of Lactococcus lactis are described in, for example, “Science and Technology of Lactic Acid Bacteria” (edited by the Lactic Acid Bacteria Research Conference, Society Publishing Center, 1996). In addition, 16S rDNA of Lactococcus lactis is registered in the cell reference strain database (http://www.nbrc.nite.go.jp). In the production method of the present invention, any strain classified into Lactococcus lactis based on these physiological, biochemical properties and 16S rDNA is not particularly limited. For example, Lactococcus lactis subspices lactis, Lactococcus lactis subs Any subspecies such as species Cremoris can be used. It has not been known so far that Lactococcus lactis has the ability to convert ferulic acid to 4-VG.

本発明製法に用いることのできるラクトコッカス・ラクチスの一例としては、独立行政法人製品評価技術基盤機構(〒292−0818 千葉県木更津市かずさ鎌足2−5−8)等から購入可能な以下のものが挙げられる。
・ラクトコッカス・ラクチス・サブスピーシーズ・ラクチス NBRC12007
・ラクトコッカス・ラクチス・サブスピーシーズ・ラクチス NBRC100933
・ラクトコッカス・ラクチス・サブスピーシーズ・クレモリス NBRC100676
Examples of Lactococcus lactis that can be used in the production method of the present invention include the following, which can be purchased from the National Institute of Technology and Evaluation (2-5-8 Kazusa Kamashi, Kisarazu City, Chiba Prefecture), etc. Things.
・ Lactococcus ・ Lactis ・ Subspecies ・ Lactis NBRC12007
・ Lactococcus ・ Lactis ・ Subspecies ・ Lactis NBRC100933
・ Lactococcus ・ Lactis ・ Sub-Species ・ Cremollis NBRC100676

上記ラクトコッカス・ラクチスをもろみに作用させるには、植物由来の酒造原料を、麹菌および/または酵母で発酵させるもろみ調製工程の何れかの段階において、ラクトコッカス・ラクチスを接種するだけでよい。具体的にラクトコッカス・ラクチスを焼酎のもろみに作用させる場合には、一次もろみと二次もろみの二段のもろみ調製工程の何れかまたは両方のもろみ仕込み時あるいはもろみ発酵過程中にラクトコッカス・ラクチスを接種すればよい。また、ラクトコッカス・ラクチスを泡盛のもろみに作用させる場合には、一次もろみのみの一段のもろみ調製工程のもろみ仕込み時あるいはもろみ発酵過程中にラクトコッカス・ラクチスを接種すればよい。また、焼酎または泡盛のもろみを調製する何れの場合であっても、製麹開始時または製麹中の麹にラクトコッカス・ラクチスを接種して付着させ、この麹を用いてもろみを調製することにより、もろみにラクトコッカス・ラクチスを作用させてもよい。本発明製法において、ラクトコッカス・ラクチスのもろみへの接種量は、もろみ1Lあたり1×10〜1×1018cfu程度、好ましくは1×10〜1×1013cfu程度である。 In order to make the above Lactococcus lactis act on the mash, it is only necessary to inoculate the Lactococcus lactis at any stage of the mash preparation process in which the brewing raw material derived from the plant is fermented with koji mold and / or yeast. Specifically, when Lactococcus lactis is allowed to act on mash of shochu, Lactococcus lactis is either during the mash preparation or during the mash fermentation process in either or both of the two-stage mash preparation steps of primary mash and secondary mash. You should inoculate. Further, when Lactococcus lactis is allowed to act on Awamori mash, Lactococcus lactis may be inoculated at the time of mash preparation in the first mash preparation process or during the mash fermentation process. Also, in any case of preparing shochu or awamori mash, inoculate and attach Lactococcus lactis to the koji at the start of koji or during koji making, and prepare koji using this koji Thus, Lactococcus lactis may be allowed to act on the moromi. In the production method of the present invention, the amount of Lactococcus lactis inoculated into the moromi is about 1 × 10 3 to 1 × 10 18 cfu, preferably about 1 × 10 8 to 1 × 10 13 cfu per liter of moromi.

本発明製法に用いられるもろみとは、米、麦(麦芽)、トウモロコシ、そば、ひえ、あわ等の穀類、じゃがいも、さつまいも等の芋類、くり、ごま等の植物、黒糖、白ぬか、清酒粕等の植物由来の酒造原料を、アスペルギルス・オリゼー等の黄麹菌、アスペルギルス・カワチ等の白麹菌、アスペルギルス・アワモリ、アスペルギルス・サイトウイ等の黒麹菌等の麹菌および/またはサッカロマイセス・セレビシエ等の焼酎酵母、サッカロマイセス・パストリアヌス等のビール酵母等の酵母で発酵させたものをいう。なお、本発明製法においては、上記酒造原料のデンプン質を酵素等により糖化したものを上記酵母で発酵させたものももろみに含まれる。本発明製法においては、これらもろみの中でも穀類を麹菌および酵母で発酵させたものが好ましく、特に穀類を黒麹菌および焼酎酵母で発酵させたものが好ましい。前記穀類を原料とするもろみはフェルラ酸を多く含有するので本発明製法による効果が特に認められる。   The moromi used in the production method of the present invention is grains such as rice, wheat (malt), corn, buckwheat, barnyard millet, potatoes, potatoes and sweet potatoes, potatoes, sesame and other plants, brown sugar, white bran, sake lees Brewing raw materials such as Aspergillus oryzae, white koji molds such as Aspergillus kawachi, koji molds such as Aspergillus awamori, Aspergillus saitoi, etc. and / or shochu yeast such as Saccharomyces cerevisiae , Fermented with yeast such as Saccharomyces pastorianus beer yeast. In addition, in the manufacturing method of this invention, what fermented with the said yeast what saccharified the starch of the said brewing raw material with an enzyme etc. is contained in mash. In the production method of the present invention, among these mashes, those obtained by fermenting cereals with koji molds and yeasts are preferred, and those obtained by fermenting cereals with black koji molds and shochu yeasts are particularly preferred. The effect of the method of the present invention is particularly recognized because the moromi mash containing cereals contains a large amount of ferulic acid.

上記のようにしてラクトコッカス・ラクチスを作用させたもろみは、次に、公知の条件で蒸留することにより焼酎、泡盛等の蒸留酒が得られる。本発明においてはこれら蒸留酒の中でも泡盛が好ましい。   The mash from which Lactococcus lactis is allowed to act as described above is then distilled under known conditions to obtain distilled liquors such as shochu and awamori. In the present invention, awamori is preferable among these distilled spirits.

本発明製法によれば、もろみにラクトコッカス・ラクチスを作用させることにより、もろみ中のフェルラ酸から4−VGへの転化が促進され、もろみ中の4−VG量が高くなる。そして、このもろみを蒸留して蒸留酒とすれば、もろみ中の4−VGが蒸留酒中に移行し、蒸留酒中の4−VG量が高くなる。具体的には、蒸留酒中の4−VG量は1〜50μg/ml程度になり、ラクトコッカス・ラクチスを作用させていないもろみを蒸留して得られる蒸留酒と比べて5.0質量%(以下、単に「%」という)以上、好ましくは10.0〜50.0%程度高くなる。更に、蒸留酒中に含まれる4−VGは蒸留工程での熱や、その後の熟成等により蒸留酒の香味成分の1つであるバニリンとなるので、本発明製法で得られる蒸留酒は香味豊かなものとなる。   According to the production method of the present invention, by causing Lactococcus lactis to act on the mash, the conversion of ferulic acid in the mash into 4-VG is promoted, and the amount of 4-VG in the mash is increased. And if this mash is distilled into distilled liquor, 4-VG in the mash will move into the distilled liquor and the amount of 4-VG in the distilled liquor will increase. Specifically, the amount of 4-VG in the distilled liquor is about 1 to 50 μg / ml, and is 5.0% by mass as compared with the distilled liquor obtained by distilling the moromi not reacted with Lactococcus lactis ( Hereinafter, it is simply referred to as “%”), preferably about 10.0 to 50.0%. Furthermore, since 4-VG contained in distilled liquor becomes vanillin which is one of the flavor components of distilled liquor due to heat in the distillation process and subsequent aging, the distilled liquor obtained by the method of the present invention is rich in flavor. It will be something.

本発明製法の好ましい一態様として、泡盛の製造方法を示せば次の通りである。
まず、タイ米を洗米後、水に数十分間から一晩漬浸したものを蒸煮して蒸米とする。この蒸米を放冷後、市販黒麹菌を蒸米1kg当たり1×10〜1×1010cfu程度接種し、これを30〜45℃程度で、38〜45時間程度、適宜手入れを行いながら製麹する。この麹に、汲み水歩合150〜180%程度の水を加え、泡盛101号等の酵母をもろみ1L当たり1×10〜1×1013cfu程度およびフェルラ酸を4−VGに変換するラクトコッカス・ラクチスをもろみ1Lあたり1×10〜1×1018cfu程度接種してもろみを仕込み、15〜30℃程度で仕込みタンク中で発酵する。もろみの発酵時間は7日〜28日程度でよい。発酵の終了した熟成もろみを従来の方法に従い、蒸留機等を用いて85〜100℃程度で蒸留し、蒸留液として泡盛を得る。
As a preferred embodiment of the production method of the present invention, a method for producing Awamori is as follows.
First, Thai rice is washed and then soaked in water for tens of minutes to overnight. After allowing the steamed rice to cool, inoculate about 1 × 10 6 to 1 × 10 10 cfu of commercially available black koji mold per 1 kg of steamed rice, and knead it at about 30 to 45 ° C. for about 38 to 45 hours with appropriate care. To do. Lactococcus that adds about 150-180% of the water ratio of the pumped water to this koji, mashes yeast such as Awamori No. 101, etc. and converts 1 × 10 8 to 1 × 10 13 cfu per liter and ferulic acid into 4-VG.・ Lactus is mashed and the mash is fermented at about 15-30 ° C. and fermented at about 15-30 ° C. even if inoculated at about 1 × 10 6 to 1 × 10 18 cfu per liter. Moromi fermentation time may be about 7 to 28 days. The matured moromi mash after fermentation is distilled at about 85 to 100 ° C. using a distiller or the like according to a conventional method to obtain awamori as a distillate.

また、ラクトコッカス・ラクチスは上記した蒸留酒の製造以外にも、フェルラ酸を原料とした4−VGの製造に用いることもできる。具体的には、市販のフェルラ酸を含有させたMRS等の培地にラクトコッカス・ラクチスを培地1Lあたり1×10〜1×1020cfu程度接種し、20〜45℃程度の条件で数時間〜数日程度培養することにより培地中に4−VGが生成される。この培地中に生成された4−VGは、高速液体クロマトグラフィー等の公知の方法により精製することもできる。また、上記のようにして得られる4−VGは熱や熟成、文献(特開2003−135051号公報)に記載のオゾンへの接触等によりバニリンにすることもできる。 Lactococcus lactis can also be used for the production of 4-VG using ferulic acid as a raw material, in addition to the above-mentioned production of distilled liquor. Specifically, Lactococcus lactis is inoculated in a medium such as MRS containing commercially available ferulic acid in an amount of about 1 × 10 6 to 1 × 10 20 cfu per liter of the medium, and the condition is about 20 to 45 ° C. for several hours. By culturing for about several days, 4-VG is produced in the medium. 4-VG produced in this medium can also be purified by a known method such as high performance liquid chromatography. Further, 4-VG obtained as described above can be converted into vanillin by heat, aging, contact with ozone described in the literature (Japanese Patent Laid-Open No. 2003-135051), or the like.

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not restrict | limited to these Examples at all.

実 施 例 1
フェルラ酸を4−VGに転化する微生物のスクリーニング:
(1)4−VGを多く含む酒造所の泡盛のもろみ中から分離した多数の菌株をそれぞれMRS培地にて10−1〜10−5まで段階希釈した。次に、それぞれ希釈したものを0.5%の炭酸カルシウムを含有するMRS寒天培地(15ml)に混釈し、それをシャーレに注いだ。更に、シャーレを嫌気条件下、30℃で24時間以上維持した後、ハローを形成したコロニーを釣菌した。
Example 1
Screening for microorganisms that convert ferulic acid to 4-VG:
(1) A large number of strains isolated from the mash of Awamori of a brewery containing a large amount of 4-VG were each serially diluted from 10 −1 to 10 −5 in MRS medium. Next, each diluted one was mixed with MRS agar medium (15 ml) containing 0.5% calcium carbonate, and poured into a petri dish. Further, the petri dish was maintained at 30 ° C. for 24 hours or more under anaerobic conditions, and then the colony that formed a halo was fished.

試験管に滅菌したMRS培地を2〜10ml分注し、フェルラ酸を100μg/mlになるよう添加した。その後、上記で釣菌された菌株をMRS培地で前培養し、その10〜100μlを上記MRS培地中に播種し、30℃で48時間培養を行った。培養終了後、遠心分離した上清を0.45μmのフィルターに通し、培地中のフェルラ酸量および4−VG量をHPLCにより測定した。HPLC分析により培地中のフェルラ酸量が減少し、4−VG量が上昇した菌株としてS1株を得た。   2-10 ml of sterilized MRS medium was dispensed into a test tube, and ferulic acid was added to 100 μg / ml. Thereafter, the strains strained above were pre-cultured in MRS medium, 10 to 100 μl thereof was seeded in the MRS medium, and cultured at 30 ° C. for 48 hours. After completion of the culture, the centrifuged supernatant was passed through a 0.45 μm filter, and the amount of ferulic acid and the amount of 4-VG in the medium were measured by HPLC. S1 strain was obtained as a strain in which the amount of ferulic acid in the medium decreased and the amount of 4-VG increased by HPLC analysis.

(2)上記(1)で得たS1株について、培地中のフェルラ酸量と4−VG量の経時変化と菌体量の増加を以下の方法により測定した。まず、50ml容量のスクリューキャップ付遠心沈殿管にフェルラ酸を100μg/mlに調整したMRS培地を30ml分注し、別途前培養を行ったS1株を0.1ml(1.0×10cfu)添加して、30℃で30時間培養を行った。この培養中は2時間ごとに1mlのサンプリングを行い、これを0.45μmのフィルターに通し、各培養時間におけるフェルラ酸量および4−VG量をHPLCにより測定した。また、各培養時間における濁度をバイオフォトメーター(ADVANTEC製)で吸光度600nmの吸収を測定することにより求めた。これらの結果を図1に示した。 (2) About S1 strain | stump | stock obtained by said (1), the time-dependent change of the ferulic acid amount and 4-VG amount in a culture medium, and the increase in the amount of microbial cells were measured with the following method. First, 30 ml of MRS medium in which ferulic acid was adjusted to 100 μg / ml was dispensed into a 50 ml screw-centrifuged centrifugal sedimentation tube, and 0.1 ml (1.0 × 10 8 cfu) of S1 strain separately pre-cultured. After the addition, the cells were cultured at 30 ° C. for 30 hours. During this culture, 1 ml of sampling was performed every 2 hours, and this was passed through a 0.45 μm filter, and the amount of ferulic acid and the amount of 4-VG in each culture time were measured by HPLC. Moreover, the turbidity in each culture time was calculated | required by measuring absorption with a light absorbency of 600 nm with a biophotometer (made by ADVANTEC). These results are shown in FIG.

(3)上記(1)のようにして得られたS1株の16S rDNAについて、BLASTを用いた相同性検索を行ったところ、S1株の16S rDNAはラクトコッカス・ラクチスの3亜種の16S rDNAと高い相同性を示した。その中でもラクトコッカス・ラクチス・サブスピーシーズ・ラクチスとは100%の相同性を示した。また、S1株の分子系統解析の結果、S1株はラクトコッカス・ラクチスの3亜種の16S rDNAが形成するクラスター内に含まれることが判った(図2)。更に、S1株の生理、生化学性状試験を行ったところ、S1株はラクトコッカス・ラクチス・サブスピーシーズ・ラクチスの性状と一致した。以上の結果からS1株はラクトコッカス・ラクチス・サブスピーシーズ・ラクチスに帰属する菌株と同定された。なお、S1株については寄託機関に寄託をしていないが、本株は特許法施行規則第27条の3の条件を満足する分譲の請求があった場合は、出願人において、同条の条件に従って分譲することを保証する。   (3) When the homology search using BLAST was performed for the 16S rDNA of the S1 strain obtained as described in (1) above, the 16S rDNA of the S1 strain was found to be 16S rDNA of 3 subspecies of Lactococcus lactis. And showed high homology. Among them, Lactococcus lactis subspecies lactis showed 100% homology. Further, as a result of molecular phylogenetic analysis of the S1 strain, it was found that the S1 strain was contained in a cluster formed by 16S rDNA of three subspecies of Lactococcus lactis (FIG. 2). Furthermore, when the physiological and biochemical property tests of the S1 strain were performed, the S1 strain was consistent with the properties of Lactococcus lactis, Subspecies lactis. From the above results, the S1 strain was identified as a strain belonging to Lactococcus lactis subspecies lactis. S1 shares have not been deposited with the depositary institution. However, if there is a request for distribution of the shares that satisfies the conditions of Article 27-3 of the Patent Law Enforcement Regulations, the applicant shall Assured to sell according to.

実 施 例 2
寄託菌株のフェルラ酸−4−VG転化活性についての検討:
(1)ラクトコッカス・ラクチス・サブスピーシーズ・ラクチスNBRC12007、ラクトコッカス・ラクチス・サブスピーシーズ・ラクチスNBRC100933およびラクトコッカス・ラクチス・サブスピーシーズ・クレモリスNBRC100676(いずれも独立行政法人製品評価技術基盤機構より購入)を、実施例1(2)と同様にフェルラ酸を添加した培地中で培養し、培養18時間後におけるフェルラ酸量および4−VG量をHPLCにより測定し、フェルラ酸を4−VGに転化する活性(フェルラ酸−4−VG転化活性)の有無を調べた。なお活性の有無は以下の評価基準で評価した。
Example 2
Examination of ferulic acid-4-VG conversion activity of the deposited strain:
(1) Lactococcus lactis subspecies lactis NBRC12007, Lactococcus lactis subspecies lactis NBRC100933 and Lactococcus lactis subspecies cremoris NBRC100676 (all purchased from the National Institute for Product Evaluation Technology Base) In the same manner as in Example 1 (2), the cells were cultured in a medium supplemented with ferulic acid, and the ferulic acid amount and 4-VG amount after 18 hours of culture were measured by HPLC to convert ferulic acid into 4-VG. The presence or absence of (ferulic acid-4-VG conversion activity) was examined. The presence or absence of activity was evaluated according to the following evaluation criteria.

<フェルラ酸−4−VG転化活性評価基準>
(評価) (内容)
++ :培養18時間でフェルラ酸の90%以上を4−VGに転化
+ :培養18時間でフェルラ酸の3%以上〜90%未満を4−VGに転化
− :培養18時間でフェルラ酸の3%未満を4−VGに転化
<Evaluation criteria for ferulic acid-4-VG conversion activity>
(Evaluation) (Content)
++: Convert 90% or more of ferulic acid to 4-VG in 18 hours of culture +: Convert 3% or more to less than 90% of ferulic acid into 4-VG in 18 hours of culture −: 3 of ferulic acid in 18 hours of culture % Is converted to 4-VG

Figure 2008000075
Figure 2008000075

フェルラ酸を4−VGに転化する能力はラクトコッカス・ラクチス・サブスピーシーズ・ラクチスおよびサブスピーシーズ・クレモリスにも認められた。以上の結果より、フェルラ酸を4−VGに転化する能力は前記S1株だけでなく、ラクトコッカス・ラクチス全般に認められることが判った。   The ability to convert ferulic acid to 4-VG was also observed in Lactococcus lactis subspecies lactis and subspecies cremoliths. From the above results, it was found that the ability to convert ferulic acid to 4-VG was observed not only in the S1 strain but also in Lactococcus lactis in general.

実 施 例 3
ラクトコッカス・ラクチスを用いたもろみの調製(1):
タイ米を洗米し、水に浸漬した後水切りを行い、50gずつフラスコに分取した。次いで、この洗浄米を121℃のオートクレーブで10分間の蒸煮をして蒸米を得た。麹菌は事前にPDA培地で培養を行い、胞子懸濁液を調製し、これをフラスコ内の蒸米1gに対し4×10cfu/gになるように接種した。培養は、温度38℃、相対湿度95%の恒温恒湿機(CRH−210、タバイエスペック製)で42時間培養を行った。培養開始から18時間と24時間にフラスコ内の米を攪拌して麹を得た。得られた麹50gに水80mlを添加し、これに前培養した酵母を1.0×10cfu/mlとなるように加え、更に、前培養を行ったS1株(実施例1で得られたもの)を1.0×10cfu/mlとなるように添加し、25℃で14日間発酵させてもろみを得た。発酵開始直後、3日後、6日後、10日後および14日後のフェルラ酸量および4−VG量を実施例1と同様にHPLCにより測定した。なお、S1株を添加しない以外は上記と同様にして調製されたもろみを対照とした。これらの結果を図3および図4に示した。
Example 3
Preparation of moromi using Lactococcus lactis (1):
Thai rice was washed, dipped in water, drained, and dispensed into flasks by 50 g. Next, this washed rice was steamed for 10 minutes in an autoclave at 121 ° C. to obtain steamed rice. Aspergillus was cultured in advance in PDA medium to prepare a spore suspension, and this was inoculated to 1 g of steamed rice in the flask at 4 × 10 5 cfu / g. Incubation was performed for 42 hours with a constant temperature and humidity machine (CRH-210, manufactured by Tabay Espec) at a temperature of 38 ° C. and a relative humidity of 95%. The rice in the flask was stirred 18 hours and 24 hours after the start of the culture to obtain a koji. 80 ml of water was added to 50 g of the obtained koji, and the precultured yeast was added to 1.0 × 10 7 cfu / ml, and the precultured strain S1 (obtained in Example 1) was added. Was added to 1.0 × 10 7 cfu / ml and fermented at 25 ° C. for 14 days to obtain mash. Just after the start of fermentation, the amount of ferulic acid and the amount of 4-VG after 3 days, 6 days, 10 days and 14 days were measured by HPLC as in Example 1. In addition, moromi prepared in the same manner as above except that the S1 strain was not added was used as a control. These results are shown in FIG. 3 and FIG.

もろみ中のフェルラ酸量は、S1株を添加したもろみとS1株を添加していないもろみとで、ほとんど変化がなかった。しかし、S1株を添加したもろみ中の4−VG量は、S1株を添加していないもろみよりも約20%増加していた。   The amount of ferulic acid in the mash was almost unchanged between the mash with the addition of the S1 strain and the mash with no addition of the S1 strain. However, the amount of 4-VG in the mash to which the S1 strain was added was about 20% higher than that of the mash to which the S1 strain was not added.

実 施 例 4
蒸留酒の製造(1):
実施例3で得られたS1株を添加したもろみ(発酵14日)について85〜100℃程度で蒸留を行い、蒸留酒(泡盛)を製造した。蒸留酒中のフェルラ酸量および4−VG量を実施例1と同様にHPLCにより測定した。また、S1株を添加していないもろみについても同様に蒸留を行い、蒸留酒を製造し、同様の測定をした。
Example 4
Production of distilled liquor (1):
About the mash (fermentation 14 days) which added S1 stock | strain obtained in Example 3, it distilled at about 85-100 degreeC, and distilled liquor (Awamori) was manufactured. The amount of ferulic acid and 4-VG in the distilled liquor were measured by HPLC in the same manner as in Example 1. In addition, moromi to which the S1 strain was not added was similarly distilled to produce distilled liquor, and the same measurement was performed.

フェルラ酸は、もろみの蒸留により蒸留酒中に移行しないため、S1株を添加したもろみから蒸留された蒸留酒およびS1株を添加していないもろみから蒸留された蒸留酒のいずれにも検出されなかった。しかし、4−VG量は、S1株を添加したもろみから蒸留された蒸留酒の方が、S1株を添加していないもろみから蒸留された蒸留酒よりも約30%も増加していた。   Since ferulic acid does not migrate into distilled liquor due to distillation of moromi, it is not detected in either distilled liquor distilled from mash with added S1 strain or distilled liquor distilled from mash without added S1 strain. It was. However, the amount of 4-VG was about 30% higher in distilled spirits distilled from the mash to which the S1 strain was added than in distilled spirits distilled from the mash to which the S1 strain was not added.

実 施 例 5
蒸留酒の製造(2):
実施例3の方法に従い作製した麹50gに水80mlを添加し、これに前培養した酵母を1.0×10cfu/mlとなるように加え、更に、前培養を行ったラクトコッカス・ラクチス・サブスピーシーズ・ラクチスNBRC12007を1.0×10cfu/mlとなるように添加し、25℃で7日間発酵させてもろみを得た。
Example 5
Production of distilled liquor (2):
80 ml of water was added to 50 g of the koji prepared according to the method of Example 3, and yeast that had been pre-cultured was added to 1.0 × 10 7 cfu / ml, and then Lactococcus lactis subjected to pre-culture. -Subspecies Lactis NBRC 12007 was added to 1.0 × 10 7 cfu / ml and fermented at 25 ° C. for 7 days to obtain a mash.

上記で得られたもろみ(発酵7日間)について85〜100℃程度で蒸留を行い、蒸留酒(泡盛)を製造した。蒸留酒中の4−VG量を実施例1と同様にHPLCにより測定したところ、ラクトコッカス・ラクチス・サブスピーシーズ・ラクチスNBRC12007株を添加したもろみから蒸留された蒸留酒の方が、ラクトコッカス・ラクチス・サブスピーシーズ・ラクチスNBRC12007株を添加していないもろみから蒸留された蒸留酒よりも4−VG量が約30%も増加していた。   About the mash (fermentation 7 days) obtained above, it distilled at about 85-100 degreeC, and manufactured distilled liquor (Awamori). The amount of 4-VG in the distilled liquor was measured by HPLC in the same way as in Example 1. -The amount of 4-VG was increased by about 30% compared with distilled spirits distilled from mash not added with Subspecies lactis NBRC12007.

以上の結果より、もろみにラクトコッカス・ラクチスを作用させることにより、もろみを蒸留した蒸留酒中に、蒸留酒の香味の一つであるバニリンの前駆体である4−VG量を有意に増加できることが判った。   From the above results, the amount of 4-VG which is a precursor of vanillin which is one of the flavors of distilled liquor can be significantly increased in distilled spirits obtained by distilling moromi by reacting Lactococcus lactis with mash. I understood.

本発明の蒸留酒の製造方法によれば、ラクトコッカス・ラクチスの作用により、蒸留酒中の4−VGを増加させることができる。この様にして製造される蒸留酒は、通常の製法で得られる蒸留酒と同期間熟成させた場合であっても、甘い芳香と香味の増強された蒸留酒となり、商品価値が高いものとなる。   According to the method for producing distilled liquor of the present invention, 4-VG in distilled liquor can be increased by the action of Lactococcus lactis. Distilled liquor produced in this way becomes distilled liquor with enhanced sweet aroma and flavor even when it is aged for the same period as distilled liquor obtained by a normal production method, and has high commercial value. .

また、ラクトコッカス・ラクチスはフェルラ酸からバニリンの前駆体となる4−VGを製造するのにも利用することができる。   Lactococcus lactis can also be used to produce 4-VG that is a precursor of vanillin from ferulic acid.

図1は、MRS培地中のフェルラ酸量、4−VG量および濁度とS1株の培養時間との関係を示す図面である。FIG. 1 is a drawing showing the relationship between ferulic acid amount, 4-VG amount and turbidity in MRS medium and culture time of S1 strain. 図2は、S1株の分子系統解析の結果を示す図面である。FIG. 2 is a drawing showing the results of molecular phylogenetic analysis of the S1 strain. 図3は、S1株を添加したもろみ中のフェルラ酸量と培養日数との関係を示す図面である。FIG. 3 is a drawing showing the relationship between the amount of ferulic acid in the mash to which the S1 strain was added and the number of days of culture. 図4は、S1株を添加したもろみ中の4−VG量と培養日数との関係を示す図面である。FIG. 4 is a drawing showing the relationship between the amount of 4-VG in moromi added with S1 strain and the number of days of culture.

Claims (6)

植物由来の酒造原料を、麹菌および/または酵母で発酵させてもろみとし、これを蒸留する蒸留酒の製造方法において、もろみにラクトコッカス・ラクチス(Lactococcus lactis)を作用させることを特徴とする蒸留酒の製造方法。   Distilled liquor characterized by allowing Lactococcus lactis to act on moromi in a method for producing distilled liquor in which a brewing material derived from a plant is fermented with koji mold and / or yeast and distilled. Manufacturing method. 植物由来の酒造原料が、穀類である請求項第1項記載の蒸留酒の製造方法。   The method for producing distilled liquor according to claim 1, wherein the plant-derived brewing raw material is cereals. 蒸留酒が、泡盛である請求項第1項記載の蒸留酒の製造方法。   The method for producing distilled liquor according to claim 1, wherein the distilled liquor is Awamori. 植物由来の酒造原料を、麹菌および/または酵母で発酵させてもろみとし、このもろみにラクトコッカス・ラクチスを作用させた後、これを蒸留することにより得られる蒸留酒。   Distilled liquor obtained by distilling a brewing material derived from a plant from mash by fermentation with koji molds and / or yeast, and reacting the mash with lactococcus lactis. 植物由来の酒造原料を、麹菌および/または酵母で発酵させてもろみとし、これを蒸留する蒸留酒の製造方法において、もろみにラクトコッカス・ラクチスを作用させることを特徴とする蒸留酒に香味を付与する方法。   Adds flavor to distilled liquor, characterized by allowing lactococcus / lactis to act on moromi in a method for producing distilled liquor, which is obtained by distilling plant-derived brewing raw materials with koji mold and / or yeast. how to. フェルラ酸にラクトコッカス・ラクチスを作用させることを特徴とする4−ビニルグアヤコールの製造方法。

A process for producing 4-vinyl guaiacol, wherein Lactococcus lactis is allowed to act on ferulic acid.

JP2006172915A 2006-06-22 2006-06-22 Distilled liquor production method Active JP4732970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006172915A JP4732970B2 (en) 2006-06-22 2006-06-22 Distilled liquor production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006172915A JP4732970B2 (en) 2006-06-22 2006-06-22 Distilled liquor production method

Publications (2)

Publication Number Publication Date
JP2008000075A true JP2008000075A (en) 2008-01-10
JP4732970B2 JP4732970B2 (en) 2011-07-27

Family

ID=39004959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006172915A Active JP4732970B2 (en) 2006-06-22 2006-06-22 Distilled liquor production method

Country Status (1)

Country Link
JP (1) JP4732970B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187633A (en) * 2009-02-20 2010-09-02 Fundokin Shoyu Kk Method for producing lactic acid fermented amazake
WO2012033229A1 (en) * 2010-09-09 2012-03-15 サントリーホールディングス株式会社 Process for production of distilled spirit
JP2012055235A (en) * 2010-09-09 2012-03-22 Suntory Holdings Ltd Method for producing novel shochu

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762163B (en) * 2015-04-08 2017-03-01 江苏洋河酒厂股份有限公司 A kind of method preparing biological song

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10276788A (en) * 1997-02-07 1998-10-20 Kyowa Hakko Kogyo Co Ltd Enzyme for decarboxylating ferulic acid
JP2000060531A (en) * 1998-08-12 2000-02-29 Kyowa Hakko Kogyo Co Ltd Production of shochu
JP2001086976A (en) * 1999-09-22 2001-04-03 Nara Prefecture Method for producing yeast mash
JP2003135051A (en) * 2001-11-06 2003-05-13 Kikkoman Corp Method for producing liquors
JP2005192553A (en) * 2003-12-10 2005-07-21 Akita Prefecture NEW LACTIC ACID BACTERIUM EXHIBITING GOOD GROWTH AT LOW TEMPERATURE, HIGHLY PRODUCING NISIN, EXCELLENT IN GLUCIDE ASSIMILATION ABILITY, AND PRODUCING gamma-AMINOBUTYRIC ACID, METHOD FOR HIGHLY PRODUCING THE gamma-AMINOBUTYRIC ACID, AND UTILIZATION THEREOF FOR TECHNIQUE OF PREVENTING SAPROGENICITY OF LIQUORS OR THE LIKE
JP2006067812A (en) * 2004-08-31 2006-03-16 Nanao Junya New yeast for brewing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10276788A (en) * 1997-02-07 1998-10-20 Kyowa Hakko Kogyo Co Ltd Enzyme for decarboxylating ferulic acid
JP2000060531A (en) * 1998-08-12 2000-02-29 Kyowa Hakko Kogyo Co Ltd Production of shochu
JP2001086976A (en) * 1999-09-22 2001-04-03 Nara Prefecture Method for producing yeast mash
JP2003135051A (en) * 2001-11-06 2003-05-13 Kikkoman Corp Method for producing liquors
JP2005192553A (en) * 2003-12-10 2005-07-21 Akita Prefecture NEW LACTIC ACID BACTERIUM EXHIBITING GOOD GROWTH AT LOW TEMPERATURE, HIGHLY PRODUCING NISIN, EXCELLENT IN GLUCIDE ASSIMILATION ABILITY, AND PRODUCING gamma-AMINOBUTYRIC ACID, METHOD FOR HIGHLY PRODUCING THE gamma-AMINOBUTYRIC ACID, AND UTILIZATION THEREOF FOR TECHNIQUE OF PREVENTING SAPROGENICITY OF LIQUORS OR THE LIKE
JP2006067812A (en) * 2004-08-31 2006-03-16 Nanao Junya New yeast for brewing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187633A (en) * 2009-02-20 2010-09-02 Fundokin Shoyu Kk Method for producing lactic acid fermented amazake
WO2012033229A1 (en) * 2010-09-09 2012-03-15 サントリーホールディングス株式会社 Process for production of distilled spirit
JP2012055235A (en) * 2010-09-09 2012-03-22 Suntory Holdings Ltd Method for producing novel shochu
CN103097509A (en) * 2010-09-09 2013-05-08 三得利控股株式会社 Process for production of distilled spirit

Also Published As

Publication number Publication date
JP4732970B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
KR101859707B1 (en) Process for production of distilled spirit
JP6669708B2 (en) Beverage flavor improver
KR20030039696A (en) Method of nuruk preparation for brewing korean traditional liquor and jeju folklore liquor-making using the nuruk thereof
TW200951216A (en) Method of producing distilled spirit
JP4732970B2 (en) Distilled liquor production method
JP2007037436A (en) Method for producing liquor
KR100733071B1 (en) Saccharomyces cerevisiae t084 increasing aromatic compounds in alcoholic liquor and method for preparing alcoholic liquor using the same
KR20200137232A (en) Preparation method of kombucha using autolysate of yeast as nitrogen source
JP6158401B1 (en) Method for producing distilled liquor using koji mold and lactic acid bacteria
JP5965795B2 (en) Distilled liquor with a high content of 4-vinyl guaiacol and method for producing the same, distilled liquor obtained using the distilled liquor with a high content of vanillin
JP6582275B2 (en) Caproic acid low-producing yeast
KR101706341B1 (en) Makgeolli containing whey and the manufacturing method thereof
KR102229724B1 (en) Novel strain of Wickerhamomyces anomalus EY2-2 and liquor with increased aromatic compounds using the same
JP5891505B2 (en) Yeast and method for producing alcoholic fermentation broth from beet molasses using this yeast
JP4402779B2 (en) New yeast with high organic acid production and its use
JP5754903B2 (en) New shochu production method
JP4641966B2 (en) Shochu manufacturing method
JP3859031B2 (en) New gonococci and their uses
JP2003116523A (en) Yeast isolated from cherry blossom, method for obtaining the same, and method for producing sake or other food and beverage using the same
KR102224669B1 (en) Novel Saccharomyces cerevisiae strain and Uses Thereof
JP4393028B2 (en) Novel yeast and its use
JP2005210939A (en) Method for producing alcoholic drink
JP2882830B2 (en) Mutant yeast and its use
JP4798748B2 (en) Shochu or sake flavor improver
JP5380650B2 (en) New brewing yeast

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4732970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250