JP2007333160A - Self-aligning roller bearing - Google Patents

Self-aligning roller bearing Download PDF

Info

Publication number
JP2007333160A
JP2007333160A JP2006167899A JP2006167899A JP2007333160A JP 2007333160 A JP2007333160 A JP 2007333160A JP 2006167899 A JP2006167899 A JP 2006167899A JP 2006167899 A JP2006167899 A JP 2006167899A JP 2007333160 A JP2007333160 A JP 2007333160A
Authority
JP
Japan
Prior art keywords
outer ring
ring raceway
spherical
inner ring
raceway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006167899A
Other languages
Japanese (ja)
Inventor
Sachiko Noji
祥子 野地
Hiroki Mizuno
浩樹 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006167899A priority Critical patent/JP2007333160A/en
Publication of JP2007333160A publication Critical patent/JP2007333160A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • F16C33/6651Retaining the liquid in or near the bearing in recesses or cavities provided in retainers, races or rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/42Groove sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve lubrication characteristic at a contact part between an outer ring raceway 5 and the rolling face of each spherical roller 3, 3, and to thereby suppress heat generation or generation of early exfoliation at the contact part. <P>SOLUTION: A surface shape of the outer ring raceway 5 is regulated to satisfy such following conditions that a three-dimensional arithmetic mean roughness is 0.2-0.5 μm, and that a volume parameter S<SB>a2</SB>of a protruded valley part of a three-dimensional load curve is 3.5 or higher and the depth parameter S<SB>Vk</SB>is 0.4 μm or higher, respectively. Hereby, valleys having proper depth and volume respectively are scattered properly on the surface of the outer ring raceway 5, and thereby a sufficient oil film is formed on the contact part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明に係る自動調心ころ軸受は、例えばハウジングの内側に回転軸を支承する為に、製紙機械、金属の圧延機等、各種産業機械装置のロール等の回転支持部に組み込んだ状態で使用する。   The self-aligning roller bearing according to the present invention is used in a state where it is incorporated in a rotation support portion of a roll or the like of various industrial machine devices such as a papermaking machine and a metal rolling mill in order to support a rotating shaft inside the housing, for example. To do.

例えば重量の嵩む軸をハウジングの内側に回転自在に支承する為に従来から、例えば特許文献1、2に記載された様な自動調心ころ軸受が使用されている。図1は、この様な自動調心ころ軸受の従来構造の1例を示している。この自動調心ころ軸受は、互いに同心に組み合わされた外輪1と内輪2との間に、複数の球面ころ3、3を転動自在に配列して成る。そして、1対の保持器4、4により、これら複数の球面ころ3、3の分離防止を図っている。これら各保持器4、4は、金属板をプレス成形して成る、所謂プレス保持器である。   For example, in order to rotatably support a heavy shaft on the inside of a housing, a self-aligning roller bearing as described in, for example, Patent Documents 1 and 2 has been used. FIG. 1 shows an example of a conventional structure of such a self-aligning roller bearing. This self-aligning roller bearing is formed by rolling a plurality of spherical rollers 3 and 3 between an outer ring 1 and an inner ring 2 that are concentrically combined with each other. The pair of retainers 4 and 4 prevent separation of the plurality of spherical rollers 3 and 3. Each of these cages 4 and 4 is a so-called press cage formed by press-molding a metal plate.

上記外輪1の内周面には、単一の中心を有する球状凹面である外輪軌道5を形成している。又、内輪2の外周面の幅方向(図1の左右方向)両側には、それぞれが上記外輪軌道5と対向する、1対の内輪軌道6、6を形成している。又、上記複数の球面ころ3、3は、その最大径部が各球面ころ3、3の軸方向長さの中央部にある対称形(ビヤ樽形)、或は、最大径部が中央部から軸方向にずれた非対称形で、上記外輪軌道5と上記1対の内輪軌道6、6との間に、2列に分けて、両列毎に複数個ずつ、転動自在に設けている。   An outer ring raceway 5 that is a spherical concave surface having a single center is formed on the inner peripheral surface of the outer ring 1. Further, a pair of inner ring raceways 6 and 6 are formed on both sides of the outer peripheral surface of the inner ring 2 in the width direction (left and right direction in FIG. 1). The plurality of spherical rollers 3 and 3 have a symmetrical shape (beer barrel shape) in which the maximum diameter portion is in the center portion of the axial length of each spherical roller 3 or 3, or the maximum diameter portion from the center portion. An asymmetrical shape shifted in the axial direction is provided between the outer ring raceway 5 and the pair of inner ring raceways 6 and 6 in two rows so as to be freely rollable in both rows.

上述の様に構成される自動調心ころ軸受により、例えばハウジングの内側に回転軸を支承する場合、外輪1をハウジングに内嵌固定し、内輪2を回転軸に外嵌固定する。回転軸と共に内輪2が回転する場合には、複数の球面ころ3、3が転動して、この回転を許容する。ハウジングの軸心と回転軸の軸心とが不一致の場合、外輪1の内側で内輪2が調心する(外輪1の中心軸に対し内輪2の中心軸を傾斜させる)事で、この不一致を補償する。この場合に於いて、外輪軌道5は単一球面状に形成されている為、上記複数の球面ころ3、3の転動は、不一致補償後に於いても、円滑に行なわれる。   For example, when the rotating shaft is supported inside the housing by the self-aligning roller bearing configured as described above, the outer ring 1 is fitted and fixed to the housing, and the inner ring 2 is fitted and fixed to the rotating shaft. When the inner ring 2 rotates together with the rotation shaft, the plurality of spherical rollers 3 and 3 roll to allow this rotation. When the shaft center of the housing and the shaft center of the rotating shaft do not match, the inner ring 2 is aligned inside the outer ring 1 (the center axis of the inner ring 2 is inclined with respect to the center axis of the outer ring 1). To compensate. In this case, since the outer ring raceway 5 is formed in a single spherical shape, the rolling of the plurality of spherical rollers 3 and 3 is smoothly performed even after the inconsistency compensation.

上述の様に作用する自動調心ころ軸受の場合、調心時に、外輪軌道5とこれら各球面ころ3、3の転動面との間で、各球面ころ3、3の幅方向(図1の左右方向)の滑りが生じる。又、上記自動調心ころ軸受の場合、これら各球面ころ3、3にスキューが生じ易い。従って、自動調心ころ軸受の場合、これら外輪軌道5と各球面ころ3、3との接触部で発熱や早期剥離が生じ易くなる。この為、例えば特許文献3〜6に記載されている様に、上記外輪軌道5と各球面ころ3、3との接触部で生じる発熱や早期剥離を抑える技術が、従来から知られている。   In the case of the self-aligning roller bearing acting as described above, the width direction of each spherical roller 3, 3 between the outer ring raceway 5 and the rolling surface of each spherical roller 3, 3 during alignment (FIG. 1). Left and right). In the case of the above self-aligning roller bearing, the spherical rollers 3 and 3 are likely to be skewed. Therefore, in the case of the self-aligning roller bearing, heat generation and early separation are likely to occur at the contact portion between the outer ring raceway 5 and the spherical rollers 3 and 3. For this reason, as described in, for example, Patent Documents 3 to 6, techniques for suppressing heat generation and early separation that occur at the contact portion between the outer ring raceway 5 and the spherical rollers 3 and 3 have been conventionally known.

このうちの特許文献3には、外輪軌道又は内輪軌道と各球面ころの転動面との各接触部のそれぞれの摩擦係数を規制し、これら各球面ころのスキューを抑制する技術が記載されている。又、特許文献4には、外輪軌道に互いに交差する網目状の加工目を形成して、この外輪軌道の軸方向と円周方向との表面粗さをほぼ一定とした技術が記載されている。又、特許文献5には、外輪軌道と内輪軌道との中心線粗さを規制する技術が記載されている。更に、特許文献6には、外輪軌道若しくは内輪軌道の軸方向と円周方向との算術平均粗さ(Ra1、Ra2)、及び、これら両算術平均粗さの比(Ra1/Ra2)をそれぞれ規制すると共に、上記外輪軌道若しくは内輪軌道の軸方向と円周方向との表面粗さの突出谷部平均深さ(Rvk1 、Rvk2 )を規制する技術が記載されている。 Of these, Patent Document 3 describes a technique for regulating the respective friction coefficients of the contact portions between the outer ring raceway or the inner ring raceway and the rolling surface of each spherical roller and suppressing the skew of each spherical roller. Yes. Further, Patent Document 4 describes a technique in which a mesh-like processed mesh that intersects the outer ring raceway is formed, and the surface roughness between the axial direction and the circumferential direction of the outer ring raceway is substantially constant. . Patent Document 5 describes a technique for regulating the center line roughness between the outer ring raceway and the inner ring raceway. Further, in Patent Document 6, arithmetic average roughness (R a1 , R a2 ) between the axial direction and the circumferential direction of the outer ring raceway or the inner ring raceway, and the ratio (R a1 / R a2 ) of these arithmetic mean roughnesses. ) As well as the average depth (R vk1 , R vk2 ) of the projecting troughs of the surface roughness between the axial direction and the circumferential direction of the outer ring raceway or the inner ring raceway.

上述した各特許文献のうち、特許文献3〜5に記載された技術は、各球面ころのスキューを抑制して、外輪軌道とこれら各球面ころの転動面との接触部での発熱や早期剥離の発生を抑える。これに対して、上記特許文献6に記載された技術は、外輪軌道若しくは内輪軌道の表面性状を規制する事により、表面に良好な油溜を存在させ、これら外輪軌道若しくは内輪軌道と各球面ころの転動面との接触部の潤滑特性を良好にして、この接触部で発熱や早期剥離が発生する事を抑える。尚、この様に、表面性状を規制して、表面に良好な油溜を形成する技術として、例えば特許文献7に記載された技術がある。この特許文献7には、スラストころ軸受の各ころの転動面の、輪郭曲線の2乗平方根高さRq 、最大山高さRp 、突出谷部深さRvkをそれぞれ基準長さ毎に算出し、それぞれの平均値が所定の関係を満たす技術が記載されている。 Among the patent documents described above, the techniques described in Patent Documents 3 to 5 suppress the skew of each spherical roller, and generate heat at the contact portion between the outer ring raceway and the rolling surface of each spherical roller, or early. Reduces the occurrence of peeling. In contrast, the technique described in Patent Document 6 described above restricts the surface properties of the outer ring raceway or the inner ring raceway so that a good oil reservoir exists on the surface, and these outer ring raceway or inner ring raceway and each spherical roller. The lubrication characteristics of the contact portion with the rolling surface of the roller are improved, and the occurrence of heat generation and early peeling at the contact portion is suppressed. As a technique for regulating the surface properties and forming a good oil reservoir on the surface in this manner, there is a technique described in Patent Document 7, for example. In this Patent Document 7, the square square root height R q , maximum peak height R p , and protruding valley depth R vk of the rolling surface of each roller of a thrust roller bearing are set for each reference length. A technique for calculating and satisfying a predetermined relationship between respective average values is described.

上述した特許文献6、7に記載された技術の場合、良好な油溜を形成する事が可能であるが、改良の余地がある。即ち、何れの発明の場合にも、表面性状を規制する為のパラメータが二次元である。即ち、直線上のデータを用いて表面性状を規制したものである。この様に、直線上のプロファイルでは、測定個所により谷が存在したりしなかったりする。更に、外輪軌道と各球面ころの転動面との接触が面接触である事を考慮すると、表面上に谷が散在する微視的表面性状を規制するパラメータとして、二次元のものを使用する事は、潤滑性を評価する指標としての油溜の容積を規定する上で必ずしも十分とは言えない。   In the case of the techniques described in Patent Documents 6 and 7 described above, a good oil sump can be formed, but there is room for improvement. That is, in any of the inventions, the parameter for regulating the surface properties is two-dimensional. That is, the surface property is regulated using data on a straight line. Thus, in the profile on a straight line, a valley may or may not exist depending on the measurement location. Furthermore, considering that the contact between the outer ring raceway and the rolling surface of each spherical roller is a surface contact, a two-dimensional parameter is used as a parameter for regulating microscopic surface properties in which valleys are scattered on the surface. This is not necessarily sufficient to define the oil reservoir volume as an index for evaluating lubricity.

特開平5−157116号公報JP-A-5-157116 特許第3529191号公報Japanese Patent No. 3529191 特公昭57−61933号公報Japanese Patent Publication No.57-61933 特開2005−90615号公報JP-A-2005-90615 特開2005−30425号公報JP 2005-30425 A 特開2004−353743号公報JP 2004-353743 A 特開2004−183783号公報JP 2004-183783 A

本発明は、上述の様な事情に鑑みて、外輪軌道と各球面ころの転動面との接触部での潤滑特性をより良好にして、この接触部での発熱や早期剥離の発生を抑制する事ができる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention improves the lubrication characteristics at the contact portion between the outer ring raceway and the rolling surface of each spherical roller, and suppresses the generation of heat and early peeling at this contact portion. It was invented to realize a structure that can be performed.

本発明の自動調心ころ軸受は、何れも、前述の図1に示した従来から知られている自動調心ころ軸受と同様に、外輪と、内輪と、複数個の球面ころとを備える。
このうちの外輪は、球状凹面である外輪軌道を、その内周面に形成している。
又、上記内輪は、上記外輪軌道と対向する1対の内輪軌道を、その外周面に形成している。
又、上記各球面ころは、上記外輪軌道と上記両内輪軌道との間に、2列に分けて、両列毎に複数個ずつ転動自在に設けられている。
Each of the self-aligning roller bearings of the present invention includes an outer ring, an inner ring, and a plurality of spherical rollers, similarly to the conventionally known self-aligning roller bearing shown in FIG.
Among these, the outer ring forms an outer ring raceway having a spherical concave surface on the inner peripheral surface thereof.
Further, the inner ring forms a pair of inner ring raceways opposed to the outer ring raceway on the outer peripheral surface thereof.
Each of the spherical rollers is divided into two rows between the outer ring raceway and the inner ring raceways, and a plurality of spherical rollers are provided so as to be able to roll in each row.

特に、請求項1に記載した自動調心ころ軸受に於いては、上記外輪軌道と内輪軌道とのうちの少なくとも外輪軌道の表面性状が、
三次元算術平均粗さSa が0.2〜0.5μm
三次元負荷曲線の突出谷部の容積パラメータSa2が3.5以上
同じく深さパラメータSvkが0.4μm以上
を、それぞれ満たすものである。
又、請求項2に記載した自動調心ころ軸受に於いては、上記外輪軌道と内輪軌道とのうちの少なくとも外輪軌道の表面性状が、
上記外輪の軸方向と円周方向に関する算術平均粗さRa がそれぞれ0.2〜0.5μm
これら軸方向と円周方向に関する算術平均粗さの比が0.80〜1.20
三次元負荷曲線の突出谷部の容積パラメータSa2が3.5以上
同じく深さパラメータSvkが0.4μm以上
を、それぞれ満たすものである。
In particular, in the self-aligning roller bearing according to claim 1, the surface property of at least the outer ring raceway of the outer ring raceway and the inner ring raceway is:
Three-dimensional arithmetic average roughness S a is 0.2 to 0.5 μm
The volume parameter S a2 of the protruding valley portion of the three-dimensional load curve is 3.5 or more, and the depth parameter S vk is 0.4 μm or more.
In the self-aligning roller bearing according to claim 2, at least a surface property of the outer ring raceway among the outer ring raceway and the inner ring raceway is:
Arithmetic mean roughness R a in the axial direction and circumferential direction of the outer ring, respectively 0.2~0.5μm
The ratio of arithmetic average roughness in the axial direction and the circumferential direction is 0.80 to 1.20.
The volume parameter S a2 of the protruding valley portion of the three-dimensional load curve is 3.5 or more, and the depth parameter S vk is 0.4 μm or more.

上述した三次元の各パラメータは、日本工業規格(JIS)に明確な定義がない為、次の様に定義する。尚、上述の各パラメータは、テーラーホブソン社製解析ソフト「タリマップ」により自動的に算出する事ができる。
先ず、上述の各パラメータのうち、三次元算術平均粗さSa とは、二次元の算術平均粗さRa を三次元に拡張したもので、表面形状曲面と平均面で囲まれた部分の体積を測定面積で除したものである。即ち、平均面XY面、縦方向をZ軸とし、測定された表面性状曲線をz=f(x,y)とした場合に、次の(1) 式で定義される。

Figure 2007333160
x :x方向測定長
y :y方向測定長
x:測定面上のx方向座標
y:測定面上のy方向座標
尚、上記解析ソフト用のデジタル形式で表わすと次の(2) 式の様になる。
Figure 2007333160
z(xi ,yj ):座標(xi ,yj )での縦方向の高さ
M:x方向の離散データ数
N:y方向の離散データ数
i :i番目のx方向座標
j :j番目のy方向座標 The three-dimensional parameters described above are defined as follows because there is no clear definition in Japanese Industrial Standards (JIS). Each parameter described above can be automatically calculated by analysis software “Tarimap” manufactured by Taylor Hobson.
First, among the above-mentioned parameters, the three-dimensional arithmetic average roughness Sa is a three-dimensional extension of the two-dimensional arithmetic average roughness Ra, and is a portion surrounded by a surface shape curved surface and an average surface. The volume is divided by the measurement area. That is, when the average surface XY plane, the vertical direction is the Z axis, and the measured surface property curve is z = f (x, y), the following equation (1) is defined.
Figure 2007333160
L x : x-direction measurement length L y : y-direction measurement length x: x-direction coordinate on the measurement surface y: y-direction coordinate on the measurement surface When expressed in the digital format for the above analysis software, the following equation (2) It becomes like this.
Figure 2007333160
z (x i , y j ): vertical height at coordinates (x i , y j ) M: number of discrete data in x direction N: number of discrete data in y direction x i : i-th x-direction coordinate y j : j-th y-direction coordinate

次に、三次元負荷曲線の突出谷部の容積パラメータSa2、同じく深さパラメータSvkに就いて説明する。
図2に、国際規格:ISO 13565−2記載の断面曲線による二次元負荷曲線を示す。この二次元負荷曲線を、次の方法により三次元に拡張する。
先ず、測定面上の各点(xi ,yj )での高さz(xi ,yj )をそれぞれ求め、この測定面全体の負荷曲線を求める。この様にして求めた三次元負荷曲線を図3に示す。そして、この図3に示した三次元負荷曲線に基づいて、ISO 13565に規定される二次元負荷曲線のRvk(突出谷部の断面積に等しくなる直角三角形の高さ、即ち、突出谷部の深さ)、及び、A2 (突出谷部の断面積)と同様に、上記Svk、Sa2を算出する。尚、xi はi番目のX方向座標、yj はj番目のy方向座標である。又、図3に示す記号の意味は次の通りである。
k :コア部のレベル差
pk:突出山部の高さ
vk:突出谷部の深さ
r1:山部側のコア部の負荷面積比
r2:谷部側のコア部の負荷面積比
a2:突出谷部の面積
Next, the volume parameter S a2 and the depth parameter S vk of the protruding valley portion of the three-dimensional load curve will be described.
FIG. 2 shows a two-dimensional load curve based on a cross-sectional curve described in International Standard: ISO 13565-2. This two-dimensional load curve is expanded to three dimensions by the following method.
First, the height z (x i , y j ) at each point (x i , y j ) on the measurement surface is obtained, and the load curve of the entire measurement surface is obtained. The three-dimensional load curve thus obtained is shown in FIG. Then, based on the three-dimensional load curve shown in FIG. 3, R vk of the two-dimensional load curve defined by ISO 13565 (the height of a right triangle equal to the cross-sectional area of the protruding valley, that is, the protruding valley S vk and S a2 are calculated in the same manner as A 2 (cross-sectional area of the protruding valley). X i is the i-th X-direction coordinate, and y j is the j-th y-direction coordinate. The meanings of the symbols shown in FIG. 3 are as follows.
S k : Level difference of the core part S pk : Height of the protruding peak part S vk : Depth of the protruding valley part S r1 : Load area ratio of the core part on the peak part side S r2 : Load on the core part on the valley part side Area ratio S a2 : Area of protruding valley

上述の様に構成する本発明の場合には、表面性状を三次元のパラメータで規制している為、外輪軌道と各球面ころの転動面との接触部での潤滑特性をより良好にして、この接触部での発熱や早期剥離の発生を抑制できる。例えば、測定表面に、或る程度の間隔で谷等の特定形状が散在する場合、三次元のパラメータを使用する事により、この様な特定形状を検出し易い。そして、この特定形状の数量、寸法等を定量化する事ができる。この為、谷等の油溜として機能する部分を十分に確保して、潤滑特性を良好にできる。特に、Svk(突出谷部の深さ)及びSa2(突出谷部の面積)により谷部の容積を規定する事ができる為、谷が散在する様な微視的表面性状の潤滑特性を良好にし易い。 In the case of the present invention configured as described above, since the surface properties are regulated by three-dimensional parameters, the lubrication characteristics at the contact portion between the outer ring raceway and the rolling surface of each spherical roller are made better. The occurrence of heat generation and early peeling at this contact portion can be suppressed. For example, when specific shapes such as valleys are scattered at a certain interval on the measurement surface, it is easy to detect such specific shapes by using three-dimensional parameters. And the quantity, dimension, etc. of this specific shape can be quantified. For this reason, the part which functions as oil reservoirs, such as a trough, is ensured enough, and a lubrication characteristic can be made favorable. In particular, since the volume of the valley can be specified by S vk (depth of the protruding valley) and S a2 (area of the protruding valley), the lubrication characteristics of the microscopic surface properties such that the valleys are scattered can be obtained. Easy to make good.

[実施の形態の第1例]
図1、4を参照しつつ、請求項1に対応する、本発明の実施の形態の第1例に就いて説明する。尚、本発明の特徴は、外輪軌道5と各球面ころ3、3の転動面との接触部の潤滑特性を良好にすべく、この外輪軌道5の表面性状を三次元のパラメータで規制する点にある。その他の構造及び作用は、前述の図1に示した従来構造と同様である為、重複する説明を省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
A first example of an embodiment of the present invention corresponding to claim 1 will be described with reference to FIGS. The feature of the present invention is that the surface property of the outer ring raceway 5 is restricted by a three-dimensional parameter in order to improve the lubrication characteristics of the contact portion between the outer ring raceway 5 and the rolling surfaces of the spherical rollers 3 and 3. In the point. Since the other structure and operation are the same as those of the conventional structure shown in FIG. 1 described above, the overlapping description will be omitted or simplified, and the following description will focus on the features of this example.

本例の場合、上記外輪軌道5を、表面性状が次の3つの条件を満たす様に形成している。
(条件1):0.2μm≦Sa ≦0.5μm
(条件2):Sa2≧3.5
(条件3):Svk≧0.4μm
ここで、Sa は、三次元算術平均粗さ、Sa2は、突出谷部の容積パラメータ、Svkは、突出谷部の深さパラメータである。
In the case of this example, the outer ring raceway 5 is formed so that the surface properties satisfy the following three conditions.
(Condition 1): 0.2 μm ≦ S a ≦ 0.5 μm
(Condition 2): S a2 ≧ 3.5
(Condition 3): S vk ≧ 0.4 μm
Here, S a is the three-dimensional arithmetic average roughness, S a2 is the volume parameter of the protruding valley, and S vk is the depth parameter of the protruding valley.

上記各条件を定めた理由は次の通りである。先ず、これら各条件のうち、条件2、3で、突出谷部の容積パラメータSa2及び突出谷部の深さパラメータSvkを規制する事により、外輪軌道5の表面で谷部の占める割合と、谷部の平均深さとを規制できる。Sa2が3.5未満で、Svkが0.4μm未満である場合には、油溜として機能する谷部の深さが十分でなく、谷部の上記表面に占める割合も低い為、十分に潤滑油を保持できない。又、Svkが0.4μm以上であっても、Sa2が3.5未満である場合には、油溜として機能する谷部の深さが十分であるが、谷部の上記表面に占める割合が低い為、潤滑油を保持する為に十分であるとは言えない。更に、Sa2が3.5以上であっても、Svkが0.4μm未満である場合には、谷部の上記表面に占める割合は十分であるが、谷部の深さが足りない為、やはり、潤滑油を保持する為に十分とは言えない。従って、本例の場合、上記条件2、3で、Sa2を3.5以上、Svkを0.4μm以上としている。 The reasons for setting each of the above conditions are as follows. First, among these conditions, the ratio of the valley portion on the surface of the outer ring raceway 5 is defined by restricting the volume parameter S a2 of the protruding valley portion and the depth parameter S vk of the protruding valley portion under the conditions 2 and 3. The average depth of the valley can be regulated. When S a2 is less than 3.5 and S vk is less than 0.4 μm, the depth of the valley functioning as an oil reservoir is not sufficient, and the ratio of the valley to the surface is low. The lubricant cannot be retained. Even if S vk is 0.4 μm or more, if S a2 is less than 3.5, the depth of the valley functioning as an oil reservoir is sufficient, but it occupies the above surface of the valley. Since the ratio is low, it cannot be said to be sufficient for retaining the lubricating oil. Furthermore, even if S a2 is 3.5 or more, if S vk is less than 0.4 μm, the ratio of the valley to the surface is sufficient, but the depth of the valley is insufficient. After all, it is not enough to hold the lubricating oil. Therefore, in this example, Sa 2 is 3.5 or more and S vk is 0.4 μm or more under the above conditions 2 and 3.

又、上述の条件2、3を満たしつつ、前記条件1を満たせば、より良好な潤滑特性を確保できる。即ち、Sa が0.5μmよりも大きい場合、三次元の粗さ分布が粗くなり過ぎて、潤滑特性を良好にできない。一方、Sa が0.2μm未満である場合、上記条件2、3を満たせなくなる可能性がある。従って、本例の場合、上記条件1で、Sa を0.2μm以上、0.5μm以下としている。尚、上述した条件1〜3を満たす表面粗さに規制する為には、例えば、図4に誇張して(溝7、7部分のみを拡大して)示す様に、外輪軌道5の表面に、幅及び深さをμm単位で規制した、複数の溝7、7を、網目状に形成する。 Further, if the above condition 1 is satisfied while the above conditions 2 and 3 are satisfied, better lubricating characteristics can be secured. That is, when S a is larger than 0.5 μm, the three-dimensional roughness distribution becomes too coarse and the lubrication characteristics cannot be improved. On the other hand, when S a is less than 0.2 μm, the above conditions 2 and 3 may not be satisfied. Therefore, in the present embodiment, the above condition 1, more 0.2μm to S a, is set to 0.5μm or less. In order to control the surface roughness satisfying the above conditions 1 to 3, for example, as shown in an exaggerated manner in FIG. 4 (only the grooves 7 and 7 are enlarged), the surface of the outer ring raceway 5 is A plurality of grooves 7 and 7 whose width and depth are regulated in units of μm are formed in a mesh shape.

上述の様に構成する本例の場合、外輪軌道5の表面性状を、上記条件1〜3を満たす様に規制している為、この外輪軌道5の表面に適切な深さ及び体積の谷を、適切に散在させる事ができる。この為、油溜として機能する谷部の体積を適切に確保して、上記外輪軌道5と球面ころ3、3の転動面との接触部に十分な油膜を形成できる。この結果、この接触部の潤滑特性を良好にして、この接触部での発熱や早期剥離の発生を抑制できる。そして、自動調心ころ軸受の寿命低下を防止できる。   In the case of this example configured as described above, since the surface property of the outer ring raceway 5 is regulated so as to satisfy the above conditions 1 to 3, a valley having an appropriate depth and volume is formed on the surface of the outer ring raceway 5. , Can be scattered appropriately. For this reason, the volume of the valley part functioning as an oil reservoir can be secured appropriately, and a sufficient oil film can be formed at the contact part between the outer ring raceway 5 and the rolling surfaces of the spherical rollers 3 and 3. As a result, the lubrication characteristics of the contact portion can be improved, and the generation of heat and early peeling at the contact portion can be suppressed. And the life fall of a self-aligning roller bearing can be prevented.

[実施の形態の第2例]
請求項2に対応する、本発明の実施の形態の第2例に就いても、図1、4を参照しつつ説明する。本例の場合、外輪軌道5を、表面性状が次の4つの条件を満たす様に形成している。
(条件1):0.2μm≦Ra1≦0.5μm、且つ、0.2μm≦Ra2≦0.5μm
(条件2):0.80≦Ra1/Ra2≦1.20、且つ、0.80≦Ra2/Ra1≦1.20
(条件3):Sa2≧3.5
(条件4):Svk≧0.4μm
ここで、Ra1は、外輪1の軸方向に関する二次元の算術平均粗さ、Ra2は、外輪1の円周方向に関する二次元の算術平均粗さ、Sa2は、突出谷部の容積パラメータ、Svkは、突出谷部の深さパラメータである。
[Second Example of Embodiment]
A second example of the embodiment of the present invention corresponding to claim 2 will be described with reference to FIGS. In the case of this example, the outer ring raceway 5 is formed so that the surface properties satisfy the following four conditions.
(Condition 1): 0.2 μm ≦ R a1 ≦ 0.5 μm and 0.2 μm ≦ R a2 ≦ 0.5 μm
(Condition 2): 0.80 ≦ R a1 / R a2 ≦ 1.20 and 0.80 ≦ R a2 / R a1 ≦ 1.20
(Condition 3): S a2 ≧ 3.5
(Condition 4): S vk ≧ 0.4 μm
Here, R a1 is a two-dimensional arithmetic average roughness in the axial direction of the outer ring 1, R a2 is a two-dimensional arithmetic average roughness in the circumferential direction of the outer ring 1, and S a2 is a volume parameter of the protruding valley portion. , S vk is the depth parameter of the protruding valley.

上記各条件のうち、条件2で、上記外輪軌道5の表面性状を、軸方向及び円周方向に関して、それぞれ算術平均粗さを同じ様に規制する事により、上記外輪軌道5の表面粗さを、軸方向及び円周方向に関してほぼ同じとして、各球面ころ3、3のスキューを抑制できる。即ち、条件2で、軸方向と円周方向との算術平均粗さの比(Ra1/Ra2、Ra2/Ra1)を、1.0前後として、これら両方向の算術平均粗さを、ほぼ同じとしている。この様に、軸方向及び円周方向のそれぞれの算術平均粗さ同士をほぼ同じとすれば、上記外輪軌道5と球面ころ3、3の転動面との接触部で、軸方向及び円周方向にそれぞれ作用する摩擦力をほぼ一定にできる為、上記各球面ころ3、3にスキューが発生しにくくなる。尚、上記比(Ra1/Ra2、Ra2/Ra1)は、1.0にできるだけ近づける事(例えば、0.90〜1.10に規制する事)が、より好ましい。 Among the above conditions, in condition 2, the surface texture of the outer ring raceway 5 is regulated in the same manner as the average surface roughness of the outer ring raceway 5 in the axial direction and the circumferential direction. The skews of the spherical rollers 3 and 3 can be suppressed substantially the same with respect to the axial direction and the circumferential direction. That is, under condition 2, the ratio of the arithmetic average roughness between the axial direction and the circumferential direction (R a1 / R a2 , R a2 / R a1 ) is about 1.0, and the arithmetic average roughness in both directions is It is almost the same. In this way, if the arithmetic average roughnesses in the axial direction and the circumferential direction are substantially the same, the axial direction and the circumferential direction at the contact portion between the outer ring raceway 5 and the rolling surfaces of the spherical rollers 3 and 3 will be described. Since the frictional force acting in each direction can be made almost constant, the spherical rollers 3 and 3 are less likely to be skewed. The ratios (R a1 / R a2 , R a2 / R a1 ) are more preferably as close to 1.0 as possible (for example, restricted to 0.90 to 1.10.).

又、上記各条件のうち、条件3、4の様に規制した理由は、上述の実施の形態の第1例の条件2、3と同じである。更に、上記軸方向及び円周方向の算術平均粗さ(Ra1、Ra2)を、条件1の様に規制すれば、より良好な潤滑特性を確保できる。即ち、Ra1、Ra2が0.5μmよりも大きい場合、軸方向及び円周方向の粗さ分布が粗くなり過ぎて、潤滑特性を良好にできない。一方、Ra1、Ra2を0.2μm未満とした場合、上記条件3、4を満たせなくなる可能性がある。従って、本例の場合、上記条件1で、Ra1、Ra2をそれぞれ0.2μm以上、0.5μm以下としている。尚、本例の場合も、上述した条件1〜4を満たす表面粗さに規制する為には、例えば、図4に誇張して示す様に、外輪軌道5の表面に、幅及び深さをμm単位で規制した、複数の溝7、7を網目状に形成する。 In addition, among the above conditions, the reason for the restriction as in conditions 3 and 4 is the same as the conditions 2 and 3 in the first example of the above-described embodiment. Furthermore, if the arithmetic average roughness (R a1 , R a2 ) in the axial direction and the circumferential direction is restricted as in Condition 1, better lubricating characteristics can be secured. That is, when R a1 and R a2 are larger than 0.5 μm, the roughness distribution in the axial direction and the circumferential direction becomes too rough, and the lubrication characteristics cannot be improved. On the other hand, when R a1 and R a2 are less than 0.2 μm, the above conditions 3 and 4 may not be satisfied. Therefore, in this example, under the above condition 1, R a1 and R a2 are set to 0.2 μm or more and 0.5 μm or less, respectively. In the case of this example as well, in order to regulate the surface roughness satisfying the above conditions 1 to 4, for example, as shown in an exaggerated manner in FIG. A plurality of grooves 7, 7 regulated in units of μm are formed in a mesh shape.

上述の様に構成する本例の場合、外輪軌道5の表面性状を、上記条件1〜4を満たす様に規制している為、この外輪軌道5の表面に適切な深さ及び体積の谷を、適切に散在させる事ができる。この為、油溜として機能する谷部の体積を適切に確保して、上記外輪軌道5と球面ころ3、3の転動面との接触部に十分な油膜を形成でき、この接触部の潤滑特性を良好にできる。又、本例の場合、外輪軌道5の表面の軸方向と円周方向との粗さをほぼ同じとしている為、上記各球面ころ3、3のスキューを抑制できる。この結果、この接触部での発熱や早期剥離の発生を抑制して、自動調心ころ軸受の寿命低下を防止できる。その他の構造及び作用は、上述の実施の形態の第1例と同様である。   In the case of this example configured as described above, since the surface property of the outer ring raceway 5 is regulated so as to satisfy the above conditions 1 to 4, a trough having an appropriate depth and volume is formed on the surface of the outer ring raceway 5. , Can be scattered appropriately. For this reason, it is possible to appropriately secure the volume of the valley portion functioning as an oil reservoir, and to form a sufficient oil film at the contact portion between the outer ring raceway 5 and the rolling surfaces of the spherical rollers 3 and 3, and lubrication of the contact portion. Good characteristics can be achieved. In the case of this example, since the roughness of the axial direction and the circumferential direction of the surface of the outer ring raceway 5 is substantially the same, the skew of the spherical rollers 3 and 3 can be suppressed. As a result, it is possible to suppress the occurrence of heat generation and early peeling at the contact portion and prevent the life of the self-aligning roller bearing from being reduced. Other structures and operations are the same as those of the first example of the above-described embodiment.

本発明の効果を確認する為に行なった実験に就いて説明する。実験は、外輪軌道が、次の表1に示す様な表面性状を有する、3種類の試料に就いて行なった。これら各試料の表面性状は、外輪軌道に超仕上げ加工を施す際に使用する砥石の種類、及び、加工時の外輪の回転速度と砥石の揺動速度との比を、適宜選択する事により得られた。

Figure 2007333160
尚、上記各試料のうち、実施例A及び実施例Bは、請求項1に記載した発明の技術的範囲に含まれるもの、比較例Cは、請求項1に記載した発明の技術的範囲から外れるものである。又、実施例A、B及び比較例Cは、内輪軌道の表面性状を次の様に規制した。即ち、三次元算術平均粗さを0.2μm未満、三次元負荷曲線の突出谷部の容積パラメータSa2を3.5未満、同じく深さパラメータSvkを0.4μm未満とした。そして、外輪軌道の表面性状を、内輪軌道の表面性状に対し、粗さが大きくなる様にした。これにより、各球面ころのスキューを抑制できる。 An experiment conducted for confirming the effect of the present invention will be described. The experiment was conducted on three types of samples in which the outer ring raceway had surface properties as shown in Table 1 below. The surface properties of each of these samples can be obtained by appropriately selecting the type of grindstone used when superfinishing the outer ring raceway and the ratio between the rotation speed of the outer ring and the rocking speed of the grindstone during machining. It was.
Figure 2007333160
Of the above samples, Example A and Example B are included in the technical scope of the invention described in claim 1, and Comparative Example C is from the technical scope of the invention described in claim 1. It is something that comes off. In Examples A and B and Comparative Example C, the surface properties of the inner ring raceway were regulated as follows. That is, the three-dimensional arithmetic average roughness was less than 0.2 μm, the volume parameter S a2 of the protruding valley portion of the three-dimensional load curve was less than 3.5, and the depth parameter S vk was less than 0.4 μm. And the surface property of the outer ring raceway was made to be larger than the surface property of the inner ring raceway. Thereby, the skew of each spherical roller can be suppressed.

又、上記各試料の表面性状を測定した条件は、次の通りである。
測定器:テーラーホブソン社製 フォームタリサーフ(Y方向自動ステージ)
測定範囲:2mm×2mm(円周方向サンプリング間隔0.5μm、軸方向サンプリング間隔10μm)
又、上記各試料として使用した自動調心ころ軸受のサイズは、外径100mm、内径55mm、ころ最大直径11.8mm、ころ長さ9.45mmである。そして、上記各試料に就いて、それぞれ次の条件で、転がり疲れ寿命試験を行なった。
試験条件
軸受荷重:ラジアル荷重=4600kgf (≒45.1kN)
回転速度:1500min-1
使用潤滑油:工業用潤滑油(RO#68)
潤滑方式:強制潤滑
The conditions under which the surface properties of each sample were measured are as follows.
Measuring instrument: Taylor Hobson's Foam Talysurf (Y-direction automatic stage)
Measurement range: 2 mm x 2 mm (circumferential sampling interval 0.5 μm, axial sampling interval 10 μm)
The self-aligning roller bearings used as the above samples have an outer diameter of 100 mm, an inner diameter of 55 mm, a maximum roller diameter of 11.8 mm, and a roller length of 9.45 mm. And about each said sample, the rolling fatigue life test was done on the following conditions, respectively.
Test conditions Bearing load: Radial load = 4600kgf (≒ 45.1kN)
Rotation speed: 1500min -1
Lubricant used: Industrial lubricant (RO # 68)
Lubrication method: Forced lubrication

上述の試験結果を図5に示す。この図5から明らかな様に、実施例A及び実施例Bの構造が、比較例Cの構造に比べて転がり疲れ寿命が高くなった。この比較例Cは、上述の表1から明らかな様に、請求項1に記載した発明の技術的範囲である、三次元算術平均粗さSa が0.2〜0.5μm、三次元負荷曲線の突出谷部の容積パラメータSa2が3.5以上、同じく深さパラメータSvkが0.4μm以上の条件を、何れも満たしていない。従って、外輪軌道と球面ころの転動面との接触部で良好な潤滑特性を得られず、転がり疲れ寿命が低かった。これに対して、上記実施例A、Bは、三次元算術平均粗さSa 、突出谷部の容積パラメータSa2、同じく深さパラメータSvkが、それぞれ上述の請求項1に記載した発明の技術的範囲に含まれる為、上記接触部で良好な潤滑特性が得られて、転がり疲れ寿命が向上した。 The above test results are shown in FIG. As apparent from FIG. 5, the structures of Example A and Example B had a higher rolling fatigue life than the structure of Comparative Example C. The Comparative Example C As is apparent from Table 1 above, a technical scope of the invention as set forth in claim 1, the three-dimensional arithmetic average roughness S a is 0.2 to 0.5 [mu] m, three-dimensional loads None of the conditions that the volume parameter S a2 of the protruding valley portion of the curve is 3.5 or more and the depth parameter S vk is 0.4 μm or more are satisfied. Therefore, good lubrication characteristics could not be obtained at the contact portion between the outer ring raceway and the rolling surface of the spherical roller, and the rolling fatigue life was low. On the other hand, in Examples A and B, the three-dimensional arithmetic average roughness S a , the volume parameter S a2 of the protruding valley, and the depth parameter S vk are the same as those of the invention described in claim 1. Since it was included in the technical range, good lubrication characteristics were obtained at the contact portion, and the rolling fatigue life was improved.

次に、上記表1の各試料に就いて、より詳細に分析した結果を、次の表2及び図6〜8に示す。尚、図6は実施例Aの場合を、図7は実施例Bの場合を、図8は比較例Cの場合を、それぞれ示している。又、各図6〜8の(イ)は、外輪軌道5の表面性状の軸方向の粗さ曲線を、(ロ)は、同じく円周方向の粗さ曲線を、それぞれ示している。

Figure 2007333160
Next, the result analyzed in detail about each sample of the said Table 1 is shown in following Table 2 and FIGS. 6 shows the case of Example A, FIG. 7 shows the case of Example B, and FIG. 8 shows the case of Comparative Example C. Moreover, (a) in each of FIGS. 6 to 8 shows an axial roughness curve of the surface property of the outer ring raceway 5, and (b) shows a circumferential roughness curve.
Figure 2007333160

この表2から明らかな様に、実施例A、Bは、請求項2に記載した発明の技術的範囲に含まれ、比較例Cは、この請求項2に記載した発明の技術的範囲から外れる。従って、この表2と前記図5とから、外輪軌道5の表面性状が、請求項2に記載した技術的範囲に含まれれば、転がり疲れ寿命の向上を図れる事が分かる。   As is apparent from Table 2, Examples A and B are included in the technical scope of the invention described in claim 2, and Comparative Example C deviates from the technical scope of the invention described in Claim 2. . Therefore, it can be seen from Table 2 and FIG. 5 that if the surface properties of the outer ring raceway 5 are included in the technical scope described in claim 2, the rolling fatigue life can be improved.

尚、本発明は、球面ころとの接触部の潤滑特性を考慮して、外輪軌道の表面性状を規制する事を特徴とするが、内輪軌道の表面性状に就いても、本発明の外輪軌道の表面性状と同様に規制する事もできる。又、球面ころのスキューの発生を防止する事を考慮して、外輪軌道の表面性状を、本発明の技術的範囲に含まれる様に規制すると共に、内輪軌道の表面性状を、表面粗さが外輪軌道の表面粗さよりも小さくなる様に規制する。そして、外輪軌道と球面ころの転動面との間の摩耗係数を、内輪軌道と球面ころの転動面との間の摩耗係数よりも大きくなる様にする事もできる。   Although the present invention is characterized in that the surface property of the outer ring raceway is regulated in consideration of the lubrication characteristics of the contact portion with the spherical roller, the outer ring raceway of the present invention can be applied to the surface property of the inner ring raceway. It can also be regulated in the same manner as the surface properties of In addition, in consideration of preventing the occurrence of skew of the spherical rollers, the surface property of the outer ring raceway is regulated so as to be included in the technical scope of the present invention, and the surface property of the inner ring raceway is reduced in surface roughness. Regulation is made so that the surface roughness of the outer ring raceway becomes smaller. The wear coefficient between the outer ring raceway and the rolling surface of the spherical roller can be made larger than the wear coefficient between the inner ring raceway and the rolling surface of the spherical roller.

本発明の対象となる自動調心ころ軸受の1例を示す半部断面図。FIG. 2 is a half sectional view showing an example of a self-aligning roller bearing that is a subject of the present invention. ISO 13565−2記載の断面曲線による二次元負荷曲線を示す図。The figure which shows the two-dimensional load curve by the cross-sectional curve of ISO 13565-2 description. 二次元負荷曲線を三次元に拡張したものを示す図。The figure which shows what expanded the two-dimensional load curve to three dimensions. 外輪軌道の表面を誇張して示す、外輪の半部断面図。The half part sectional view of an outer ring which exaggerates and shows the surface of an outer ring track. 本発明の効果を得る為に行なった実験結果を示す線図。The diagram which shows the experimental result done in order to acquire the effect of this invention. 実施例Aに関して、軸方向(イ)及び円周方向(ロ)の粗さ曲線を示す図。The figure which shows the roughness curve of the axial direction (A) and the circumferential direction (B) regarding Example A. 実施例Bに関して、軸方向(イ)及び円周方向(ロ)の粗さ曲線を示す図。The figure which shows the roughness curve of an axial direction (A) and a circumferential direction (B) regarding Example B. FIG. 比較例Cに関して、軸方向(イ)及び円周方向(ロ)の粗さ曲線を示す図。The figure which shows the roughness curve of the axial direction (A) and the circumferential direction (B) regarding the comparative example C.

符号の説明Explanation of symbols

1 外輪
2 内輪
3 球面ころ
4 保持器
5 外輪軌道
6 内輪軌道
7 溝
1 outer ring 2 inner ring 3 spherical roller 4 cage 5 outer ring raceway 6 inner ring raceway 7 groove

Claims (2)

球状凹面である外輪軌道を、その内周面に形成した外輪と、この外輪軌道と対向する1対の内輪軌道を、その外周面に形成した内輪と、これら外輪軌道と内輪軌道との間に、2列に分けて、両列毎に複数個ずつ転動自在に設けられた球面ころとを備えた自動調心ころ軸受に於いて、上記外輪軌道と内輪軌道とのうちの少なくとも外輪軌道の表面性状が、三次元算術平均粗さSa が0.2〜0.5μm、三次元負荷曲線の突出谷部の容積パラメータSa2が3.5以上、同じく深さパラメータSvkが0.4μm以上をそれぞれ満たすものである自動調心ころ軸受。 An outer ring raceway which is a spherical concave surface, an outer ring formed on the inner peripheral surface thereof, a pair of inner ring races opposed to the outer ring raceway, an inner ring formed on the outer peripheral surface thereof, and between the outer ring raceway and the inner ring raceway. In a self-aligning roller bearing provided with spherical rollers which are divided into two rows and are provided so as to be able to roll plurally in both rows, at least of the outer ring raceway and the outer ring raceway. The surface texture is 3D arithmetic average roughness S a of 0.2 to 0.5 μm, the volume parameter S a2 of the protruding valley of the 3D load curve is 3.5 or more, and the depth parameter S vk is 0.4 μm. Spherical roller bearings that satisfy the above requirements. 球状凹面である外輪軌道を、その内周面に形成した外輪と、この外輪軌道と対向する1対の内輪軌道を、その外周面に形成した内輪と、これら外輪軌道と内輪軌道との間に、2列に分けて、両列毎に複数個ずつ転動自在に設けられた球面ころとを備えた自動調心ころ軸受に於いて、上記外輪軌道と内輪軌道とのうちの少なくとも外輪軌道の表面性状が、上記外輪の軸方向と円周方向に関する算術平均粗さRa がそれぞれ0.2〜0.5μm、これら軸方向と円周方向に関する算術平均粗さの比が0.80〜1.20、三次元負荷曲線の突出谷部の容積パラメータSa2が3.5以上、同じく深さパラメータSvkが0.4μm以上をそれぞれ満たすものである自動調心ころ軸受。 An outer ring raceway which is a spherical concave surface, an outer ring formed on the inner peripheral surface thereof, a pair of inner ring races opposed to the outer ring raceway, an inner ring formed on the outer peripheral surface thereof, and between the outer ring raceway and the inner ring raceway. In a self-aligning roller bearing provided with spherical rollers which are divided into two rows and are provided so as to be able to roll plurally in both rows, at least of the outer ring raceway and the outer ring raceway. surface properties, 0.2 to 0.5 [mu] m arithmetic mean roughness R a in the axial direction and circumferential direction of the outer ring, respectively, the ratio of the arithmetic mean roughness of these axial and circumferential directions 0.80 .20, Spherical roller bearings in which the volume parameter S a2 of the protruding valley portion of the three-dimensional load curve satisfies 3.5 or more and the depth parameter S vk satisfies 0.4 μm or more.
JP2006167899A 2006-06-16 2006-06-16 Self-aligning roller bearing Pending JP2007333160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167899A JP2007333160A (en) 2006-06-16 2006-06-16 Self-aligning roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167899A JP2007333160A (en) 2006-06-16 2006-06-16 Self-aligning roller bearing

Publications (1)

Publication Number Publication Date
JP2007333160A true JP2007333160A (en) 2007-12-27

Family

ID=38932812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167899A Pending JP2007333160A (en) 2006-06-16 2006-06-16 Self-aligning roller bearing

Country Status (1)

Country Link
JP (1) JP2007333160A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039525A (en) * 2017-08-28 2019-03-14 日本精工株式会社 Linear motion device
WO2021002255A1 (en) * 2019-07-02 2021-01-07 Ntn株式会社 Crossed roller bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039525A (en) * 2017-08-28 2019-03-14 日本精工株式会社 Linear motion device
WO2021002255A1 (en) * 2019-07-02 2021-01-07 Ntn株式会社 Crossed roller bearing
JP2021008940A (en) * 2019-07-02 2021-01-28 Ntn株式会社 Cross roller bearing

Similar Documents

Publication Publication Date Title
US7771122B2 (en) Cage for rolling bearing and rolling bearing having the same
EP2711572B1 (en) Rolling bearing with lubricant pockets in the raceway
WO2012099120A1 (en) Roller bearing
US20110116734A1 (en) Punched retainer, self-aligning roller bearing, and method of manufacturing punched retainer
US9011018B2 (en) Roller bearing
US5967672A (en) Machine parts making rolling or sliding surfaces formed with discontinuous grooves
JP2007333160A (en) Self-aligning roller bearing
CN110259830A (en) A kind of raceway face has the ball bearing and its lubricating method of micro- texture
JP2012077761A (en) Thrust ball bearing
JP4484771B2 (en) Tapered roller bearing design method
US7934873B2 (en) Tapered roller bearing
JP2011094716A (en) Thrust roller bearing
JP2010286119A (en) Ball bearing
JP2007333161A (en) Manufacturing method of self-aligning roller bearing, and self-aligning roller bearing
EP1344953A2 (en) Roller bearing
CN108071683B (en) Tapered roller bearing and power transmission device
CN104791380B (en) self-aligning roller bearing
JP2004324670A (en) Roller bearing
JP2006275285A (en) Thrust cylindrical roller bearing
US7942586B2 (en) Thrust needle bearing
JP5348271B2 (en) Ball bearing
JP2007100775A (en) Thrust cylindrical roller bearing
JP2006349136A (en) Rolling bearing
JP2005061509A (en) Rolling bearing
WO2024071273A1 (en) Sliding component