JP2007521977A - Method of processing the workpiece surface - Google Patents

Method of processing the workpiece surface Download PDF

Info

Publication number
JP2007521977A
JP2007521977A JP2006552534A JP2006552534A JP2007521977A JP 2007521977 A JP2007521977 A JP 2007521977A JP 2006552534 A JP2006552534 A JP 2006552534A JP 2006552534 A JP2006552534 A JP 2006552534A JP 2007521977 A JP2007521977 A JP 2007521977A
Authority
JP
Japan
Prior art keywords
workpiece
capillary
lubricant
pressure
workpiece surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006552534A
Other languages
Japanese (ja)
Inventor
アクセル・ホイベルガー
パトリック・イツクエルド
ヴォルフガンク・ペルコーファー
ハラルド・プフェッフィンガー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of JP2007521977A publication Critical patent/JP2007521977A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/26Perforating by non-mechanical means, e.g. by fluid jet

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

本発明は、被加工物(3)の使用中であるときに潤滑剤を被加工物(3)に供給するために、高圧水ジェット(8)によって、毛管(9)が被加工物表面(4)に形成される、被加工物表面(4)を加工する方法に関し、前記毛管は潤滑剤リザーバの働きをする。  The present invention provides that the capillary (9) is brought into contact with the workpiece surface (9) by means of a high pressure water jet (8) to supply lubricant to the workpiece (3) when the workpiece (3) is in use. With respect to the method of processing the workpiece surface (4) formed in 4), the capillary acts as a lubricant reservoir.

Description

本発明は、被加工物が使用中であるときに潤滑剤が供給されることになる被加工物表面を加工する方法に関する。   The present invention relates to a method of processing a workpiece surface that is supplied with a lubricant when the workpiece is in use.

一般的な種類の方法は特許文献1で開示されている。この場合、好ましくは互いに対して交差するように延びる凹所は、レーザジェットによって被加工物表面に形成される。しかしながら、特にシリンダ摺動面の場合にこの方法を適用すると、特に被加工物表面の凹所の全てが互いに連通しているので、潤滑剤がピストンの運動中に凹所に残らないばかりか、ピストンリングによって前記凹所から押し出されるという欠点がある。この結果は、潤滑剤が通常、潤滑を必要とする場所になく、前記適用中、高オイル消費量、ゆえにより悪いエミッションにつながる因子となる。周知方法の他の欠点には、その比較的高い費用や不可欠な補修がある。   A general type of method is disclosed in US Pat. In this case, the recesses which preferably extend so as to intersect each other are formed in the workpiece surface by means of a laser jet. However, applying this method, especially in the case of a cylinder sliding surface, not only does the lubricant remain in the recess during the movement of the piston, since all the recesses on the workpiece surface are in communication with each other, There is a drawback that the piston ring is pushed out of the recess. This result is a factor that leads to high oil consumption and thus worse emissions during the application, where the lubricant is usually not in a place that requires lubrication. Other shortcomings of the known method include its relatively high cost and essential repairs.

独国特許発明第43 16 012 C2号明細書German Patent Invention No. 43 16 012 C2 Specification

本発明の目的は、ゆえに、被加工物が使用中であるとき潤滑剤が供給されることになる被加工物表面を加工する方法を提供することであり、その方法によって被加工物表面の潤滑剤の最適な供給が確保される。   It is therefore an object of the present invention to provide a method of processing a workpiece surface that is supplied with a lubricant when the workpiece is in use, by which the workpiece surface is lubricated. The optimal supply of agent is ensured.

この目的は、請求項1に記載の特徴によって本発明より達成される。   This object is achieved according to the invention by the features of claim 1.

高圧水ジェットによって被加工物表面に本発明により形成された毛管によって、個々の凹所が前記被加工物表面に得られ、それらの凹所内に、潤滑剤が、被加工物が関与する相対運動中に被加工物から分配されることなく、浸透できる。このことは、毛管が互いに連通していない凹所であるからであり、一定量の潤滑剤が常にそれらの中に留まる。ゆえに、トライボロジー応力下での摩擦力や磨耗を最小限に抑える効果を有する微小圧力室を形成する。   By means of the capillaries formed according to the invention on the workpiece surface by means of a high-pressure water jet, individual recesses are obtained on the workpiece surface, in which the lubricant is in relative motion involving the workpiece. It can penetrate without being dispensed from the workpiece. This is because the capillaries are recesses that are not in communication with each other, and a certain amount of lubricant always remains in them. Therefore, a micro pressure chamber having an effect of minimizing frictional force and wear under tribological stress is formed.

高圧水ジェットで作製される毛管は、例えば、スチール構造の塑性変形の形で又は剥離片状黒鉛の形で生じても良い。   Capillaries made with a high-pressure water jet may occur, for example, in the form of plastic deformation of a steel structure or in the form of exfoliated graphite.

表面を粗くする高圧水ジェットの使用は、基本的に独国特許出願公開第101 53 305 A1号明細書で開示されている。これは、費用対効果が大きく、信頼性の高い方法である。   The use of a high-pressure water jet to roughen the surface is basically disclosed in DE 101 53 305 A1. This is a cost-effective and reliable method.

本発明による方法によって、毛管は、潤滑剤の供給が必要な加工される被加工物表面のこれらの領域にそれぞれ有利に提供されるが、その表面の残りの部分、特に上死点と下死点との間の部分は、可能な限り小さな表面粗さで仕上げることができる。そこで優勢な高ピストン速度のため、流体潤滑は低潤滑剤量でも達成される。   By means of the method according to the invention, the capillaries are advantageously provided respectively in these areas of the workpiece surface to be processed which require a supply of lubricant, but the rest of the surface, in particular top dead center and bottom dead center. The part between the points can be finished with as little surface roughness as possible. Thus, due to the prevailing high piston speed, fluid lubrication is achieved even with low lubricant amounts.

有利な発展形態において、内燃機関のシリンダライナが機械加工される被加工物として使用される場合、内燃機関の摩擦や磨耗、さらにオイル消費量及びエミッションがシリンダ摺動面のトライボロジー特性の本発明による最適化によって低減できる。   In an advantageous development, when the cylinder liner of an internal combustion engine is used as a workpiece to be machined, the friction and wear of the internal combustion engine, as well as oil consumption and emissions, according to the invention of the tribological properties of the cylinder sliding surface. Can be reduced by optimization.

この状況でシリンダ摺動面に対し移動するピストンの上死点の直ぐ下の領域に毛管が形成される場合、もっとも大きな負荷、特にもっとも大きな熱負荷を受ける領域への潤滑剤の特に十分な供給が、内燃機関の動作中に得られるが、シリンダ摺動面の中央領域は加工される必要がなく、ゆえにより低い高さの潤滑皮膜、内燃機関のオイル消費量を著しく低減できる因子を有する。   In this situation, if a capillary tube is formed in the area immediately below the top dead center of the piston that moves relative to the cylinder sliding surface, a particularly sufficient supply of lubricant to the area subjected to the largest load, especially the largest heat load. However, it is obtained during operation of the internal combustion engine, but the central region of the cylinder sliding surface does not need to be processed, and therefore has a lower lubricating film and a factor that can significantly reduce the oil consumption of the internal combustion engine.

さらに、毛管がシリンダ摺動面に対して移動するピストンの下死点の直ぐ上の領域に形成されても良い。上死点に関して記載されたことは基本的にこの手法に当てはまり、その違いは、下死点の領域が顕著な熱負荷を受けないということである。   Further, the capillary may be formed in a region immediately above the bottom dead center of the piston that moves relative to the cylinder sliding surface. What has been described with respect to top dead center applies basically to this approach, the difference being that the bottom dead center area is not subject to significant heat loads.

本発明の他の有利な構成や発展形態は、残りの従属請求項から得られる。本発明の例示的実施形態は基本的に以下で説明される。   Other advantageous configurations and developments of the invention result from the remaining dependent claims. Exemplary embodiments of the present invention are basically described below.

図1は、加工されるべき被加工物3を形成するシリンダライナ3aが周知方法で配置される、クランクケース2を有する内燃機関1を非常に概略的な図で示す。被加工物3について、その被加工物表面4、つまりこの場合のシリンダ摺動面4aは、正確には、シリンダライナ3aの使用中のシリンダライナ3aへの、潤滑剤、例えばオイルの供給を改良するために、加工されるようになっている。   FIG. 1 shows a very schematic view of an internal combustion engine 1 having a crankcase 2 in which a cylinder liner 3a forming a workpiece 3 to be processed is arranged in a known manner. For the workpiece 3, the workpiece surface 4, i.e. the cylinder sliding surface 4a in this case, more precisely improves the supply of lubricant, e.g. oil, to the cylinder liner 3a during use of the cylinder liner 3a. To be processed.

このために、装置5は被加工物3に、つまりこの場合ではシリンダライナ3aのボア内に移動され、この装置5は複数の高圧ノズル7を備えているガン6を有する。1〜8本の高圧ノズル7はガン6の周囲に配置されることが好ましく、高圧ジェット8は前記高圧ノズル7を経由して被加工物3の方向に噴射される。特に、異なる種類の被加工物3の場合、さらに多数の高圧ノズル7の使用も考えられ、必要なら複数の面にも配置できる。   For this purpose, the device 5 is moved to the workpiece 3, in this case into the bore of the cylinder liner 3 a, which has a gun 6 with a plurality of high-pressure nozzles 7. The 1 to 8 high-pressure nozzles 7 are preferably arranged around the gun 6, and the high-pressure jet 8 is jetted in the direction of the workpiece 3 through the high-pressure nozzle 7. In particular, in the case of different types of workpieces 3, the use of a larger number of high-pressure nozzles 7 is also conceivable and can be arranged on a plurality of surfaces if necessary.

被加工物3の材料により、高圧水ジェット8が1800〜3200バールの圧力で噴射されるので、それらは被加工物3から材料の一部を除去でき、個々の毛管9の形の微小構造が被加工物表面4に形成され、それらの毛管9の形状や寸法については後に詳細に触れる。   Depending on the material of the workpiece 3, the high-pressure water jets 8 are jetted at a pressure of 1800 to 3200 bar, so that they can remove part of the material from the workpiece 3 and the microstructure in the form of individual capillaries 9 The shape and dimensions of the capillaries 9 formed on the workpiece surface 4 will be described in detail later.

示されるように、高圧水ジェット8は、水平面に、つまり縦軸6に対し90°で連続的に分配されることが好ましい。加工中、ガン6は10〜1000rev/分で、特に100〜500rev/分で回転される。さらに、次のパラメータは被加工物3にアルミニウム又はアルミニウム合金を使用するとき実用的であることを証明した:10〜20l/分の水流量において2800〜3200バールの高圧水ジェット8の圧力あるいは25〜45l/分の水流量において1800〜2200バールの高圧水ジェット8の圧力、5〜12mm/分のガン6の送り、及び10〜15mmの被加工物表面4からの高圧ジェット7の距離。   As shown, the high-pressure water jet 8 is preferably distributed continuously in a horizontal plane, ie 90 ° with respect to the longitudinal axis 6. During processing, the gun 6 is rotated at 10 to 1000 rev / min, in particular at 100 to 500 rev / min. Furthermore, the following parameters proved to be practical when using aluminum or an aluminum alloy for the work piece 3: the pressure of a high pressure water jet 8 of 2800-3200 bar at a water flow of 10-20 l / min or 25 The pressure of the high pressure water jet 8 at 1800-2200 bar at a water flow rate of ~ 45 l / min, the feed of the gun 6 at 5-12 mm / min, and the distance of the high pressure jet 7 from the workpiece surface 4 of 10-15 mm.

ねずみ鋳鉄、ねずみ鋳鉄合金又は鋼が被加工物3用の母材として使用される場合、10〜20l/分の水流量において2800〜3200バールの高圧水ジェット8の圧力又は25〜45l/分の水流量において1800〜2200バールの高圧水ジェット8の圧力が同じように使用されても良い。しかしながら、アルミニウムと対照的に、ガン6の送りは、単に0.5〜5mm/分であるべきであり、被加工物表面4からの高圧ノズル7の距離は同じように10〜15mmであっても良い。   When gray cast iron, gray cast iron alloy or steel is used as the base material for workpiece 3, the pressure of high pressure water jet 8 of 2800-3200 bar or 25-45 l / min at a water flow rate of 10-20 l / min. The pressure of the high pressure water jet 8 at 1800-2200 bar at the water flow rate may be used as well. However, in contrast to aluminum, the gun 6 feed should only be 0.5-5 mm / min and the distance of the high pressure nozzle 7 from the workpiece surface 4 is likewise 10-15 mm. Also good.

図2及び3は、高圧水ジェット8によって加工されたシリンダライナ3a、及び形成された毛管9の形の例を示す。確率分布に従って配置される毛管9は、1:2〜1:10の範囲の、幅b対深さtの比を有することが好ましい。被加工物3に使用された材料がアルミニウム合金である場合、それらの直径又はそれらの幅bは10〜20μmであり、それらの深さtは平均で約60μmである。対照的に、被加工物3に使用された材料がねずみ鋳鉄又は鋼である場合、毛管9の直径又は幅bは40〜60μmの範囲にあり、深さtは平均で約120μmである。毛管9の形及び大きさは、上述のパラメータによってある程度まで影響を受ける。例えば、毛管9は、チャネル、孔又はトラフ状凹所の形で被加工物表面4に形成される。図3を参照すると、毛管9はそれぞれそれらの形に関係なく互いに接続されていないことが分かる。   2 and 3 show examples of the shape of the cylinder liner 3a processed by the high-pressure water jet 8 and the capillary 9 formed. The capillaries 9 arranged according to the probability distribution preferably have a ratio of width b to depth t in the range of 1: 2 to 1:10. When the material used for the workpiece 3 is an aluminum alloy, their diameter or their width b is 10-20 μm and their depth t is about 60 μm on average. In contrast, when the material used for the workpiece 3 is gray cast iron or steel, the diameter or width b of the capillary 9 is in the range of 40-60 μm and the depth t is on average about 120 μm. The shape and size of the capillary 9 is influenced to some extent by the parameters described above. For example, the capillaries 9 are formed on the workpiece surface 4 in the form of channels, holes or trough-like recesses. Referring to FIG. 3, it can be seen that the capillaries 9 are not connected to each other regardless of their shape.

特にシリンダ摺動面4aを加工するとき、シリンダ摺動面4aに対して移動するピストン10の上死点TDCの直ぐ下の領域に、及びピストン10の下死点BDCの直ぐ上の領域に毛管9を形成するのが適している。毛管9が形成される領域は、例えば、それぞれ上死点TDCと下死点BDCとの間の距離の10〜15%であっても良い。このようにして、潤滑剤、好ましくは、オイルは、シリンダライナ3aが使用中であるとき特にピストン10の反転領域に残るので、特に高い機械的及び熱負荷の両者を受けるこれらの領域において、内燃機関1の低オイル消費量、ゆえに、低エミッションにも貢献する改良された潤滑剤の供給が提供される。毛管9がそれぞれそれらの形に関係なく互いに接続されていない事実のため、ピストン10は、毛管9間で潤滑剤を分配できないので、毛管9は理想的に潤滑剤ポケット又は潤滑剤リザーバとして働き、したがって、トライボロジー上の対偶、この場合ピストン10、と共に圧力クッションを形成できる。このことは、問題の領域での潤滑剤の均一な分布を確実にする。   Particularly when the cylinder sliding surface 4a is processed, the capillaries are formed in the region immediately below the top dead center TDC of the piston 10 that moves relative to the cylinder sliding surface 4a and in the region immediately above the bottom dead center BDC of the piston 10. 9 is suitable. The region where the capillary 9 is formed may be, for example, 10 to 15% of the distance between the top dead center TDC and the bottom dead center BDC. In this way, the lubricant, preferably oil, remains in the reversal area of the piston 10, especially when the cylinder liner 3a is in use, so in these areas that are subject to both high mechanical and thermal loads, An improved lubricant supply is also provided which contributes to the low oil consumption of the engine 1 and hence also low emissions. Due to the fact that the capillaries 9 are not connected to each other regardless of their shape, the piston 10 ideally acts as a lubricant pocket or lubricant reservoir because the piston 10 cannot dispense lubricant between the capillaries 9; Thus, a pressure cushion can be formed with the tribological pair, in this case the piston 10. This ensures a uniform distribution of lubricant in the area of interest.

潤滑剤分布、つまり潤滑皮膜の厚さの分布が、シリンダ摺動面4aの下死点BDCと上死点TDCとの間のピストン10の経路に対してプロットされたものが、図4による線図でも示される。ここでは、破線は従来技術による分布を示し、最大量の潤滑剤が中央領域に集まるが、2つの死点BDC及びTDCにはほんの少しの潤滑剤しかないことが分かる。しかしながら、本発明による方法によって、実線で示されるように、十分な潤滑剤供給が、特に2つの死点TDC及びBDCの領域に達成される。   The distribution of the lubricant, that is, the distribution of the thickness of the lubricant film, is plotted against the path of the piston 10 between the bottom dead center BDC and the top dead center TDC of the cylinder sliding surface 4a. Also shown in the figure. Here, the dashed line shows the distribution according to the prior art and it can be seen that the maximum amount of lubricant collects in the central region, but the two dead centers BDC and TDC have very little lubricant. However, with the method according to the invention, a sufficient lubricant supply is achieved, in particular in the region of two dead centers TDC and BDC, as indicated by the solid line.

シリンダ摺動面4aの場合に適用される代わりに、記載の方法が、例えば、カムシャフト又はクランクシャフト軸受の場合に、又は被加工物3が使用中であるとき潤滑剤が供給されることになる他の被加工物表面4の場合に適用されても良い。   Instead of being applied in the case of the cylinder sliding surface 4a, the described method is for example to supply a lubricant in the case of a camshaft or crankshaft bearing or when the workpiece 3 is in use. It may be applied to the case of other workpiece surface 4.

本発明による方法を実行する装置を示す。1 shows an apparatus for performing the method according to the invention. 本発明による方法によって加工されたシリンダ摺動面を示す。2 shows a cylinder sliding surface machined by the method according to the invention. 図2からの矢印IIIの方向に見たシリンダ摺動面の図を示す。The figure of the cylinder sliding surface seen in the direction of arrow III from FIG. 2 is shown. シリンダ摺動面に対して移動するピストンの上死点と下死点との間の潤滑皮膜の厚さの分布を示す。The distribution of the thickness of the lubricating film between the top dead center and the bottom dead center of the piston moving relative to the cylinder sliding surface is shown.

Claims (10)

被加工物が使用状態であるとき潤滑剤が供給されることになる被加工物表面を加工する方法であって、
毛管(9)が高圧水ジェット(8)によって被加工物表面(4)に形成され、これらの毛管(9)は、前記被加工物(3)が使用状態にあるとき潤滑剤リザーバとして働くことを特徴とする方法。
A method of processing a workpiece surface to which a lubricant will be supplied when the workpiece is in use,
Capillaries (9) are formed on the workpiece surface (4) by a high pressure water jet (8), and these capillaries (9) serve as lubricant reservoirs when the workpiece (3) is in use. A method characterized by.
内燃機関(1)のシリンダライナ(3a)のシリンダ摺動面(4a)が機械加工されるべき前記被加工物表面(4)として使用されることを特徴とする請求項1に記載の方法。   2. Method according to claim 1, characterized in that a cylinder sliding surface (4a) of a cylinder liner (3a) of an internal combustion engine (1) is used as the workpiece surface (4) to be machined. 前記毛管(9)が前記シリンダ摺動面(4a)に対して移動するピストン(10)の上死点(TDC)の直ぐ下の領域に形成されることを特徴とする請求項2に記載の方法。   The said capillary (9) is formed in the area | region right under the top dead center (TDC) of the piston (10) which moves with respect to the said cylinder sliding surface (4a), The Claim 2 characterized by the above-mentioned. Method. 前記毛管(9)が前記シリンダ摺動面(4a)に対して移動するピストン(10)の下死点(BDC)の直ぐ上の領域に形成されることを特徴とする請求項2あるいは3に記載の方法。   The said capillary (9) is formed in the area | region right above the bottom dead center (BDC) of the piston (10) which moves with respect to the said cylinder sliding surface (4a), The Claim 2 or 3 characterized by the above-mentioned. The method described. 前記毛管(9)が、1:2〜1:10の、幅(b)対深さ(t)の比を有することを特徴とする請求項1〜4のいずれか一項に記載の方法。   The method according to any one of claims 1 to 4, characterized in that the capillary (9) has a ratio of width (b) to depth (t) of 1: 2 to 1:10. 前記毛管(9)が10〜60μmの幅(b)を有することを特徴とする請求項1〜5のいずれか一項に記載の方法。   6. A method according to any one of the preceding claims, characterized in that the capillary (9) has a width (b) of 10-60 [mu] m. 前記毛管(9)が60〜120μmの深さ(t)を有することを特徴とする請求項1〜6のいずれか一項に記載の方法。   7. A method according to any one of the preceding claims, characterized in that the capillary (9) has a depth (t) of 60-120 [mu] m. 前記高圧水ジェット(8)が複数の高圧ノズル(7)を有するガン(6)によって噴射され、1〜8本の高圧ノズル(7)が前記ガン(6)の周囲に配置されることを特徴とする請求項1〜7のいずれか一項に記載の方法。   The high-pressure water jet (8) is sprayed by a gun (6) having a plurality of high-pressure nozzles (7), and 1 to 8 high-pressure nozzles (7) are arranged around the gun (6). The method according to any one of claims 1 to 7. 前記ガン(6)が10〜1000rev/分、特に100〜500rev/分で回転されることを特徴とする請求項8に記載の方法。   9. Method according to claim 8, characterized in that the gun (6) is rotated at 10 to 1000 rev / min, in particular at 100 to 500 rev / min. 前記高圧水ジェット(8)が1800〜3200バールの圧力で噴射されることを特徴とする請求項1〜9のいずれか一項に記載の方法。   10. A method according to any one of the preceding claims, characterized in that the high-pressure water jet (8) is jetted at a pressure of 1800-3200 bar.
JP2006552534A 2004-02-12 2005-02-09 Method of processing the workpiece surface Withdrawn JP2007521977A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410007036 DE102004007036A1 (en) 2004-02-12 2004-02-12 Process for machining workpiece surfaces
PCT/EP2005/001285 WO2005077620A1 (en) 2004-02-12 2005-02-09 Method for processing workpiece surfaces

Publications (1)

Publication Number Publication Date
JP2007521977A true JP2007521977A (en) 2007-08-09

Family

ID=34813316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006552534A Withdrawn JP2007521977A (en) 2004-02-12 2005-02-09 Method of processing the workpiece surface

Country Status (3)

Country Link
JP (1) JP2007521977A (en)
DE (1) DE102004007036A1 (en)
WO (1) WO2005077620A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069444A (en) * 2009-09-25 2011-04-07 Tottori Univ Method for machining sliding member and sliding linear motion guide with sliding member manufactured by the method
JP2011235409A (en) * 2010-05-11 2011-11-24 Tomotetsu Land:Kk Machining method for sliding surface and cast iron material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013206729B4 (en) * 2013-04-16 2017-01-05 Federal-Mogul Burscheid Gmbh Piston ring and method for its production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3427770C1 (en) * 1984-07-27 1986-03-13 Audi AG, 8070 Ingolstadt Method for producing the running surfaces of cylinders made of gray cast iron of a reciprocating piston machine
US5380564A (en) * 1992-04-28 1995-01-10 Progressive Blasting Systems, Inc. High pressure water jet method of blasting low density metallic surfaces
DE4316012C2 (en) * 1993-05-13 1998-09-24 Gehring Gmbh & Co Maschf Process for finishing workpiece surfaces
DE19506568A1 (en) * 1995-02-24 1996-08-29 Bayerische Motoren Werke Ag Surface treating engine Al alloy cylinder running surfaces
DE19809367B4 (en) * 1998-03-05 2007-04-05 Nagel Maschinen- Und Werkzeugfabrik Gmbh Method and device for fine machining of piston raceways
WO2001032352A1 (en) * 1999-11-04 2001-05-10 Toyota Jidosha Kabushiki Kaisha Surface pit forming method and member with surface pit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069444A (en) * 2009-09-25 2011-04-07 Tottori Univ Method for machining sliding member and sliding linear motion guide with sliding member manufactured by the method
JP2011235409A (en) * 2010-05-11 2011-11-24 Tomotetsu Land:Kk Machining method for sliding surface and cast iron material

Also Published As

Publication number Publication date
WO2005077620A1 (en) 2005-08-25
DE102004007036A1 (en) 2005-09-01

Similar Documents

Publication Publication Date Title
US7104240B1 (en) Internal combustion engine with localized lubrication control of combustion cylinders
US10359000B2 (en) Functionally optimized design of a cylinder liner
JP5386213B2 (en) Combination of cylinder and piston
JP2014001732A (en) Coating with nonconstant thickness for cylinder liner
CN100538090C (en) The connecting rod that has oil ejector
US20100300397A1 (en) Connecting rod lubrication recess
JP2018109416A (en) Lubrication oil injector used in large low-speed two-stroke engine and having hardened valve seat and manufacturing method
JP2018003673A (en) Cylinder block
Kang et al. Effect of local laser surface texturing on tribological performance of injection cam
JP2007521977A (en) Method of processing the workpiece surface
JP4984214B2 (en) Iron-based sprayed thin film for cylinder block and cylinder block
JP2010230002A (en) Cylinder with means for distributing lubricant
EP1717487B1 (en) Rolling sliding part
JP2006519304A (en) Generation method of sliding surface
CN206035657U (en) Internal -combustion engine of cylinder crankcase with casting
KR20180017059A (en) Valve guide
Flores Graded freeform machining of cylinder bores using form honing
JP2007285312A (en) Sliding member
KR101241205B1 (en) Cylinder wall oil delivery system for reciprocating engine and reciprocating engine embodying the same
JP4379277B2 (en) Thermal spraying pretreatment shape and thermal spraying method
JP7045383B2 (en) piston ring
US20040129214A1 (en) Method and apparatus for producing coated bores
CN113250872A (en) Automatic centering plunger structure
JP2004340330A (en) Sliding member and its manufacturing method
US10226848B2 (en) Method for the tribomechanical conditioning of a thin-walled cylinder/liner, and cylinder liner

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513