JP2007523383A - 深紫外光による大開口数結像のための反射屈折結像光学系 - Google Patents

深紫外光による大開口数結像のための反射屈折結像光学系 Download PDF

Info

Publication number
JP2007523383A
JP2007523383A JP2006554131A JP2006554131A JP2007523383A JP 2007523383 A JP2007523383 A JP 2007523383A JP 2006554131 A JP2006554131 A JP 2006554131A JP 2006554131 A JP2006554131 A JP 2006554131A JP 2007523383 A JP2007523383 A JP 2007523383A
Authority
JP
Japan
Prior art keywords
light
refracting
refractive
concave
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006554131A
Other languages
English (en)
Inventor
イー ウェブ,ジェイムズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2007523383A publication Critical patent/JP2007523383A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0808Catadioptric systems using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0892Catadioptric systems specially adapted for the UV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

集束力のほとんどが反射によってつくられ、収差の付加を避けるために屈折角が制限される、大開口数対物光学系を特徴とするマイクロリソグラフィ投影用反射屈折結像光学系。開口数を上げるために像面補正光学素子が浸漬構成でマンジャンミラーに添えられる。マンジャンミラーと像面補正光学素子の間の光結合は入射角または屈折率差を制限することによって屈折角を制御するように構成される。像コントラストを向上させるために径方向対称偏光化効果がひとみにおいて達成される。

Description

本発明は反射面が相当な集束力を提供するタイプの結像光学系に関し、さらに詳しくは、集束目的のために反射と屈折の組合せを利用する反射屈折縮小光学系に関する。本発明は特に深紫外光を用いる大開口数におけるマイクロリソグラフィ結像のためのニュートン型対物光学系に適用される。本発明は結像光学系に対する偏光管理問題も考慮している。
集束力がほとんど反射によって達成されるニュートン型設計様式は、色収差を制限しながら正確に像を投影するためにマイクロリソグラフィ装置に取り入れられてきている。全屈折結像光学系に優るニュートン型設計様式の色に関する利点は、透過性材料の選択肢がさらに限られている、紫外光による結像について特に明らかである。
さらに短波長の紫外光の利用への趨勢にともない、マイクロリソグラフィ装置によるさらに高い解像度の達成のためにさらに大きい開口数も求められている。既知の屈折対物光学系に必要とされる大屈折角は、深紫外(すなわち200nmより短波長の)光の透過に対する材料選択肢が限られている状況では補正が困難な、色収差を含む多くの収差に寄与する。固有複屈折のようないくつかの異方性特性も、短波長になるほど実質的にあらわになり、屈折光学系での解決がさらに複雑になる。
反射光学系は色差にほとんど不感であるが、球面収差及び像面湾曲を含む、多くのその他の収差が反射光学系の使用にともなう。したがって、屈折光学系が反射光学系と組み合わせて用いられ、ニュートン型設計の反射屈折様式で相互の長所と短所の均衡がはかられている。そのような反射屈折様式の例は、一緒に譲渡された、名称を「深紫外光リソグラフィのための結像光学系(Imaging System for Deep Ultraviolet Lithography)」とする特許の明細書(特許文献1)に開示されている。この明細書は本明細書に参照として含まれる。
解像度を高くするためには、開口数を大きくするかまたは与えられた開口数に対して波長を短くする必要があり、開口数を大きくして波長を短くすれば最も有利である。それぞれが結像光学系に対して要件を課す。波長が短くなるほど(特に157nm光では)透過性に対する材料選択肢がますます限られ、光の一様伝搬を妨害する異方性特性が強められる。開口数を大きくするには光線の急激な曲がりが必要であり、これは収差源を導入し、材料充足性をさらに悪化させる。
米国特許第5650877号明細書
本発明の課題は、低収差で高解像度の結像を可能にするマイクロリソグラフィ用投影装置のための結像光学系を提供することである。
本発明の目的は、低収差で高解像度の結像が可能な、特にマイクロリソグラフィ装置のための、結像光学系である。1つまたはそれより多くの実施形態において、本結像光学系は、大きな(すなわち0.85以上の)開口数において、深紫外光波長(すなわち200nmより短波長)に対応することによってさらに高い解像能力を達成する。収差は反射光学系の集束力を小屈折角における屈折光学系の補正特性とともに利用する設計改善によって制限される。像コントラストを改善するために偏光管理が用いられる。
反射屈折結像光学系としての本発明の一例は二重反射マンジャンミラーに基づく。マンジャンミラーは光透過体を有し、光透過体の第1の面の半反射面、光透過体の第2の面の凹反射面、凹反射面内の開口、及び凹反射面の開口内の光透過体の第2の面の凹屈折面を有する。光透過体の第2の面の凹反射面及び凹屈折面は、結像光が開口を通って光透過体を出る屈折角を小さくするために、共通光軸に沿って互いに逆の方向におかれた公称曲率中心を有する。凹屈折面に隣接する凸屈折面を有する像面補正レンズが像面における収差を補正する。
半反射面は凹反射面に向けて光を透過させる屈折面であることが好ましい。凹反射面は透過してきた光を反射して、半反射面に向かって戻る集束経路に載せ、半反射面は戻ってきた光を反射して、凹屈折面を通ってマンジャンミラーの焦点に向かう別の集束経路に載せる。像面補正レンズの凸屈折面は像面における補正に影響を与えるために凹屈折面の曲率中心とは別の点に公称曲率中心を有する。
像面補正レンズは第1及び第2の面が光軸に沿って配置されたレンズ体を有することが好ましい。凸屈折面がレンズ体の第1の面にあり、別の凸屈折面がレンズ体の第2の面にある。レンズ体の第2の面の屈折面は、光を屈折させて像平面に隣接する液体光学媒質に入れるための形につくられた浸漬界面を形成することが好ましい。全体として、像面補正レンズは正味の正屈折力を有することができ、浸漬界面は像面補正レンズと液体媒質の間の屈折を小さくするために凹面形状を有することができる。
収差が入ることを最小限に抑え、入っても補正するため、凸屈折面に入射する集束ビームがなす入射角を制限することによってマンジャンミラーの凹屈折面における屈折を制限することが好ましい。像面補正レンズの凸屈折面とマンジャンミラーの凹屈折面の間の曲率差を制限することによって像面補正レンズの凹屈折面における屈折を同様に制限することができる。レンズ体の屈折率と液体光学媒質の屈折率の間の差を制限することによって浸漬面における屈折を制限することができる。
マンジャンミラーの光透過体の第1の面の半反射面は光透過体の第2の面の凹反射面及び凹屈折面の共通光軸に実質的に垂直に配向された公称平面形状を有することが好ましい。この形状には多くの利点がともなう。平面は従来技術で述べられているマンジャンミラーに通常用いられる凹面より大きな集束角で限界光線を開口に向けて反射する。より大きな集束角は、屈折光学系の集束力にほとんど依存せずに、より大きな開口数での結像をサポートする。入射角及び反射角は光軸に関して等しく、よって光線は互いに逆方向に実質的に等しい角度でマンジャンミラー体を横切り、角度依存複屈折のような角度鋭敏非対称性は回転に関して均衡がはかられる。半反射面の平面形状は、凹反射面、凹屈折面及び半反射面を共通光軸に沿って互いに対して配向するためのデウエッジング要件を単純化することによってマンジャンミラー製作上の利点も与える。
本発明にしたがう反射屈折結像光学系の別の例は屈折体を有する主集束光学素子を有し、主集束光学素子は、集束光学素子の屈折体の一方の面の反射面、集束光学素子の屈折体の相対面の屈折面、及び反射面内の開口を有する。屈折面は光を反射面に向けて透過させるために半透過性であり、反射面は透過してきた光を反射して、屈折面に向けて戻る集束経路に載せるために凹面形状を有し、屈折面は戻ってきた光を反射して、開口を通って結像光学系の像平面に向かう別の集束経路に載せるために半反射性である。主集束光学素子の開口に隣接して、屈折体を有する両面浸漬光学素子がある。浸漬光学素子の屈折体の一方の面の第1の浸漬面は両面浸漬光学素子と主集束光学素子の開口の間の液体光学媒質にさらすための形につくられる。浸漬光学素子の屈折体の相対面の第2の浸漬面は両面浸漬光学素子と像平面の間の液体光学媒質にさらすための形につくられる。
両面浸漬光学素子と主集束光学素子の間に液体光学媒質を閉じ込めるために周縁シールを用いることができる。両面浸漬光学素子は、第2の浸漬面がさらされる液体光学媒質の屈折率と異なる、第1の浸漬面がさらされる液体光学媒質の屈折率に対応するような形につくることもできる。第2の浸漬面がさらされる液体光学媒質の屈折率は、開口数を最適化するために第1の浸漬面がさらされる液体光学媒質の屈折率より高くすることができる。
両面浸漬光学素子の第1の浸漬面は凸形を有することができ、両面浸漬光学素子の第2の浸漬面は平面形状を有することができる。主集束光学素子の屈折体の屈折率と両面浸漬光学素子の第1の浸漬面がさらされる液体光学媒質の屈折率の間の差を制限することによって主集束光学素子の開口における屈折を制限されることが好ましい。同様に、両面浸漬光学素子の屈折体の屈折率と第1の浸漬面がさらされる液体光学媒質の屈折率の間の差を制限することによって両面浸漬光学素子の第1の浸漬面における屈折を制限することが好ましい。両面浸漬光学素子の屈折体の屈折率と第2の浸漬面がさらされる液体光学媒質の屈折率の間の差を制限することによって両面浸漬光学素子の第2の浸漬面における屈折も同様に制限される。
本発明は、その実施形態の中でもとりわけ、第1及び第2の面を有する光透過体、光透過体の第1の面の第1の屈折面、光透過体の第2の面の反射面、及び反射面内の開口を有するタイプの二重反射マンジャンミラーも含む。本マンジャンミラーは、光透過体の第2の面において開口内に第2の屈折面も有する。光透過体の第2の面の反射面は第1の表面形状を有する。光透過体の第2の面の第2の屈折面は、第1の表面形状と異なる、第2の表面形状を有し、光透過体の第1の面の第1の屈折面は、第1の表面形状及び第2の表面形状の内の少なくとも1つとは異なる、第3の表面形状を有する。
光透過体の第2の面の反射面は凹反射面であることが好ましい。光透過体の第2の面の第2の屈折面は凹屈折面であることが好ましい。そうすれば、反射面及び第2の屈折面は共通光軸を共有することができ、結像光が開口を通って光透過体を出る屈折角を小さくするために、共通光軸に沿って互いに逆の方向におかれた公称曲率中心を有することができる。
第1の屈折面は反射面に向けて光を透過させるために半透過性であることが好ましい。反射面は透過した光を反射して、第1の屈折面に向けて戻す集束経路に載せるために、凹面形状を有することが好ましく、第1の屈折面は戻ってきた光を反射して、第2の屈折面を通して焦点に向かう別の集束経路に載せるために、半反射性であることが好ましい。凹屈折面の公称曲率中心は凹屈折面からの光の後方反射を回避するためにマンジャンミラーの焦点とは別の点にあることが好ましい。
第1の屈折面は、別の集束経路に反射光を載せるために集束角を最適にするため、平面または凸面の(非凹面の)表面形状を有することが好ましい。反射コーティングで第1の屈折面の半反射性を高めることができる。コーティングは、第1の屈折面から反射された光の近傍においてより高い反射率を与え、第1の屈折面を透過した光の近傍においてより低い反射率を与えることが好ましい。
ニュートン型結像光学系としての本発明の一例は、第1の光学媒質と第2の光学媒質の間の半反射性界面、第2の光学媒質に隣接する凹面反射器、及び凹面反射器に形成された開口を有する。第2の光学媒質と第3の光学媒質の間で開口内に少なくとも半透過性の界面がおかれる。第4の光学媒質を組み入れた浸漬レンズが第3の光学媒質と第5の光学媒質の間におかれる。第5の光学媒質は浸漬レンズを像平面に光結合するための液体光学媒質である。
第1の光経路が半反射性界面及び第2の光学媒質を介して第1の光学媒質を凹面反射器に結合する。第2の光経路が第2の光学媒質を介して凹面反射器を半反射性界面に結合する。第3の光経路が、第2の光学媒質、少なくとも半透過性の界面、第3の光学媒質、浸漬レンズの第4の光学媒質、及び第5の光学媒質を介して、半反射性界面を像平面に結合する。
浸漬光学素子は、第3の光学媒質に隣接する第1の屈折面及び第5の光学媒質に隣接する第2の屈折面を有することができる。第1の屈折面は凸屈折面であることが好ましい。第3の光学媒質も液体光学媒質とすることができる。しかし、第2の光学媒質は固体光学媒質であることが好ましく、少なくとも半透過性の界面は固体光学媒質の屈折面と第3の光学媒質の間に形成されることが好ましい。
本発明のまた別の例はニュートン型様式を有する深紫外光用反射屈折結像光学系に具現化される。反射屈折結合型光学素子は、屈折体、屈折体の一方の面の反射面、屈折体の相対面の屈折面、及び光軸に沿う屈折面内の開口を有する。屈折面は、光は透過させて反射面に向けるために半透過性である。反射面は透過してきた光を反射して、屈折面に向かって戻る集束経路に載せるために、凹面形状を有する。屈折面も戻ってきた光を反射して、開口を通って光軸に沿っておかれた焦点に向かう別の集束経路に載せるために、半反射性である。屈折面は、反射面から屈折面に近づく光が、屈折面で反射された光が光軸に対してなす第2の傾角以下の第1の傾角を光軸に対してなすように、非凸面形状を有する。
少なくとも第1の傾角ほどの大きさであることにより、第2の傾角は、所望の開口数を達成すると同時に、屈折による集束力に対する残りの要件を最小限に抑えるための、反射屈折結合型光学素子の反射集束力の最適化を与える。例えば、屈折面は、第2の傾角が第1の傾角より大きくなるように凸面形状を有することができ、あるいは第1及び第2の傾角が実質的に等しくなるように公称平面形状を有することができる。屈折体が立方結晶材料でつくられる後者の場合、屈折面の実質的平面形状は結晶材料の複屈折効果を径方向に均衡をはかるために用いられる。
屈折面は、限界光線と近軸光線の間の強度分布及び偏光分布を含むその他の光学特性に影響を与えるために処理することもできる。例えば、光が屈折面に近づく入射角の変化の関数としての反射率の変化を補償するために屈折面の反射率が光軸からの径方向距離の関数として変化するように、半反射面化処理を屈折面に施すことができる。偏光管理の目的のため、反射面及び屈折面の表面形状は、反射面から屈折面に近づく光線が、一方の偏光方向を直交する他方の偏光方向より実質的に多く反射し、この結果径方向に対称な偏光パターンが生じる、入射角で表面に当たるような関係にすることができる。残りの対称偏光光はコントラストがより高い像を形成することができる。
実際に、本発明は特に、像コントラストに悪影響を与え得る偏光成分を減衰させるように構成することができる。そのように構成された浸漬結像光学系は、物平面を基準光軸に沿って像平面に光結合する結像光学素子集成体を含むことができる。液体光媒体が結像光学系の内の隣接する1つを像平面に結合する。物平面と像平面の間で基準光軸に沿う、物平面の物点と像平面の像点の間に延びる重なり光線束の交点に、ひとみがおかれる。ひとみ領域内におかれた角度鋭敏偏光子がひとみ内の重なり光線束を、例えば、像面における入射軸面に垂直な光線のTE偏光成分を実質的に減衰させることなく像面における入射軸面に平行なTM偏光成分を減衰させる径方向(例えば極直交)対称性により、偏光化する。角度鋭敏偏光子は同様の極直交対称性によりTM偏光成分に対してTE偏光成分を減衰させるために用いることもできる。
対称性は径方向であることが好ましく、偏光子の角度鋭敏性は基準軸(径方向対称性に対する基線)の周りの天頂角(一般にθ)及び(偏光化効果の強さに影響する)基準軸に対する傾きである方位角(一般にψ)の両者から明らかである。例えば、偏光化効果は基準軸に対する傾角ψにともなって変わることができ、傾角ψにともなう効果は基準軸の周りの天頂角θの全範囲にわたって同じであり得る。極直交対称性は径方向偏光パターンまたは、好ましくは、方位角偏光パターンに配向されたTE偏光成分を優遇することによって達成することができる。
結像光学系は、ひとみで交差する主光線が像平面(例えばレジスト)において基準軸に実質的に平行に延びる、特にマイクロリソグラフィ投影の目的のための、テレセントリック結像光学系であることが好ましい。偏光化光学素子はテレセントリック光学系のアパーチャ絞りに隣接して配置することができる。
光線のTM偏光成分は基準軸に対して角ψをなす光線の傾きに相補的な基準軸に対する傾きの変化にしたがう。光線のTE偏光成分は基準軸に対する光線の傾きにかかわらず基準軸に直交したままである。角度鋭敏偏光子は像平面における基準軸に対する光線の傾きの関数として光線のTM偏光成分を減衰させることが好ましい。そうすれば、基準軸に対してなす傾きが大きいTM偏光成分は基準軸に対する傾きが小さいTM偏光成分より大きく減衰される。したがって、基準軸に対する傾きが最も大きい限界光線に対して、偏光化効果は最も顕著になる。
偏光子は結像光学系内の半反射面とすることができる。例えば、半反射面は、光透過体、光透過体の一方の面の凹反射面、及び反射面内の開口も有するマンジャンミラーの表面とすることができる。半反射面は光透過体の他方の面に配することができる。重なり光線束は凹反射面で反射して半反射面に向かう集束経路に載り、半反射面で反射して開口を通る集束経路に載る。半反射面は平面とすることができ、よって平面の法線に対する光線の傾きが、基準軸に対する光線の傾きより小さくなるように、基準軸または凹面に対する光線の傾きに一致する。重なり光線束は限界光線を含むことが好ましく、限界光線は、TE偏光成分がTM偏光成分より実質的に強く反射される入射角で凹反射面から半反射面に近づく。限界光線の入射角は全反射(TIR)角より小さいことが好ましい。
物平面を基準光軸に沿って像平面に光結合する結像光学素子集成体の範囲内で、浸漬光学系に限定されない径方向偏光対称性をもつ結像光学系を構成することもできる。物平面の物点と像平面の像点の間に延びる重なり光線束の交点において物平面と像平面の間に基準光軸に沿ってひとみがおかれる。結像光学系は、ひとみの領域内におかれ、像平面における入射軸面に垂直な光線のTE偏光成分に対して像平面における入射軸面に平行な光線のTM偏光成分に差別的に作用する径方向対称性によってひとみ内の重なり光線束を偏光化する角度鋭敏偏光子として構成される、屈折界面を有する。屈折界面は、屈折界面における重なり光線束の入射角を屈折界面における全反射に必要な角度より小さい角度に制限するために他の結像光学系とともに作用する形状につくられる。
角度鋭敏偏光子の差別効果は偏光成分の内の一方を他方の偏光成分より強く反射することが好ましい。例えば、偏光子は偏光成分の内の一方を、入射点における屈折界面の法線に対する光線の傾きの関数として他方の偏光成分を排除するように、反射することができる。
角度鋭敏偏光子は、像平面における入射軸面に垂直な光線のTE偏光成分を実質的に減衰させずに像平面における入射軸面に平行な光線のTM偏光成分を減衰させる径方向対称性により、ひとみ内の重なり光線束を偏光化することが好ましい。光線のTM偏光成分は像平面における基準軸に対する光線の傾きに相補的な基準軸に対する傾き傾きの変化にしたがう。光線のTE偏光成分は、像平面における基準軸に対する光線の傾きにかかわらず、基準軸に直交したままである。したがって、偏光子は像平面における基準軸に対する光線の傾きの関数として光線のTM偏光成分を減衰させることが好ましい。
屈折界面は、非凹面屈折面の法線に対する結像光の傾きが基準軸に対する同じ結像光の傾きより大きくはならないような、非凹面屈折面として形成することができる。例えば、屈折界面は、非凹面屈折面の法線に対する結像光の傾きが基準軸に対する同じ結像光の傾きより小さくなるような、凸屈折面として形成することができる。
レジスト14(像)上にレチクル12(物)を結像するための構成の、マイクロリソグラフィ投影のための反射屈折結像光学系10が、図1に示される。結像システム10に実質的な集束力を与える、二重反射マンジャンミラー20の拡大図が図3に示される。ほとんど屈折コンポーネントからなる集成体18が、二重反射マンジャンミラー20のアパーチャを遮り、収差補正を補助するために構成される。集成体18全体にわたって、屈折角は不必要な収差の導入を避けるために最小限に抑えられる。浸漬態様ではたらく像面補正光学素子22が、レジスト14の焦面上にレチクル12の最終像をつくるために、マンジャンミラー20とともに作用する。
結像光学系10のひとみまたはその近傍におかれた二重反射マンジャンミラー20の集束力は、マンジャンミラー20を通る限界光線24a及び24bの図示される経路から明らかである。限界光線24a及び24bは光透過体28の前面に形成された半反射面26を通ってマンジャンミラー20に入る。限界光線24a及び24bは光透過体28を通って伝搬し、光透過体28の背面上の凹反射面30で反射される。反射後、限界光線24a及び24bは集束経路に沿って半反射面26に向かい光透過体28内を再度伝搬する。限界光線24a及び24bは初めに半反射面26を通過したときの入射角より大きい入射角で半反射面29に再び出会う。より大きい入射角において、限界光線24a及び24bのそれぞれは、半反射膜26から反射されて、凹反射面30に形成された開口32に向かう別の集束経路に沿って光透過体28内を三度伝搬する、実質的な成分を含む。
光透過体28は、石英ガラスまたはフッ化カルシウムのような、深UV光波長(すなわち200nmより短い波長)において光透過性の光学材料でつくられた、屈折体であることが好ましい。半反射面26は屈折体の前面に形成された屈折面であることが好ましい。透過、反射または偏光化の問題を調整するコーティングのような、コーティングまたはその他の処理を屈折面に施すことができる。限界光線24a及び24bの透過入射と反射入射の間で入射角を変えることに加えて、半反射面26を通過する光線(限界光線24a及び24bが例である)は半反射面26で反射される光線よりマンジャンミラー20の光軸34から大きく隔てられる。これは、半反射面26を光軸34からの径方向距離の関数として処理することによって半反射面26において通過する光線と反射する光線の間を差別する機会をさらにもたらす。反射コーティングまたは無反射コーティングを含めることができる処理は、光線の凹反射面30に向けての通過を主として担当する半反射面26の径方向に定められた領域における通過を強めるため及び光線の開口32に向けての反射を主として担当する半反射面26の径方向に定められた領域における反射を強めるために施すことができる。
凹屈折面36は開口32内で光透過体28に形成される。凹反射面30の公称曲率中心の位置とは逆方向で光軸34に沿っておかれる公称曲率中心を有する凹屈折面36は、凹屈折面36を通ってマンジャンミラー素子30を出る際に限界光線24a及び24bが曲げられる屈折角を(例えば10°より小さい角度に)制限する。同様の目的のため、同じく光透過体38(例えばレンズ体)を有する像面光学素子22はマンジャンミラーの凹屈折面36に隣接する凸屈折面40を有する。限界光線24a及び24bは、マンジャンミラー20の背面上の凹面36及び像面光学素子22の前面上の凸面40のいずれにも、制限された入射角で近づき、2つの面36及び40でおきる屈折の大きさを(例えば10°より小さい角度まで)小さくする。さらに、像面素子22の凸屈折面40はマンジャンミラー20の凹屈折面36と、屈折が表面36と表面40の間で収差を導入するに有効になる距離を制限するために、密に嵌まり合う。しかし、隣接する凹面36及び凸面40の曲率中心は補正集束機能を与えるために互いに若干離れている。
像面補正光学素子22の背面は、フォトレジスト14との浸漬界面を形成するため、脱ガス水のような、液体光学媒質44にさらされる浸漬面42を有する。浸漬面42はレジスト14に隣接する(像面光学素子22を平凸レンズにする)平面形状を有することが好ましい。限界光線24a及び24bは大きい入射角で浸漬面22に近づくが、光線24a及び24bが入る液体光学媒質44が空気よりも集束光学素子の光透過体38の屈折率にかなり近い屈折率を有するから、表面42における屈折は(例えば10°より小さい角度に)制限される。液体光学媒質44の屈折率が高くなるほど、限界光線24a及び24bをレジスト14上に集束させるためにサポートされる開口数も大きくなる。浸漬面42は像面補正光学素子22と液体光学媒質44の間の屈折をさらに制限するために凹面形状をとることもできるが、視野がある程度犠牲になる。
今では明らかなように、結像光学系10の集束力の大部分はマンジャンミラー20の反射によって与えられる。凹反射面30の曲率を大きくすれば集束力を高めることができる。しかし、凹反射面30の曲率を大きくすると、マンジャンミラー20が光の二重反射に有効である開口の大きさも制限され得る。通常、マンジャンミラーの屈折面は球面収差の効果を低減するために凹面である。しかし、マンジャンミラー20の半反射面26は、半反射面26から反射される限界光線24a及び24bが、限界光線24a及び24bが凹反射面30から反射される集束角αと少なくとも同じ集束角βだけ光軸34に対して傾けられるように、ほぼ平面を含む、非凸面であることが好ましい。
図示される実施形態に示されるように、半反射面26は光軸34に垂直に配向された平面である。したがって、光線24a及び24bが凹反射面30で初めに集束される角度αは半反射面26からの反射によって維持され、よって2つの反射角α及びβは等しい。半反射面26を凸面として形成することにより、角度βをより大きくすることさえも可能である。しかし、半反射面26の平面形状は、マンジャンミラーの凹反射面30及び凹屈折面36の両者との半反射面26のより容易な位置合わせを提供するような、製造上のかなりの利点を有する。
下の表は、開口数が1.2で縮小率が1/15の、192.6〜194nmの範囲にわたる193.3nm基準波長で動作する、図示された反射屈折結像光学系10を作成するための製造データをmm単位で列挙する。
Figure 2007523383
結像光学系を定めるためのその他の一次データを下の2つの表に示す。ここで、FFLは最初の表面から測定され、BFLは最後の表面から測定された。
Figure 2007523383
Figure 2007523383
図4に示される二重反射マンジャンミラー80とともに用いるように適合された、本発明にしたがう別の反射屈折結像光学系70が図2に示される。先の反射屈折結像システム10と同様、反射屈折結像システム70は高縮小比でレチクル12(物)の像をレジスト14(像)上に投影するためのニュートン型様式を有する。集束力のほとんどは二重反射マンジャンミラー80によって与えられる。屈折光学素子集成体78が二重屈折マンジャンミラー80のアパーチャを遮り、結像光学系70内で生じる様々な収差を補償する。二重反射マンジャンミラー80は像空間におけるテレセントリック結像光学系のひとみまたはその近傍におかれる。図4に示されるように、像面補正光学素子82が2つの液体光学媒質86と88の間に両面浸漬光学素子として配置される。液体光学媒質86は二重反射マンジャンミラー80を像面光学素子82に結合し、液体光学媒質88は像面光学素子82を結像光学系70の像平面においてレジスト14に結合する。
先の実施形態と同様、結像光学系70によって焦点に集められる光線の範囲を表す、限界光線84a及び84bが、半透過性及び半反射性のいずれでもあるように適合された屈折面96を通って、マンジャンミラー80の屈折体(光透過体)98に入る。限界光線84a及び84bはほぼ垂直入射で屈折表面96に近づき、(とりわけ)この理由のため、屈折面96を通過する傾向をもつ。屈折体98を横断した後、限界光線84a及び84bは屈折体98の背面に形成された凹反射面100で反射される。反射された限界光線84a及び84bは、マンジャンミラー80の光軸94に対して角度αをなして傾けられた、再度屈折体98を通る集束路に沿って導かれる。集束する限界光線84a及び84bのそれぞれは、屈折面96で反射されて、マンジャンミラー80の光軸94に対して角度βをなして傾けられた、三度屈折体98を通る別の集束路に載る、有意な成分を有する。屈折面96は、限界光線84a及び84bが凹反射面100で反射される角度α以上の角度βで限界光線84a及び84bが屈折面96から反射されるような形につくられる(例えば、非凹面の、好ましくはほぼ平面の、形状を有する)。
屈折面96の反射性は、少なくともある程度は、(a)屈折体98の屈折率と屈折体98に接する空気媒質の屈折率の間の差、及び(b)集束光線が屈折面96に近づく入射角によって生じる。さらに、屈折面96にかかる光の通過及び反射をさらに効率よく統御するためにコーティングを施すことができる。例えば、結像光学系70によって焦点に集められる範囲の光線をさらに効率よく通過及び反射させるため、屈折面96上の入射角または位置に基づいてさらに差別化するコーティングを屈折面96に施すことができる。例えば、コーティングの反射率を、一義的に結像光線を反射させたい屈折面96の環状領域95においては高め、一義的に結像光線を通過させたい屈折面96の環状領域97においては低めることができる。
集束する限界光線84a及び84bは凹反射面100の開口102内の凸屈折面106を通ってマンジャンミラー80を出る。凸屈折面106は、表面100及び106がともに屈折体98の背面上で連続形状(例えば球形)の異なる位置を占めるように、凹反射面100の曲率中心と少なくともほぼ一致する曲率中心を有する。集束する径方向光線は比較的大きな入射角で凸屈折面106に近づくが、屈折はマンジャンミラー80と像面補正光学素子82の間の空隙を液体光学媒体86で満たすことによって(例えば10°より小さい角度に)制限される。脱ガス水とすることができる液体光学媒体86は凸屈折面106にかかる屈折率差を小さくする。
像面補正光学素子82は、マンジャンミラー80の凸屈折面106に隣接する凸屈折面110及びレジスト14に隣接する平屈折面112のいずれをももつ、屈折体108を有する。したがって、像面補正光学素子82は正の集束力をもつ平凸光学素子と称することができる。像面補正光学素子82は、凸屈折面110が液体光学媒質96にさらされる浸漬面であり、平屈折面112が液体光学媒質88にさらされる浸漬面であるから、両面浸漬光学素子と称することもできる。
液体光学媒質86及び88の屈折率を高めることで像面光学素子82の屈折面110及び112にかかる屈折の大きさが(例えば10°より小さく)制限される。限界光線84a及び84bは屈折面110及び112のそれぞれにかなり大きい入射角で近づくが、屈折は屈折面110及び112に対向する光学媒質86及び88の屈折率の限定された差によって制限される。光学媒質86及び88のいずれについても脱ガス水が好ましいが、異なる光学液体を一方またはいずれにも用いることができよう。例えば、液体光学媒質86は、液体光学媒質88とは独立に、周辺シール114によってマンジャンミラー80と像面光学素子82の間に閉じ込めることができる。同じ結像光学系70の全体構成の範囲内で、異なるレジスト14に適合させるため及び微細な光学的調節を行うために、2つの液体光学媒質86及び88を変えることができる。
下の表は、開口数が1.2で縮小率が1/15の、193nm波長において先の実施形態と同様に動作する、図示された反射屈折結像光学系70を作成するための製造データをmm単位で列挙する。
Figure 2007523383
半反射面96は屈折体98の前面の凹面であることを示す負の曲率半径をもつとして挙げられているが、曲率半径の大きさは表面96が公称上はまだ平面と見なされるような大きさである。また、反射面100及び屈折面106は同じ負の曲率を共有しているが、通常の光学上の呼称にしたがって、反射面100は凹面であると見なされ、屈折面106は凸面であると見なされる。
結像光学系を定めるためのその他の一次データを下の2つの表に示す。ここで、FFLは最初の表面から測定され、BFLは最後の表面から測定された。
Figure 2007523383
Figure 2007523383
図示した結像光学系10及び70のいずれにおいても、素子間の空隙は一般に空気、好ましくは窒素であり、素子自体は一般にガラス、好ましくは石英ガラスまたはフッ化カルシウムである。好ましくは脱ガス水である、1つまたはそれより多くの液体媒質も、最終素子22または82の片側または両側に配される。一般に、設計は、設計全体にわたり界面における屈折の大きさを最小限に抑えながら実質的に1より大きい(例えば1.2の)開口数を含む大開口数を達成することが好ましい。
さらに、設計は、立方結晶材料(例えばフッ化カルシウム)内の複屈折の影響を最小限に抑えるため、屈折光学系18または78のほとんどにわたって光軸34または94に対する限界光線の傾きを最小限に抑えることが好ましい。傾きのほとんどは反射の結果として二重反射マンジャンミラー20または80内部で生じる。マンジャンミラー20または80の屈折体28または98は複屈折の影響を最小限に抑えるために石英ガラスとすることができる。しかし、フッ化カルシウムのような立方結晶材料がマンジャンミラー20または80の屈折体28または98に用いられる場合でも、多重反射は複屈折効果をより一様に分散させる傾向があるクロッキング効果を有する。実際上、クロッキング効果は、(結晶軸の内の1つの方位に対応する)光軸34または94に対してほぼ等しい角度で屈折体28または98を互いに反対方向に光線が通過するように平面形状に近づくように半反射面26または96を構成することによって、最適化することができる。
一般に、マンジャンミラー20または80の前面の屈折面26または96とマンジャンミラーの背面の開口32または102内の屈折面36または106の間で屈折体28または98を近軸光線が直接通過することを防止するため、中心掩蔽体が必要である。掩蔽体により、マンジャンミラー20または80がいかなる光も二重反射させて開口32または102を通過させることが保証される。
半反射面26または96は、反射されて開口32または102に向かう別の集束経路に載る光に角度依存径方向対称偏光化効果を有するように配置することもできる。全反射角より小さい(例えばブルースター角に近い)接近入射角において、2つの直交偏光方向の内の1つ(すなわち入射面におけるTM偏光方向)は反射されない。透過TM偏光光は失われる。ブルースター角は入射面に関して称され、入射光線は光軸34または94と交差する軸面の軌跡内で曲がるから、ブルースター角またはそれに近い角度で反射面26または96に入射する光線は径方向対称性によって偏光化され、方位角分布をもつ偏光光としてみえる。
通常そのような偏光化損失は、結像光学系の効率をより高めるために、可能であれば、回避される。しかし本発明は、浸漬光学系10及び70で見られるような大開口数における結像を強化するための、得られる偏光対称性の利用を提供する。大入射角で像平面に近づくランダムに偏光した光は、像形成に完全には関与せず、総合コントラストを低下させる効果を有する光軸に沿う偏光成分を含む。大入射角における像形成に最も望ましくないのは、レジスト14への入射面内の偏光方向(すなわちTM)である。TM偏光方向の電場ベクトルはレジスト14の法線に対して測られる入射角にしたがい、光軸34または94に対して相補的に傾けられる。TM偏光の干渉効果は同じ入射面内の電場ベクトルの傾角の差によって消滅する。例えば、同じ入射面内で相対的に90°傾けられた電場ベクトルは全く干渉しない(入射角差が大きくなると負のコントラストが可能である)。この問題は、全入射角範囲にわたって電場ベクトルが入射面に平行なままである、TE偏光方向には影響しない。
より鮮明な像をつくるために径方向偏光化対称性を生じさせるため、半反射面26または96における入射角に対してさらなる制御を利用することができる。半反射面26または96は結像光学系10のひとみに隣接しておかれるから、最大の入射角で半反射面26または96に近づく限界光線24a及び24bまたは84a及び84bはレジスト14にも最大の入射角で近づく。したがって、半反射面26または96の形状、処理(例えばコーティング)または半反射面26または96にかかる屈折率差を調節することによって、ブルースター角を選択された大入射角範囲に一致させて、選択された範囲内の望ましくないTM偏光を廃棄することができる。集束ビームが半反射面26または96に当たる全入射角範囲の中でのブルースター角(またはこれに類する角度)の正確な位置は、その範囲の大角端においてTM偏光方向を通過させるように設定することができる。
しかし大入射角は、所望の偏光化効果を維持するために、全反射角より小さい角度にとどめるべきである。半反射面26または96の凸面度を高めることによって所望の集束角ベータを維持しながら半反射面26または96において大入射角を全反射境界内に下げることができる。半反射面26または96から反射する集束ビームは、特に大傾角において、径方向に偏光化され、コントラストがより高い結像を可能にする極直交(すなわち方位角)偏光パターンが強められる。
レジスト14の表面においては同じブルースター角効果が所望のTE偏光より高い効率で望ましくないTM偏光を結合させる傾向を示す。しかし、TM偏光光の反射率は、レジスト14に表面にかかる屈折率差を小さくする液体光学媒質44または88によって小さくなる。例えば、屈折率が1.8のレジストに対して、57°傾けられたTM偏光の反射率は、屈折率がほぼ1.4の液体光学媒質44または88(例えば水)の存在によって24%から8%に下げることができる。
半反射面26または96の偏光化効果は、物点13及び15から発する光線束、例えば結像光学系10の光線束17及び19あるいは結像光学系70の光線束117及び119が互いに重なる、アパーチャ59または69に隣接するような、ひとみ領域内でおこることが好ましい。重なり領域内で、光線束17及び19または117及び119は、それぞれが像平面(レジスト14)におけるそれぞれ独自の像点に近づく際に径方向対称偏光パターン(例えば方位角偏光パターン)を維持するように、まとめて処理される。径方向対称偏光子を同様の領域内におけば、同様の偏光化効果をアパーチャひとみ59または69に共役にすることができる。
別の二重反射マンジャンミラー140をもつ二重テレセントリック反射屈折結像光学系130が図5及び6に示される。先の2つの実施形態と同様に、結像光学系130はレチクル(物)の像を高縮小比でレジスト14(像)上に投影する。しかし、結像光学系130は物空間及び像空間のいずれにおいてもテレセントリックである。
テレセントリック物空間内で、代表的な物点13及び15から発する光線束137及び139の主光線141及び143は共通光軸144に平行に延びる。アパーチャ絞り179に中心が合せられたひとみ空間内で、主光線141及び143は光軸144と交差し、光線束137及び139は互いに重なり合う。テレセントリック像空間内で、主光線141及び143が、マンジャンミラー140の前方のひとみによって遮断されなければ、光軸144に平行に戻ってレジスト14に対応する像点を形成するであろう。ひとみ空間内で重なる光線束137及び139は、ひとみ空間内でまとめて処理されて、レジスト14における対応する像点の形成に同じかまたは同様の効果を有することができる。
マンジャンミラー140が集束力のほとんどを提供し、マンジャンミラー140に付帯する像面補正光学素子142は、屈折を制限し、開口数を大きくするための、レジスト14との浸漬界面を有する。マンジャンミラー140の前方でアパーチャ159を遮る屈折光学素子集成体138は、物空間に対してテレセントリック形態をとり、マンジャンミラー140は像面補正光学素子142とともに像空間においてテレセントリック形態をとり、それぞれはアパーチャ159の近傍で共通のひとみを共有する。
図6に示されるように、重なり限界光線134a及び134bは光透過体148の凸屈折面146を通過することでマンジャンミラー140に入る。限界光線134a及び134bは光透過体148を通って伝搬し、凹反射面150で反射されて、光軸144に対して角αをなして傾けられた集束経路に載る。凸屈折面146は半反射面としても機能し、戻ってくる限界光線134a及び134bを反射して、凹反射面146に形成される開口152に向かう、光軸144に対して角βをなして傾けられた別の集束経路に載せる。
半反射面26及び96が平面またはほぼ平面である先の2つの実施形態において、角α及びβは互いに及び、入射点における法面に対して測られる、限界光線が表面に当たる入射角にほぼ等しい。しかし、マンジャンミラー140内では、入射点における法面147が凸屈折面146の凸面度により光軸144に対して傾けられているから、角βは角αよりかなり大きい。実入射角μは角αと角βの平均に等しい。
凸屈折面146の反射特性をある程度制御するのは入射角μであり、角βはマンジャンミラー140の集束力をある程度担当する。凸屈折面146の凸面度を制御することにより、凸屈折面146の反射特性をマンジャンミラー140の集束能力とは独立に調節することができる。この独立調節は、凸屈折面146の角度偏光感度の利用に特に重要である。例えば、限界光線134a及び134bの偏光特性が限界光線の凸屈折面との遭遇により差別的に影響されたままであるように、限界光線134a及び134bの入射角μを全反射角より小さく設定することができる。
例えば、凸反射面146がTE偏光成分をTM偏光成分より強く反射し、TM偏光成分は透過によって失われるように、入射角μをブルースター角の近くに設定することができる。入射角が大きくなるほど差別効果が顕著になることが好ましい。凸反射面146は光線束137及び139が実質的に重なるひとみ領域内にあるから、偏光化効果は光線束137及び139のそれぞれの内で同様である。すなわち、像平面(レジスト14)における大入射角光線にともなうTM偏光成分は、光軸144周りの凸屈折面144の径方向対称性に一致する光線束137及び139のそれぞれの内の径方向対称性によって同様に最小限に抑えられる。
凸屈折面146の差別偏光化効果は主に入射角μ及び凸屈折面146にかかる屈折率差の関数であるが、凸屈折面に偏光化コーティングまたはその他の処理を施すことによって偏光化効果をさらに制御することができる。凸屈折面146における比較的大きな入射角によって、表面は所望の角感度及び径方向対称偏光化効果の達成に特に適するようになる。しかし、重なり光線束137及び139に所望の径方向対称偏光化効果を達成するために、ひとみ領域内で異なる表面または異なる光学構成を用いることもできよう。
図3の実施形態と同様に、集束光線が開口152に近づく入射角を制限するために開口152内に凹屈折面156が形成される。像面補正光学素子152は、光透過体158の一方の面に凸屈折面160を有し、相対面に実質的な平面162を有する。マンジャンミラー140の凹屈折面156及び像面補正光学素子152の凸屈折面160は制限された屈折角によって像面補正効果を生じるために異なる形状を有する。平面162は、大開口数であるが制限された屈折角で像面補正光学素子152をレジスト14に結合するための液体光学媒質154と接する浸漬面である。
192.6〜194.0nmのスペクトル範囲内の193.3nm基準波長における反射屈折結像光学系130について、製造データをmm単位で下の表に列挙する。
Figure 2007523383
他の表と同様に、正の半径は曲率中心が右側にあることを示し、負の半径は曲率中心が左側にあることを示す。厚さは隣接面間の軸距離であり、像径はレイトレーシングによる値ではなく、近軸値である。
光学素子172及び178はA(1)及びA(2)で指定される非球面の背面を有する。これらの面は下式:
Figure 2007523383
にしたがい、下表に挙げられる一組の係数で定められる。
Figure 2007523383
結像光学系を定めるためのその他の一次データを下の2つの表に示す。ここで、FFLは最初の表面から測定され、BFLは最後の表面から測定された。
Figure 2007523383
Figure 2007523383
本発明の限定された数の実施形態について説明したが、本発明の開示及び説明により、大開口数結像、収差低減、深UV波長対応、及び像コントラスト強調のような目的のために、多くの様々な態様での本発明の適用が可能になる。
像平面に隣接する浸漬光学素子を含むマイクロリソグラフィ投影のための反射屈折結像光学系の図 像平面に隣接する両面浸漬光学素子を含む反射屈折結像光学系の同様の図 図1の結像光学系のマンジャンミラー及び片面浸漬像面補正光学素子の拡大図 図2の結像光学系のマンジャンミラー及び両面浸漬像面補正光学素子の拡大図 像平面に隣接する浸漬光学素子を含む反射屈折結像光学系の同様の図 図5の結像光学系のマンジャンミラー及び片面浸漬像面補正光学素子の拡大図
符号の説明
10 反射屈折結像光学系
12 レチクル
13,15 物点
14 フォトレジスト
17,19 光線束
18 屈折素子集成体
20 マンジャンミラー
22 像面補正光学素子
24a,24b 限界光線
26 半反射面
28 光透過体
30 凹反射面
34 光軸
42 浸漬面
44 液体光学媒質
52,53,54,55,56,57,58 屈折素子
59 アパーチャ

Claims (11)

  1. 反射屈折結像光学系において、
    二重反射マンジャンミラーであって、
    光透過体、
    前記光透過体の第1の面の半反射面、
    前記光透過体の第2の面の凹反射面、
    前記半反射面内の開口、及び
    前記凹反射面の前記開口内の前記光透過体の前記第2の面の凹屈折面、
    を有し、
    前記光透過体の前記第2の面の前記凹反射面及び前記凹屈折面が、結像光が前記開口を通って前記光透過体を出る屈折角を小さくするために、共通光軸に沿って互いに反対の方向におかれた公称曲率中心を有する、
    二重反射マンジャンミラー、及び
    像面における収差を補正するための、前記凹屈折面に隣接する凸屈折面を有する像面補正レンズ、
    を備えることを特徴とする結像光学系。
  2. 前記像面補正レンズの前記凸屈折面が、前記像面における補正に影響を与えるために、前記凹屈折面の前記公称曲率中心とは別の位置に公称曲率中心を有することを特徴とする請求項1に記載の結像光学系。
  3. 前記像面補正レンズが、レンズ体、前記レンズ体の第1の面におかれている前記凸屈折面及び前記レンズ体の第2の面におかれている別の屈折面を有し、前記別の屈折面が前記像面に隣接する液体光学媒質内に前記光を通すための形状につくられた浸漬界面であることを特徴とする請求項1に記載の結像光学系。
  4. 前記像面補正レンズの前記凸屈折面も前記像面補正レンズと前記二重反射マンジャンミラーの前記開口の間の液体光学媒質にさらされるための形状につくられた浸漬界面であることを特徴とする請求項3に記載の結像光学系。
  5. 前記光透過体の前記第1の面の前記半反射面が前記光透過体の前記第2の面の前記凹反射面及び前記凹屈折面の前記共通光軸に実質的に垂直に配向された非凹面形状を有することを特徴とする請求項1に記載の結像光学系。
  6. 反射屈折結像光学系において、
    屈折体を有する主集束光学素子であって、前記集束光学素子の屈折体の一方の面の反射面、前記集束光学素子の屈折体の相対面の屈折面、及び前記反射面内の開口を有する主集束光学素子、
    を備え、
    前記屈折面が前記反射面に光を通すために半透過性であり、前記反射面が前記通された光を反射して、前記屈折面に向けて戻る集束経路に載せるための、凹面形状を有し、前記屈折面が前記戻ってくる光を反射して、前記開口を通って前記結像光学系の像平面に向かう別の集積経路に載せるために、半反射性であり、
    屈折体を有する両面浸漬光学素子であって、前記両面浸漬光学素子と前記主集束光学素子の前記開口の間の液体光学媒質にさらすための形状につくられた前記浸漬光学素子の屈折体の一方の面の第1の浸漬面、及び前記両面浸漬光学素子と前記像平面の間の液体光学媒質にさらすための形状につくられた前記浸漬光学素子の屈折体の相対面の第2の浸漬面を有する両面浸漬光学素子、
    も備えることを特徴とする結像光学系。
  7. 前記第2の浸漬面がさらされる前記液体光学媒質の屈折率が、開口数を最適化するために、前記第1の浸漬面がさらされる前記液体光学媒質の屈折率より高いことを特徴とする請求項6に記載の結像光学系。
  8. ニュートン型様式を有する深紫外光のための反射屈折結像光学系において、
    屈折体を有する反射屈折結合型光学素子であって、前記屈折体の一方の面の反射面、前記屈折体の相対面の屈折面、及び光軸に沿う前記反射面内の開口を有する反射屈折結合型光学素子、
    を備え、
    前記屈折面が光を前記反射面に通すために半透過性であり、
    前記反射面が、前記通された光を反射して、前記反射面に向けて戻る集束経路に載せるための凹面形状を有し、
    前記屈折面も、前記戻ってくる光を反射して、前記開口を通って前記光軸に沿っておかれた焦点に向かう別の集束経路に載せるために半反射性であり、
    前記反射面から前記屈折面に近づく前記光が、前記屈折面で反射された前記光が前記光軸に対してなす第2の傾角以下の、第1の傾角を前記光軸に対してなすように、前記屈折面が非凹面形状を有する、
    ことを特徴とする結像光学系。
  9. 前記反射面及び前記屈折面が、前記反射面から前記屈折面に近づく前記光の限界光線が一方の偏光方向を直交偏光方向より実質的に強く反射する入射角で前記屈折面に当るような関係にあることを特徴とする請求項8に記載の結像光学系。
  10. 前記屈折面が、入射角が大きくなるほど強くなる角度鋭敏偏光化効果を与えるための形状につくられていることを特徴とする請求項9に記載の結像光学系。
  11. 前記屈折面が前記屈折面で反射される前記光に径方向対称偏光化効果を生じ、前記屈折面の前記径方向対称偏光化効果が、像平面における入射軸面に垂直な光線のTE偏光成分を実質的に減衰させずに、前記像平面における前記入射軸面に平行な前記光線のTM偏光成分を減衰させることを特徴とする請求項8に記載の結像光学系。
JP2006554131A 2004-02-18 2005-02-08 深紫外光による大開口数結像のための反射屈折結像光学系 Abandoned JP2007523383A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54539104P 2004-02-18 2004-02-18
PCT/US2005/004187 WO2005081030A1 (en) 2004-02-18 2005-02-08 Catadioptric imaging system for high numerical aperture imaging with deep ultraviolet light

Publications (1)

Publication Number Publication Date
JP2007523383A true JP2007523383A (ja) 2007-08-16

Family

ID=34886146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006554131A Abandoned JP2007523383A (ja) 2004-02-18 2005-02-08 深紫外光による大開口数結像のための反射屈折結像光学系

Country Status (7)

Country Link
US (1) US7564633B2 (ja)
EP (1) EP1721201A1 (ja)
JP (1) JP2007523383A (ja)
KR (1) KR20070012371A (ja)
CN (1) CN1922528A (ja)
TW (1) TWI274903B (ja)
WO (1) WO2005081030A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044143A (ja) * 2007-07-18 2009-02-26 Asml Holding Nv 光波拡散計測用反射屈折光学システム
JP2013042155A (ja) * 2009-08-13 2013-02-28 Carl Zeiss Smt Gmbh 反射屈折投影対物系
JP2014518401A (ja) * 2011-06-10 2014-07-28 キヤノン株式会社 反射屈折光学系

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW538256B (en) * 2000-01-14 2003-06-21 Zeiss Stiftung Microlithographic reduction projection catadioptric objective
SG2010050110A (en) 2002-11-12 2014-06-27 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
SG121819A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE10261775A1 (de) 2002-12-20 2004-07-01 Carl Zeiss Smt Ag Vorrichtung zur optischen Vermessung eines Abbildungssystems
US7884998B2 (en) * 2003-02-21 2011-02-08 Kla - Tencor Corporation Catadioptric microscope objective employing immersion liquid for use in broad band microscopy
KR101562447B1 (ko) 2003-02-26 2015-10-21 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
KR20050110033A (ko) 2003-03-25 2005-11-22 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
KR101176817B1 (ko) 2003-04-07 2012-08-24 가부시키가이샤 니콘 노광장치 및 디바이스 제조방법
KR20110104084A (ko) 2003-04-09 2011-09-21 가부시키가이샤 니콘 액침 리소그래피 유체 제어 시스템
EP3352015A1 (en) 2003-04-10 2018-07-25 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
EP1611482B1 (en) 2003-04-10 2015-06-03 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
KR101506431B1 (ko) 2003-04-10 2015-03-26 가부시키가이샤 니콘 액침 리소그래피 장치용 진공 배출을 포함하는 환경 시스템
KR20180054929A (ko) 2003-04-11 2018-05-24 가부시키가이샤 니콘 액침 리소그래피 머신에서 웨이퍼 교환동안 투영 렌즈 아래의 갭에서 액침 액체를 유지하는 장치 및 방법
WO2004092830A2 (en) 2003-04-11 2004-10-28 Nikon Corporation Liquid jet and recovery system for immersion lithography
EP2161620A1 (en) 2003-04-11 2010-03-10 Nikon Corporation Cleanup method for optics in immersion lithography
WO2004095135A2 (en) 2003-04-17 2004-11-04 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
TWI295414B (en) 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI616932B (zh) 2003-05-23 2018-03-01 Nikon Corp Exposure device and component manufacturing method
TW201415536A (zh) 2003-05-23 2014-04-16 尼康股份有限公司 曝光方法及曝光裝置以及元件製造方法
KR20110110320A (ko) 2003-05-28 2011-10-06 가부시키가이샤 니콘 노광 방법, 노광 장치, 및 디바이스 제조 방법
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2261741A3 (en) 2003-06-11 2011-05-25 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101242815B1 (ko) 2003-06-13 2013-03-12 가부시키가이샤 니콘 노광 방법, 기판 스테이지, 노광 장치, 및 디바이스 제조방법
KR101419663B1 (ko) 2003-06-19 2014-07-15 가부시키가이샤 니콘 노광 장치 및 디바이스 제조방법
EP3179309A1 (en) 2003-07-08 2017-06-14 Nikon Corporation Wafer table for immersion lithography
WO2005006415A1 (ja) 2003-07-09 2005-01-20 Nikon Corporation 露光装置及びデバイス製造方法
ATE489724T1 (de) 2003-07-09 2010-12-15 Nikon Corp Belichtungsvorrichtung und verfahren zur bauelementherstellung
WO2005006418A1 (ja) 2003-07-09 2005-01-20 Nikon Corporation 露光装置及びデバイス製造方法
EP1650787A4 (en) 2003-07-25 2007-09-19 Nikon Corp INVESTIGATION METHOD AND INVESTIGATION DEVICE FOR AN OPTICAL PROJECTION SYSTEM AND METHOD OF MANUFACTURING AN OPTICAL PROJECTION SYSTEM
EP1503244A1 (en) 2003-07-28 2005-02-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
KR20190002749A (ko) 2003-07-28 2019-01-08 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법, 그리고 노광 장치의 제어 방법
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG145780A1 (en) 2003-08-29 2008-09-29 Nikon Corp Exposure apparatus and device fabricating method
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2005024517A2 (en) 2003-09-03 2005-03-17 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
JP4444920B2 (ja) 2003-09-19 2010-03-31 株式会社ニコン 露光装置及びデバイス製造方法
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
EP1670043B1 (en) 2003-09-29 2013-02-27 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP1672682A4 (en) 2003-10-08 2008-10-15 Zao Nikon Co Ltd SUBSTRATE TRANSPORT DEVICE AND METHOD, EXPOSURE DEVICE AND METHOD AND COMPONENT MANUFACTURING METHOD
KR101361892B1 (ko) 2003-10-08 2014-02-12 가부시키가이샤 자오 니콘 기판 반송 장치 및 기판 반송 방법, 노광 장치 및 노광 방법, 디바이스 제조 방법
TWI598934B (zh) 2003-10-09 2017-09-11 Nippon Kogaku Kk Exposure apparatus, exposure method, and device manufacturing method
US7411653B2 (en) 2003-10-28 2008-08-12 Asml Netherlands B.V. Lithographic apparatus
US7528929B2 (en) 2003-11-14 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005055296A1 (ja) 2003-12-03 2005-06-16 Nikon Corporation 露光装置、露光方法及びデバイス製造方法、並びに光学部品
US7466489B2 (en) * 2003-12-15 2008-12-16 Susanne Beder Projection objective having a high aperture and a planar end surface
KR101941351B1 (ko) 2003-12-15 2019-01-22 가부시키가이샤 니콘 스테이지 장치, 노광 장치, 및 노광 방법
WO2005059645A2 (en) * 2003-12-19 2005-06-30 Carl Zeiss Smt Ag Microlithography projection objective with crystal elements
CN1910494B (zh) 2004-01-14 2011-08-10 卡尔蔡司Smt有限责任公司 反射折射投影物镜
US7463422B2 (en) * 2004-01-14 2008-12-09 Carl Zeiss Smt Ag Projection exposure apparatus
US20080151365A1 (en) 2004-01-14 2008-06-26 Carl Zeiss Smt Ag Catadioptric projection objective
JP4843503B2 (ja) 2004-01-20 2011-12-21 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光装置および投影レンズのための測定装置
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
KR101227211B1 (ko) 2004-02-03 2013-01-28 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
WO2005093791A1 (ja) 2004-03-25 2005-10-06 Nikon Corporation 露光装置及びデバイス製造方法
WO2005098504A1 (en) 2004-04-08 2005-10-20 Carl Zeiss Smt Ag Imaging system with mirror group
US8054448B2 (en) 2004-05-04 2011-11-08 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
DE602005003665T2 (de) 2004-05-17 2008-11-20 Carl Zeiss Smt Ag Katadioptrisches projektionsobjektiv mit zwischenbildern
US7616383B2 (en) 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7796274B2 (en) 2004-06-04 2010-09-14 Carl Zeiss Smt Ag System for measuring the image quality of an optical imaging system
KR101747662B1 (ko) 2004-06-09 2017-06-15 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8384874B2 (en) 2004-07-12 2013-02-26 Nikon Corporation Immersion exposure apparatus and device manufacturing method to detect if liquid on base member
JP4983257B2 (ja) 2004-08-18 2012-07-25 株式会社ニコン 露光装置、デバイス製造方法、計測部材、及び計測方法
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7397533B2 (en) 2004-12-07 2008-07-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101427056B1 (ko) 2005-01-31 2014-08-05 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
US7282701B2 (en) 2005-02-28 2007-10-16 Asml Netherlands B.V. Sensor for use in a lithographic apparatus
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102006021797A1 (de) 2006-05-09 2007-11-15 Carl Zeiss Smt Ag Optische Abbildungseinrichtung mit thermischer Dämpfung
US8237911B2 (en) 2007-03-15 2012-08-07 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
US8665536B2 (en) * 2007-06-19 2014-03-04 Kla-Tencor Corporation External beam delivery system for laser dark-field illumination in a catadioptric optical system
EP3252801A1 (en) * 2007-08-10 2017-12-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5040700B2 (ja) * 2008-02-12 2012-10-03 ソニー株式会社 撮像素子および撮像装置
US9176393B2 (en) 2008-05-28 2015-11-03 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
WO2010062532A2 (en) 2008-10-27 2010-06-03 The Regents Of The University Of California Light concentration apparatus, systems and methods
CN101435914B (zh) * 2008-12-09 2010-06-02 宁波理工监测科技股份有限公司 一种日盲紫外照相机镜头
US8355214B2 (en) * 2009-07-30 2013-01-15 The Regents Of The University Of California Light collection apparatus, system and method
EP2381310B1 (en) 2010-04-22 2015-05-06 ASML Netherlands BV Fluid handling structure and lithographic apparatus
JP5836686B2 (ja) * 2011-07-28 2015-12-24 キヤノン株式会社 反射屈折光学系及びそれを有する撮像装置
RU2573245C2 (ru) * 2013-04-24 2016-01-20 Общество С Ограниченной Ответственностью "Лаборатория Эландис" Способ бесконтактного управления с помощью поляризационного маркера и комплекс его реализующий
US9465144B2 (en) 2013-12-30 2016-10-11 Raytheon Company Hybrid grin diffractive optics
JP6430004B2 (ja) 2015-09-03 2018-11-28 スリーエム イノベイティブ プロパティズ カンパニー 光学システム
WO2020002005A1 (en) * 2018-06-26 2020-01-02 Jt International Sa Optical vaporisation system for an electronic cigarette

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2683393A (en) * 1949-05-20 1954-07-13 Drew Robert Lionel Reflecting objective for microscopes
US3711184A (en) * 1971-04-12 1973-01-16 Kollsman Instr Corp Large catadioptric objective
US4523816A (en) * 1983-08-12 1985-06-18 Vivitar Corporation Catadioptric lens
SU1506415A1 (ru) * 1987-12-04 1989-09-07 Ленинградский Институт Точной Механики И Оптики Зеркально-линзовый объектив
US5452126A (en) * 1993-11-10 1995-09-19 The United States Of America As Represented By The Secretary Of The Army Lightweight binocular telescope
US5930055A (en) * 1994-09-29 1999-07-27 Eisenberg; Yeshayahu S. Lens apparatus
CA2177424C (en) * 1995-06-06 2001-02-13 Bruce A. Cameron Solid catadioptric lens
US5650877A (en) 1995-08-14 1997-07-22 Tropel Corporation Imaging system for deep ultraviolet lithography
KR100317139B1 (ko) * 1999-05-27 2001-12-22 윤덕용 초고분해능 포물선형 렌즈
US7075721B2 (en) * 2002-03-06 2006-07-11 Corning Incorporated Compensator for radially symmetric birefringence
US6919988B2 (en) * 2002-05-06 2005-07-19 Raytheon Company Optical system for simultaneous imaging of LWIR and millimeter wave radiation
US7307783B2 (en) * 2003-02-21 2007-12-11 Kla-Tencor Technologies Corporation Catadioptric imaging system employing immersion liquid for use in broad band microscopy
US20060082905A1 (en) * 2004-10-14 2006-04-20 Shafer David R Catadioptric projection objective with an in-line, single-axis configuration

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044143A (ja) * 2007-07-18 2009-02-26 Asml Holding Nv 光波拡散計測用反射屈折光学システム
US8107173B2 (en) 2007-07-18 2012-01-31 Asml Holding N.V. Catadioptric optical system for scatterometry
JP2013042155A (ja) * 2009-08-13 2013-02-28 Carl Zeiss Smt Gmbh 反射屈折投影対物系
US8873137B2 (en) 2009-08-13 2014-10-28 Carl Zeiss Smt Gmbh Catadioptric projection objective
US9279969B2 (en) 2009-08-13 2016-03-08 Carl Zeiss Smt Gmbh Catadioptric projection objective
US9726870B2 (en) 2009-08-13 2017-08-08 Carl Zeiss Smt Gmbh Catadioptric projection objective
US10042146B2 (en) 2009-08-13 2018-08-07 Carl Zeiss Smt Gmbh Catadioptric projection objective
JP2014518401A (ja) * 2011-06-10 2014-07-28 キヤノン株式会社 反射屈折光学系
US9341831B2 (en) 2011-06-10 2016-05-17 Canon Kabushiki Kaisha Optical system with catadioptric optical subsystem

Also Published As

Publication number Publication date
WO2005081030A1 (en) 2005-09-01
US20050179994A1 (en) 2005-08-18
TWI274903B (en) 2007-03-01
KR20070012371A (ko) 2007-01-25
EP1721201A1 (en) 2006-11-15
TW200535457A (en) 2005-11-01
US7564633B2 (en) 2009-07-21
CN1922528A (zh) 2007-02-28

Similar Documents

Publication Publication Date Title
JP2007523383A (ja) 深紫外光による大開口数結像のための反射屈折結像光学系
US6885502B2 (en) Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement
US6400493B1 (en) Folded optical system adapted for head-mounted displays
US5220454A (en) Cata-dioptric reduction projection optical system
US6424471B1 (en) Catadioptric objective with physical beam splitter
JPH0588087A (ja) 反射屈折縮小投影光学系
WO2007067701A1 (en) Catadioptric telescopes
JP2000235151A (ja) 光学系における光学的波面収差を補正する方法、それに基づき製造された光学系及び望遠鏡
US20060082905A1 (en) Catadioptric projection objective with an in-line, single-axis configuration
JP4212721B2 (ja) 広角反射光学系
JP2002244046A (ja) カタディオプトリック縮小レンズ
US7333271B2 (en) Dichroic mangin mirror
JP2008298866A (ja) 撮像光学系
US4456343A (en) High speed catadioptric objective lens system
CN116400485A (zh) 光学***及包括该光学***的光学设备
WO2022227977A1 (zh) 一种光学器件及光学***
JP2005531021A (ja) 反射屈折縮小対物レンズ
JP2004295042A5 (ja)
USRE36740E (en) Cata-dioptric reduction projection optical system
CN220232096U (zh) 光学***及包括该光学***的光学设备
US20040150877A1 (en) Optical arrangement having a lens of single-axis, double-refracting material
JPH10284365A (ja) 反射屈折光学系
JPH0666997A (ja) 照明光学系
JPS5997112A (ja) 反射型望遠レンズ
JP3027953B2 (ja) 半導体素子の製造方法、投影露光装置及び投影露光方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20100514