JP2007335754A - Multilayer capacitor - Google Patents

Multilayer capacitor Download PDF

Info

Publication number
JP2007335754A
JP2007335754A JP2006167840A JP2006167840A JP2007335754A JP 2007335754 A JP2007335754 A JP 2007335754A JP 2006167840 A JP2006167840 A JP 2006167840A JP 2006167840 A JP2006167840 A JP 2006167840A JP 2007335754 A JP2007335754 A JP 2007335754A
Authority
JP
Japan
Prior art keywords
electrode
multilayer capacitor
conductor layer
external
inner conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006167840A
Other languages
Japanese (ja)
Inventor
Satoshi Kazama
智 風間
Masayuki Shimizu
政行 清水
Kenji Saito
賢二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2006167840A priority Critical patent/JP2007335754A/en
Publication of JP2007335754A publication Critical patent/JP2007335754A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer capacitor which can perform ESR setting simply and exactly. <P>SOLUTION: The resistivity of coupling electrodes 104, 105 of different polarity in a multilayer capacitor 100 is higher than the resistivity of external electrodes 102, 103 of different polarity, and the equivalent series resistance of the multilayer capacitor 100 itself is defined based on the resistivity of the coupling electrodes 104, 105 of the different polarity. Therefore, by properly varying the resistivity of the coupling electrodes 104,105, it is possible to set exactly the ESR suitable for suppressing resonance generated by packaging positions and surrounding environments, etc. to the multilayer capacitor 100. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、デカップリングの用途に適した積層コンデンサに関する。   The present invention relates to a multilayer capacitor suitable for decoupling applications.

特開2005−79237号公報(特許文献1)には、誘電体層と異極性の内部導体層とを所定の順序で積層して一体化した構造を有する直方体形状の積層体と、積層体の下面に設けられた異極性の外部電極と、積層体の上面に設けられた異極性の連結電極とを備えた積層コンデンサが開示されている。   In JP-A-2005-79237 (Patent Document 1), a rectangular parallelepiped laminated body having a structure in which a dielectric layer and a different polarity internal conductor layer are laminated and integrated in a predetermined order, A multilayer capacitor including a different polarity external electrode provided on the lower surface and a different polarity connection electrode provided on the upper surface of the multilayer body is disclosed.

一方の極性の内部導体層は、一方の極性の外部電極に接続された外部電極用引出し部と一方の極性の連結電極に接続された連結電極用引出し部とを有する2種類の内部導体層と、一方の極性の連結電極に接続された連結電極用引出し部を有する1種類の内部導体層とを含み、また、他方の極性の内部導体層は、他方の極性の外部電極に接続された外部電極用引出し部と他方の極性の連結電極に接続された連結電極用引出し部とを有する2種類の内部導体層と、他方の極性の連結電極に接続された連結電極用引出し部を有する1種類の内部導体層とを含んでいる。   One polarity inner conductor layer has two types of inner conductor layers each having an outer electrode lead portion connected to one polarity outer electrode and a connecting electrode lead portion connected to one polarity connecting electrode; One internal conductor layer having a connection electrode lead portion connected to one polarity connection electrode, and the other polarity internal conductor layer is connected to the other polarity external electrode. Two types of internal conductor layers having an electrode lead portion and a connecting electrode lead portion connected to the other polarity connecting electrode, and one type having a connecting electrode lead portion connected to the other polarity connecting electrode And an inner conductor layer.

この積層コンデンサは、各内部導体層の層数選定によってデカップリングに必要な静電容量を得ることができると共に、極性が異なる内部導体層相互に電流の流れ方向が逆になる部分を確保することによる磁界相殺作用によって等価直列インダクタンス(以下ESLと言う)を低下させることができる。つまり、この積層コンデンサによればデカップリングに必要とされる基本条件、即ち、高静電容量と低ESLを満足できる。
特開2005−79237号公報
In this multilayer capacitor, the capacitance required for decoupling can be obtained by selecting the number of layers of each internal conductor layer, and a portion in which the direction of current flow is reversed between the internal conductor layers having different polarities is ensured. The equivalent series inductance (hereinafter referred to as ESL) can be reduced by the magnetic field canceling action of. That is, this multilayer capacitor can satisfy the basic conditions required for decoupling, that is, high capacitance and low ESL.
JP 2005-79237 A

デカップリングに関して言えば積層コンデンサの等価直列抵抗(以下ESRと言う)は低い方が好ましいが、実用上ではESRが低すぎると積層コンデンサの実装位置や周囲環境等によって不要な共振、例えば電源電圧のリップル発生及びリップルに基づくノイズ発生や電磁障害(EMI)によるノイズ発生を引き起こしてしまう。   In terms of decoupling, it is preferable that the equivalent series resistance (hereinafter referred to as ESR) of the multilayer capacitor is low. However, if the ESR is too low in practical use, an unnecessary resonance, such as a power supply voltage, depending on the mounting position of the multilayer capacitor and the surrounding environment. Ripple generation, noise generation based on ripples, and noise generation due to electromagnetic interference (EMI) are caused.

積層コンデンサにおけるESRは固有のものであるが、該ESRを実装位置や周囲環境等に適したものに設定できれば、先に述べた不要な共振を抑制して所期のデカップリングをより効果的に行うことができる。   ESR in multilayer capacitors is unique, but if the ESR can be set to be suitable for the mounting position and the surrounding environment, the above-described decoupling is suppressed more effectively by suppressing unnecessary resonance described above. It can be carried out.

積層コンデンサのESRは、内部導体層及び引出し部の形状及び寸法の変更や、外部電極の形状及び寸法の変更や、連結電極の形状及び寸法の変更等によって調整できるが、このような基本構造の変更によるESR調整は簡単なことではなくコスト面から考えても実用的とは言えないし、変更バリエーションが限られてしまうため要求に適合したESRを持つ積層コンデンサを提供することも難しい。   The ESR of the multilayer capacitor can be adjusted by changing the shape and dimensions of the inner conductor layer and the lead part, changing the shape and dimensions of the external electrode, changing the shape and dimensions of the connecting electrode, etc. ESR adjustment by modification is not simple and is not practical from the viewpoint of cost, and it is difficult to provide a multilayer capacitor having ESR that meets the requirements because variation variations are limited.

本発明は前記事情に鑑みて創作されたもので、その目的とするところは、ESR設定を簡単且つ的確に行える積層コンデンサを提供することにある。   The present invention was created in view of the above circumstances, and an object of the present invention is to provide a multilayer capacitor in which ESR setting can be easily and accurately performed.

前記目的を達成するため、本発明は、誘電体層と異極性の内部導体層とを所定の順序で積層して一体化した構造を有する直方体形状の積層体と、積層体の表面に設けられた異極性の外部電極と、積層体の表面に設けられた異極性の連結電極とを備え、一方の極性の内部導体層は、一方の極性の外部電極に接続された外部電極用引出し部と一方の極性の連結電極に接続された連結電極用引出し部とを有する第1の内部導体層と、一方の極性の連結電極に接続された連結電極用引出し部を有する第2の内部導体層とを含み、また、他方の極性の内部導体層は、他方の極性の外部電極に接続された外部電極用引出し部と他方の極性の連結電極に接続された連結電極用引出し部とを有する第3の内部導体層と、他方の極性の連結電極に接続された連結電極用引出し部を有する第4の内部導体層とを含む積層コンデンサであって、前記異極性の連結電極の抵抗率は前記異極性の外部電極の抵抗率よりも高く、積層コンデンサそれ自体の等価直列抵抗は該異極性の連結電極の抵抗率に基づいて定められている、ことをその特徴とする。   In order to achieve the above object, the present invention is provided in a rectangular parallelepiped laminate having a structure in which a dielectric layer and a different polarity internal conductor layer are laminated and integrated in a predetermined order, and provided on the surface of the laminate. The external electrode having the different polarity and the linking electrode having the different polarity provided on the surface of the laminate, the internal conductor layer having one polarity is connected to the external electrode lead portion connected to the external electrode having the one polarity. A first inner conductor layer having a connecting electrode lead portion connected to one polarity connecting electrode, and a second inner conductor layer having a connecting electrode lead portion connected to one polarity connecting electrode; And the other polar inner conductor layer has a third outer electrode lead portion connected to the other polar outer electrode and a third connecting electrode lead portion connected to the other polar connecting electrode. Connected to the inner conductor layer and the other polarity connecting electrode A multilayer capacitor including a fourth inner conductor layer having a lead portion for a pole, wherein the resistivity of the heteropolar connecting electrode is higher than the resistivity of the heteropolar external electrode, and is equivalent to the multilayer capacitor itself The series resistance is characterized by being determined based on the resistivity of the connecting electrode of different polarity.

この積層コンデンサによれば、連結電極の抵抗率を外部電極の抵抗率よりも高くして積層コンデンサそれ自体のESRを連結電極の抵抗率に基づいて定めているので、連結電極の抵抗率を適宜可変するだけで、実装位置や周囲環境等によって生じる共振を抑制するのに適したESRを積層コンデンサに的確に設定できる。また、連結電極の抵抗率によって積層コンデンサのESRを調整して設定できるので、積層コンデンサの基本構造を変更することなくそのESRを調整して設定できる。   According to this multilayer capacitor, since the resistivity of the connection electrode is made higher than the resistivity of the external electrode and the ESR of the multilayer capacitor itself is determined based on the resistivity of the connection electrode, the resistivity of the connection electrode is appropriately set. By simply changing the ESR, it is possible to accurately set an ESR suitable for suppressing resonance caused by the mounting position, the surrounding environment, and the like in the multilayer capacitor. In addition, since the ESR of the multilayer capacitor can be adjusted and set according to the resistivity of the connection electrode, the ESR can be adjusted and set without changing the basic structure of the multilayer capacitor.

本発明によれば、ESR設定を簡単且つ的確に行える積層コンデンサを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the multilayer capacitor which can perform ESR setting simply and accurately can be provided.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

[第1実施形態]
図1〜図6は本発明の第1実施形態を示す。図1は積層コンデンサを上面側から見た斜視図、図2は図1に示した積層コンデンサの上面図、図3は図1に示した積層体の内部構造を示す図、図4は図2のa1−a1線断面図、図5は図2のa2−a2線断面図、図6は図2のa3−a3線断面図である。
[First Embodiment]
1 to 6 show a first embodiment of the present invention. 1 is a perspective view of the multilayer capacitor as viewed from the upper surface side, FIG. 2 is a top view of the multilayer capacitor shown in FIG. 1, FIG. 3 is a diagram showing the internal structure of the multilayer body shown in FIG. 1, and FIG. FIG. 5 is a sectional view taken along line a2-a2 in FIG. 2, and FIG. 6 is a sectional view taken along line a3-a3 in FIG.

この積層コンデンサ100は、所定の長さL,幅W及び高さHを有する直方体形状の積層体101と、積層体101の幅方向の両端部それぞれに設けられた異極性の外部電極102,103と、積層体101の長さ方向の両端面それぞれに設けられた異極性の連結電極104,105とを備える。   The multilayer capacitor 100 includes a rectangular parallelepiped multilayer body 101 having a predetermined length L, width W, and height H, and different polarity external electrodes 102 and 103 provided at both ends in the width direction of the multilayer body 101. And connection electrodes 104 and 105 of different polarities provided on both end faces in the length direction of the laminate 101.

各外部電極102,103は積層体101の上面及び下面に回り込む部分(回り込み部102a,103a)それぞれ有するコ字形状を成しており、積層体101の幅方向の両端部にはそれぞれ4個の外部電極102,103,102,103が長さ方向に間隔をおいて交互に並ぶように配されている。一端部側の4個の外部電極102,103,102,103と他端部側の4個の外部電極102,103,102,103は積層体101の幅方向で異なる極性が向き合う位置関係となっている。また、各連結電極104,105は積層体101の長さ方向の端面全体を覆うように設けられており、各連結電極104,105は積層体101の上面及び下面に回り込む部分を有していない。因みに、各外部電極102,103と各連結電極104,105はニッケルや銅等の卑金属から成る。   Each of the external electrodes 102 and 103 has a U-shape having portions (around portions 102 a and 103 a) that wrap around the upper and lower surfaces of the multilayer body 101, and four end portions in the width direction of the multilayer body 101, respectively. The external electrodes 102, 103, 102, 103 are arranged so as to be alternately arranged at intervals in the length direction. The four external electrodes 102, 103, 102, 103 on one end side and the four external electrodes 102, 103, 102, 103 on the other end side have a positional relationship in which different polarities face each other in the width direction of the laminate 101. ing. Further, each of the connection electrodes 104 and 105 is provided so as to cover the entire end surface in the length direction of the multilayer body 101, and each of the connection electrodes 104 and 105 does not have a portion that goes around the upper surface and the lower surface of the multilayer body 101. . Incidentally, the external electrodes 102 and 103 and the connecting electrodes 104 and 105 are made of a base metal such as nickel or copper.

積層体101は、誘電体層106と6種類の内部導体層107〜112とを図3に示す順序で積層体101の幅方向に積層して一体化した構造を有している。図2での図示を省略したが、積層体101の幅方向両側にはマージンを確保するために誘電体層106のみが所定層数配されている。因みに、誘電体層106はチタン酸バリウム等の誘電体から成り、内部導体層107〜112はニッケルや銅等の卑金属から成る。   The multilayer body 101 has a structure in which a dielectric layer 106 and six types of internal conductor layers 107 to 112 are laminated and integrated in the width direction of the multilayer body 101 in the order shown in FIG. Although not shown in FIG. 2, only a predetermined number of dielectric layers 106 are arranged on both sides of the stacked body 101 in the width direction in order to ensure a margin. Incidentally, the dielectric layer 106 is made of a dielectric such as barium titanate, and the inner conductor layers 107 to 112 are made of a base metal such as nickel or copper.

6種類の内部導体層107〜112のうち、内部導体層107,108及び109は一方の極性の内部導体層を構成し、内部導体層110,111及び112は他方の極性の内部導体層を構成する。図2からも分かるように、積層体101の幅方向の一側には所定層数(図面では2層)の内部導体層107と所定層数(図面では2層)の内部導体層110が交互に配され、幅方向の他側には所定層数(図面では2層)の内部導体層108と所定層数(図面では2層)の内部導体層111が交互に配され、これらの内側に所定層数(図面では6層)の内部導体層109と所定層数(図面では6層)の内部導体層112が交互に配されている。   Among the six types of inner conductor layers 107 to 112, the inner conductor layers 107, 108 and 109 constitute one polarity inner conductor layer, and the inner conductor layers 110, 111 and 112 constitute the other polarity inner conductor layer. To do. As can be seen from FIG. 2, a predetermined number (two in the drawing) of internal conductor layers 107 and a predetermined number of layers (two in the drawing) of internal conductor layers 110 alternate on one side in the width direction of the multilayer body 101. A predetermined number (two in the drawing) of internal conductor layers 108 and a predetermined number of layers (two in the drawing) of internal conductor layers 111 are alternately arranged on the other side in the width direction, A predetermined number (six in the drawing) of internal conductor layers 109 and a predetermined number of layers (six in the drawing) of internal conductor layers 112 are alternately arranged.

内部導体層107は矩形状を成し、高さ方向の上端縁と下端縁のそれぞれに長さ方向に間隔をおいて2個の外部電極用引出し部107aを上下対称に有し、長さ方向の一端縁中央に1個の連結電極用引出し部107bを有する。この内部導体層107は請求範囲で言うところの「第1の内部導体層」に相当する。   The inner conductor layer 107 has a rectangular shape, and has two external electrode lead portions 107a symmetrically in the vertical direction at intervals in the length direction at the upper end edge and the lower end edge in the height direction. One connecting electrode lead-out portion 107b is provided at the center of one end edge of each. The inner conductor layer 107 corresponds to the “first inner conductor layer” in the claims.

内部導体層108は矩形状を成し、高さ方向の上端縁と下端縁のそれぞれに長さ方向に間隔をおいて2個の外部電極用引出し部108aを上下対称に有し、長さ方向の一端縁中央(引出し部107bと同じ側の端縁中央)に1個の連結電極用引出し部108bを有する。外部電極用引出し部108aの位置は内部導体層107の外部電極用引出し部107aの位置と積層体101の長さ方向でずれており幅方向で交錯していない。また、連結電極用引出し部108bの位置は内部導体層107の連結電極用引出し部107bの位置と積層体101の高さ方向で一致している。この内部導体層108は請求範囲で言うところの「第1の内部導体層」に相当する。   The inner conductor layer 108 has a rectangular shape, and has two external electrode lead portions 108a symmetrically in the vertical direction at intervals between the upper and lower edges in the height direction. One connection electrode lead part 108b is provided at the center of one end edge (center of the edge on the same side as the lead part 107b). The position of the external electrode lead-out portion 108a is shifted from the position of the external electrode lead-out portion 107a of the internal conductor layer 107 in the length direction of the multilayer body 101 and is not crossed in the width direction. Further, the position of the connection electrode lead-out portion 108 b matches the position of the connection electrode lead-out portion 107 b of the internal conductor layer 107 in the height direction of the multilayer body 101. The inner conductor layer 108 corresponds to the “first inner conductor layer” in the claims.

内部導体層109は矩形状を成し、長さ方向の一端縁中央(引出し部107bと同じ側の端縁中央)に1個の連結電極用引出し部109aを有する。連結電極用引出し部109aの位置は内部導体層107の連結電極用引出し部107bの位置と積層体101の高さ方向で一致している。この内部導体層109は請求範囲で言うところの「第2の内部導体層」に相当する。   The internal conductor layer 109 has a rectangular shape, and has one connecting electrode lead portion 109a at the center of one end edge in the length direction (center of the end edge on the same side as the lead portion 107b). The position of the connecting electrode lead portion 109 a coincides with the position of the connecting electrode lead portion 107 b of the internal conductor layer 107 in the height direction of the multilayer body 101. The inner conductor layer 109 corresponds to the “second inner conductor layer” in the claims.

内部導体層110は矩形状を成し、高さ方向の上端縁と下端縁のそれぞれに長さ方向に間隔をおいて2個の外部電極用引出し部110aを上下対称に有し、長さ方向の他端縁中央(引出し部107b,108b,109aとは反対側の端縁中央)に1個の連結電極用引出し部110bを有する。外部電極用引出し部110aの位置は内部導体層108の外部電極用引出し部108aの位置と積層体101の長さ方向で一致している。この内部導体層110は請求範囲で言うところの「第3の内部導体層」に相当する。   The inner conductor layer 110 has a rectangular shape, and has two outer electrode lead portions 110a symmetrically in the vertical direction at intervals between the upper end edge and the lower end edge in the height direction. One connecting electrode lead portion 110b is provided at the center of the other end edge (center of the edge opposite to the lead portions 107b, 108b, 109a). The position of the external electrode lead portion 110 a coincides with the position of the external electrode lead portion 108 a of the internal conductor layer 108 in the length direction of the multilayer body 101. The inner conductor layer 110 corresponds to the “third inner conductor layer” in the claims.

内部導体層111は矩形状を成し、高さ方向の上端縁と下端縁のそれぞれに長さ方向に間隔をおいて2個の外部電極用引出し部111aを上下対称に有し、長さ方向の他端縁中央(引出し部110bと同じ側の端縁中央)に1個の連結電極用引出し部111bを有する。外部電極用引出し部111aの位置は内部導体層107の外部電極用引出し部107aの位置と積層体101の長さ方向で一致している。また、連結電極用引出し部111bの位置は内部導体層110の連結電極用引出し部110bの位置と積層体101の高さ方向で一致している。この内部導体層111は請求範囲で言うところの「第3の内部導体層」に相当する。   The inner conductor layer 111 has a rectangular shape, and has two external electrode lead portions 111a vertically symmetrically spaced apart in the length direction at each of an upper end edge and a lower end edge in the height direction. One connecting electrode lead part 111b is provided at the center of the other end edge (the edge center on the same side as the lead part 110b). The position of the external electrode lead portion 111 a coincides with the position of the external electrode lead portion 107 a of the internal conductor layer 107 in the length direction of the multilayer body 101. Further, the position of the connection electrode lead-out portion 111 b coincides with the position of the connection electrode lead-out portion 110 b of the internal conductor layer 110 in the height direction of the multilayer body 101. The inner conductor layer 111 corresponds to the “third inner conductor layer” in the claims.

内部導体層112は矩形状を成し、長さ方向の他端縁中央(引出し部110bと同じ側の端縁中央)に1個の連結電極用引出し部112aを有する。連結電極用引出し部112aの位置は内部導体層110の連結電極用引出し部110bの位置と積層体101の高さ方向で一致している。この内部導体層112は請求範囲で言うところの「第4の内部導体層」に相当する。   The internal conductor layer 112 has a rectangular shape, and has one connecting electrode lead portion 112a at the center of the other end edge in the length direction (center of the end edge on the same side as the lead portion 110b). The position of the connection electrode lead-out portion 112 a coincides with the position of the connection electrode lead-out portion 110 b of the internal conductor layer 110 in the height direction of the multilayer body 101. The inner conductor layer 112 corresponds to the “fourth inner conductor layer” in the claims.

積層体101の幅方向一側に位置する2層の内部導体層107の上縁側の2個の外部電極用引出し部107aは積層体101の幅方向一端部側の2個の外部電極102の上側回り込み部102aにそれぞれ接続され、下縁側の2個の外部電極用引出し部107aは同じ外部電極102の下側回り込み部102aにそれぞれ接続され、連結電極用引出し部107bは一方の連結電極104に接続されている。また、積層体101の幅方向他側に位置する2層の内部導体層108の上縁側の2個の外部電極用引出し部108aは積層体101の幅方向他端部側の2個の外部電極102の上側回り込み部102aにそれぞれ接続され、下縁側の2個の外部電極用引出し部108aは同じ外部電極102の下側回り込み部102aにそれぞれ接続され、連結電極用引出し部108bは一方の連結電極104に接続されている。さらに、積層体101の幅方向中央に位置する6層の内部導体層109の連結電極用引出し部109aは一方の連結電極104に接続されている。   Two external electrode lead-out portions 107a on the upper edge side of the two internal conductor layers 107 positioned on one side in the width direction of the multilayer body 101 are above the two external electrodes 102 on one end side in the width direction of the multilayer body 101. The two outer electrode lead portions 107a on the lower edge side are connected to the lower wrap portion 102a, respectively, and the connection electrode lead portion 107b is connected to one of the connection electrodes 104. Has been. The two outer electrode lead portions 108a on the upper edge side of the two internal conductor layers 108 located on the other side in the width direction of the multilayer body 101 are two external electrodes on the other end side in the width direction of the multilayer body 101. 102, the two outer electrode lead portions 108a on the lower edge side are respectively connected to the lower wrap portion 102a of the same external electrode 102, and the connecting electrode lead portion 108b is connected to one connecting electrode. 104 is connected. Further, the connecting electrode lead-out portion 109 a of the six inner conductor layers 109 located at the center in the width direction of the multilayer body 101 is connected to one connecting electrode 104.

一方、積層体101の幅方向一側に位置する2層の内部導体層110の上縁側の2個の外部電極用引出し部110aは積層体101の幅方向一端部側の2個の外部電極103の上側回り込み部103aにそれぞれ接続され、下縁側の2個の外部電極用引出し部110aは同じ外部電極103の下側回り込み部103aにそれぞれ接続され、連結電極用引出し部110bは他方の連結電極105に接続されている。また、積層体101の幅方向他側に位置する2層の内部導体層111の上縁側の2個の外部電極用引出し部111aは積層体101の幅方向他端部側の2個の外部電極103の上側回り込み部103aにそれぞれ接続され、下縁側の2個の外部電極用引出し部111aは同じ外部電極103の下側回り込み部103aにそれぞれ接続され、連結電極用引出し部111bは他方の連結電極105に接続されている。さらに、積層体101の幅方向中央に位置する6層の内部導体層112の連結電極用引出し部112aは他方の連結電極104に接続されている。   On the other hand, the two outer electrode lead portions 110 a on the upper edge side of the two inner conductor layers 110 located on one side in the width direction of the multilayer body 101 are two external electrodes 103 on one end side in the width direction of the multilayer body 101. The two outer electrode lead portions 110a on the lower edge side are respectively connected to the lower wrap portion 103a of the same external electrode 103, and the connecting electrode lead portion 110b is connected to the other connecting electrode 105. It is connected to the. The two outer electrode lead portions 111a on the upper edge side of the two inner conductor layers 111 positioned on the other side in the width direction of the multilayer body 101 are two external electrodes on the other end side in the width direction of the multilayer body 101. 103, the two outer electrode lead portions 111a on the lower edge side are respectively connected to the lower wrap portion 103a of the same external electrode 103, and the connecting electrode lead portion 111b is connected to the other connecting electrode. 105 is connected. Further, the connecting electrode lead-out portion 112 a of the six inner conductor layers 112 located in the center in the width direction of the multilayer body 101 is connected to the other connecting electrode 104.

即ち、一方の連結電極104に接続された2層の内部導体層107と2層の内部導体層108と6層の内部導体層109の極性は同じであり、他方の連結電極105に接続された2層の内部導体層110と2層の内部導体層111と6層の内部導体層112の極性は同じである。   That is, the two inner conductor layers 107 connected to one connecting electrode 104, the two inner conductor layers 108, and the six inner conductor layers 109 have the same polarity, and are connected to the other connecting electrode 105. The polarities of the two inner conductor layers 110, the two inner conductor layers 111, and the six inner conductor layers 112 are the same.

前述の積層コンデンサ100にあっては、連結電極104,105の抵抗率(単位はΩm)は外部電極102,103の抵抗率よりも高く、積層コンデンサ100それ自体の等価直列抵抗(以下ESRと言う)は連結電極104,105の抵抗率に基づいて定められている。以下、この点について詳述する。   In the multilayer capacitor 100 described above, the resistivity (unit: Ωm) of the connecting electrodes 104 and 105 is higher than the resistivity of the external electrodes 102 and 103, and the multilayer capacitor 100 itself has an equivalent series resistance (hereinafter referred to as ESR). ) Is determined based on the resistivity of the connecting electrodes 104 and 105. Hereinafter, this point will be described in detail.

連結電極104,105と外部電極102,103は、何れも、予め用意した電極ペーストをディップ法やローラ塗布法等の手法により焼成後の積層体101の所定位置に所定形状で塗布しこれを乾燥して所定温度で焼き付けることによって、或いは、予め用意した電極ペーストをディップ法やローラ塗布法等の手法により焼成前の積層体101の所定位置に所定形状で塗布しこれを乾燥して所定温度で積層体101と同時焼成することによって形成されるが、ここでは外部電極102,103用の電極ペーストに抵抗率増加のための組成調整を施したものを連結電極104,105用の電極ペーストとして用いて連結電極104,105を形成する。   Each of the connecting electrodes 104 and 105 and the external electrodes 102 and 103 is applied by applying a predetermined electrode paste in a predetermined shape to a predetermined position of the laminated body 101 after baking by a technique such as a dipping method or a roller coating method. The electrode paste prepared in advance is applied in a predetermined shape to a predetermined position of the laminate 101 before firing by a method such as a dipping method or a roller coating method, and dried, and then dried at a predetermined temperature. It is formed by simultaneous firing with the laminate 101, but here, an electrode paste for the external electrodes 102 and 103 that has been subjected to composition adjustment for increasing resistivity is used as the electrode paste for the connection electrodes 104 and 105. Thus, the connecting electrodes 104 and 105 are formed.

例えば、外部電極102,103用の電極ペーストがニッケルや銅等の卑金属粉末と有機バインダと有機溶剤等を含むものである場合には、前記組成調整方法として、(1)外部電極102,103用の電極ペーストに誘電体粉末を添加する方法、(2)外部電極102,103用の電極ペーストにガラスフリットを添加する方法、(3)外部電極102,103用の電極ペーストの有機バインダの含有割合を増加させる方法、の少なくとも1つが好ましく採用できる。   For example, when the electrode paste for the external electrodes 102 and 103 contains a base metal powder such as nickel or copper, an organic binder, an organic solvent, etc., (1) electrodes for the external electrodes 102 and 103 A method of adding dielectric powder to the paste, (2) a method of adding glass frit to the electrode paste for the external electrodes 102 and 103, and (3) increasing the organic binder content in the electrode paste for the external electrodes 102 and 103. Preferably, at least one of the above methods can be employed.

前記(1)の方法は、例えば誘電体層105に含まれる誘電体材料がチタン酸バリウム或いはこれと同系の誘電体、具体的にはABO3 で表される誘電体(AサイトはBa,Ba+Sr,Ba+Ca,Ba+Ca+Sr等、BサイトはTi,Ti+Zr等)にMn,V,Cr,Mo,Fe,Ni,Cu,Co等の遷移元素とSc,Y,Gd,Dy,Ho,Er,Yb,Tb,Tm,Lu等の希土類元素の少なくとも1種以上を含む同系の誘電体である場合に、チタン酸バリウム粉末または前記同系の誘電体粉末を外部電極102,103用の電極ペーストに添加することによって組成調整を施す方法である。連結電極104,105は組成調整によって得た電極ペーストを用いて形成される。組成調整後の電極ペーストに含まれる誘電体粉末及び/または同系の誘電体粉末の重量は卑金属粉末の重量に対して20〜70重量%が適正範囲であり、20重量%未満であると所期の抵抗率低減が効果的に行えず、また、70重量%を越えると電気伝導が著しく阻害されて電極としての役割が果たせなくなる。 In the method (1), for example, the dielectric material contained in the dielectric layer 105 is a dielectric material represented by barium titanate or a similar dielectric material, specifically, ABO 3 (A site is Ba, Ba + Sr). , Ba + Ca, Ba + Ca + Sr, etc., B site is Ti, Ti + Zr, etc.) and transition elements such as Mn, V, Cr, Mo, Fe, Ni, Cu, Co and the like, and Sc, Y, Gd, Dy, Ho, Er, Yb, Tb. By adding barium titanate powder or the same dielectric powder to the electrode paste for the external electrodes 102 and 103 in the case of a similar dielectric containing at least one kind of rare earth elements such as Tm, Lu, etc. This is a method of adjusting the composition. The connecting electrodes 104 and 105 are formed using an electrode paste obtained by adjusting the composition. The weight of the dielectric powder and / or the dielectric powder of the same type contained in the electrode paste after the composition adjustment is 20 to 70% by weight with respect to the weight of the base metal powder, and is expected to be less than 20% by weight. The resistivity cannot be effectively reduced, and if it exceeds 70% by weight, the electric conduction is remarkably hindered and cannot serve as an electrode.

前記(2)の方法は、例えば誘電体層105に含まれる誘電体材料がチタン酸バリウム或いはこれと前記同系の誘電体である場合に、Li2 ,SiO2 ,BaO,B23,Ai23,CaO,ZnO,PbO等の酸化物のうちの少なくとも2種以上を含むガラスフリットを外部電極102,103用の電極ペーストに添加することによって組成調整を施す方法である。連結電極104,105は組成調整によって得た電極ペーストを用いて形成される。組成調整後の電極ペーストに含まれるガラスフリットの重量は卑金属粉末の重量に対して10〜30重量%が適正範囲であり、10重量%未満であると所期の抵抗率低減が効果的に行えず、また、30重量%を越えると電気伝導が著しく阻害されて電極としての役割が果たせなくなる。 In the method (2), for example, when the dielectric material contained in the dielectric layer 105 is barium titanate or a dielectric similar to the same, Li 2 O , SiO 2 , BaO, B 2 O 3 , Ai 2 O 3 , CaO, ZnO, glass frit containing at least two of oxides such as PbO is added to the electrode paste for the external electrodes 102 and 103 This is a method for adjusting the composition. The connecting electrodes 104 and 105 are formed using an electrode paste obtained by adjusting the composition. The weight of the glass frit contained in the electrode paste after composition adjustment is 10 to 30% by weight relative to the weight of the base metal powder, and if it is less than 10% by weight, the desired resistivity can be effectively reduced. Further, if it exceeds 30% by weight, the electric conduction is remarkably hindered and the role as an electrode cannot be achieved.

前記(3)の方法は、例えば外部電極102,103用の電極ペーストに含まれる有機バインダがエチルセルロース,ヒドロキシエチルセルロース,ニトロセルロース等のセルロース系樹脂、ポリビニルブチラール等のブチラール系樹脂、アクリル樹脂、エポキシ樹脂、フェノール樹脂、ロジン等の少なくとも1種である場合に、これらのうち少なくとも1種以上の有機バインダを外部電極102,103用の電極ペーストにさらに添加することによって組成調整を施す方法である。連結電極104,105は組成調整によって得た電極ペーストを用いて形成される。組成調整後の電極ペーストに含まれる有機バインダの重量は卑金属粉末の重量に対して10〜30重量%が適正範囲であり、10重量%未満であると所期の抵抗率低減が効果的に行えず、また、30重量%を越えると電気伝導が著しく阻害されて電極としての役割が果たせなくなる。   In the method (3), for example, the organic binder contained in the electrode paste for the external electrodes 102 and 103 is a cellulose resin such as ethyl cellulose, hydroxyethyl cellulose, and nitrocellulose, a butyral resin such as polyvinyl butyral, an acrylic resin, and an epoxy resin. In the case of at least one of phenol resin, rosin and the like, at least one of these organic binders is further added to the electrode paste for the external electrodes 102 and 103 to adjust the composition. The connecting electrodes 104 and 105 are formed using an electrode paste obtained by adjusting the composition. The weight of the organic binder contained in the electrode paste after composition adjustment is 10 to 30% by weight relative to the weight of the base metal powder, and if it is less than 10% by weight, the desired resistivity can be effectively reduced. Further, if it exceeds 30% by weight, the electric conduction is remarkably hindered and the role as an electrode cannot be achieved.

前記(1)〜(3)の方法の少なくとも1つによって組成調整された連結電極104,105用の電極ペーストを用いて形成された連結電極104,105には、基本的には連結電極104,105に含まれる金属粒子の連続率に準じた抵抗率が現れる。連結電極104,105における電流の流れ易さはこの抵抗率によって主に支配されるが、前記の金属粒子の連続率に応じて連結電極104,105と内部導体層107〜112の連結電極用引出し部107b,108b,109a,110b,111b,112aとのコンタクト率が変化することもある程度関係する。   The connection electrodes 104 and 105 formed by using the electrode paste for the connection electrodes 104 and 105 whose composition is adjusted by at least one of the methods (1) to (3) basically include the connection electrode 104, The resistivity according to the continuity rate of the metal particles contained in 105 appears. The ease of current flow in the connection electrodes 104 and 105 is mainly governed by this resistivity, but the connection electrode lead-out of the connection electrodes 104 and 105 and the inner conductor layers 107 to 112 depends on the continuity rate of the metal particles. The contact rate with the parts 107b, 108b, 109a, 110b, 111b, and 112a also changes to some extent.

依って、前記(1)〜(3)の方法の少なくとも1つによって組成調整された連結電極104,105用の電極ペーストを用いて連結電極104,105を形成すれば、従前と同じ電極形成方法によって、外部電極102,103よりも抵抗率の高い連結電極104,105を形成できるし、該抵抗率に基づいて連結電極104,105の電流の流れ易さを制御して積層コンデンサ100それ自体のESRを所望の値に設定できることになる。   Therefore, if the connection electrodes 104 and 105 are formed using the electrode paste for the connection electrodes 104 and 105 whose composition is adjusted by at least one of the methods (1) to (3), the same electrode formation method as before is used. Thus, the connection electrodes 104 and 105 having higher resistivity than the external electrodes 102 and 103 can be formed, and the ease of flow of current through the connection electrodes 104 and 105 is controlled based on the resistivity to control the multilayer capacitor 100 itself. The ESR can be set to a desired value.

因みに、積層コンデンサ100それ自体のESR設定は外部電極102,103の抵抗率を可変することによっても行うことは可能であるが、外部電極102,103の抵抗率を高めると積層コンデンサ100の入出力に影響が出て積層コンデンサ100本来の機能に支障を生じる可能性が高くなることから、ここでは連結電極104,105の抵抗率を可変することによって積層コンデンサ100それ自体のESR設定を行うようにしている。   Incidentally, the ESR of the multilayer capacitor 100 itself can be set by changing the resistivity of the external electrodes 102 and 103. However, if the resistivity of the external electrodes 102 and 103 is increased, the input / output of the multilayer capacitor 100 is increased. In this case, the ESR setting of the multilayer capacitor 100 itself is performed by varying the resistivity of the connecting electrodes 104 and 105. ing.

このように、前述の積層コンデンサ100によれば、6種類の内部導体層107〜112のうち主に外部電極用引出し部を有しない内部導体層109,112の層数選定によって所定の静電容量を得ることができる。しかも、誘電体層106を介して隣り合う内部導体層107の外部電極用引出し部107aと内部導体層110の外部電極層用引出し部110aに逆方向に電流が流れ、この電流の流れによって内部電極107,110にも逆方向に電流が流れるようにすることにより、且つ、誘電体層106を介して隣り合う内部導体層108の外部電極用引出し部108aと内部導体層111の外部電極層用引出し部111aに逆方向に電流が流れ、この電流の流れによって内部電極108,111にも逆方向に電流が流れるようにすることにより、磁界相殺作用に基づくESL低下を図ることができる。つまり、前述の積層コンデンサ100によれば、デカップリングに必要とされる基本条件、即ち、高静電容量と低ESLを満足できる。   As described above, according to the multilayer capacitor 100 described above, a predetermined capacitance is selected by selecting the number of the inner conductor layers 109 and 112 that mainly do not have the lead portions for the outer electrodes among the six types of inner conductor layers 107 to 112. Can be obtained. In addition, a current flows in the opposite direction to the external electrode lead-out portion 107a of the internal conductor layer 107 and the external electrode layer lead-out portion 110a of the internal conductor layer 110 that are adjacent to each other via the dielectric layer 106. 107 and 110 are made to flow in the opposite direction, and the external electrode lead portion 108a of the internal conductor layer 108 and the external conductor layer 111 of the internal conductor layer 111 that are adjacent to each other through the dielectric layer 106 are provided. By causing the current to flow in the reverse direction in the portion 111a and causing the current to flow in the reverse direction also in the internal electrodes 108 and 111 by this flow of current, ESL reduction based on the magnetic field canceling action can be achieved. That is, according to the above-described multilayer capacitor 100, the basic conditions required for decoupling, that is, high capacitance and low ESL can be satisfied.

また、前述の積層コンデンサ100によれば、連結電極104,105の抵抗率を外部電極102,103の抵抗率よりも高くして積層コンデンサ100それ自体のESRを連結電極104,105の抵抗率に基づいて定めているので、連結電極104,105の抵抗率を適宜可変することによって、実装位置や周囲環境等によって生じる共振を抑制するのに適したESRを積層コンデンサ100に的確に設定できる。   Further, according to the multilayer capacitor 100 described above, the resistivity of the connection electrodes 104 and 105 is made higher than the resistivity of the external electrodes 102 and 103 so that the ESR of the multilayer capacitor 100 itself becomes the resistivity of the connection electrodes 104 and 105. Therefore, by appropriately changing the resistivity of the connection electrodes 104 and 105, an ESR suitable for suppressing resonance caused by the mounting position, the surrounding environment, and the like can be accurately set in the multilayer capacitor 100.

さらに、前述の積層コンデンサ100によれば、連結電極104,105の抵抗率可変によって積層コンデンサ100のESRを調整して設定できるので、積層コンデンサ100の基本構造を変更することなくそのESRを所望の値に設定できる。詳しくは、外部電極102,103用の電極ペーストに抵抗率増加のための組成調整を施したもの、具体的には前記(1)〜(3)の方法の少なくとも1つによって組成調整された電極ペーストを連結電極104,105用の電極ペーストとして用いることにより連結電極104,105の抵抗率の可変を行うので、積層コンデンサ100それ自体のESR設定が簡単に行える。   Furthermore, according to the multilayer capacitor 100 described above, the ESR of the multilayer capacitor 100 can be adjusted and set by varying the resistivity of the connection electrodes 104 and 105, so that the ESR can be set to a desired value without changing the basic structure of the multilayer capacitor 100. Can be set to a value. Specifically, the electrode paste for the external electrodes 102 and 103 is subjected to composition adjustment for increasing the resistivity, specifically, the electrode whose composition is adjusted by at least one of the methods (1) to (3). Since the resistivity of the connection electrodes 104 and 105 is varied by using the paste as an electrode paste for the connection electrodes 104 and 105, the ESR setting of the multilayer capacitor 100 itself can be easily performed.

さらにまた、前述の積層コンデンサ100によれば、積層体101の幅方向の両端部それぞれにコ字形状を成す異極性の外部電極102,103を設けているので、積層体101の長さ方向の両端面それぞれに異極性の連結電極104,105を設けたことも相俟って、基板等への実装時には積層コンデンサ100の下面と上面の何れか一方を実装面として用いることができる。つまり、積層コンデンサ100を基板等に実装するときにはその下面と上面を実装面として選択的に用いることができるので、実装面が1つしかないものに比べて実装性を向上できる。   Furthermore, according to the multilayer capacitor 100 described above, the opposite-polarity external electrodes 102 and 103 having a U-shape are provided at both end portions in the width direction of the multilayer body 101, so In combination with the connection electrodes 104 and 105 having different polarities on the both end faces, either the lower surface or the upper surface of the multilayer capacitor 100 can be used as the mounting surface when mounted on a substrate or the like. That is, when the multilayer capacitor 100 is mounted on a substrate or the like, the lower surface and the upper surface can be selectively used as the mounting surface, so that the mountability can be improved as compared with the one having only one mounting surface.

さらにまた、前述の積層コンデンサ100によれば、積層体101の幅方向の両端部それぞれにコ字形状を成す異極性の外部電極102,103を設け、積層体101の長さ方向の両端面それぞれに異極性の連結電極104,105を設けているので、積層体101に外部電極102,103及び連結電極104,105を形成する際における電極ペーストの塗布作業をローラ塗布法やディップ法等の既知の方法を用いて簡単に行うことができ、これにより積層コンデンサ100の製造コストの低減を図ることができる。   Furthermore, according to the multilayer capacitor 100 described above, the opposite-polarity external electrodes 102 and 103 having U-shapes are provided at both ends in the width direction of the multilayer body 101, respectively. Since the connection electrodes 104 and 105 having different polarities are provided, the electrode paste application work when forming the external electrodes 102 and 103 and the connection electrodes 104 and 105 on the laminate 101 is known, such as a roller application method or a dipping method. Thus, the manufacturing cost of the multilayer capacitor 100 can be reduced.

図7と図8は図1に示した積層コンデンサの部分変形例をそれぞれ示す、積層コンデンサを上面側から見た斜視図である。   7 and 8 are perspective views of the multilayer capacitor as viewed from the upper surface side, each showing a modification of the multilayer capacitor shown in FIG.

図7は連結電極の変形例を示すもので、同図に示す連結電極104’,105’は各連結電極用引出し部と接続できる程度の大きさ及び形状で積層体101の長さ方向の両端面それぞれに局部的に設けられている。   FIG. 7 shows a modified example of the connecting electrode. The connecting electrodes 104 ′ and 105 ′ shown in FIG. 7 are of a size and shape that can be connected to the connecting electrode lead-out portions, and both ends in the longitudinal direction of the laminate 101. Each surface is provided locally.

図8は外部電極の変形例を示すもので、同図に示し外部電極102’,103’は図1に示した積層コンデンサ100の外部電極102,103から上側及び下側回り込み部102a,103a以外を除外した形状を成し、積層体101の上面と下面にそれぞれ設けられている。   FIG. 8 shows a modified example of the external electrode. The external electrodes 102 ′ and 103 ′ shown in FIG. 8 are other than the upper and lower wrap-around portions 102a and 103a from the external electrodes 102 and 103 of the multilayer capacitor 100 shown in FIG. Are formed on the upper surface and the lower surface of the laminated body 101, respectively.

[第2実施形態]
図9〜図13は本発明の第2実施形態を示す。図9は積層コンデンサを上面側から見た斜視図、図10は図9に示した積層コンデンサの上面図、図11は図9に示した積層体の内部構造を示す図、図12は図10のb1−b1線断面図、図13は図10のb2−b2線断面図である。
[Second Embodiment]
9 to 13 show a second embodiment of the present invention. 9 is a perspective view of the multilayer capacitor as viewed from the top surface side, FIG. 10 is a top view of the multilayer capacitor shown in FIG. 9, FIG. 11 is a diagram showing the internal structure of the multilayer body shown in FIG. 9, and FIG. FIG. 13 is a cross-sectional view taken along line b1-b1, and FIG. 13 is a cross-sectional view taken along line b2-b2 in FIG.

この積層コンデンサ200は、所定の長さL,幅W及び高さHを有する直方体形状の積層体201と、積層体201の長さ方向の両端部それぞれに設けられた異極性の外部電極202,203と、積層体201の幅方向の両端面中央それぞれに設けられた異極性の連結電極204,205とを備える。   The multilayer capacitor 200 includes a rectangular parallelepiped multilayer body 201 having a predetermined length L, width W, and height H, and external electrodes 202 having different polarities provided at both ends in the length direction of the multilayer body 201, 203 and connecting electrodes 204 and 205 of different polarities provided at the centers of both end faces of the laminate 201 in the width direction.

各外部電極202,203はキャップ形状を成している。また、各連結電極204,205は積層体201の幅方向の両端面中央を部分的に覆うように設けられており、各連結電極204,205は積層体201の上面及び下面に回り込む部分を有していない。因みに、各外部電極202,203と各連結電極204,205はニッケル等の卑金属から成る。   Each external electrode 202, 203 has a cap shape. Each of the connection electrodes 204 and 205 is provided so as to partially cover the center of both end surfaces in the width direction of the multilayer body 201, and each of the connection electrodes 204 and 205 has a portion that goes around the upper surface and the lower surface of the multilayer body 201. Not done. Incidentally, each external electrode 202, 203 and each connection electrode 204, 205 are made of a base metal such as nickel.

積層体201は、誘電体層206と4種類の内部導体層207〜210とを図11に示す順序で積層体201の高さ方向に積層して一体化した構造を有している。図11での図示を省略したが、積層体201の高さ方向両側にはマージンを確保するために誘電体層206のみが所定層数配されている。因みに、誘電体層206はチタン酸バリウム等の誘電体から成り、内部導体層207〜210はニッケル等の卑金属から成る。   The multilayer body 201 has a structure in which a dielectric layer 206 and four types of internal conductor layers 207 to 210 are laminated and integrated in the height direction of the multilayer body 201 in the order shown in FIG. Although not shown in FIG. 11, only a predetermined number of dielectric layers 206 are arranged on both sides of the stacked body 201 in the height direction in order to ensure a margin. Incidentally, the dielectric layer 206 is made of a dielectric such as barium titanate, and the inner conductor layers 207 to 210 are made of a base metal such as nickel.

4種類の内部導体層207〜210のうち、内部導体層207及び208は一方の極性の内部導体層を構成し、内部導体層209及び210は他方の極性の内部導体層を構成する。図12及び図13からも分かるように、4種類の内部導体層207〜210は内部導体層207〜210の並びが積層体201の高さ方向で所定数(図面では3回)繰り返されるように該積層体201内に配されている。つまり、図面における内部導体層207〜210の層数はそれぞれ3である。   Of the four types of internal conductor layers 207 to 210, the internal conductor layers 207 and 208 constitute an internal conductor layer of one polarity, and the internal conductor layers 209 and 210 constitute an internal conductor layer of the other polarity. As can be seen from FIGS. 12 and 13, the four types of inner conductor layers 207 to 210 are arranged such that the arrangement of the inner conductor layers 207 to 210 is repeated a predetermined number (three times in the drawing) in the height direction of the multilayer body 201. The laminated body 201 is disposed. That is, the number of inner conductor layers 207 to 210 in the drawing is three.

内部導体層207は矩形状を成し、長さ方向一端縁に1個の外部電極用引出し部207aを有し、幅方向の一端縁中央に1個の連結電極用引出し部207bを有する。この内部導体層207は請求範囲で言うところの「第1の内部導体層」に相当する。   The internal conductor layer 207 has a rectangular shape, and has one external electrode lead portion 207a at one end edge in the length direction and one connection electrode lead portion 207b at the center of one end edge in the width direction. The inner conductor layer 207 corresponds to the “first inner conductor layer” in the claims.

内部導体層208は矩形状を成し、幅方向の一端縁中央(引出し部207bと同じ側の端縁中央)に1個の連結電極用引出し部208aを有する。連結電極用引出し部208aの位置は内部導体層207の連結電極用引出し部207bの位置と積層体101の長さ方向で一致している。この内部導体層208は請求範囲で言うところの「第2の内部導体層」に相当する。   The internal conductor layer 208 has a rectangular shape and has one connection electrode lead portion 208a at the center of one end edge in the width direction (center of the end edge on the same side as the lead portion 207b). The position of the connection electrode lead-out portion 208 a coincides with the position of the connection electrode lead-out portion 207 b of the internal conductor layer 207 in the length direction of the multilayer body 101. The inner conductor layer 208 corresponds to the “second inner conductor layer” in the claims.

内部導体層209は矩形状を成し、長さ方向他端縁に1個の外部電極用引出し部209aを有し、幅方向の他端縁中央(引出し部207b,208aとは反対側の端縁中央)に1個の連結電極用引出し部209bを有する。この内部導体層207は請求範囲で言うところの「第3の内部導体層」に相当する。   The inner conductor layer 209 has a rectangular shape, and has one lead-out portion 209a for the external electrode at the other end in the length direction. The center of the other end edge in the width direction (the end opposite to the lead-out portions 207b and 208a) One connecting electrode lead-out portion 209b is provided at the center of the edge. The inner conductor layer 207 corresponds to the “third inner conductor layer” in the claims.

内部導体層210は矩形状を成し、幅方向の他端縁中央(引出し部209bと同じ側の端縁中央)に1個の連結電極用引出し部210aを有する。連結電極用引出し部210aの位置は内部導体層209の連結電極用引出し部209bの位置と積層体201の長さ方向で一致している。この内部導体層208は請求範囲で言うところの「第4の内部導体層」に相当する。   The inner conductor layer 210 has a rectangular shape and has one connecting electrode lead portion 210a at the center of the other end edge in the width direction (center of the end edge on the same side as the lead portion 209b). The position of the connection electrode lead-out portion 210 a coincides with the position of the connection electrode lead-out portion 209 b of the internal conductor layer 209 in the length direction of the multilayer body 201. The inner conductor layer 208 corresponds to the “fourth inner conductor layer” in the claims.

各内部導体層207の外部電極用引出し部207aは積層体201の長さ方向一端部側の外部電極202にそれぞれ接続され、連結電極用引出し部207bは積層体201の幅方向一端面側の連結電極204にそれぞれ接続されている。また、各内部導体層208の連結電極用引出し部208aは積層体201の幅方向一端面側の連結電極204にそれぞれ接続されている。   The external electrode lead-out portion 207a of each internal conductor layer 207 is connected to the external electrode 202 at one end in the length direction of the multilayer body 201, and the connection electrode lead-out portion 207b is connected to one end surface in the width direction of the multilayer body 201. Each is connected to an electrode 204. Further, the connection electrode lead-out portion 208 a of each internal conductor layer 208 is connected to the connection electrode 204 on the one end surface side in the width direction of the multilayer body 201.

一方、各内部導体層209の外部電極用引出し部209aは積層体201の長さ方向他端部側の外部電極203にそれぞれ接続され、連結電極用引出し部209bは積層体201の幅方向他端面側の連結電極205にそれぞれ接続されている。また、各内部導体層210の連結電極用引出し部210aは積層体201の幅方向他端面側の連結電極205にそれぞれ接続されている。   On the other hand, the lead-out portion 209a for the external electrode of each internal conductor layer 209 is connected to the external electrode 203 on the other end side in the length direction of the multilayer body 201, and the lead-out portion 209b for the connection electrode is the other end surface in the width direction of the multilayer body 201. Are connected to the connecting electrode 205 on the side. Further, the connecting electrode lead-out portion 210 a of each inner conductor layer 210 is connected to the connecting electrode 205 on the other end surface side in the width direction of the multilayer body 201.

即ち、一方の連結電極204に接続された3層の内部導体層207と3層の内部導体層208の極性は同じであり、他方の連結電極205に接続された3層の内部導体層209と3層の内部導体層210の極性は同じである。   That is, the polarities of the three inner conductor layers 207 and the three inner conductor layers 208 connected to one connecting electrode 204 are the same, and the three inner conductor layers 209 connected to the other connecting electrode 205 The polarities of the three inner conductor layers 210 are the same.

前述の積層コンデンサ200にあっては、連結電極204,205の抵抗率(単位はΩm)は外部電極202,203の抵抗率よりも高く、積層コンデンサ200それ自体の等価直列抵抗(以下ESRと言う)は連結電極204,205の抵抗率に基づいて定められている。以下、この点について詳述する。   In the multilayer capacitor 200 described above, the resistivity (unit: Ωm) of the connecting electrodes 204 and 205 is higher than the resistivity of the external electrodes 202 and 203, and the multilayer capacitor 200 itself has an equivalent series resistance (hereinafter referred to as ESR). ) Is determined based on the resistivity of the connecting electrodes 204 and 205. Hereinafter, this point will be described in detail.

連結電極204,205と外部電極202,203は、何れも、予め用意した電極ペーストをディップ法やローラ塗布法等の手法により積層体201の所定位置に所定形状で塗布しこれを乾燥して所定温度で焼き付けることによって、或いは、予め用意した電極ペーストをディップ法やローラ塗布法等の手法により焼成前の積層体101の所定位置に所定形状で塗布しこれを乾燥して所定温度で積層体101と同時焼成することによって形成されるが、ここでは外部電極202,203用の電極ペーストに抵抗率増加のための組成調整を施したものを連結電極204,205用の電極ペーストとして用いて連結電極204,205を形成する。   Each of the connecting electrodes 204 and 205 and the external electrodes 202 and 203 is applied by applying a predetermined electrode paste in a predetermined shape to a predetermined position of the laminated body 201 by a method such as a dipping method or a roller coating method, and drying it. By baking at a temperature, or by applying a prepared electrode paste in a predetermined shape to a predetermined position of the laminated body 101 before firing by a method such as a dipping method or a roller coating method, the laminated body 101 is dried at a predetermined temperature. In this example, the electrode paste for the external electrodes 202 and 203, which is prepared by adjusting the composition for increasing the resistivity, is used as the electrode paste for the connection electrodes 204 and 205. 204, 205 are formed.

例えば、外部電極202,203用の電極ペーストがニッケル等の卑金属粉末と有機バインダと有機溶剤等を含むものである場合には、前記組成調整方法として、(1)外部電極202,203用の電極ペーストに誘電体粉末を添加する方法、(2)外部電極202,203用の電極ペーストにガラスフリットを添加する方法、(3)外部電極202,203用の電極ペーストの有機バインダの含有割合を増加させる方法、の少なくとも1つが好ましく採用できる。   For example, when the electrode paste for the external electrodes 202 and 203 includes a base metal powder such as nickel, an organic binder, an organic solvent, and the like, the composition adjustment method includes (1) the electrode paste for the external electrodes 202 and 203 A method of adding a dielectric powder, (2) a method of adding glass frit to the electrode paste for the external electrodes 202 and 203, and (3) a method of increasing the content of the organic binder in the electrode paste for the external electrodes 202 and 203. At least one of can be preferably employed.

前記(1)の方法は、例えば誘電体層205に含まれる誘電体材料がチタン酸バリウム或いはこれと同系の誘電体、具体的にはABO3 で表される誘電体(AサイトはBa,Ba+Sr,Ba+Ca,Ba+Ca+Sr等、BサイトはTi,Ti+Zr等)にMn,V,Cr,Mo,Fe,Ni,Cu,Co等の遷移元素とSc,Y,Gd,Dy,Ho,Er,Yb,Tb,Tm,Lu等の希土類元素の少なくとも1種以上を含む同系の誘電体である場合に、チタン酸バリウム粉末または前記同系の誘電体粉末を外部電極202,203用の電極ペーストに添加することによって組成調整を施す方法である。連結電極204,205は組成調整によって得た電極ペーストを用いて形成される。組成調整後の電極ペーストに含まれる誘電体粉末及び/または同系の誘電体粉末の重量は卑金属粉末の重量に対して20〜70重量%が適正範囲であり、20重量%未満であると所期の抵抗率低減が効果的に行えず、また、70重量%を越えると電気伝導が著しく阻害されて電極としての役割が果たせなくなる。 In the method (1), for example, the dielectric material contained in the dielectric layer 205 is a dielectric material represented by barium titanate or a similar dielectric material, specifically, ABO 3 (A site is Ba, Ba + Sr). , Ba + Ca, Ba + Ca + Sr, etc., B site is Ti, Ti + Zr, etc.) and transition elements such as Mn, V, Cr, Mo, Fe, Ni, Cu, Co and the like, and Sc, Y, Gd, Dy, Ho, Er, Yb, Tb. By adding a barium titanate powder or the same dielectric powder to the electrode paste for the external electrodes 202 and 203 in the case of a similar dielectric containing at least one rare earth element such as Tm, Lu, etc. This is a method of adjusting the composition. The connecting electrodes 204 and 205 are formed using an electrode paste obtained by adjusting the composition. The weight of the dielectric powder and / or the dielectric powder of the same type contained in the electrode paste after the composition adjustment is 20 to 70% by weight with respect to the weight of the base metal powder, and is expected to be less than 20% by weight. The resistivity cannot be effectively reduced, and if it exceeds 70% by weight, the electric conduction is remarkably hindered and cannot serve as an electrode.

前記(2)の方法は、例えば誘電体層205に含まれる誘電体材料がチタン酸バリウム或いはこれと前記同系の誘電体である場合に、Li2 ,SiO2 ,BaO,B23,Ai23,CaO,ZnO,PbO等の酸化物のうちの少なくとも2種以上を含むガラスフリットを外部電極202,203用の電極ペーストに添加することによって組成調整を施す方法である。連結電極204,205は組成調整によって得た電極ペーストを用いて形成される。組成調整後の電極ペーストに含まれるガラスフリットの重量は卑金属粉末の重量に対して10〜30重量%が適正範囲であり、10重量%未満であると所期の抵抗率低減が効果的に行えず、また、30重量%を越えると電気伝導が著しく阻害されて電極としての役割が果たせなくなる。 In the method (2), for example, when the dielectric material included in the dielectric layer 205 is barium titanate or a dielectric similar to the same, Li 2 O , SiO 2 , BaO, B 2 O 3 , Ai 2 O 3 , CaO, ZnO, glass frit containing at least two of oxides such as PbO is added to the electrode paste for the external electrodes 202 and 203 This is a method for adjusting the composition. The connecting electrodes 204 and 205 are formed using an electrode paste obtained by adjusting the composition. The weight of the glass frit contained in the electrode paste after composition adjustment is 10 to 30% by weight relative to the weight of the base metal powder, and if it is less than 10% by weight, the desired resistivity can be effectively reduced. Further, if it exceeds 30% by weight, the electric conduction is remarkably hindered and the role as an electrode cannot be achieved.

前記(3)の方法は、例えば外部電極202,203用の電極ペーストにに含まれる有機バインダがエチルセルロース,ヒドロキシエチルセルロース,ニトロセルロース等のセルロース系樹脂、ポリビニルブチラール等のブチラール系樹脂、アクリル樹脂、エポキシ樹脂、フェノール樹脂、ロジン等の少なくとも1種である場合に、これらのうち少なくとも1種以上の有機バインダを外部電極202,203用の電極ペーストにさらに添加することによって組成調整を施す方法である。連結電極204,205は組成調整によって得た電極ペーストを用いて形成される。組成調整後の電極ペーストに含まれる有機バインダの重量は卑金属粉末の重量に対して10〜30重量%が適正範囲であり、10重量%未満であると所期の抵抗率低減が効果的に行えず、また、30重量%を越えると電気伝導が著しく阻害されて電極としての役割が果たせなくなる。   In the method (3), for example, the organic binder contained in the electrode paste for the external electrodes 202 and 203 is a cellulose resin such as ethyl cellulose, hydroxyethyl cellulose, and nitrocellulose, a butyral resin such as polyvinyl butyral, an acrylic resin, and an epoxy. When at least one of resin, phenol resin, rosin and the like is used, the composition is adjusted by further adding at least one organic binder among these to the electrode paste for the external electrodes 202 and 203. The connecting electrodes 204 and 205 are formed using an electrode paste obtained by adjusting the composition. The weight of the organic binder contained in the electrode paste after composition adjustment is 10 to 30% by weight relative to the weight of the base metal powder, and if it is less than 10% by weight, the desired resistivity can be effectively reduced. Further, if it exceeds 30% by weight, the electric conduction is remarkably hindered and the role as an electrode cannot be achieved.

前記(1)〜(3)の方法の少なくとも1つによって組成調整された連結電極204,205用の電極ペーストを用いて形成された連結電極204,205には、基本的には連結電極204,205に含まれる金属粒子の連続率に準じた抵抗率が現れる。連結電極204,205における電流の流れ易さはこの抵抗率によって主に支配されるが、前記の金属粒子の連続率に応じて連結電極204,205と内部導体層207〜210の連結電極用引出し部207b,208a,209b,210aとのコンタクト率が変化することもある程度関係する。   The connection electrodes 204 and 205 formed using the electrode paste for the connection electrodes 204 and 205 whose composition is adjusted by at least one of the methods (1) to (3) basically include the connection electrode 204, The resistivity according to the continuity rate of the metal particles contained in 205 appears. The ease of current flow in the connection electrodes 204 and 205 is mainly governed by this resistivity, but the connection electrode lead-out of the connection electrodes 204 and 205 and the inner conductor layers 207 to 210 depends on the continuity rate of the metal particles. The contact rate with the parts 207b, 208a, 209b, and 210a also changes to some extent.

依って、前記(1)〜(3)の方法の少なくとも1つによって組成調整された連結電極204,205用の電極ペーストを用いて連結電極204,205を形成すれば、従前と同じ電極形成方法によって、外部電極202,203よりも抵抗率の高い連結電極204,205を形成できるし、該抵抗率に基づいて連結電極204,205の電流の流れ易さを制御して積層コンデンサ200それ自体のESRを所望の値に設定できることになる。   Therefore, if the connection electrodes 204 and 205 are formed using the electrode paste for the connection electrodes 204 and 205 whose composition is adjusted by at least one of the methods (1) to (3), the same electrode formation method as before is used. Thus, the connection electrodes 204 and 205 having a higher resistivity than the external electrodes 202 and 203 can be formed, and the ease of current flow through the connection electrodes 204 and 205 is controlled based on the resistivity to control the multilayer capacitor 200 itself. The ESR can be set to a desired value.

因みに、積層コンデンサ200それ自体のESR設定は外部電極202,203の抵抗率を可変することによっても行うことは可能であるが、外部電極202,203の抵抗率を高めると積層コンデンサ100の入出力に影響が出て積層コンデンサ200本来の機能に支障を生じる可能性が高くなることから、ここでは連結電極204,205の抵抗率を可変することによって積層コンデンサ200それ自体のESR設定を行うようにしている。   Incidentally, the ESR of the multilayer capacitor 200 itself can be set by changing the resistivity of the external electrodes 202 and 203. However, if the resistivity of the external electrodes 202 and 203 is increased, the input / output of the multilayer capacitor 100 is increased. Therefore, the ESR setting of the multilayer capacitor 200 itself is performed by changing the resistivity of the connection electrodes 204 and 205. ing.

このように、前述の積層コンデンサ200によれば、4種類の内部導体層207〜210のうち主に外部電極用引出し部を有しない内部導体層208,210の層数選定によって所定の静電容量を得ることができる。しかも、誘電体層206を介して向き合う内部導体層207の連結電極用引出し部207bと内部導体層208の連結電極層用引出し部208aに逆方向に電流が流れ、この電流の流れによって内部電極207,208にも逆方向に電流が流れるようにすることにより、且つ、誘電体層206を介して向き合う内部導体層209の連結電極用引出し部209bと内部導体層210の連結電極層用引出し部210aに逆方向に電流が流れ、この電流の流れによって内部電極209,210にも逆方向に電流が流れるようにすることにより、磁界相殺作用に基づくESL低下を図ることができる。つまり、前述の積層コンデンサ200によれば、デカップリングに必要とされる基本条件、即ち、高静電容量と低ESLを満足できる。   As described above, according to the multilayer capacitor 200 described above, a predetermined capacitance is selected by selecting the number of the inner conductor layers 208 and 210 that mainly do not have the lead portion for the outer electrode among the four types of inner conductor layers 207 to 210. Can be obtained. In addition, a current flows in the opposite direction to the connecting electrode lead-out portion 207b of the internal conductor layer 207 and the connecting electrode layer lead-out portion 208a of the internal conductor layer 208 facing each other through the dielectric layer 206, and this current flow causes the internal electrode 207 to flow. , 208 so that the current flows in the opposite direction, and the connecting electrode lead portion 209b of the internal conductor layer 209 and the connecting electrode layer lead portion 210a of the internal conductor layer 210 face each other through the dielectric layer 206. The current flows in the reverse direction, and the current flows in the reverse direction to the internal electrodes 209 and 210 by this current flow, so that the ESL can be lowered based on the magnetic field canceling action. That is, the multilayer capacitor 200 described above can satisfy the basic conditions required for decoupling, that is, high capacitance and low ESL.

また、前述の積層コンデンサ200によれば、連結電極204,205の抵抗率を外部電極202,203の抵抗率よりも高くして積層コンデンサ200それ自体のESRを連結電極204,205の抵抗率に基づいて定めているので、連結電極204,205の抵抗率を適宜可変することによって、実装位置や周囲環境等によって生じる共振を抑制するのに適したESRを積層コンデンサ200に的確に設定できる。   Further, according to the multilayer capacitor 200 described above, the resistivity of the connection electrodes 204 and 205 is made higher than that of the external electrodes 202 and 203 so that the ESR of the multilayer capacitor 200 itself becomes the resistivity of the connection electrodes 204 and 205. Therefore, by appropriately changing the resistivity of the connection electrodes 204 and 205, an ESR suitable for suppressing resonance caused by the mounting position, the surrounding environment, and the like can be accurately set in the multilayer capacitor 200.

さらに、前述の積層コンデンサ200によれば、連結電極204,205の抵抗率によって積層コンデンサ200のESRを調整して設定できるので、積層コンデンサ200の基本構造を変更することなくそのESRを調整して設定できる。詳しくは、外部電極202,203用の電極ペーストに抵抗率増加のための組成調整を施したもの、具体的には前記(1)〜(3)の方法の少なくとも1つによって組成調整された電極ペーストを連結電極204,205用の電極ペーストとして用いることにより連結電極204,205の抵抗率の可変を行うので、積層コンデンサ200それ自体のESR設定が簡単に行える。   Furthermore, according to the multilayer capacitor 200 described above, the ESR of the multilayer capacitor 200 can be adjusted and set by the resistivity of the connecting electrodes 204 and 205. Therefore, the ESR can be adjusted without changing the basic structure of the multilayer capacitor 200. Can be set. Specifically, the electrode paste for the external electrodes 202 and 203 is subjected to composition adjustment for increasing the resistivity, specifically, the electrode whose composition is adjusted by at least one of the methods (1) to (3). By using the paste as the electrode paste for the connection electrodes 204 and 205, the resistivity of the connection electrodes 204 and 205 is changed, so that the ESR setting of the multilayer capacitor 200 itself can be easily performed.

さらにまた、前述の積層コンデンサ200によれば、積層体201の長さ方向の両端部それぞれにキャップ形状を成す異極性の外部電極202,203を設けているので、積層体201の幅さ方向の両端面中央それぞれに異極性の連結電極204,205を設けたことも相俟って、基板等への実装時には積層コンデンサ200の下面と上面の何れか一方を実装面として用いることができる。つまり、積層コンデンサ200を基板等に実装するときにはその下面と上面を実装面として選択的に用いることができるので、実装面が1つしかないものに比べて実装性を向上できる。   Furthermore, according to the multilayer capacitor 200 described above, the outer electrodes 202 and 203 having different polarities having cap shapes are provided at both ends in the longitudinal direction of the multilayer body 201. In combination with the connection electrodes 204 and 205 having different polarities at the centers of both end faces, either the lower surface or the upper surface of the multilayer capacitor 200 can be used as a mounting surface when mounted on a substrate or the like. That is, when the multilayer capacitor 200 is mounted on a substrate or the like, the lower surface and the upper surface can be selectively used as the mounting surface, so that the mountability can be improved as compared with the one having only one mounting surface.

さらにまた、前述の積層コンデンサ200によれば、積層体201の長さ方向の両端部それぞれにキャップ形状を成す異極性の外部電極202,203を設け、積層体201の幅方向の両端面中央それぞれに異極性の連結電極204,205を設けているので、積層体201に外部電極202,203及び連結電極204,205を形成する際における電極ペーストの塗布作業をローラ塗布法やディップ法等の既知の方法を用いて簡単に行うことができ、これにより積層コンデンサ200の製造コストの低減を図ることができる。   Furthermore, according to the multilayer capacitor 200 described above, the opposite-polarity external electrodes 202 and 203 having a cap shape are provided at both ends in the length direction of the multilayer body 201, respectively, and the center of both end surfaces in the width direction of the multilayer body 201 is provided. Since the connection electrodes 204 and 205 having different polarities are provided, the electrode paste application operation when forming the external electrodes 202 and 203 and the connection electrodes 204 and 205 on the laminate 201 is known, such as a roller application method or a dip method. This method can be easily performed, and thus the manufacturing cost of the multilayer capacitor 200 can be reduced.

尚、前述の積層コンデンサ200における連結電極204,205は各連結電極用引出し部と接続できる程度の大きさ及び形状に変更してもよい。また、外部電極202,203から幅方向両端面に回り込む部分を除外した形状のものを外部電極202,203として用いてもよい。   The connecting electrodes 204 and 205 in the multilayer capacitor 200 described above may be changed to a size and shape that can be connected to each connecting electrode lead-out portion. In addition, the external electrodes 202 and 203 may have a shape excluding a portion that wraps around both end surfaces in the width direction from the external electrodes 202 and 203.

本発明の第1実施形態を示す、積層コンデンサを上面側から見た斜視図である。It is the perspective view which looked at the multilayer capacitor from the upper surface side which shows 1st Embodiment of this invention. 図1に示した積層コンデンサの上面図である。FIG. 2 is a top view of the multilayer capacitor illustrated in FIG. 1. 図1に示した積層体の内部構造を示す図である。It is a figure which shows the internal structure of the laminated body shown in FIG. 図2のa1−a1線断面図である。It is the a1-a1 sectional view taken on the line of FIG. 図2のa2−a2線断面図である。FIG. 3 is a cross-sectional view taken along line a2-a2 of FIG. 図2のa3−a3線断面図である。It is the a3-a3 sectional view taken on the line of FIG. 図1に示した積層コンデンサの部分変形例を示す、積層コンデンサを上面側から見た斜視図である。FIG. 7 is a perspective view of the multilayer capacitor as viewed from the upper surface side, showing a partial modification of the multilayer capacitor shown in FIG. 1. 図1に示した積層コンデンサの部分変形例を示す、積層コンデンサを上面側から見た斜視図である。FIG. 7 is a perspective view of the multilayer capacitor as viewed from the upper surface side, showing a partial modification of the multilayer capacitor shown in FIG. 1. 本発明の第2実施形態を示す、積層コンデンサを上面側から見た斜視図である。It is the perspective view which looked at the multilayer capacitor from the upper surface side which shows 2nd Embodiment of this invention. 図9に示した積層コンデンサの上面図である。FIG. 10 is a top view of the multilayer capacitor illustrated in FIG. 9. 図9に示した積層体の内部構造を示す図である。It is a figure which shows the internal structure of the laminated body shown in FIG. 図10のb1−b1線断面図である。It is the b1-b1 sectional view taken on the line of FIG. 図10のb2−b2線断面図である。It is b2-b2 sectional view taken on the line of FIG.

符号の説明Explanation of symbols

100…積層コンデンサ、101…積層体、102,103,102’,103’…外部電極、104,105,104’,105’…連結電極、106…誘電体層、107〜112…内部導体層、107a,108a,110a,111a…外部電極用引出し部、107b,108b,109a,110b,111b,112a…連結電極用引出し部、200…積層コンデンサ、201…積層体、202,203…外部電極、204,205…連結電極、206…誘電体層、207〜210…内部導体層、207a,209a…外部電極用引出し部、207b,208a,209b,210a…連結電極用引出し部。   DESCRIPTION OF SYMBOLS 100 ... Multilayer capacitor, 101 ... Multilayer body, 102, 103, 102 ', 103' ... External electrode, 104, 105, 104 ', 105' ... Connection electrode, 106 ... Dielectric layer, 107-112 ... Internal conductor layer, 107a, 108a, 110a, 111a ... extracting part for external electrode, 107b, 108b, 109a, 110b, 111b, 112a ... extracting part for connecting electrode, 200 ... multilayer capacitor, 201 ... multilayered body, 202,203 ... external electrode, 204 205, connecting electrodes, 206, dielectric layers, 207 to 210, inner conductor layers, 207a, 209a, lead-out portions for external electrodes, 207b, 208a, 209b, 210a, lead-out portions for connecting electrodes.

Claims (6)

誘電体層と異極性の内部導体層とを所定の順序で積層して一体化した構造を有する直方体形状の積層体と、積層体の表面に設けられた異極性の外部電極と、積層体の表面に設けられた異極性の連結電極とを備え、一方の極性の内部導体層は、一方の極性の外部電極に接続された外部電極用引出し部と一方の極性の連結電極に接続された連結電極用引出し部とを有する第1の内部導体層と、一方の極性の連結電極に接続された連結電極用引出し部を有する第2の内部導体層とを含み、また、他方の極性の内部導体層は、他方の極性の外部電極に接続された外部電極用引出し部と他方の極性の連結電極に接続された連結電極用引出し部とを有する第3の内部導体層と、他方の極性の連結電極に接続された連結電極用引出し部を有する第4の内部導体層とを含む積層コンデンサであって、
前記異極性の連結電極の抵抗率は前記異極性の外部電極の抵抗率よりも高く、積層コンデンサそれ自体の等価直列抵抗は該異極性の連結電極の抵抗率に基づいて定められている、
ことを特徴とする積層コンデンサ。
A rectangular parallelepiped laminate having a structure in which a dielectric layer and a different polarity internal conductor layer are laminated and integrated in a predetermined order; a different polarity external electrode provided on the surface of the laminate; A connecting electrode of different polarity provided on the surface, the inner conductor layer of one polarity is connected to the lead-out portion for the external electrode connected to the outer electrode of one polarity and the connecting electrode of one polarity A first inner conductor layer having an electrode lead portion and a second inner conductor layer having a connecting electrode lead portion connected to one polarity connecting electrode, and the other polar inner conductor. The layer includes a third internal conductor layer having an external electrode lead portion connected to the other polarity external electrode and a connection electrode lead portion connected to the other polarity connection electrode, and the other polarity connection. A fourth internal conductor having a connecting electrode lead portion connected to the electrode; A multilayer capacitor comprising a layer,
The resistivity of the heteropolar connection electrode is higher than the resistivity of the heteropolar external electrode, and the equivalent series resistance of the multilayer capacitor itself is determined based on the resistivity of the heteropolar connection electrode.
A multilayer capacitor characterized by that.
第1の内部導体層は外部電極用引出し部の位置が異なる2種類の内部導体層から成り、第3の内部導体層は外部電極用引出し部の位置が異なる2種類の内部導体層から成り、第2の内部導体層と第4の内部導体層はそれぞれ1種類の内部導体層から成る、
ことを特徴とする請求項1に記載の積層コンデンサ。
The first internal conductor layer is composed of two types of internal conductor layers with different positions of the external electrode lead portions, and the third internal conductor layer is composed of two types of internal conductor layers with different positions of the external electrode lead portions, Each of the second inner conductor layer and the fourth inner conductor layer comprises one type of inner conductor layer.
The multilayer capacitor according to claim 1.
連結電極は、外部電極用の電極ペーストの組成を調整する方法によって得た電極ペーストを連結電極用の電極ペーストとして用いて形成されている、
ことを特徴とする請求項1または2に記載の積層コンデンサ。
The connection electrode is formed using the electrode paste obtained by the method of adjusting the composition of the electrode paste for the external electrode as the electrode paste for the connection electrode.
The multilayer capacitor according to claim 1 or 2, wherein
外部電極用の電極ペーストの組成を調整する方法は、外部電極用の電極ペーストに誘電体粉末を添加する方法である、
ことを特徴とする請求項3に記載の積層コンデンサ。
The method of adjusting the composition of the electrode paste for external electrodes is a method of adding dielectric powder to the electrode paste for external electrodes.
The multilayer capacitor according to claim 3.
外部電極用の電極ペーストの組成を調整する方法は、外部電極用の電極ペーストにガラスフリットを添加する方法である、
ことを特徴とする請求項3に記載の積層コンデンサ。
The method of adjusting the composition of the electrode paste for external electrodes is a method of adding glass frit to the electrode paste for external electrodes.
The multilayer capacitor according to claim 3.
外部電極用の電極ペーストの組成を調整する方法は、外部電極用の電極ペーストの有機バインダの含有割合を増加させる方法である、
ことを特徴とする請求項3に記載の積層コンデンサ。
The method of adjusting the composition of the electrode paste for the external electrode is a method for increasing the content of the organic binder in the electrode paste for the external electrode.
The multilayer capacitor according to claim 3.
JP2006167840A 2006-06-16 2006-06-16 Multilayer capacitor Withdrawn JP2007335754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167840A JP2007335754A (en) 2006-06-16 2006-06-16 Multilayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167840A JP2007335754A (en) 2006-06-16 2006-06-16 Multilayer capacitor

Publications (1)

Publication Number Publication Date
JP2007335754A true JP2007335754A (en) 2007-12-27

Family

ID=38934909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167840A Withdrawn JP2007335754A (en) 2006-06-16 2006-06-16 Multilayer capacitor

Country Status (1)

Country Link
JP (1) JP2007335754A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164244A (en) * 2007-12-28 2009-07-23 Tdk Corp Multilayer capacitor
KR101452127B1 (en) * 2013-08-12 2014-10-16 삼성전기주식회사 Multi-layered ceramic electronic part, manufacturing method thereof and board for mounting the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164244A (en) * 2007-12-28 2009-07-23 Tdk Corp Multilayer capacitor
KR101452127B1 (en) * 2013-08-12 2014-10-16 삼성전기주식회사 Multi-layered ceramic electronic part, manufacturing method thereof and board for mounting the same

Similar Documents

Publication Publication Date Title
JP4374041B2 (en) Multilayer capacitor
US7667950B2 (en) Multilayer capacitor and electronic device
CN100433211C (en) Multilayer capacitor
JP4283834B2 (en) Multilayer capacitor
JP5131193B2 (en) Metallized film capacitors
JP5666123B2 (en) Variable capacity device
KR101052437B1 (en) Multilayer Capacitor and Mounting Structure of Multilayer Capacitor
JP2010129637A (en) Multilayer capacitor
KR20060050757A (en) Multilayer electronic component
JP5556854B2 (en) Method for manufacturing ceramic electronic component and ceramic electronic component
JP2024073627A (en) Low Inductance Components
JP2007335754A (en) Multilayer capacitor
JP2013258230A (en) Ceramic electronic component
JP4830674B2 (en) Surge absorber
US20200194180A1 (en) Integrated Capacitor Filter and Integrated Capacitor Filter with Varistor Function
JP2001284170A (en) Laminated electronic component and method for manufacturing the laminated electronic component
US20090097187A1 (en) Multi-layer ceramic capacitor with low self-inductance
JP3004000B2 (en) Metallized film capacitors
JP2018041909A (en) Electronic component
CN206363894U (en) A kind of low ESL surface-mount types array of capacitors
JP6459717B2 (en) Multilayer ceramic capacitor
JPH0590062A (en) Laminated grain boundary insulation type semiconductor ceramic capacitor
JP2020088243A (en) Electronic component and method for manufacturing the same
JP2006086216A (en) Inductance element
JPS63102218A (en) Laminated multiterminal electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

A761 Written withdrawal of application

Effective date: 20090605

Free format text: JAPANESE INTERMEDIATE CODE: A761