JP2007528028A - 異なる焦点に合わせられた画像を生成する光学システム - Google Patents

異なる焦点に合わせられた画像を生成する光学システム Download PDF

Info

Publication number
JP2007528028A
JP2007528028A JP2007502144A JP2007502144A JP2007528028A JP 2007528028 A JP2007528028 A JP 2007528028A JP 2007502144 A JP2007502144 A JP 2007502144A JP 2007502144 A JP2007502144 A JP 2007502144A JP 2007528028 A JP2007528028 A JP 2007528028A
Authority
JP
Japan
Prior art keywords
sensor
sensors
images
splitting means
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007502144A
Other languages
English (en)
Inventor
エドワード オールマン,ブレンダン
ヌージェント,キース
ポーター,コリン
Original Assignee
イアティア イメージング プロプライアタリー リミティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2004901223A external-priority patent/AU2004901223A0/en
Application filed by イアティア イメージング プロプライアタリー リミティド filed Critical イアティア イメージング プロプライアタリー リミティド
Publication of JP2007528028A publication Critical patent/JP2007528028A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/40Optical focusing aids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Studio Devices (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

異なるように焦点が合わせられた/デフォーカスされた画像を生成する方法とシステムが開示され、1つまたは2つ以上のビーム分割手段(16、18)を使用してビーム(14)が複数の合成ビーム(20、26、24)に分割され、複数の分離されたセンサ(30、34、32)が使用されてビーム(20、26、24)が検出される。それぞれのセンサ(30、34、32)までの、合成ビーム(20、26、24)の経路長は、各合成ビームに対して異なり、これは、ビーム分割手段(16、18)からの合成ビーム(20、26、24)のそれぞれの出口点から異なる距離にセンサ(30、34、32)を置くことにより、または、ビーム分割手段(16、18)とセンサ830、34、および329の間に光学要素(例えば、移動可能な透明ウェッジ型部材のようなもの)を配置することにより達成できる。対照物の連続画像を捕捉することにより対象物の移動を決定する方法とシステムもまた開示されている。

Description

発明の分野
本発明は、対象物の異なる焦点に合わせられた画像を同時に生成する光学システムと方法に関する。本発明は、対象物の位相画像を生成するために要求される画像の形成に特別に適用される。本発明は、対象物の位相画像を生成するためのカメラにおいて具現化されてもよい。
発明の背景
対象物の位相画像は、対象物の、カメラにより捕捉された強度画像のシリーズに含まれる情報から計算できる。画像のこのシリーズは通常は、単に、対象物自身からの光の伝播の方向における対象物の焦点の合った画像からの種々の近距離における強度画像の配置ということで、「スルーフォーカルシリーズ」と呼ばれる。この計算が行われる処理は、メルボルン大学が所有する国際特許出願第PCT/AU99/00949号(公開番号WO00/26622号)および本出願人が所有する国際特許出願第PCT/AU02/0001398号に開示されている。これらの明細の内容は、この参照により本明細書に組み込まれたものとする。
上記の特許出願に記載されているように、このスルーフォーカルシリーズが形成される方法は、本質的に連続的である。つまり、カメラ機構は、シリーズの各画像を、各露光の間に起こる、対象物に関する画像センサの距離における微小変位を伴って次々に捕捉する。センサの変位は、典型的には機構手段により行われるので、画像の露光間には、測定可能な時間が経過する。対象物が静止している(または静止状態)と考えられる多くに適用例においては、この時間経過は完全に容認される。しかし、関心の対象物が移動し、または、連続的に画像化するアプローチを不可能にするのに十分なほど大きな速度でその物理的外見を変化する多数の適用例がある。これが起こり得るケースとしては、成長の観測時、または生体細胞における他の変化、製造ライン上の移動対象物の表面構造の分離、飛行機に起因する大気の変動、または戦場における、カモフラージュされた車両または戦闘員を識別して追尾することなどがある。
同時画像化カメラシステムは、良質なカラー画像化の適用例に一般的に利用できる。画像が捕捉される機構は、レンズアセンブリからの光の入力ビームを受け入れる2色ビーム分割プリズムを有する。入力ビームはその後、プリズムにより3つまたはそれ以上のビームに分割され、それぞれが異なる色を有し、プリズム内の3つまたはそれ以上の出力ウィンドウに向けられる。出力ウィンドウのそれぞれには、画像化センサ、典型的にはCCDアレイが位置し、異なる色を有する個々の画像を生成する(図1)。
プリズムにより行われる分割は、典型的には数枚の薄膜コーティングにより達成され、その各々は選択的に、色の異なる範囲を反映している。このようなコーティングは2色反射器(図2)として知られている。画像センサの各々は、プリズムから正確な距離に位置して、すべての画像がお互いに関して横方向に整列され、同時に焦点が合わせられることを確実にしている。
発明の概要
第1の態様において、本発明は、対象物の少なくとも2つの異なる焦点に合わせられた画像を生成するシステムであって、
お互いに分離された少なくとも2個のセンサと、
対象物からの放射ビームを、少なくとも2つの合成ビームに分割するビーム分割手段と、を備え、2つの合成ビームの、それぞれのセンサまでの経路長は異なるシステムを提供する。
このように、本発明により、2つのセンサが既に記載したスルーフォーカルシリーズを生成することが可能になる。従ってこれにより、対象物の異なる焦点に合わせられた画像の同時捕捉が可能になる。
本発明の好適な実施形態において、ビーム分割手段はプリズムを備える。
1つの実施形態において、プリズムは、ビームをそれぞれ色が異なる少なくとも2つのビームに分割する2色ビーム分割要素を含む。
しかし、別の実施形態において、プリズムは中性フィルタを含んでもよく、それによりビームは複数の合成ビームに分割され、それぞれは選択的な発色は呈示しない。
中性フィルタのそれぞれに対する光の透過レベルは、使用されているセンサ数に依存する。典型的には、3個のセンサに対して第1フィルタは、入射ビームの33%を反射して67%を透過し、第2フィルタは、第1フィルタからのビームの50%を透過し反射する。このように、各センサは原入射ビームの33%を受け取る。
好適には、センサはCCDアレイを備える。しかし他の実施形態において、センサはフォトダイオードまたは類似のものを備えることができる。フォトダイオードは、光学システムが、画像を生成するために対象物を走査する共焦点顕微鏡において使用される環境において特別に適用される。
好適には、放射ビームは、赤外線、可視光線、紫外線、およびX線を含むいかなる所望の波長の電磁放射である。しかし、ビームはまた、電子ビームのような粒子放射、および音響波のような機械的放射であってもよい。
1つの実施形態において、センサは、ビーム分割手段からの合成ビームの個々の出口点から異なる距離に位置し、それにより異なる経路長を生成する。しかし、別の実施形態において、ビーム分割手段は、それぞれのセンサへの、それぞれの合成ビームの方向において長かったり短かったりし、センサはビーム分割手段に直接取り付けられることにより、異なる経路長を生成する。
更に別の実施形態において、異なる経路長は、光学要素がビーム分割手段とセンサの間に位置することにより提供され、それにより合成ビームの、ビーム分割手段からそれぞれのセンサまでの異なる経路長を生成する。
本発明の好適な実施形態において、要素は、合成ビームが通過するウェッジの量を変更するために、お互いに関して移動可能な透明ウェッジ型部材の対を備えており、それにより、合成ビームの経路長を変更して異なる経路長を生成する。本実施形態においては、センサはビーム分割手段から等距離に位置している。
本発明の1つの実施形態において、ビーム調整要素がビーム分割手段とそれぞれのセンサの間に位置する。
好適には、複数のビーム調整要素がビーム分割手段とセンサの間で位置することが可能で、移動手段が、要素の1つを、それぞれのセンサに関して順番に登録されるように要素を移動するために設けられ、それにより合成ビームは要素の1つを通過する。このように、移動手段により要素の何れをも整列するように移動でき、センサによる検出に先立ってビームの必要な調整が行われる。
調整要素は、カラー画像化フィルタ、1対の透明ウェッジ要素から構成されるデフォーカスウェッジシステム、および偏光器を含んでもよい。
本発明の1つの実施形態において、ビームは電子ビームを含み、ビーム分割手段は、電子ビームの経路の方向に沿って配置された複数のセンサを備え、電子ビームのある部分はセンサの第1番目により検出され、ビームのある部分はセンサの第1番目を通過して後続のセンサに到達し、そのセンサにより検出され、それにより異なる経路長を生成する。
第2態様において、本発明は対象物の異なる焦点に合わせられた画像を生成するシステムであるといってよく、システムは、
お互いに分離された少なくとも2個のセンサと、
対象物からの放射ビームを、少なくとも2つの合成ビームに分割するビーム分割手段と、センサの少なくとも1つとビーム分割手段の間であって、対応する合成ビームの経路に位置し、ビームの、ビーム分割手段からセンサまでの経路長を変更し、それによりそれぞれのセンサにより検出される2つの異なる経路長を有する合成ビームを生成する光学要素と、を含む。
本発明の好適な実施形態において、ビーム分割手段はプリズムを備える。1つの実施形態において、プリズムは、ビームをそれぞれ色が異なる少なくとも2つのビームに分割する2色ビーム分割要素を含む。
しかし、別の実施形態において、プリズムは中性フィルタを含んでもよく、それによりビームは複数の合成ビームに分割され、それぞれは選択的な発色は呈示しない。
中性フィルタのそれぞれに対する光の透過レベルは、使用されているセンサ数に依存する。典型的には、3個のセンサに対して第1フィルタは、入射ビームの33%を反射して67%を透過し、第2フィルタは、第1フィルタからのビームの50%を透過し反射する。このように、各センサは原入射ビームの33%を受け取る。
好適には、センサはCCDアレイを備える。しかし他の実施形態において、センサはフォトダイオードまたは類似のものを備えることができる。フォトダイオードは、光学システムが、画像を生成するために対象物を走査する共焦点顕微鏡において使用される環境において特別に適用される。
好適には、放射ビームは、赤外線、可視光線、紫外線、およびX線を含むいかなる所望の波長の電磁放射である。しかし、ビームはまた、電子ビームのような粒子放射、および音響波のような機械的放射であってもよい。
本発明の好適な実施形態において、要素は、合成ビームが通過するウェッジの量を変更するために、お互いに関して移動可能な透明ウェッジ型部材の対を備えており、それにより、合成ビームの経路長を変更して異なる経路長を生成する。本実施形態においては、センサはビーム分割手段から等距離に位置している。
本発明の1つの実施形態において、ビーム調整要素がビーム分割手段とそれぞれのセンサの間に位置する。
好適には、複数のビーム調整要素がビーム分割手段とセンサの間で位置することが可能で、移動手段が、要素の1つを、それぞれのセンサに関して順番に登録されるように要素を移動するために設けられ、それにより合成ビームは要素の1つを通過する。このように、移動手段により要素の何れをも整列するように移動でき、センサによる検出に先立ってビームの必要な調整が行われる。
調整要素は、カラー画像化フィルタを含んでよい。
本発明の第3態様は、対象物の異なる焦点に合わせられた画像を生成するシステムであるといってよく、システムは、
お互いに分離された少なくとも2個のセンサと、
対象物からの入射放射ビームを、少なくとも2つの合成ビームに分割するビーム分割手段と、
ビーム調整部材であって、(a)複数の調整要素と、(b)部材を移動して、要素の選択された1つを、それぞれのセンサに関して整列するための移動手段と、を有する部材と、を含む。
本発明の好適な実施形態において、ビーム分割手段はプリズムを備える。1つの実施形態において、プリズムは、ビームをそれぞれ色が異なる少なくとも2つのビームに分割する2色ビーム分割要素を含む。
しかし、別の実施形態において、プリズムは中性フィルタを含んでもよく、それによりビームは複数の合成ビームに分割され、それぞれは選択的な発色は呈示しない。
中性フィルタのそれぞれに対する光の透過レベルは、使用されているセンサ数に依存する。典型的には、3個のセンサに対して第1フィルタは、入射ビームの33%を反射して67%を透過し、第2フィルタは、第1フィルタからのビームの50%を透過し反射する。このように、各センサは原入射ビームの33%を受け取る。
好適には、センサはCCDアレイを備える。しかし他の実施形態において、センサはフォトダイオードまたは類似のものを備えることができる。フォトダイオードは、光学システムが、画像を生成するために対象物を走査する共焦点顕微鏡において使用される環境において特別に適用される。
好適には、放射ビームは、赤外線、可視光線、紫外線、およびX線を含むいかなる所望の波長の電磁放射である。しかし、ビームはまた、電子ビームのような粒子放射、および音響波のような機械的放射であってもよい。
1つの実施形態において、センサは、ビーム分割手段からの合成ビームの個々の出口点から異なる距離に位置し、それにより異なる経路長を生成する。しかし、別の実施形態において、ビーム分割手段は、それぞれのセンサへの、それぞれの合成ビームの方向において長かったり短かったりし、センサはビーム分割手段に直接取り付けられることにより、異なる経路長を生成する。
更に別の実施形態において、異なる経路長は、光学要素がビーム分割手段とセンサの間に位置することにより提供され、それにより合成ビームの、ビーム分割手段からそれぞれのセンサまでの異なる経路長を生成する。
本発明の好適な実施形態において、要素は、合成ビームが通過するウェッジの量を変更するために、お互いに関して移動可能な透明ウェッジ型部材の対を備えており、それにより、合成ビームの経路長を変更して異なる経路長を生成する。
調整要素は、カラー画像化フィルタおよび偏光器を含んでもよい。
本発明は、対象物の異なる焦点に合わせられた画像を生成する方法であるといってよく、方法は、
お互いに分離された少なくとも2個のセンサを提供し、
対象物から発せられる放射ビームを、少なくとも2つの合成ビームに分割し、
2つの合成ビームの、それぞれのセンサまでの経路長が異なるようにすること、を含む。
上記に言及した本発明の好適な実施形態において、異なる焦点に合わせられた画像は、少なくとも1つの負に焦点を合わせられた画像と、焦点の合った画像と、少なくとも1つの正に焦点を合わせられた画像から構成される。本実施形態において、3個のセンサが提供され、ビーム分割手段は放射を3つの合成ビームに分割し、それぞれはセンサの1つにより検出される。
本発明の更なる態様において、運動または移動検出が考察される。
1つの実施形態において、システムは上記に記載したシステムの何れかを備えてよく、センサにより受け取られた画像は、お互いに関して時間遅延され、少なくとも2つの時間遅延された画像がセンサにより検出される。これらの画像はお互いに比較され、対象物の移動があったかどうかが決定され、対象物の運動が決定される。時間遅延は、上述のように同時にではなく、画像を連続して撮ることにより提供されるか、または1つのビームを相対的に長い経路に沿って進ませ、別のビームをもっと短い経路に沿って進ませることにより時間遅延を生成し、それにより画像は異なるセンサ上で同時に捕捉でき、一方では運動を決定する比較のために時間遅延された2つの画像が依然として提供される。時間遅延画像は、ビームの1つを、光学ファイバまたは類似の中を、かなりの距離を通すことにより提供することもできる。
本発明の本態様はまた、対象物の移動を決定するシステムであるといってよく、システムは、
対象物からの放射ビームを受け取り、お互いに関して時間遅延された対象物の少なくとも2つの連続画像を捕捉するための少なくとも1つのセンサと、
画像をお互いに関して比較し、画像間の差を決定する手段と、
画像の比較に基づいて、対象物が移動したかどうかを決定するための手段と、を含む。
好適には、画像は対象物の位相画像を備える。
好適には、比較は、画像間の差に基づく処理手段により行われる。
画像の比較と、対象物が移動したかどうかの決定は、単一の処理手段により行われてもよい。
本発明の本態様の好適な実施形態において、対象物が移動したかどうかの決定は、センサにより捕捉された画像から、対象物の位相画像を生成し、位相画像を調べて、画像中の詳細部における明暗の陰を観察して、対象物がセンサに向かってあるいは離れるように移動しているのかを決定することにより行われる。
本発明の本態様は、対象物の移動を決定する方法であるといってよく、方法は、
センサにより対象物からの放射ビームを検出し、
対象物の少なくとも2つの時間遅延された画像を生成し、
画像をお互いに関して比較し、
画像の比較に基づいて対象物が移動したかどうかを決定する、ことを含む。
好適な実施形態の詳細な説明
本発明の好適な実施形態は、例として、添付図を参照して説明される。
図3を参照して、本発明の好適な実施形態は、画像化される対象物からの白色光14のビームを受け取るためのプリズム12を含む。プリズム12は第1中性フィルタ16と第2中性フィルタ18を含む。第1フィルタ16は、ビーム14を第1合成ビーム20と第2ビーム22に分割する。ビーム20は、ビーム14中の放射の1/3を含み、ビーム22は、原ビーム14における放射の2/3を含む。第2フィルタ18はその後、ビーム22を第2合成ビーム24と第3合成ビーム26に分割する。フィルタ18は、ビーム24がビーム22における放射の50%を含み、ビーム26がビーム22における放射の50%を含むようにビーム22を分割する。このように、合成ビーム20、24、および26は原ビーム14の1/3を含む。
好適な実施形態において、図3と図5に示された光学システムは、対象物の位相画像を生成するためのカメラにおいて具現化される。明白なことであるが、カメラは、図4におけるレンズ画像化システムにより概略的に表現されている対象物からのビーム14の焦点を合わせるためのレンズシステムを含む。カメラはまた、対象物の位相画像を生成するための、上述の国際出願に開示されたアルゴリズムに従って計算を行うためのプロセッサを含むこともある。正確な高解像度位相画像を得るために、上記のデフォーカス(焦点ずらし)された画像は、図4に示すように画像化システムの被写界深度内にあるべきであり、また上述のように、好適な実施形態においては、システムの焦点面のどちらかの側0.08mmである。しかし、この距離は、レンズ画像化システムの焦点深度により変化する。
図5に示すように、3個のセンサ30、32、および34は合成ビーム20、24、および26の経路に位置しており、図5に示すようにこれらのビームを検出する。図5は、センサ32が、原ビーム14の焦点距離にあり、センサ30は、ビーム20から負にデフォーカスされた画像を生成するために0.08mmの量だけ焦点距離より少ない位置しており、センサ34は、ビーム26から正にデフォーカスされた画像を生成するために、焦点距離よりも最大0.08mm多い距離に位置している。
このように、図5の実施形態によれば、センサ30と34は、図5に示すプリズム出口面31と35から、0.08mm以下だけ近づいた、または離れた距離に位置している。
図6に示す第2実施形態において、デフォーカスされた画像を生成するための合成ビーム20と36の異なる経路長は、センサ30と34へ向かう方向において、プリズムをより短くおよび長くすることにより達成される。図から明確に分かるように、プリズムは入射ビーム14から出口面31へはより薄く、入射ビーム14から出口面31へはより太くなっている。本実施形態において、センサ30、32、および34は、プリズム12に直接貼り付けられている。この配置により異なる経路長が提供され、センサ30、32、および34が、プリズム12のそれぞれの面に貼り付けられているのでより大きな安定性が得られる。しかし、この方法はまた、球面−色収差と呼ばれる収差の原因にもなり、ある適用例においては過剰と判断されかねない、最終位相画像における劣化という結果になる。
これらの実施形態において、個々の画像の捕捉中における時間の経過をなくすためには、画像センサのそれぞれは、正確に同時刻に作動されなければならない。この作動方法は、既存の商用化された三次元CCDカメラにおいては標準手順である。しかし、ある実施形態においては、後で詳細を示すように、画像間の短い遅延は有利となる場合がある。これらの実施形態としては、乱気流の強調表示、または対象物の移動を決定するために使用されるシステムなどがある。
図7は、本発明の、図5の実施形態に類似している別の実施形態を示しているが、本実施形態においては、CCDセンサ30、32、および34は単一フォトダイオード型センサ30a、32a、および34aにより置き換えられている。この配置は、走査処理の間、顕微鏡が、画像を生成するために対象物を走査し、効率的に対象物上の離散点からデータ収集する、共焦点走査顕微鏡において特別に適用される。そのため、前述の実施形態におけるように、CCDアレイではなく、ただ1つの単一フォトダイオードが必要とされる。
本実施形態はまた、図6と同じである、ダイオードを図6に示すタイプのプリズム12に直接貼り付ける方法で配置することもできることに留意されたい。
図8は本発明の更に別の実施形態を示し、プリズムとセンサは概略的に、図1を参照して記載した構成と同じように配置されており、センサ30、32、および34はそれぞれ、プリズム12のビーム分割フィルタのそれぞれから同じ距離にある。本実施形態においては、センサ30と34において、デフォーカスされた画像を生成するために、デフォーカスされたウェッジシステム50が、プリズム12とそれぞれのセンサ30と34の間に位置している。各ウェッジシステム50は、ガラスのような透明材料から形成されたウェッジ52を備える。ウェッジは、そのより長い傾斜表面(つまり、斜辺に沿う斜面)が相互に向き合うように配置される。一般的に、これらの表面はお互いが接触することもあり、ウェッジ52はそれぞれ、お互いに関して移動できるように実装され、ウェッジを、ウェッジが完全に重なり長方形のブロックを効果的に形成できる場所から、ウェッジがほとんど完全に分離した場所に移動できるようになっている。このように、このことにより、ビーム20と26が、センサ30と34に到達する前に通過しなければならない材料の異なる量が提供される。光が各個々のガラスウェッジから出射する、またはそこに入射するときの光回折のため、この材料の異なる量により、合成ビーム20と26の経路長が変更され、これによりデフォーカスされた画像が生成される。従って、本実施形態もまた、実際の経路長であり、お互いに関してウェッジ52の適切な位置を制御し、それにより、カメラのレンズシステムの異なる倍率が提供される。このように、本実施形態は、デフォーカスの連続的に調整可能な量を提供し、それゆえ、カメラシステムの適用の範囲により柔軟性が与えられる。対向するウェッジ52もまた、お互いに関してのウェッジ52の場所に関係なく、ビームが逸脱しないことを確実にする。
図9は、更に別の実施形態を示し、センサ30、32、および34は、図5を参照して記載したのと同様な方法で配置されている。本実施形態において、フィルタ60、62、および64はプリズムとそれぞれのセンサ30、32、および34の間に配置されている。フィルタ60、62、および64は、カメラの基本的な機能を変更するために使用できる。フィルタは、カラーフィルタが使用されるときはカラー画像化を可能にし、偏光器が設置されれば、画像化において偏光の検出も可能になる。カラー画像化に対して、フィルタは単純な赤、緑、および青しか必要としないが、偏光画像化器は、フィルタ60に対して線形偏光器を使用し、フィルタ64に対しては、類似ではあるが直交方向に方位付けられた偏光器を使用し、フィルタ62は、他の別の方向に方位付けられた偏光器またはガラスのブランクシートとの何れかであってよく、それにより焦点がセンサ32に維持することを確実にする。
図10は、本発明の更に別な実施形態を示している。図10は、説明の簡略化のためにセンサ32のみを示していることに留意されたい。本実施形態においては、複数の光学調整要素72、74、および76を備える光学部材70が提供される。要素72、74、および76は、80として概略的に表現される移動機構上に位置しており、この移動機構は、結果としてフィルタ要素72、74、および76を、センサ32に対して整列させ、要素72、74、および76のうちから選択された1つをビーム24が通過するように移動するための移動器のいかなる形状であってもよい。本発明の好適な実施形態においては、上述したように、要素72はカラーフィルタを備えることができ、要素76は偏光器を、そして要素74は2つのウェッジ52から形成されたウェッジ対を備えることができる。このように、本実施形態においては、上述したカラーフィルタと偏光器の効果が、単に移動器80を移動して適切なフィルタをセンサ32に対して整列させるだけで得ることができる。ビーム24の経路長においてある変更が必要なときは、ウェッジシステム74を、センサ32に対して整列することができる。移動器は単純な機構的滑走運搬装置または回転可能な車輪の形状であってよい。これは、カメラ内に容易に含むことができる。しかし、適切な要素をセンサ32に対して整列させるように移動する他の移動機構もまた使用できる。
図11は本発明の更に別の実施形態を示し、この実施形態においては、電磁放射ではなく、電子ビームが画像の位置決めに使用されている。図11において、電子14の入射ビームはまずセンサ30により受け取られる。センサ32と34は、センサ30の後ろに位置している。電子ビームのある部分は、センサ30により検出され、ビームの他の部分は単にセンサ30を通過して、センサ32により検出される。同様に、電子のある部分はセンサ32を通過して、センサ34により受け取られる。このように、センサはそれ自身、ビーム分割要素として動作して合成ビームを生成し、センサ30、32、および34間の間隔により異なる経路長が生成され、焦点の合った、およびデフォーカスされた画像が生成される。
図11に示す構成はまた、センサがビームの一部をセンサ30と32を通過するように構成されれば、電磁放射にも使用できる。典型的なセンサは、画像が現像されるフィルム型センサの性質を有する。センサ32と34上の画像の強度は、明白にその前のセンサ上の強度よりも小さく、これは、処理において考慮される必要がある。フィルムセンサにより捕捉された画像は、デジタル化でき、上述したCCDセンサまたはフォトダイオードからの信号と同様に使用して、位相画像を生成することができる。
音響波を使用する実施形態においては、ビーム分割器は、部材の形状をしていても、または、振幅を分割する屈折不整合に基づくビーム分割器の形状であってもよく、センサは超音波トランスデューサであってもよい。
図12は、本発明の更に別の実施形態を示しており、この実施形態は対象物の移動または運動の検出に関連している。本実施形態においては、たった1個のセンサしか必要としない。しかし、下記の説明から明白になるように、図1から図11を参照して記述した配置もまた、運動の検出に使用できる。
図12を参照して、対象物からの放射98のビームは、少なくとも1つのセンサ100により検出される。センサ100は、位相画像を生成できる、対象物の焦点の合った画像およびデフォーカスされた画像の第1セットを捕捉する。対象物の焦点の合った、およびデフォーカスされた画像は、同時画像ではなく、連続画像であり、それによりセンサにより捕捉された画像は、お互いに時間遅延されることになる、つまり、異なる時間における対象物を示すことになる。このように、捕捉された画像は、対象物の移動のため、お互いに関してわずかに異なっており、捕捉された画像の少なくとも2つを比較して、対象物が移動したかどうかを決定できる。決定は画像間の差に基づいて行うことができる。しかし、本発明の好適な実施形態においては、捕捉された画像は位相画像を生成するために使用され、位相画像に対して、センサに対しての対象物の移動を示す画像の形状上の明暗の陰が調べられる。このように、画像における詳細部上の陰を生成することにより、センサに関して対象物が移動したかどうか、およびセンサに関して何れの方向かについての決定をすることが可能になる。位相画像は当然、上記の国際出願に記述されたアルゴリズムに従って生成される。図12から分かることであるが、センサ100はプロセッサ102に接続され、そこにおいてセンサ100により捕捉されたデータから位相画像が生成される。対象物の移動を決定する処理もまた、センサ100により捕捉された2つの画像の単純な比較、あるいは、上述のように、位相画像を生成して、位相画像の明暗の陰領域を調べることの何れかに基づいて、プロセッサ102において行われる。
この技術は、時間に関して同時ではなく、時間に関して連続する画像の捕捉を必要としているので、図12に示すように、たった1個のセンサしか使用する必要がない。しかし、図1から図11に示された配置もまた、分離したセンサのそれぞれが、時間に関して同時ではなく、時間に関して連続する対象物の画像を捕捉することができるのであれば、使用することができる。これは、単に、同時ではなく、異なる時間において各センサにより画像を捕捉するか、または、センサの1つに向かって進む光ビームの、別のセンサに向かって進む光ビームに比較しての効果的な時間遅延を導入し、異なる時間において対象物に関しての情報を光ビームが効果的に含むようにすることにより達成できる。本実施形態においては、画像の捕捉は連続的であってよく、光ビームがお互いに関して遅延され、異なる時間において画像を効果的に示すという事実により、上述と同様な方法で、運動の決定を行うことができる。
本発明の精神および範囲内における変形例は、この技術に精通した者には容易に実現できるので、本発明は、上記に例として記述した特別な実施形態に制限されるのではないということは理解されたい。
対象物のカラー画像生成のための従来のカメラを使用する光学システムの図である。 図1の実施形態において使用される2色フィルタの透過曲線を示している。 本発明の第1実施形態の図である。 本発明の好適な実施形態による、システムの被写界深度を示す図である。 センサを含む、図3の実施形態を示す。 本発明の更なる実施形態を示す。 本発明の更なる実施形態を示す。 本発明の更なる実施形態を示す。 本発明の更なる実施形態の図である。 本発明の更なる実施形態を示す。 本発明の更なる実施形態の図である。 本発明の更なる実施形態の図である。

Claims (30)

  1. 対象物の少なくとも2つの異なる焦点に合わせられた画像を生成するシステムであって、お互いに分離された少なくとも2個のセンサと、前記対象物からの放射ビームを、少なくとも2つの合成ビームに分割するビーム分割手段と、を備え、前記2つの合成ビームの、それぞれのセンサまでの経路長が異なるシステム。
  2. 前記ビーム分割手段はプリズムを備える請求項1に記載のシステム。
  3. 前記プリズムは、前記ビームをそれぞれ色が異なる少なくとも2つのビームに分割する2色ビーム分割要素を含む請求項2に記載のシステム。
  4. 前記センサはCCDアレイを備える請求項1に記載のシステム。
  5. 前記センサは、前記ビーム分割手段からの前記合成ビームのそれぞれの出口点から異なる距離に位置し、それにより異なる経路長を生成する請求項1に記載のシステム。
  6. 前記異なる経路長は、光学要素が前記ビーム分割手段と前記センサの間に位置することにより提供され、それにより前記合成ビームの、前記ビーム分割手段から前記それぞれのセンサまでの異なる経路長を生成する請求項1に記載のシステム。
  7. 前記要素は、前記合成ビームが通過するウェッジの量を変更するために、お互いに関して移動可能な透明ウェッジ型部材の対を備えており、それにより、前記合成ビームの経路長を変更して異なる経路長を生成する請求項6に記載のシステム。本実施形態においては、前記センサは前記ビーム分割手段から等距離に位置している。
  8. ビーム調整要素が前記ビーム分割手段と前記それぞれのセンサの間に位置する請求項1に記載のシステム。
  9. 複数のビーム調整要素が前記ビーム分割手段と前記センサの間で位置することが可能で、移動手段が、前記要素の1つを、前記それぞれのセンサに関して順番に登録されるように前記要素を移動するために設けられ、それにより前記合成ビームは前記要素の前記1つを通過する請求項8に記載のシステム。
  10. 前記ビームは電子ビームを含み、前記ビーム分割手段は、前記電子ビームの経路の方向に沿って配置された複数のセンサを備え、前記電子ビームのある部分は前記センサの第1番目により検出され、前記ビームのある部分は前記センサの前記第1番目を通過して後続のセンサに到達し、そのセンサにより検出され、それにより異なる経路長を生成する請求項1に記載のシステム。
  11. 対象物の異なる焦点に合わせられた画像を生成するシステムであって、
    お互いに分離された少なくとも2個のセンサと、
    前記対象物からの放射ビームを、少なくとも2つの合成ビームに分割するビーム分割手段と、
    前記センサの少なくとも1つと前記ビーム分割手段の間であって、対応する合成ビームの経路に位置し、前記ビームの、前記ビーム分割手段から前記センサまでの経路長を変更し、それにより前記それぞれのセンサにより検出される2つの異なる経路長を有する合成ビームを生成する光学要素と、を備えるシステム。
  12. 前記ビーム分割手段はプリズムを備える請求項11に記載のシステム。
  13. 前記センサはCCDアレイを備える請求項11に記載のシステム。
  14. 前記要素は、前記合成ビームが通過するウェッジの量を変更するために、お互いに関して移動可能な透明ウェッジ型部材の対を備えており、それにより、前記合成ビームの経路長を変更して異なる経路長を生成する請求項11に記載のシステム。
  15. ビーム調整要素が前記ビーム分割手段と前記それぞれのセンサの間に位置する請求項14に記載のシステム。
  16. 複数のビーム調整要素が前記ビーム分割手段と前記センサの間で位置することが可能で、移動手段が、前記要素の1つを、前記それぞれのセンサに関して順番に登録されるように前記要素を移動するために設けられ、それにより前記合成ビームは前記要素の前記1つを通過する請求項15に記載のシステム。
  17. 調整要素はカラー画像化フィルタを含んでもよい請求項16に記載のシステム。
  18. 対象物の異なる焦点に合わせられた画像を生成するシステムであって、
    お互いに分離された少なくとも2個のセンサと、
    前記対象物からの入射放射ビームを、少なくとも2つの合成ビームに分割するビーム分割手段と、
    (c)複数の調整要素と、(b)前記部材を移動して、前記要素の選択された1つを、前記それぞれのセンサに関して整列するための移動手段と、を有するビーム調整部材と、を備えるシステム。
  19. 前記ビーム分割手段はプリズムを備える請求項18に記載のシステム。
  20. 前記センサは、前記ビーム分割手段からの前記合成ビームのそれぞれの出口点から異なる距離に位置し、それにより異なる経路長を生成する請求項18に記載のシステム。
  21. 前記異なる経路長は、光学要素が前記ビーム分割手段と前記センサの間に位置することにより提供され、それにより前記ビームの、前記ビーム分割手段から前記それぞれのセンサまでの異なる経路長を生成する請求項18に記載のシステム。
  22. 前記要素は、前記合成ビームが通過するウェッジの量を変更するために、お互いに関して移動可能な透明ウェッジ型部材の対を含んでおり、それにより、前記合成ビームの経路長を変更して異なる経路長を生成する請求項21に記載のシステム。
  23. 対象物の異なる焦点に合わせられた画像を生成する方法であって、
    お互いに分離された少なくとも2個のセンサを提供し、
    前記対象物から発せられる放射ビームを、少なくとも2つの合成ビームに分割し、
    前記2つの合成ビームの、前記それぞれのセンサまでの経路長が異なるようにする、ことを含む方法。
  24. 前記異なる焦点に合わせられた画像は、少なくとも1つの負に焦点を合わせられた画像と、焦点の合った画像と、少なくとも1つの正に焦点を合わせられた画像から構成される請求項23に記載の方法。
  25. 対象物の移動を決定するシステムであり、
    前記対象物からの放射ビームを受け取り、お互いに関して時間遅延された前記対象物の少なくとも2つの連続画像を捕捉するための少なくとも1つのセンサと、
    前記画像をお互いに関して比較し、前記画像間の差を決定する手段と、
    前記画像の前記比較に基づいて、前記対象物が移動したかどうかを決定するための手段と、を含むシステム。
  26. 前記画像は、前記対象物の位相画像を備える請求項25に記載のシステム。
  27. 前記比較は、前記画像間の差に基づく処理手段により行われる請求項25に記載のシステム。
  28. 前記画像の比較と、前記対象物が移動したかどうかの決定は、単一の処理手段により行われてもよい請求項25に記載のシステム。
  29. 前記対象物が移動したかどうかの決定は、前記センサにより捕捉された前記画像から、前記対象物の位相画像を生成し、前記位相画像を調べて、前記画像中の詳細部における明暗の陰を観察して、前記対象物が前記センサに向かってあるいは離れるように移動しているのかを決定することにより行われる請求項28に記載のシステム。
  30. 対象物の移動を決定する方法であって、
    センサにより前記対象物からの放射ビームを検出し、
    前記対象物の少なくとも2つの時間遅延された画像を生成し、
    前記画像をお互いに関して比較し、
    前記画像の比較に基づいて前記対象物が移動したかどうかを決定する、ことを含む方法。
JP2007502144A 2004-03-09 2005-02-17 異なる焦点に合わせられた画像を生成する光学システム Pending JP2007528028A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2004901223A AU2004901223A0 (en) 2004-03-09 An optical system for producing differently focused images
PCT/AU2005/000204 WO2005085936A1 (en) 2004-03-09 2005-02-17 An optical system for producing differently focused images

Publications (1)

Publication Number Publication Date
JP2007528028A true JP2007528028A (ja) 2007-10-04

Family

ID=34916892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007502144A Pending JP2007528028A (ja) 2004-03-09 2005-02-17 異なる焦点に合わせられた画像を生成する光学システム

Country Status (5)

Country Link
US (1) US20070182844A1 (ja)
EP (1) EP1723463A4 (ja)
JP (1) JP2007528028A (ja)
IL (1) IL177274A (ja)
WO (1) WO2005085936A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048040A1 (ko) * 2014-09-24 2016-03-31 주식회사 고영테크놀러지 광학 이미지 검출 장치
CN107004401A (zh) * 2014-08-23 2017-08-01 李汶基 分行光学模块和使用分行光学模块的电子键盘
JP2020168569A (ja) * 2011-08-12 2020-10-15 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 外科手術器具の画像取込み装置
JP2020178318A (ja) * 2019-04-22 2020-10-29 株式会社ジェイエイアイコーポレーション 撮像装置
WO2022158754A1 (ko) * 2021-01-21 2022-07-28 주식회사 뷰웍스 영상 획득 장치

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0409572D0 (en) 2004-04-29 2004-06-02 Univ Sheffield High resolution imaging
US7973827B2 (en) * 2007-08-03 2011-07-05 Panasonic Corporation Image data generating apparatus, method and program for generating an image having high spatial and high temporal resolution
KR101175765B1 (ko) 2010-09-17 2012-08-21 서울대학교산학협력단 광학 필터 교체형 3ccd 다파장 영상획득 장치
WO2017097886A1 (en) * 2015-12-09 2017-06-15 Carl Zeiss Meditec Ag Balanced detection systems
US10264196B2 (en) * 2016-02-12 2019-04-16 Contrast, Inc. Systems and methods for HDR video capture with a mobile device
US10257393B2 (en) 2016-02-12 2019-04-09 Contrast, Inc. Devices and methods for high dynamic range video
US11307430B2 (en) * 2016-06-07 2022-04-19 Karl Storz Se & Co. Kg Optical device and method for providing improved depth of field and resolution modes
JP7081835B2 (ja) 2016-08-09 2022-06-07 コントラスト, インコーポレイテッド 車両制御のためのリアルタイムhdrビデオ
JP6410203B1 (ja) * 2017-02-21 2018-10-24 株式会社ナノルクス 固体撮像素子及び撮像装置
US11153514B2 (en) * 2017-11-30 2021-10-19 Brillnics Singapore Pte. Ltd. Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
EP3537399B1 (en) * 2018-03-05 2021-03-31 Ricoh Company, Ltd. Imaging optical system, imaging system, and imaging apparatus
EP3798711A1 (en) 2019-09-27 2021-03-31 Leica Microsystems CMS GmbH Imaging device and method for imaging an object using a microscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197097A (ja) * 1998-01-14 1999-07-27 Fuji Photo Optical Co Ltd 遠近画像を形成する電子内視鏡装置
JPH11249039A (ja) * 1998-02-27 1999-09-17 Nec Corp 焦点調整機能付光学レンズ装置
JP2002333574A (ja) * 2001-05-08 2002-11-22 Konica Corp デジタルカメラ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908124A (en) * 1974-07-01 1975-09-23 Us Energy Phase contrast in high resolution electron microscopy
JPS5374319A (en) * 1976-12-15 1978-07-01 Fuji Photo Optical Co Ltd Optical system for television camera
DE3070008D1 (en) * 1979-07-26 1985-03-07 Laser Precision Corp Refractively scanned interferometer
US4360885A (en) * 1980-01-02 1982-11-23 Edgar Albert D Micro-optical tomography
JPH0658482B2 (ja) * 1980-07-17 1994-08-03 キヤノン株式会社 焦点調節状態の検出装置
JPS57114112A (en) * 1981-01-06 1982-07-15 Canon Inc Image reader
US4626674A (en) * 1983-02-10 1986-12-02 Olympus Optical Company, Ltd. Focus detecting method and apparatus
US4647154A (en) * 1983-07-29 1987-03-03 Quantum Diagnostics Ltd. Optical image processor
US4725880A (en) * 1985-06-28 1988-02-16 Rca Corporation Color solid-state imaging apparatus wherein one imager receives an image of a first color and another imager receives an offset image of the first color and a second color
US5086338A (en) * 1988-11-21 1992-02-04 Canon Kabushiki Kaisha Color television camera optical system adjusting for chromatic aberration
US5134468A (en) * 1989-02-21 1992-07-28 Canon Kabushiki Kaisha Optical apparatus for varying the lengths of optical path of color component light beams
NL9001800A (nl) * 1990-08-10 1992-03-02 Philips Nv Methode voor het direct verkrijgen van amplitude- en fase-informatie van een object met behulp van beelden van een hoge-resolutie elektronenmicroscoop.
US5327192A (en) * 1991-05-20 1994-07-05 Asahi Kogaku Kogyo Kabushiki Kaisha Focus detecting apparatus
FR2755235B1 (fr) * 1996-10-31 1998-12-31 Cilas Dispositif pour determiner les defauts de phase d'ondes electromagnetiques
AUPP690098A0 (en) * 1998-11-02 1998-11-26 University Of Melbourne, The Phase determination of a radiation wave field
JP3980799B2 (ja) * 1999-08-19 2007-09-26 株式会社リコー 自動合焦装置およびその合焦方法
WO2002031583A1 (en) * 2000-10-12 2002-04-18 Amnis Corporation System and method for high numeric aperture imaging systems
AUPR672501A0 (en) * 2001-07-31 2001-08-23 Iatia Imaging Pty Ltd Optical system and method for producing focused and defocused images
AUPR672601A0 (en) * 2001-07-31 2001-08-23 Iatia Imaging Pty Ltd Apparatus and method of imaging an object
JP2003148927A (ja) * 2001-11-13 2003-05-21 Omron Corp 三次元形状検査装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197097A (ja) * 1998-01-14 1999-07-27 Fuji Photo Optical Co Ltd 遠近画像を形成する電子内視鏡装置
JPH11249039A (ja) * 1998-02-27 1999-09-17 Nec Corp 焦点調整機能付光学レンズ装置
JP2002333574A (ja) * 2001-05-08 2002-11-22 Konica Corp デジタルカメラ

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169725B2 (ja) 2011-08-12 2022-11-11 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 外科手術器具の画像取込み装置
JP2020168569A (ja) * 2011-08-12 2020-10-15 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 外科手術器具の画像取込み装置
US10199025B2 (en) 2014-08-23 2019-02-05 Moon Key Lee Image capturing device and electronic keyboard using the image capturing device
CN107004401B (zh) * 2014-08-23 2020-12-29 李汶基 分行光学模块和使用分行光学模块的电子键盘
CN107004401A (zh) * 2014-08-23 2017-08-01 李汶基 分行光学模块和使用分行光学模块的电子键盘
KR101920176B1 (ko) * 2014-08-23 2018-11-19 이문기 광각 영상 촬영 장치
CN106716186A (zh) * 2014-09-24 2017-05-24 株式会社高永科技 光学图像检测装置
WO2016048040A1 (ko) * 2014-09-24 2016-03-31 주식회사 고영테크놀러지 광학 이미지 검출 장치
KR101686918B1 (ko) * 2014-09-24 2016-12-16 주식회사 고영테크놀러지 광학 이미지 검출 장치
KR20160035879A (ko) * 2014-09-24 2016-04-01 주식회사 고영테크놀러지 광학 이미지 검출 장치
JP2020178318A (ja) * 2019-04-22 2020-10-29 株式会社ジェイエイアイコーポレーション 撮像装置
WO2020217595A1 (ja) * 2019-04-22 2020-10-29 株式会社ジェイエイアイコーポレーション 撮像装置
WO2022158754A1 (ko) * 2021-01-21 2022-07-28 주식회사 뷰웍스 영상 획득 장치

Also Published As

Publication number Publication date
EP1723463A4 (en) 2010-07-28
US20070182844A1 (en) 2007-08-09
EP1723463A1 (en) 2006-11-22
IL177274A (en) 2010-11-30
IL177274A0 (en) 2006-12-10
WO2005085936A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP2007528028A (ja) 異なる焦点に合わせられた画像を生成する光学システム
US7702229B2 (en) Lens array assisted focus detection
US11409092B2 (en) Parallel multi-region imaging device
JP6387416B2 (ja) ウェーハ映像検査装置
JPH01155308A (ja) 焦点検出装置
JP2012073285A (ja) 撮像方法および顕微鏡装置
US11578964B2 (en) Optical coherence tomography apparatus and image generation method using the same
US20110090317A1 (en) Stereovision system and method for calcualting distance between object and diffractive optical element
JP2004509360A (ja) 共焦点オートフォーカシングのための配置構成
CN109246349B (zh) 高品质超分辨面阵成像相机及成像方法
JPH10206150A (ja) 多重フォーカス測距装置
KR101333161B1 (ko) 공초점을 이용한 영상 처리 장치 및 이를 이용한 영상 처리 방법
US20030174232A1 (en) Focus detecting system
US5552594A (en) Focus detecting system using a beam splitter to form an image at nominal best focus, slightly in front of best focus and slightly behind best focus
KR102058780B1 (ko) 라인 스캐닝 방식의 공초점 현미경에서의 자동초점조절 방법 및 장치
JPS6113566B2 (ja)
JP2003083723A (ja) 3次元形状測定光学系
AU2005219889A1 (en) An optical system for producing differently focused images
KR102614389B1 (ko) 고 프레임률 영상 획득 장치 및 방법
JP2013174709A (ja) 顕微鏡装置およびバーチャル顕微鏡装置
US6750436B2 (en) Focus error detection apparatus and method having dual focus error detection path
JP2012018264A (ja) 撮像装置および顕微鏡システム
JPH10133117A (ja) 焦点検出装置を備えた顕微鏡
JP2007148084A (ja) 焦点検出装置
JP2009025454A (ja) 光学機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110201

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719