JP2007332391A - Copper powder and its production method - Google Patents

Copper powder and its production method Download PDF

Info

Publication number
JP2007332391A
JP2007332391A JP2006161881A JP2006161881A JP2007332391A JP 2007332391 A JP2007332391 A JP 2007332391A JP 2006161881 A JP2006161881 A JP 2006161881A JP 2006161881 A JP2006161881 A JP 2006161881A JP 2007332391 A JP2007332391 A JP 2007332391A
Authority
JP
Japan
Prior art keywords
copper powder
spherical
fatty acid
tap density
density value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006161881A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ito
伊藤信行
Kazumasa Morikawa
森川和政
Masayoshi Yoshitake
吉武正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2006161881A priority Critical patent/JP2007332391A/en
Publication of JP2007332391A publication Critical patent/JP2007332391A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper powder which does not deteriorate printing properties and is highly fillable as the one for through hole paste, firing paste and a filler for heat radiation. <P>SOLUTION: The copper powder is characterized in that: copper powder are uniformly coated with 0.02 to 0.5 wt.% fatty acid; and spherical and disk-shaped particles with the average particle diameter are coexistent; and a tap density value is ≥5.1 g/cm<SP>3</SP>. In its preferable production method, 0.02 to 0.5 wt.% fatty acid is added to spherical copper powder with the average particle diameter of 2.5 to 8 μm, and, using 1/16 to 1/4-inch spherical media, while the copper powder are physically coated with the fatty acid, disk-shaped machining is performed by a grinding machine. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子部品の実装分野における導電ペースト用銅粉末、放熱用銅粉末に関するものである。詳しくは銅粉末をより高充填したスルーホールペースト、焼成ペースト、高放熱用充填材として最適性能を示す、タップ密度値が大きい銅粉末及びその製造方法を提供するものである。   The present invention relates to a copper powder for conductive paste and a copper powder for heat dissipation in the field of mounting electronic components. Specifically, the present invention provides a copper powder having a high tap density value and a method for producing the same, which shows optimum performance as a through-hole paste, a fired paste, and a high heat dissipation filler filled with a higher amount of copper powder.

従来の銅粉末はアトマイズ法、水溶液電解法、粉砕法などの方法で得られた球状、樹枝状、片状銅粉末である。塗料あるいはペースト用としては塗膜の平滑性、印刷適性が良い、沈降が遅いなどの理由から、片状銅粉末が使用されている。   Conventional copper powders are spherical, dendritic, and flake shaped copper powders obtained by methods such as atomization, aqueous electrolysis, and pulverization. For paints or pastes, flake copper powder is used because of its smoothness of coating film, good printability, and slow sedimentation.

しかし、スルーホールペースト用、焼成ペースト用銅粉末として、より安定した導電性能あるいは電極材としてのはんだ濡れ性を向上するためには、ペースト成分中の銅粉末の含有量を上げる必要がある。   However, it is necessary to increase the content of the copper powder in the paste component in order to improve the more stable conductive performance or the solder wettability as an electrode material as the copper powder for through-hole paste and fired paste.

しかし従来の扁平状銅粉末ではペースト成分中の銅粉末含有量を一定量以上増加するとペースト自体の流動性が悪くなり、印刷できないなどの欠点が生じた。球状銅粉末は高充填可能であるが、印刷適性が悪く、印刷できなくなり、塗膜外観も非常に悪い。更に、近年電子部品から発生する熱を逃がす高放熱材開発に、高充填銅粉末の要求がある。   However, in the conventional flat copper powder, when the content of the copper powder in the paste component is increased by a certain amount or more, the fluidity of the paste itself is deteriorated, resulting in defects such as inability to print. Spherical copper powder can be highly filled, but printability is poor, printing cannot be performed, and the appearance of the coating film is very poor. Furthermore, in order to develop a high heat dissipation material that releases heat generated from electronic components in recent years, there is a demand for highly filled copper powder.

アトマイズ法による球状銅粉末はタップ密度値の大きい粉末を製造するのに適している。平均粒径2.5μmの球状銅粉末でタップ密度値4.5g/cm3、平均粒径5μmでタップ密度値5.0g/cm3で、タップ密度値5.1g/cm3以上の銅粉末は無い。 The spherical copper powder by the atomizing method is suitable for producing a powder having a large tap density value. An average particle size 2.5μm spherical copper powder with a tap density value 4.5 g / cm 3, an average particle diameter of the tap density value 5.0 g / cm 3 at 5 [mu] m, the tap density value 5.1 g / cm 3 or more copper powder There is no.

水溶液電解法の銅粉末はタップ密度値が約2g/cm3と小さい。片状銅粉末でもタップ密度値は約2g/cm3と小さい。ポリマーに銅粉末を高充填しても印刷特性を悪くしない為には、タップ密度値5.1g/cm3以上の銅粉末が要求されているが、まだ得られていない。 Copper powder of the aqueous electrolytic method has a small tap density value of about 2 g / cm 3 . Even the flake copper powder has a small tap density value of about 2 g / cm 3 . A copper powder having a tap density value of 5.1 g / cm 3 or more is required in order not to deteriorate the printing characteristics even if the polymer is highly filled with copper powder, but it has not been obtained yet.

また、特許文献1によるとスルーホールペースト用及び外部電極用などの導電ペースト用としての円盤状銅粉末が提案されているが、高充填が要求されるスルーホールペースト、焼成ペースト、放熱用として、タップ密度値が5.1g/cm3以上の銅粉は得られていない。 In addition, according to Patent Document 1, disk-shaped copper powder for conductive pastes such as through-hole pastes and external electrodes has been proposed, but for through-hole pastes, fired pastes, and heat dissipations that require high filling, Copper powder having a tap density value of 5.1 g / cm 3 or more has not been obtained.

特開2002−15622号公報JP 2002-15622 A

本発明は、上記従来技術の問題点を、銅粉末の表面処理、粒度、粒形を検討した結果、タップ密度値が大きい銅粉末を提供することによって印刷適性上の問題を解決し、高充填ペーストを提供することを課題とする。   As a result of examining the surface treatment, the particle size, and the particle shape of the copper powder, the present invention solves the problem in printability by providing a copper powder having a large tap density value. It is an object to provide a paste.

本発明は、このような従来の問題点を解決することを目的としてなされたもので、銅粉末に脂肪酸を0.02〜0.5重量%均一に被覆した、平均粒子径3〜10μmの球状と円盤状の粒子が混在した、タップ密度値が5.1g/cm3以上であることを特徴として、ポリマーに高充填しても印刷特性を悪くしない銅粉末を実現した。 The present invention was made for the purpose of solving such conventional problems, and a spherical shape having an average particle diameter of 3 to 10 μm, in which a copper powder is uniformly coated with 0.02 to 0.5% by weight of a fatty acid. And a disc-like particle mixture, and the tap density value is 5.1 g / cm 3 or more, thereby realizing a copper powder that does not deteriorate the printing characteristics even when the polymer is highly filled.

我々はスルーホールペースト、焼成ペースト、放熱用充填材として銅粉末をポリマーに高充填しても印刷適性を悪くしない銅粉末の研究を行った結果、銅粉末のタップ密度値と相関性があり、タップ密度値5.1g/cm3以上で有れば良いことを見出した。 As a result of conducting research on copper powder that does not deteriorate printability even if the polymer is filled with copper powder as a through-hole paste, fired paste, and heat dissipation filler, there is a correlation with the tap density value of the copper powder. It has been found that the tap density value should be 5.1 g / cm 3 or more.

本発明の銅粉末は球状および円盤状銅粉末粒子全てを脂肪酸で被覆する必要がある。被覆していない銅粉末だと充填密度を上げる事が出来ない。被覆する油脂量は粒子径により変える必要があるが銅粉末に対して0.02〜0.5重量%が良い。少ないと密度が上がらないし、多いと逆に流動性が悪く充填密度が上がらない。   The copper powder of the present invention needs to coat all spherical and discoidal copper powder particles with a fatty acid. If the copper powder is not coated, the packing density cannot be increased. The amount of oil to be coated needs to be changed depending on the particle diameter, but is preferably 0.02 to 0.5% by weight based on the copper powder. If the amount is too small, the density will not increase. If the amount is too large, the fluidity is poor and the packing density does not increase.

銅粉末の平均粒子径は3〜10μmがスルーホールペースト、焼成ペースト、放熱用充填材として、本発明の方法で高充填できる最適の粒子径である。これよりも細かくても、大きくてもタップ密度値5.1g/cm3以上の銅粉末はできない。 The average particle size of the copper powder is 3 to 10 μm, which is the optimum particle size that can be highly filled by the method of the present invention as a through-hole paste, a fired paste, and a heat dissipation filler. Even finer or larger than this, copper powder having a tap density value of 5.1 g / cm 3 or more cannot be obtained.

本発明の銅粉末の製造方法としては、平均粒子径2.5〜8μmの球状銅粉末に脂肪酸を0.02〜0.5重量%添加し、1/16〜1/4インチの球状媒体を用いて、粉砕機で物理的に銅粉末に脂肪酸を被覆しながら円盤状加工することで製造できる。   As the method for producing the copper powder of the present invention, 0.02 to 0.5% by weight of a fatty acid is added to a spherical copper powder having an average particle diameter of 2.5 to 8 μm, and a 1/16 to 1/4 inch spherical medium is formed. It can be manufactured by using a pulverizer to process a disk while physically coating the copper powder with a fatty acid.

球状銅粉末を1/16〜1/4インチの球状スチールボール、セラミックスボールを粉砕媒体としてボールミル、アジテーターアーム粉砕機で加工すると、細かい粒子の球状銅粉末は粉砕媒体が当たりにくく球状のまま存在し、大きな粒子は円盤状に加工される。   When spherical copper powder is processed with a ball mill or agitator arm pulverizer using 1/16 to 1/4 inch spherical steel balls and ceramic balls as pulverizing media, the finely sized spherical copper powders are hard to hit the pulverizing media and remain spherical. Large particles are processed into a disk shape.

その結果、得られた銅粉末は細かい球状粒子が大きい円盤状銅粉末の間に充填されることになり、タップ密度値が5.1g/cm3以上の銅粉末が得られる。 As a result, the obtained copper powder is filled between disk-shaped copper powders having fine spherical particles and a copper powder having a tap density value of 5.1 g / cm 3 or more is obtained.

脂肪酸はミリスチン酸、パルミチン酸、ステアリン酸などの高級脂肪酸が良い。脂肪酸量、粉砕媒体のサイズ、粉砕力となる回転数や時間は、粉砕加工する銅粉末の粒子径、目的とするタップ密度値で本発明の範囲内で変える事ができる。   The fatty acid is preferably a higher fatty acid such as myristic acid, palmitic acid or stearic acid. The amount of fatty acid, the size of the pulverizing medium, the number of rotations and the time for the pulverizing force can be changed within the scope of the present invention depending on the particle diameter of the copper powder to be pulverized and the target tap density value.

本発明の方法以外で本発明の銅粉末を得る方法としては、脂肪酸で被覆した球状銅粉末と脂肪酸で被覆した円盤状銅粉末を別々に配合し、タップ密度値5.1g/cm3以上にする事も可能であるが工業的でない。 As a method of obtaining the copper powder of the present invention other than the method of the present invention, a spherical copper powder coated with a fatty acid and a disk-shaped copper powder coated with a fatty acid are blended separately, and the tap density value is 5.1 g / cm 3 or more. It is possible to do this, but it is not industrial.

本発明の銅粉末は、タップ密度値が大きい銅粉末を得ることにより、ペースト成分中の銅粉末の含有量を上げても、印刷特性を悪くすることなく印刷可能となった。このことで、従来まで使用の難しかったスルーホールペースト用、焼成ペースト用、あるいは高放熱用としての充填材に使用可能となった。また、球状と円盤状の形状をした粒子が混在するため印刷特性も飛躍的に良くなり、また、脂肪酸が銅粉末に均一に被覆しているため分散性も向上した。   The copper powder of the present invention can be printed without deteriorating the printing characteristics even when the content of the copper powder in the paste component is increased by obtaining a copper powder having a large tap density value. This makes it possible to use as a filler for through-hole paste, fired paste, or high heat dissipation, which has been difficult to use until now. In addition, since the spherical and disk-shaped particles are mixed, the printing characteristics are dramatically improved, and the dispersibility is improved because the fatty acid is uniformly coated on the copper powder.

本発明の銅粉末および製造方法は、平均粒子径2.5〜8μmの球状銅粉末に脂肪酸を0.02〜0.5重量%添加し、1/16〜1/4インチの球状媒体を用いて、粉砕機で物理的に銅粉末に脂肪酸を被覆しながら円盤状加工することによりタップ密度値が大きい高充填銅粉末が得ることができる。本発明の構成を詳しく説明すれば次の通りである。   In the copper powder and the production method of the present invention, 0.02 to 0.5% by weight of a fatty acid is added to a spherical copper powder having an average particle size of 2.5 to 8 μm, and a 1/16 to 1/4 inch spherical medium is used. Then, a high-filled copper powder having a large tap density value can be obtained by disk processing while physically coating the copper powder with fatty acid using a pulverizer. The configuration of the present invention will be described in detail as follows.

実施例1. Example 1.

平均粒径2.5μmでタップ密度値4.5g/cm3の球状銅粉末を1kgにステアリン酸2g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/16インチ径のスチールボール10kg、ミル回転数40rpmで14時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径3μm、タップ密度値5.3g/cm3の脂肪酸で被覆した円盤状銅粉末が得られた。 2 g of stearic acid was added to 1 kg of spherical copper powder having an average particle diameter of 2.5 μm and a tap density value of 4.5 g / cm 3 , and charged into a medium stirring mill. Disc processing was performed for 14 hours at 10 kg of steel balls having a diameter of 1/16 inch as a grinding medium and a mill rotational speed of 40 rpm. As a result, a disk-shaped copper powder coated with a fatty acid having an average particle diameter of 3 μm in which spherical and disk-shaped particles coexist and a tap density value of 5.3 g / cm 3 was obtained.

実施例2. Example 2

平均粒径5.0μmでタップ密度値5.0g/cm3の球状銅粉末を1kgにステアリン酸1g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径のスチールボール10kg、ミル回転数40rpmで7時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径6.0μm、タップ密度値5.6g/cm3の脂肪酸で被覆した円盤状銅粉末が得られた。 1 g of stearic acid was added to 1 kg of spherical copper powder having an average particle diameter of 5.0 μm and a tap density value of 5.0 g / cm 3 , and charged into a medium stirring mill. Disc processing was performed for 7 hours at 10 kg of a 1/8 inch diameter steel ball as a grinding medium and a mill rotational speed of 40 rpm. As a result, a disk-shaped copper powder coated with a fatty acid having an average particle diameter of 6.0 μm and a tap density value of 5.6 g / cm 3 in which spherical and disk-shaped particles are mixed was obtained.

実施例3. Example 3

平均粒径8.0μmでタップ密度値4.8g/cm3の球状銅粉末を1kgにステアリン酸0.5g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/4インチ径のスチールボール10kg、ミル回転数40rpmで7時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径10.0μm、タップ密度値5.5g/cm3の脂肪酸で被覆した円盤状銅粉末が得られた。 0.5 g of stearic acid was added to 1 kg of spherical copper powder having an average particle size of 8.0 μm and a tap density value of 4.8 g / cm 3 , and charged into a medium stirring mill. Disc processing was carried out for 7 hours at a milling speed of 40 rpm with 10 kg of 1/4 inch diameter steel balls as the grinding media. As a result, a disk-shaped copper powder coated with a fatty acid having an average particle diameter of 10.0 μm in which spherical and disk-shaped particles coexist and a tap density value of 5.5 g / cm 3 was obtained.

実施例4. Example 4

平均粒径8.0μmでタップ密度値4.8g/cm3の球状銅粉末を1kgにステアリン酸0.2g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径のスチールボール10kg、ミル回転数40rpmで14時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径9.5μm、タップ密度値5.6g/cm3の脂肪酸で被覆した円盤状銅粉末が得られた。 0.2 g of stearic acid was added to 1 kg of spherical copper powder having an average particle size of 8.0 μm and a tap density value of 4.8 g / cm 3 , and the mixture was put into a medium stirring mill. A disk-shaped process was performed for 14 hours at 10 kg of a 1/8 inch diameter steel ball as a grinding medium at a mill rotational speed of 40 rpm. As a result, a disk-shaped copper powder coated with a fatty acid having an average particle diameter of 9.5 μm and a tap density value of 5.6 g / cm 3 in which spherical and disk-shaped particles are mixed was obtained.

実施例5. Example 5 FIG.

平均粒径2.5μmでタップ密度値4.5g/cm3の球状銅粉末を1kgにステアリン酸5g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径のスチールボール10kg、ミル回転数40rpmで7時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径3.5μm、タップ密度値5.1g/cm3の脂肪酸で被覆した円盤状銅粉末が得られた。 5 g of stearic acid was added to 1 kg of spherical copper powder having an average particle diameter of 2.5 μm and a tap density value of 4.5 g / cm 3 , and charged into a medium stirring mill. Disc processing was performed for 7 hours at 10 kg of a 1/8 inch diameter steel ball as a grinding medium and a mill rotational speed of 40 rpm. As a result, a disk-shaped copper powder coated with a fatty acid having an average particle diameter of 3.5 μm in which spherical and disk-shaped particles coexist and a tap density value of 5.1 g / cm 3 was obtained.

実施例6. Example 6

平均粒径5.0μmでタップ密度値5.0g/cm3の球状銅粉末を1kgにパルミチン酸1g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径のスチールボール10kg、ミル回転数40rpmで7時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径6.0μm、タップ密度値5.6g/cm3の脂肪酸で被覆した円盤状銅粉末が得られた。 1 g of spherical copper powder having an average particle diameter of 5.0 μm and a tap density value of 5.0 g / cm 3 was added to 1 kg of palmitic acid, and the mixture was put into a medium stirring mill. Disc processing was performed for 7 hours at 10 kg of a 1/8 inch diameter steel ball as a grinding medium and a mill rotational speed of 40 rpm. As a result, a disk-shaped copper powder coated with a fatty acid having an average particle diameter of 6.0 μm and a tap density value of 5.6 g / cm 3 in which spherical and disk-shaped particles are mixed was obtained.

実施例7. Example 7

平均粒径5.0μmでタップ密度値5.0g/cm3の球状銅粉末を1kgにミリスチン酸1g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径のスチールボール10kg、ミル回転数40rpmで7時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径6.5μm、タップ密度値5.4g/cm3の脂肪酸で被覆した円盤状銅粉末が得られた。 1 g of myristic acid was added to 1 kg of spherical copper powder having an average particle diameter of 5.0 μm and a tap density value of 5.0 g / cm 3 , and charged into a medium stirring mill. Disc processing was performed for 7 hours at 10 kg of a 1/8 inch diameter steel ball as a grinding medium and a mill rotational speed of 40 rpm. As a result, a disk-shaped copper powder coated with a fatty acid having an average particle diameter of 6.5 μm and a tap density value of 5.4 g / cm 3 in which spherical and disk-shaped particles coexist was obtained.

実施例8. Example 8 FIG.

平均粒径5.0μmでタップ密度値5.0g/cm3の球状銅粉末を1kgにステアリン酸0.5g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径のスチールボール10kg、ミル回転数40rpmで7時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径5.8μm、タップ密度値5.8g/cm3の脂肪酸で被覆した円盤状銅粉末が得られた。 0.5 g of stearic acid was added to 1 kg of spherical copper powder having an average particle diameter of 5.0 μm and a tap density value of 5.0 g / cm 3 , and charged into a medium stirring mill. Disc processing was performed for 7 hours at 10 kg of a 1/8 inch diameter steel ball as a grinding medium and a mill rotational speed of 40 rpm. As a result, a disk-shaped copper powder coated with a fatty acid having an average particle diameter of 5.8 μm and a tap density value of 5.8 g / cm 3 mixed with spherical and disk-shaped particles was obtained.

実施例9. Example 9

平均粒径5.0μmでタップ密度値5.0g/cm3の球状銅粉末を1kgにステアリン酸1g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径のアルミナボール8kg、ミル回転数40rpmで10時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径6.1μm、タップ密度値5.6g/cm3の脂肪酸で被覆した円盤状銅粉末が得られた。 1 g of stearic acid was added to 1 kg of spherical copper powder having an average particle diameter of 5.0 μm and a tap density value of 5.0 g / cm 3 , and charged into a medium stirring mill. Disc-like processing was performed for 10 hours at 8 kg of alumina balls having a diameter of 1/8 inch as a grinding medium and a mill rotational speed of 40 rpm. As a result, a disk-shaped copper powder coated with a fatty acid having an average particle diameter of 6.1 μm in which spherical and disk-shaped particles are mixed and a tap density value of 5.6 g / cm 3 was obtained.

比較例 Comparative example

平均粒径5.0μmでタップ密度値5.0g/cm3の球状銅粉末にタップ密度値2.0g/cm3の片状銅粉を10、20、30、40、50、60、70、80、90重量%加えてミキサーに投入し混合した。その結果、混合粉のタップ密度値はそれぞれ4.3g/cm3、3.8g/cm3、3.4g/cm3、3.1g/cm3、2.9g/cm3、2.6g/cm3、2.4g/cm3、2.4g/cm3、2.3g/cm3となり、全て5.1g/cm3を越えなかった。 The average particle diameter of tap density spherical copper powder tap density values 5.0 g / cm 3 at 5.0μm value 2.0 g / cm 3 flaky copper powder 10,20,30,40,50,60,70, 80% and 90% by weight were added to the mixer and mixed. As a result, each of the tap density value of the mixed powder 4.3g / cm 3, 3.8g / cm 3, 3.4g / cm 3, 3.1g / cm 3, 2.9g / cm 3, 2.6g / cm 3 , 2.4 g / cm 3 , 2.4 g / cm 3 , and 2.3 g / cm 3 , all of which did not exceed 5.1 g / cm 3 .

本発明の銅粉末は、タップ密度値が大きい銅粉末を得ることにより、ペースト成分中の銅粉末の含有量を上げても、印刷特性を悪くすることなく印刷可能となった。このことで、従来まで使用の難しかったスルーホールペースト用、焼成ペースト用、あるいは高放熱用としての充填材に使用可能となった。また、球状と円盤形状をした粒子が混在するため印刷特性も飛躍的に良くなり、また、脂肪酸が銅粉末に均一に被覆しているため分散性も向上した。   The copper powder of the present invention can be printed without deteriorating the printing characteristics even when the content of the copper powder in the paste component is increased by obtaining a copper powder having a large tap density value. This makes it possible to use as a filler for through-hole paste, fired paste, or high heat dissipation, which has been difficult to use until now. In addition, since the spherical and disk-shaped particles are mixed, the printing characteristics are dramatically improved, and the dispersibility is improved because the fatty acid is uniformly coated on the copper powder.

従って、本発明の産業上利用性は非常に高いといえる。   Therefore, it can be said that the industrial applicability of the present invention is very high.

Claims (3)

脂肪酸で均一に被覆した平均粒子径3〜10μmの球状と円盤状の粒子が混在する、タップ密度値が5.1g/cm3以上であることを特徴とする銅粉末。 A copper powder having a tap density value of 5.1 g / cm 3 or more, in which spherical and disk-like particles having an average particle diameter of 3 to 10 μm uniformly coated with a fatty acid are mixed. 銅粉末に対して0.02〜0.5重量%の脂肪酸が、球状と円盤状銅粉末に均一に被覆していることを特徴とする請求項1記載の銅粉末。   2. The copper powder according to claim 1, wherein 0.02 to 0.5% by weight of fatty acid is uniformly coated on the spherical and discotic copper powder with respect to the copper powder. 請求項1ないし2記載の銅粉末製造に際し、平均粒子径2.5〜8μmの球状銅粉末に脂肪酸を0.02〜0.5重量%添加し、1/16〜1/4インチの球状媒体を用いて、粉砕機で物理的に脂肪酸を被覆ならびに円盤状加工することを特徴とする銅粉末の製造方法。
3. When producing the copper powder according to claim 1 or 2, 0.02 to 0.5% by weight of a fatty acid is added to a spherical copper powder having an average particle size of 2.5 to 8 μm, and a 1/16 to 1/4 inch spherical medium is added. A method for producing a copper powder, characterized in that a fatty acid is physically coated and disk-shaped using a pulverizer.
JP2006161881A 2006-06-12 2006-06-12 Copper powder and its production method Pending JP2007332391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161881A JP2007332391A (en) 2006-06-12 2006-06-12 Copper powder and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006161881A JP2007332391A (en) 2006-06-12 2006-06-12 Copper powder and its production method

Publications (1)

Publication Number Publication Date
JP2007332391A true JP2007332391A (en) 2007-12-27

Family

ID=38932143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161881A Pending JP2007332391A (en) 2006-06-12 2006-06-12 Copper powder and its production method

Country Status (1)

Country Link
JP (1) JP2007332391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018832A (en) * 2008-07-09 2010-01-28 Nippon Handa Kk Material for joining metallic members, manufacturing method of the material for joining metallic members, joined product of metallic members and manufacturing method of bump for electric circuit connection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235201A (en) * 1991-01-10 1992-08-24 Daido Steel Co Ltd Method for controlling tap density of powder
JP2002015622A (en) * 2000-06-30 2002-01-18 Fukuda Metal Foil & Powder Co Ltd Copper powder for electro-conductive paste and its manufacturing method
JP2005008930A (en) * 2003-06-18 2005-01-13 Nippon Atomized Metal Powers Corp Metallic powder, and apparatus and method for manufacturing metallic powder
JP2005076058A (en) * 2003-08-29 2005-03-24 Fukuda Metal Foil & Powder Co Ltd Method for manufacturing flaky metal powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235201A (en) * 1991-01-10 1992-08-24 Daido Steel Co Ltd Method for controlling tap density of powder
JP2002015622A (en) * 2000-06-30 2002-01-18 Fukuda Metal Foil & Powder Co Ltd Copper powder for electro-conductive paste and its manufacturing method
JP2005008930A (en) * 2003-06-18 2005-01-13 Nippon Atomized Metal Powers Corp Metallic powder, and apparatus and method for manufacturing metallic powder
JP2005076058A (en) * 2003-08-29 2005-03-24 Fukuda Metal Foil & Powder Co Ltd Method for manufacturing flaky metal powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018832A (en) * 2008-07-09 2010-01-28 Nippon Handa Kk Material for joining metallic members, manufacturing method of the material for joining metallic members, joined product of metallic members and manufacturing method of bump for electric circuit connection

Similar Documents

Publication Publication Date Title
JP4841987B2 (en) Flake silver powder and method for producing the same
JP2004169155A (en) Flake copper powder, production method for the flake copper powder, and electrically conductive paste obtained by using the flake copper powder
JP5074837B2 (en) Method for producing flat silver powder, flat silver powder, and conductive paste
JPWO2007037440A1 (en) Conductive powder and method for producing the same, conductive powder paste, and method for producing conductive powder paste
JP2006210214A (en) Metal powder for conductive paste and conductive paste
JP2012092442A (en) Flaky silver powder, method for producing the same, and conductive paste
JP2008013837A (en) Fine copper powder and its manufacturing method
JP5323461B2 (en) Fine metal powder for conductive paint and method for producing the same
US6673134B2 (en) Fine copper powder and process for producing the same
JP2012062531A (en) Flake-shaped silver powder, method for producing the same, resin curing type conductive paste, and method for forming conductive film
JP2010180471A (en) Flaky silver powder and method for producing the same, and conductive paste
JP2004068111A (en) Silver coated flake copper powder and method for manufacturing silver coated flake copper powder and conductive paste using silver coated flake copper powder
US20060289837A1 (en) Silver salts of dicarboxcylic acids for precious metal powder and flakes
JP2005200734A (en) Flaky copper powder, and its production method
JP2010236039A (en) Flaky silver powder, its production method and conductive paste
JP2004217952A (en) Surface-treated copper powder, method for manufacturing surface-treated copper powder, and electroconductive paste using the surface-treated copper powder
JP5757759B2 (en) Aluminum ink composition and printed matter using the same
JP2004027246A (en) Copper powder for conductive paste, and its manufacturing method
JPH11264001A (en) Flake copper powder and its production
JP2007332391A (en) Copper powder and its production method
JP2002015622A (en) Copper powder for electro-conductive paste and its manufacturing method
JP2007314852A (en) Silver powder and production method therefor
JP2017084587A (en) Silver oxide slurry, and conductive paste and method for producing the same
JP2008214678A (en) Tin powder, tin paste and method for producing tin powder
JP2005203304A (en) Mixed conductive powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405