JP2007333556A - Method and device for multiple point measurement of perpendicularity - Google Patents

Method and device for multiple point measurement of perpendicularity Download PDF

Info

Publication number
JP2007333556A
JP2007333556A JP2006165579A JP2006165579A JP2007333556A JP 2007333556 A JP2007333556 A JP 2007333556A JP 2006165579 A JP2006165579 A JP 2006165579A JP 2006165579 A JP2006165579 A JP 2006165579A JP 2007333556 A JP2007333556 A JP 2007333556A
Authority
JP
Japan
Prior art keywords
measurement
point
measured
distance
straightness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006165579A
Other languages
Japanese (ja)
Inventor
Akio Komura
明夫 小村
Yoichi Komata
與一 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Engineering Inc
Original Assignee
Micro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Engineering Inc filed Critical Micro Engineering Inc
Priority to JP2006165579A priority Critical patent/JP2007333556A/en
Publication of JP2007333556A publication Critical patent/JP2007333556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive non-contact type highly accurate measuring system by solving the following problems: in perpendicularity measurement for long size such as a mask substrate for a large size liquid crystal, a large size machine processing face, and a large size level block reference face, a laser reflection type collimetor or the like is used, and an ultra-precision drive reference axis is especially expensive in long measurement exceeding 1 m in a large mask substrate, while a problem of contact with an object to be measured by using a level or the collimetor occurs. <P>SOLUTION: Increase of accumulated errors and restriction of measurement pitches are improved in multi-point measurement being defects of the conventional successive three-point measurement method. The accumulated errors of the successive three-point measurement is proportional to a square of the number of measurement points. In the invention, a long entire length is divided into several blocks, parts between the blocks are measured in the conventional three-point method with three sensors 21, 22 and 23. The inside of the block is measured by simultaneous signal processing with a fourth sensor 24, and remarkable reduction of the accumulated errors and option of the measurement pitches are enabled. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、長尺測定を必要とする大型液晶用マスク基板、機械加工面、定盤基準面などの真直度を測定する方法と装置に関する。 The present invention relates to a method and apparatus for measuring the straightness of a mask substrate for large liquid crystal, a machined surface, a surface plate reference surface, and the like that require long measurement.

<従来の技術>
従来、長尺物の真直度測定は精密水準器による連鎖法、レーザー反射による精密角度計測による連鎖法、静圧軸受けなどの高精度基準軸をベースとした手法などが用いられている。
<Conventional technology>
Conventionally, straightness measurement of a long object has been performed by a method based on a high precision reference axis such as a chain method using a precision level, a chain method using precise angle measurement by laser reflection, or a static pressure bearing.

これらの技術では、水準器と被測定物との接触、レーザー反射ミラーと被測定物との接触などが液晶関連機器で問題となっており、非接触状態での測定システムが待望されている。 In these techniques, contact between the level and the object to be measured, contact between the laser reflecting mirror and the object to be measured, etc. are problems in liquid crystal related devices, and a measurement system in a non-contact state is awaited.

また、静圧軸受けなどの基準軸をベースとした手法では1mを超える高精度基準軸の製作が高コストとなり、低コストでの測定手法が製造現場から要求されている。 In addition, in a method based on a reference axis such as a static pressure bearing, it is expensive to manufacture a high-precision reference axis exceeding 1 m, and a measurement method at a low cost is required from the manufacturing site.

従来技術として、例えば、特許文献1による直交2周波レーザーと遂次3点法を用いた測定手法は、ナノオーダーでも測定可能な発明である。しかし、本発明では長尺に対して、測定点が多数になり累積誤差が大きくなる。また、遂次3点法ではセンサー幅よりも小さなピッチの測定が不可能である。 As a conventional technique, for example, a measurement technique using an orthogonal dual-frequency laser and a sequential three-point method according to Patent Document 1 is an invention that can be measured even in the nano-order. However, in the present invention, the number of measurement points becomes large and the accumulated error increases with respect to the long length. In addition, the successive three-point method cannot measure a pitch smaller than the sensor width.

遂次3点法では、累積誤差が測定点数の2乗で増加するため、測定点数を最小限にする必要がある。式(1)は最大累積誤差:Zmax、測定点数:N、測定誤差:δz
の関係式である。
Zmax=N×δz/8 ―――― (1)
In the sequential three-point method, the cumulative error increases with the square of the number of measurement points, so the number of measurement points must be minimized. Equation (1) is the maximum cumulative error: Zmax, the number of measurement points: N, the measurement error: δz
It is a relational expression.
Zmax = N 2 × δz / 8 ―――― (1)

特許公開2001−165640Patent Publication 2001-165640

上述の如く、従来技術に係る長尺物の真直度測定において、非接触状態での測定、低コストな高精度基準軸の利用、任意な測定ピッチの選定、累積誤差の低減などが不可能である。 As described above, in the straightness measurement of long objects according to the prior art, it is impossible to measure in a non-contact state, use a low-cost high-precision reference axis, select an arbitrary measurement pitch, reduce cumulative error, etc. is there.

本発明は、このような問題状況に対応するために、遂次3点測定法を改善し、低コストなガイド軸の利用、非接触での計測、センサー形状に左右されない測定ピッチの選択、累積誤差の軽減化などを可能とした真直度測定技術を提供することにある。 In order to cope with such a problem situation, the present invention has improved the sequential three-point measurement method, using a low-cost guide shaft, non-contact measurement, selection of measurement pitch independent of sensor shape, accumulation The object is to provide a straightness measurement technique capable of reducing errors.

上述の目的を達成する本発明の真直度測定方式は、従来の高精度軸を基準とした母性原理の測定法に代って、市販の高精度リニアガイドベアリングとボールねじの組み合わせによる搬送機構などを使用し、大ピッチ用の距離センサー3個で大きなブロック間を計測し、4〜5個目の距離センサーでブロック内の小ピッチの測定を同時信号処理で行い、累積誤差の低減を図ることを特徴とする。 The straightness measurement method of the present invention that achieves the above-mentioned object is a transfer mechanism using a combination of a commercially available high-precision linear guide bearing and a ball screw, in place of the conventional maternal principle measurement method based on a high-precision axis. , Measure the distance between large blocks with three distance sensors for large pitch, and measure the small pitch in the block with simultaneous signal processing with the fourth to fifth distance sensors to reduce the cumulative error. It is characterized by.

また、本発明の測定方式は多点の距離センサーからの信号を同時に処理するため機械的振動などの外乱に強い測定法である。 In addition, the measurement method of the present invention is a measurement method that is resistant to disturbances such as mechanical vibrations because signals from multi-point distance sensors are processed simultaneously.

以上説明したように本発明によれば、市販の高精度リニアガイドベアリングとボールねじの組み合わせによる搬送機構を使用し、非接触方式の距離センサーを5個設置した遂次多点方式で距離測定データをソフト処理することにより、簡便な機構の非接触状態で長尺物の真直度を高速に計測することが可能である。 As described above, according to the present invention, distance measurement data is obtained by a sequential multi-point method using a non-contact type distance sensor using a conveyance mechanism that is a combination of a commercially available high-precision linear guide bearing and a ball screw. It is possible to measure the straightness of a long object at high speed in a non-contact state with a simple mechanism.

以下、本発明の実施の形態について、添付図面に基づき詳細に説明する。本発明では、遂次3点法を改良した遂次4点法、5点法が発明ポイントであるが、説明が煩雑であるため、まず最初に3点法の概略を説明し、続いて本発明の内容を説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present invention, the sequential four-point method and the five-point method, which are improvements of the sequential three-point method, are the points of the invention. However, since the explanation is complicated, the outline of the three-point method is described first, followed by The contents of the invention will be described.

図1〜図5は従来の遂次3点計測法の測定手法とソフト処理の概略説明である。図6〜8は本発明の第一の実施の形態に係り、図6はピッチ可変型遂次4点測定ユニット、図7は測定ピッチ可変型遂次4点真直度測定法、図8は遂次4点法のデータ取得とデータはめ込みである。
図9〜10は本発明の第二の実施の形態に係り、図9はピッチ可変型遂次5点測定ユニット、図10は遂次5点真直度測定法でのデータ取得とデータはめ込みである。
図11は遂次4点真直度測定システムのモデル図である。
<遂次3点法>
1 to 5 are schematic descriptions of the measurement method and software processing of the conventional sequential three-point measurement method. 6 to 8 relate to the first embodiment of the present invention, FIG. 6 is a pitch variable type successive four-point measuring unit, FIG. 7 is a measurement pitch variable type successive four-point straightness measuring method, and FIG. Data acquisition and data fitting of the next four-point method.
9 to 10 relate to the second embodiment of the present invention, FIG. 9 is a pitch variable type successive five-point measuring unit, and FIG. 10 is data acquisition and data fitting in the successive five-point straightness measuring method. .
FIG. 11 is a model diagram of a sequential 4-point straightness measurement system.
<Successive three-point method>

本発明では、遂次3点法を改良した遂次4点法、5点法が発明ポイントであるが、説明が煩雑であるため、まず最初に3点法の概略を説明する。
図1は遂次3点法での測定ユニット1であり、距離センサー21、22、23の3個が取り付け板5に測定ピッチPで設置されている。
In the present invention, the sequential 4-point method and the 5-point method, which are improvements of the sequential 3-point method, are the invention points. However, since the explanation is complicated, the outline of the 3-point method will be described first.
FIG. 1 shows a measurement unit 1 according to a sequential three-point method, in which three distance sensors 21, 22, and 23 are installed on a mounting plate 5 at a measurement pitch P.

図2は距離センサー21,22,23の零点設定を説明しており、高精度な基準ブロック6の平面上で各センサーまでの距離S1,S2,S3を零点と定める。 FIG. 2 illustrates the zero point setting of the distance sensors 21, 22, and 23, and the distances S1, S2, and S3 to each sensor on the plane of the high-precision reference block 6 are determined as zero points.

図3は遂次3点真直度の測定方法であり、測定ポイントP1〜P6までの測定手法である。第1ステップとして、測定ユニット1で測定ポイントP1,P2,P3までの距離S1,S2,S3を計測する。第2ステップとして、測定ユニット1を測定方向3にPだけ移動し、測定ポイントP2,P3,P4までの新たな距離S1,S2,S3を計測する。第3ステップとして、測定ユニット1を測定方向3にPだけ移動し、測定ポイントP3,P4,P5までの新たな距離S1,S2,S3を計測する。以下同様の手法でP6まで遂次に測定を行う。 FIG. 3 shows a method for measuring the straightness of the three consecutive points, and is a method for measuring the measurement points P1 to P6. As a first step, the measurement unit 1 measures the distances S1, S2, S3 to the measurement points P1, P2, P3. As a second step, the measurement unit 1 is moved by P in the measurement direction 3 and new distances S1, S2, S3 to the measurement points P2, P3, P4 are measured. As a third step, the measurement unit 1 is moved by P in the measurement direction 3 and new distances S1, S2, S3 to the measurement points P3, P4, P5 are measured. Subsequently, measure until P6 using the same method.

図4は遂次3点真直度測定での座標計算方法である。本図では測定ポイントP1,P2,P3の座標が既知であり、P4の座標の求め方を説明している。距離センサーD1のY軸座標D1yは測定ポイントP2のY軸座標P2yに距離S1を加えたものである。同様に距離センサーD2のY軸座標D2yは測定ポイントP3のY軸座標P3yに距離S2を加えたものである。
線D1D2の勾配aは(D2y−D1y)/Pである。距離センサーD3のY軸座標D3yは(D2y+a×P)となり、P4のY軸座標はD3yから距離センサーS3の距離S3を減じたものである。
FIG. 4 shows a coordinate calculation method in the three-point straightness measurement. In this figure, the coordinates of the measurement points P1, P2, and P3 are known, and the method for obtaining the coordinates of P4 is described. The Y-axis coordinate D1y of the distance sensor D1 is obtained by adding the distance S1 to the Y-axis coordinate P2y of the measurement point P2. Similarly, the Y-axis coordinate D2y of the distance sensor D2 is obtained by adding the distance S2 to the Y-axis coordinate P3y of the measurement point P3.
The slope a of the line D1D2 is (D2y−D1y) / P. The Y-axis coordinate D3y of the distance sensor D3 is (D2y + a × P), and the Y-axis coordinate of P4 is obtained by subtracting the distance S3 of the distance sensor S3 from D3y.

以下同様の手法で、測定ポイントP5,P6のY軸座標を計算することができ、P1〜P6の真直度を座標表示することが出来る。この手法は測定ポイント間の勾配aを遂次測定しており、図3における各ステップでのユニット位置のY方向の平行誤差は許容される。したがって、高精度軸を使用した母性原理に基づいた測定法では無く、測定ユニットの搬送精度に高精度を要求されないのが特徴である。 Thereafter, the Y-axis coordinates of the measurement points P5 and P6 can be calculated by the same method, and the straightness of P1 to P6 can be displayed as coordinates. In this method, the gradient a between measurement points is successively measured, and a parallel error in the Y direction of the unit position at each step in FIG. 3 is allowed. Therefore, it is not a measurement method based on the maternal principle using a high-precision axis, and is characterized in that high accuracy is not required for the conveyance accuracy of the measurement unit.

しかし、遂次3点法では式(1)で示したように累積誤差が測定点数の2乗で増加するため、長尺物を小ピッチで測定するような測定点数の多い場合は不利である。 However, since the cumulative error increases by the square of the number of measurement points as shown in Equation (1) in the successive three-point method, it is disadvantageous when there are many measurement points for measuring a long object at a small pitch. .

図5は測定ポイント数9の場合のユニットポジションと距離データのはめ込み状況の説明図である。ユニットポジション1で測定ポイントP1,P2,P3の距離が測定できる。ユニットポジション2で測定ポイントP2,P3,P4の距離が測定できる。以下、遂次ユニットポジション7まで測定する。
これらの距離データと図4の座標計算方法により、ユニットポジション2ではP4、ユニットポジション3ではP5の各座標が決定できる。以下、ユニットポジション7での測定ポイントP9まで遂次計算し、全ポイントの座標を決定できる。
<遂次4点法>
FIG. 5 is an explanatory diagram of the setting status of the unit position and distance data when the number of measurement points is nine. Unit unit 1 can measure the distance of measurement points P1, P2, P3. Unit unit 2 can measure the distance of measurement points P2, P3, and P4. Hereinafter, measurement is performed up to the successive unit position 7.
With these distance data and the coordinate calculation method of FIG. 4, the coordinates of P4 can be determined at unit position 2 and P5 at unit position 3. Hereinafter, the coordinates of all the points can be determined by successively calculating up to the measurement point P9 at the unit position 7.
<Successive 4-point method>

図6からは本発明の趣旨である。従来の遂次3点法では測定の累積誤差が測定点数のベキ乗になる欠点があるため、測定点数を少なくして累積誤差を軽減する必要がある。そこで長尺物測定において、大ピッチの3点法で数ブロックを計測し、各ブロックを境界条件としてブロック内をさらに小さなピッチで計測する手法を確立した。本手法ではブロック内での計測ポイントで小ピッチ間をデータ処理するため、累積誤差を大幅に軽減することが可能である。 FIG. 6 is the gist of the present invention. Since the conventional sequential three-point method has a drawback that the accumulated error of measurement becomes a power of the number of measurement points, it is necessary to reduce the accumulated error by reducing the number of measurement points. Therefore, we have established a method to measure several blocks using a three-point method with a large pitch and to measure the inside of the block with a smaller pitch, using each block as a boundary condition in the measurement of long objects. In this method, since data is processed between small pitches at the measurement points in the block, the accumulated error can be greatly reduced.

図6はピッチ可変型遂次4点測定ユニットの構成図である。ユニット1には従来の3点手法と同様な距離センサー21,22,23が大ピッチPで取り付け板5に設置されている。さらに、4個目の距離センサー24は距離センサー21の隣に小ピッチδPの位置に設置されている。 FIG. 6 is a configuration diagram of a pitch variable type successive four-point measuring unit. In the unit 1, distance sensors 21, 22, 23 similar to the conventional three-point method are installed on the mounting plate 5 with a large pitch P. Further, the fourth distance sensor 24 is installed next to the distance sensor 21 at a position with a small pitch δP.

図7は距離センサーの零点設定後の逐次4点真直度測定方法である。第1ステップとして、測定ユニット1Aで測定ポイントP1,P2,P4,P7までの距離を計測する。第2ステップとして、測定ユニットを測定方向3にδPだけ移動し、測定ポイントP2,P3,P5,P8までの新たな距離を計測する。第3ステップとして、測定ユニットを測定方向3にδPだけ移動し、測定ポイントP3,P4,P6,P9までの新たな距離を計測する。以下同様の手法でP16まで遂次に測定を行う。 FIG. 7 shows a sequential four-point straightness measurement method after setting the zero point of the distance sensor. As a first step, the distance to the measurement points P1, P2, P4, P7 is measured by the measurement unit 1A. As a second step, the measurement unit is moved in the measurement direction 3 by δP, and new distances to the measurement points P2, P3, P5, and P8 are measured. As a third step, the measurement unit is moved in the measurement direction 3 by δP, and new distances to the measurement points P3, P4, P6, and P9 are measured. Subsequently, measure until P16 using the same method.

図8は遂次4点真直度測定法でのP1〜P13までの距離データ取得とデータはめ込みの相関図である。(1)図は上述の図5で説明したユニットポジションと測定ポイントをパターン図で表している。黒色の枠は図6での距離センサー21,22,23のピッチPでの測定データであり、灰色枠は図6での距離センサー24でのピッチδPでの測定データである。 FIG. 8 is a correlation diagram of distance data acquisition and data fitting from P1 to P13 in the successive four-point straightness measurement method. (1) The figure shows the unit positions and measurement points described with reference to FIG. 5 in a pattern diagram. The black frame is measurement data at the pitch P of the distance sensors 21, 22, and 23 in FIG. 6, and the gray frame is measurement data at the pitch δP at the distance sensor 24 in FIG.

(2)図は測定ポイントの座標決定手順の説明図である。ユニットポジション1,4,7
のデータと図4の座標計算方法により、測定ポイントP1,P4,P7,P10,P13の座標が決定できる。これは大ピッチで4分割にブロック化したことに相当する。同時に小ピッチδPでの測定ポイントP2,P5,P8の座標も図4の方法を応用して決定される。
(2) FIG. 2 is an explanatory diagram of the procedure for determining the coordinates of a measurement point. Unit position 1, 4, 7
The coordinates of the measurement points P1, P4, P7, P10, and P13 can be determined by the above data and the coordinate calculation method of FIG. This corresponds to the block being divided into four at a large pitch. At the same time, the coordinates of the measurement points P2, P5, and P8 at the small pitch δP are also determined by applying the method of FIG.

次に、すでに決定された座標を足がかりとして、各ブロック内の各測定ポイントの座標を決定することができる。
ユニットポジション2でのP2,P5の距離データよりP3,P8の座標、
ユニットポジション5での測定ポイントP5,P8よりP6,P11の座標、
ユニットポジション6での測定ポイントP6,P7よりP9,P12の座標
が決定でき、P1〜P13の全座標を決定できる。
Next, the coordinates of each measurement point in each block can be determined using the already determined coordinates as a step.
From the P2 and P5 distance data at unit position 2, the coordinates of P3 and P8,
Coordinates of P6 and P11 from measurement points P5 and P8 at unit position 5,
From the measurement points P6 and P7 at unit position 6, the coordinates of P9 and P12 can be determined, and all the coordinates of P1 to P13 can be determined.

しかし、遂次4点法では距離センサーの幅寸法BがδPの最小限界値となり、さらに小さなピッチでのデータ取得は困難となる欠点がある。
< 遂次5点法 >
However, the successive four-point method has the drawback that the width dimension B of the distance sensor becomes the minimum limit value of δP, making it difficult to acquire data at a smaller pitch.
<Successive 5-point method>

図9は本発明の第二の実施の形態に係り、遂次4点法を改善した遂次5点法での測定ユニットの構成図である。ユニット1には従来の遂次3点法と同様な距離センサー21,22,23が大ピッチPで取り付け板5に設置されている。
4個目の距離センサー24は距離センサー21の隣に小ピッチδPの2倍の位置に設置され、5個目の距離センサー25は距離センサー22よりδPの3倍の位置に設置されている。
但し、δP<B である。
FIG. 9 relates to the second embodiment of the present invention, and is a configuration diagram of a measurement unit based on the sequential 5-point method, which is an improvement of the sequential 4-point method. In the unit 1, distance sensors 21, 22, 23 similar to the conventional sequential three-point method are installed on the mounting plate 5 with a large pitch P.
The fourth distance sensor 24 is installed next to the distance sensor 21 at a position twice the small pitch δP, and the fifth distance sensor 25 is installed at a position three times δP from the distance sensor 22.
However, δP <B.

図9でのδPは距離センサーの取り付け幅寸法Bよりも小さくすることができる。例えば、B=25mmの場合でもδP=20mmが可能である。その場合、距離センサー24、25はそれぞれ隣のセンサーよりも40mm、60mmの位置に設置される。 ΔP in FIG. 9 can be made smaller than the mounting width dimension B of the distance sensor. For example, even when B = 25 mm, δP = 20 mm is possible. In this case, the distance sensors 24 and 25 are installed at positions of 40 mm and 60 mm from the adjacent sensors, respectively.

図10は遂次5点真直度測定法でのP1〜P19までの距離データの取得とデータはめ込みの説明図である。(1)図はユニットポジションと測定ポイントをパターン図で表している。
黒色の枠は図9での距離センサー21,22,23での測定データであり、灰色枠は図9での距離センサー24及び25での測定データである。
FIG. 10 is an explanatory diagram of the acquisition and data fitting of distance data from P1 to P19 in the sequential 5-point straightness measurement method. (1) The figure shows unit positions and measurement points in a pattern diagram.
The black frame is the measurement data of the distance sensors 21, 22, and 23 in FIG. 9, and the gray frame is the measurement data of the distance sensors 24 and 25 in FIG.

(2)図は測定ポイントの座標決定手法の説明図である。ユニットポジション1,7のデータより、従来の遂次3点法によって測定ポイントP1,P7,P13,P19の座標が決定できる。これは大ピッチで3分割にブロック化したことに相当する。同時に小ピッチδPでの測定ポイントP3,P9,P10,P16も決定される。 (2) The figure is an explanatory diagram of a method for determining the coordinates of a measurement point. From the data of the unit positions 1 and 7, the coordinates of the measurement points P1, P7, P13 and P19 can be determined by the conventional sequential three-point method. This is equivalent to dividing into 3 blocks at a large pitch. At the same time, measurement points P3, P9, P10, and P16 at a small pitch δP are also determined.

次にすでに決定された測定ポイントを足がかりとして、各ブロック内の各測定ポイントの座標を、上述の図8での説明と同様の手法で決定することができる。
ユニットポジション3での測定ポイントP3,P9よりP5,P12,P15の座標、
ユニットポジション4での測定ポイントP10,P16よりP4,P6の座標、
ユニットポジション6での測定ポイントP6,P12よりP8,P18の座標、
ユニットポジション2での測定ポイントP4,P8よりP2,P11,P14の座標、
ユニットポジション5での測定ポイントP5,P11よりP17の座標が決定でき、
P1〜P19の全座標を決定できる。
Next, using the already determined measurement points as a foothold, the coordinates of each measurement point in each block can be determined by the same method as described in FIG.
Coordinates of measurement points P3, P9 to P5, P12, P15 at unit position 3,
Coordinates of P4 and P6 from measurement points P10 and P16 at unit position 4,
The coordinates of P8 and P18 from measurement points P6 and P12 at unit position 6,
The coordinates of P2, P11, P14 from the measurement points P4, P8 at unit position 2,
The coordinates of P17 can be determined from measurement points P5 and P11 at unit position 5.
All coordinates of P1 to P19 can be determined.

以上説明したように本発明によれば、
測定系の運動基準に高精度な母性基準が不要であり、
複数の距離センサーの信号処理を同時に処理するため振動などの外乱に強く、
ブロック分割法の採用による累積誤差の軽減
などにより、長尺物を高精度に測定できる。
As described above, according to the present invention,
There is no need for a high-precision maternal standard in the motion standard of the measurement system.
Resistant to disturbances such as vibration, because it processes the signal processing of multiple distance sensors simultaneously,
Long objects can be measured with high accuracy by reducing accumulated errors by adopting the block division method.

図11は遂次4点真直度測定システムのモデル図であり、測定ユニット1、1軸駆動ユニット4、ゼロ設定用基準ブロック6、被測定物7から構成されている。測定ユニット1は距離センサー21,22,23,24とセンサー取り付け板5から構成されている。さらに、1軸ユニット4にはボールねじが内蔵されており、モーター8の回転によって測定ユニット1を測定方向3に搬送できる機構となっている。 FIG. 11 is a model diagram of a sequential four-point straightness measurement system, which includes a measurement unit 1, a single-axis drive unit 4, a zero setting reference block 6, and an object to be measured 7. The measurement unit 1 includes distance sensors 21, 22, 23, 24 and a sensor mounting plate 5. Further, the single-axis unit 4 has a built-in ball screw, which is a mechanism that can transport the measurement unit 1 in the measurement direction 3 by rotation of the motor 8.

距離センサーからのデータは、まず最初に測定ユニット1をゼロ設定用基準ブロック6のポジションに設定して距離センサー4個のゼロ点設定をおこなう。次に測定ユニット1を被測定物7に向かって測定方向3の方向に駆動させ、連続移動をさせながら測定ポイントのピッチδPごとに4台の距離センサーからのデータを同時に取得する。 For data from the distance sensor, first, the measurement unit 1 is set to the position of the reference block 6 for zero setting, and the zero point of the four distance sensors is set. Next, the measurement unit 1 is driven in the measurement direction 3 toward the object 7 to be measured, and data from four distance sensors are simultaneously acquired for each measurement point pitch δP while continuously moving.

これまで、搬送系に並級リニアガイドベアリング、距離センサーに分解能0.1μmの高精度CCD搭載型レーザ変位計、距離センサー間ピッチ:P=100mmとした実験装置において、長さ550mm(真直度0.2μm)の高精度基準ブロックを被測定物として真直度の測定を行い、100mm/secの高速測定度条件でも、約1μmの測定精度を得た。 Up to now, in an experimental device with a standard linear guide bearing for the transport system, a high-precision CCD mounted laser displacement meter with a resolution of 0.1 μm for the distance sensor, and a pitch between the distance sensors: P = 100 mm, the length is 550 mm (straightness is 0) .2 μm) high-precision reference block was used to measure the straightness, and a measurement accuracy of about 1 μm was obtained even under a high-speed measurement degree condition of 100 mm / sec.

本発明は、長尺測定を必要とする大型液晶用マスク基板、機械加工面、定盤基準面などの製造分野における、真直度を測定する検査工程で利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used in an inspection process for measuring straightness in a manufacturing field such as a mask substrate for a large liquid crystal that requires long measurement, a machined surface, and a surface plate reference surface.

遂次3点真直度測定での距離センサーの配列を説明した測定ユニットである。This is a measurement unit that explains the array of distance sensors in the measurement of the three-point straightness. 各距離センサーの零点設定法の説明図である。It is explanatory drawing of the zero point setting method of each distance sensor. 遂次3点真直度測定の測定方法の説明図である。It is explanatory drawing of the measuring method of a sequential three-point straightness measurement. 遂次3点真直度測定での座標計算方法であるThis is a coordinate calculation method for measuring the straightness of 3 points. 遂次3点真直度測定におけるユニットポジションでの距離データの取得と座標データのはめ込みの説明図であるIt is explanatory drawing of the acquisition of the distance data in the unit position and the fitting of the coordinate data in the successive three-point straightness measurement ピッチ可変型遂次4点真直度測定での距離センサーの配列を説明した測定ユニットである。It is a measurement unit explaining the arrangement of distance sensors in the pitch variable type sequential 4-point straightness measurement. 距離センサーの零点設定後の逐次4点真直度測定の方法である。This is a method of measuring the straightness of four points sequentially after setting the zero point of the distance sensor. 遂次4点真直度測定法での距離データの取得と座標データはめ込みの相関図である。FIG. 5 is a correlation diagram of distance data acquisition and coordinate data fitting in a sequential four-point straightness measurement method. 本発明の第二の実施の形態に係り、遂次4点法を改善した遂次5点法での測定ユニットの構成図である。It is a block diagram of the measurement unit by the sequential 5-point method which concerns on 2nd embodiment of this invention and improved the sequential 4-point method. 遂次5点真直度測定法での距離データの取得と座標データはめ込みの相関図である。FIG. 5 is a correlation diagram of distance data acquisition and coordinate data fitting in a sequential 5-point straightness measurement method. 遂次4点真直度測定システムのモデル図である。It is a model figure of a sequential 4-point straightness measurement system.

符号の説明Explanation of symbols

1 センサーユニット
1A センサーユニット
1B センサーユニット
1C センサーユニット
21 距離センサー
22 距離センサー
23 距離センサー
24 距離センサー
25 距離センサー
3 測定方向
4 1軸駆動ユニット
5 センサー取り付け板
6 ゼロ点設定用基準ブロック
7 被測定物
8 モーター
DESCRIPTION OF SYMBOLS 1 Sensor unit 1A Sensor unit 1B Sensor unit 1C Sensor unit 21 Distance sensor 22 Distance sensor 23 Distance sensor 24 Distance sensor 25 Distance sensor 3 Measurement direction 4 Single axis drive unit 5 Sensor mounting plate 6 Zero point setting reference block 7 Object to be measured 8 Motor

Claims (6)

精密機構及び部品の真直度測定において、距離センサーを4個以上設置し、等ピッチ間隔で遂次多点測定を特徴とする真直度測定方法と装置。 A straightness measurement method and device that features four or more distance sensors in order to measure the straightness of precision mechanisms and parts, and features multi-point measurement at regular intervals. 距離センサー3個で大ピッチのブロックポイントを計測し、4個目以上の距離センサーでブロック間の小ピッチを計測することを特徴とする請求項1記載の方法。 2. The method according to claim 1, wherein a block point having a large pitch is measured by three distance sensors, and a small pitch between blocks is measured by a fourth or more distance sensor. 距離センサーのデータ取り込みを静的状態および動的状態で行えることを特徴とする請求項1または2記載の方法。 3. The method according to claim 1, wherein the data acquisition of the distance sensor can be performed in a static state and a dynamic state. 各距離センサーのゼロ基準を設定するための基準原器を設置していることを特徴とする請求項1〜3のいずれか一つに記載の装置。 The apparatus according to any one of claims 1 to 3, further comprising a reference standard for setting a zero reference for each distance sensor. 各距離センサーからの信号を同時に処理し、振動などの外乱要因を排除することを特徴とする請求項1〜4のいずれか一つに記載の装置。 The apparatus according to claim 1, wherein signals from the distance sensors are simultaneously processed to eliminate disturbance factors such as vibration. 遂次多点ソフト処理による真直度測定を特徴とする請求項1〜5のいずれか一つに記載の方法。

















6. The method according to claim 1, wherein the straightness is measured by successive multipoint software processing.

















JP2006165579A 2006-06-15 2006-06-15 Method and device for multiple point measurement of perpendicularity Pending JP2007333556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006165579A JP2007333556A (en) 2006-06-15 2006-06-15 Method and device for multiple point measurement of perpendicularity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006165579A JP2007333556A (en) 2006-06-15 2006-06-15 Method and device for multiple point measurement of perpendicularity

Publications (1)

Publication Number Publication Date
JP2007333556A true JP2007333556A (en) 2007-12-27

Family

ID=38933167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165579A Pending JP2007333556A (en) 2006-06-15 2006-06-15 Method and device for multiple point measurement of perpendicularity

Country Status (1)

Country Link
JP (1) JP2007333556A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252633A (en) * 2011-05-05 2011-11-23 陕西威蓝工业自动化有限公司 Method for measuring track direction and horizontal irregularity based on plot points
CN102607474A (en) * 2012-03-11 2012-07-25 东华大学 High-precision large-plane flatness detection method based on liquid-level method
CN102967287A (en) * 2012-11-26 2013-03-13 青岛港湾职业技术学院 High-precision detection instrument and method for measuring perpendicularity of large mechanical element
CN104897105A (en) * 2014-03-05 2015-09-09 住友重机械工业株式会社 Linear shape measurement method and linear
CN105928482A (en) * 2015-02-26 2016-09-07 住友重机械工业株式会社 Shape measuring apparatus, processing apparatus, and shape measuring method
KR101808282B1 (en) * 2016-05-11 2017-12-13 엑사전자 주식회사 Apparatus and Method for Detecting Run-Out of Break Disk for Vehicle
CN109029241A (en) * 2018-10-25 2018-12-18 北京理工大学 A kind of verticality measurement device
CN117685877A (en) * 2023-10-30 2024-03-12 常州市大成真空技术有限公司 Error influence factor analysis method of measuring device and measuring device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252633A (en) * 2011-05-05 2011-11-23 陕西威蓝工业自动化有限公司 Method for measuring track direction and horizontal irregularity based on plot points
CN102607474A (en) * 2012-03-11 2012-07-25 东华大学 High-precision large-plane flatness detection method based on liquid-level method
CN102967287A (en) * 2012-11-26 2013-03-13 青岛港湾职业技术学院 High-precision detection instrument and method for measuring perpendicularity of large mechanical element
CN104897105A (en) * 2014-03-05 2015-09-09 住友重机械工业株式会社 Linear shape measurement method and linear
CN105928482A (en) * 2015-02-26 2016-09-07 住友重机械工业株式会社 Shape measuring apparatus, processing apparatus, and shape measuring method
CN105928482B (en) * 2015-02-26 2020-09-29 住友重机械工业株式会社 Shape measuring apparatus, machining apparatus, and shape measuring method
KR101808282B1 (en) * 2016-05-11 2017-12-13 엑사전자 주식회사 Apparatus and Method for Detecting Run-Out of Break Disk for Vehicle
CN109029241A (en) * 2018-10-25 2018-12-18 北京理工大学 A kind of verticality measurement device
CN117685877A (en) * 2023-10-30 2024-03-12 常州市大成真空技术有限公司 Error influence factor analysis method of measuring device and measuring device

Similar Documents

Publication Publication Date Title
JP2007333556A (en) Method and device for multiple point measurement of perpendicularity
US4587622A (en) Method and apparatus for determining and correcting guidance errors
CN110487210B (en) Honeycomb core surface profile measuring method
CN110530296B (en) Method for determining line laser installation error angle
US20100245843A1 (en) Method for measuring the roundness of round profiles
JPH1183438A (en) Position calibration method for optical measuring device
CN107121060B (en) Inner wall measuring instrument and offset calculating method
JP4970204B2 (en) Straightness measuring device, thickness variation measuring device, and orthogonality measuring device
CN102122144B (en) Numerical control system for detecting cam contours
CN103890535A (en) Method for measuring a three-dimensional object
CN113624136B (en) Part detection device and part detection device calibration method
JP2006258612A (en) Inter-shaft angle correction method
KR101198492B1 (en) method and system for measurement of roll diameter
JP2003035517A (en) Lead pin pitch/levelness testing device using two- dimensional laser displacement sensor
JP4931867B2 (en) Variable terminal
JP2008524576A (en) Sequential multi-probe method for straightness measurement of straight rulers
JP6203502B2 (en) Structure and method for positioning a machining tool relative to a workpiece
EP1515115A2 (en) Form measuring device, form measuring method, form analysis device, form analysis program, and recording medium storing the program
JP2005037341A (en) Electronic type length/angle measuring instrument
CN2872297Y (en) Non-contacting and large-diameter measuring equipment based on image method
JP5030917B2 (en) Attitude measurement method and grinding apparatus
JP6757391B2 (en) Measuring method
JP3444800B2 (en) Tilt stage
Kang et al. Measurement and evaluation of form deviation error of disk cam with an exclusively built profile-measuring machine
JP2008216122A (en) Surface property measuring device