JP2007331955A - Method for producing diamond - Google Patents

Method for producing diamond Download PDF

Info

Publication number
JP2007331955A
JP2007331955A JP2006162256A JP2006162256A JP2007331955A JP 2007331955 A JP2007331955 A JP 2007331955A JP 2006162256 A JP2006162256 A JP 2006162256A JP 2006162256 A JP2006162256 A JP 2006162256A JP 2007331955 A JP2007331955 A JP 2007331955A
Authority
JP
Japan
Prior art keywords
substrate
diamond
surrounding portion
thickness
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006162256A
Other languages
Japanese (ja)
Inventor
Hideaki Yamada
英明 山田
Akiyoshi Chayahara
昭義 茶谷原
Yoshiaki Mokuno
由明 杢野
Yuji Horino
裕治 堀野
Shinichi Shikada
真一 鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006162256A priority Critical patent/JP2007331955A/en
Publication of JP2007331955A publication Critical patent/JP2007331955A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which the shape (morphology) of the growth surface of a diamond can be easily controlled when a diamond single crystal is grown on a diamond substrate by a microwave plasma CVD process. <P>SOLUTION: The method for producing a diamond comprises conducting the growth of the diamond by controlling the shape of the growth surface of the diamond by adjusting the thickness of a member 7b that includes the top plate 7d of the substrate surrounding member 7b, wherein the substrate holder 7 is a substrate holder 7 that is composed of an electrically conducting material and is provided with the substrate surrounding member 7b around the periphery of a substrate mounting part 7a and that has a structure wherein the substrate holder 7 including the substrate surrounding member 7b is integrated or has a structure wherein a given thickness part can be separated from the top plate 7d of the substrate surrounding member 7b, as well as the substrate holder 7 for producing a diamond is a substrate holder 7 that is composed of an electrically conducting material and is provided with the substrate surrounding member 7b around the periphery of a substrate mounting part 7a and that has a structure wherein the substrate holder 7 including the substrate surrounding member 7b is integrated or has a structure wherein a given thickness part can be separated from the top plate 7d. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロ波プラズマCVD法によるダイヤモンド製造方法及びダイヤモンド製造用基板支持体に関する。   The present invention relates to a diamond manufacturing method by a microwave plasma CVD method and a substrate support for diamond manufacturing.

半導体として優れた特性を有するダイヤモンドは、例えば、高周波・高出力デバイス、紫外線発光デバイスなど半導体デバイス用材料として期待されている。   Diamond having excellent characteristics as a semiconductor is expected as a material for semiconductor devices such as high-frequency / high-power devices and ultraviolet light-emitting devices.

現在、ダイヤモンド単結晶の成長は、主に高圧合成法、気相合成法などによって行われている。気相合成法のうちで有望な方法として、減圧雰囲気下において、水素およびメタンガスを流してマイクロ波放電で形成したプラズマを利用してダイヤモンド結晶の成長を行う、マイクロ波プラズマCVD法が知られている。   Currently, diamond single crystals are grown mainly by high-pressure synthesis, vapor phase synthesis, or the like. As a promising method among vapor phase synthesis methods, a microwave plasma CVD method is known in which diamond crystals are grown using plasma formed by microwave discharge by flowing hydrogen and methane gas in a reduced-pressure atmosphere. Yes.

これらのダイヤモンド結晶の成長方法において、作業時間と成長コストを低減するための研究が今日まで広くなされてきているが、成長速度を向上するための研究例はあるものの、ダイヤモンドを成長させる際の、成長面の形状の制御については、その具体的な方法は提示されていない。   In these diamond crystal growth methods, research to reduce the working time and growth cost has been extensively made to date, but there are examples of research to improve the growth speed, but when growing diamonds, No specific method has been proposed for controlling the shape of the growth surface.

例えば、マイクロ波プラズマCVD法によるダイヤモンドのホモエピタキシャル成長において、水素ガスとメタンガスからなる反応ガスに微量の窒素を添加することによって、100μm毎時を超える速度でのダイヤモンド単結晶の成長が可能となることが報告されている(下記非特許文献1参照)。また、マイクロ波プラズマCVD法によるダイヤモンド成長方法において、ダイヤモンド基板の載置部が外周縁部に対して***した形状の基板支持体を用いることによって、ダイヤモンドを高速に成長させる方法も開示されている(下記特許文献1参照)。   For example, in diamond homoepitaxial growth by the microwave plasma CVD method, it is possible to grow a diamond single crystal at a rate exceeding 100 μm per hour by adding a small amount of nitrogen to a reaction gas composed of hydrogen gas and methane gas. It has been reported (see Non-Patent Document 1 below). In addition, in the diamond growth method using the microwave plasma CVD method, a method of growing diamond at a high speed by using a substrate support having a shape in which the mounting portion of the diamond substrate is raised with respect to the outer peripheral edge portion is also disclosed. (See Patent Document 1 below).

また、高い成長速度を実現するためのダイヤモンド合成装置として、公知のダイヤモンド製造技術を組み合わせて利用した合成装置が開示されている(下記特許文献2参照)。この合成装置は、それぞれ公知の技術である、モリブデン等の導体で作成した基板支持体上へダイヤモンド基板を設置すること(下記非特許文献2〜4参照)、基板支持体へ熱を放出すること(下記非特許文献3、4参照)、非接触型の温度測定装置を利用してダイヤモンドの温度を測定すること(下記非特許文献3参照)、予め決めた厚さまで成長を行うこと(下記特許文献3参照)、等の手段を組み合わせることによって、高い成長速度を実現しようとするものである。しかしながら、特許文献2は、成長面の形状を制御する方法については一切開示しておらず、成長面の形状を制御する手段については全く考慮していない。このため、上記した公知技術を組み合わせて利用した合成装置では、ダイヤモンドの成長速度を高速化することは可能であるが、ダイヤモンド成長面の形状を制御することはできない。   Further, as a diamond synthesizer for realizing a high growth rate, a synthesizer using a combination of known diamond manufacturing techniques is disclosed (see Patent Document 2 below). This synthesizer is a known technique, in which a diamond substrate is placed on a substrate support made of a conductor such as molybdenum (see Non-Patent Documents 2 to 4 below), and heat is released to the substrate support. (See Non-Patent Documents 3 and 4 below), Measuring the temperature of diamond using a non-contact type temperature measuring device (see Non-Patent Document 3 below), and growing to a predetermined thickness (Patent Patents below) A high growth rate is to be realized by combining means such as Reference 3). However, Patent Document 2 does not disclose any method for controlling the shape of the growth surface, and does not consider any means for controlling the shape of the growth surface. For this reason, in a synthesis apparatus using a combination of the above-described known techniques, it is possible to increase the diamond growth rate, but it is not possible to control the shape of the diamond growth surface.

しかも、特許文献2の方法では、ダイヤモンド基板の周縁が基板支持体に接した状態でダイヤモンド成長が行われているために成長面の拡大は絶望的である。更に、成長後に基板と基板支持体とを別方向にスライドすることが困難であり、これらを分離する際に基板が損傷を受ける可能性がある。   Moreover, in the method of Patent Document 2, the growth of the growth surface is hopeless because the diamond growth is performed with the periphery of the diamond substrate in contact with the substrate support. Furthermore, it is difficult to slide the substrate and the substrate support in different directions after growth, and the substrate may be damaged when separating them.

以上の通り、従来知られているマイクロ波プラズマCVD法によるダイヤモンド製造方法では、成長面の形状を制御することなくダイヤモンド成長が行われている。このため、成長したダイヤモンドを目的とする形状に研磨することが必要となり、これが作業時間と
コストの増大の一因となっている。
A.Chayahara, Y.Mokuno, Y.Takasu, H.Yoshikawa, N.Fujimori, Diamond Relat. Mater. 13 (2004), 1954-1958 M. Kamo, Y.Sato, S. Matsumoto, N. Setaka, J. Crystal Growth 62 (1983), 642-644 T. Tachibana, Y. Ando, A. Watanabe, Y. Nishibayashi, K. Kobashi, T. Hirao, K. Oura, Diamond Relat. Mater. 10 (2001), 1569-1572 電気学会・マイクロ波プラズマ調査専門委員会編、「マイクロ波プラズマの技術」、オーム社発行、151〜152頁 特開2005−255507号公報 特開2005−508279号公報 特開平9−20589号公報
As described above, in the conventionally known diamond manufacturing method using the microwave plasma CVD method, diamond growth is performed without controlling the shape of the growth surface. For this reason, it is necessary to polish the grown diamond into a target shape, which contributes to an increase in working time and cost.
A. Chayahara, Y. Mokuno, Y. Takasu, H. Yoshikawa, N. Fujimori, Diamond Relat. Mater. 13 (2004), 1954-1958 M. Kamo, Y. Sato, S. Matsumoto, N. Setaka, J. Crystal Growth 62 (1983), 642-644 T. Tachibana, Y. Ando, A. Watanabe, Y. Nishibayashi, K. Kobashi, T. Hirao, K. Oura, Diamond Relat. Mater. 10 (2001), 1569-1572 The Institute of Electrical Engineers of Japan, Microwave Plasma Research Committee, “Microwave Plasma Technology”, published by Ohm, pages 151-152 JP-A-2005-255507 JP 2005-508279 A Japanese Patent Laid-Open No. 9-20589

本発明は上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、マイクロ波プラズマCVD法によってダイヤモンド単結晶を成長させる際に、ダイヤモンドの成長面の形状(モフォロジー)を簡単に制御できる方法を提供することである。   The present invention has been made in view of the current state of the prior art described above, and its main purpose is to simplify the shape (morphology) of a diamond growth surface when growing a diamond single crystal by a microwave plasma CVD method. Is to provide a method that can be controlled.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、マイクロ波プラズマCVD法によってダイヤモンド基板上にダイヤモンド結晶を成長させる方法において、基板支持体として、基板載置面の周囲に基板囲繞部を備えた一体構造又は天面から所定厚み部分が分離可能とされた構造の基板支持体を用い、該基板囲繞部の天面を含む部材の厚さを調整することによって、ダイヤモンド成長面の形状を制御することが可能となることを見出した。   The present inventor has intensively studied to achieve the above-described object. As a result, in a method of growing a diamond crystal on a diamond substrate by a microwave plasma CVD method, a predetermined thickness portion is separated from an integrated structure having a substrate surrounding portion around the substrate mounting surface or a top surface as a substrate support. It has been found that the shape of the diamond growth surface can be controlled by using a substrate support having a possible structure and adjusting the thickness of the member including the top surface of the substrate surrounding portion.

そして、この方法を利用することによって、成長面の形状を目的に応じて任意に調整することが可能となり、例えば、成長面の形状を凸型又は平坦状に制御する場合には、ダイヤモンドの成長を長時間連続して継続することが可能となって大型のダイヤモンド製造を実現化でき、また成長面の形状を凹型とする場合には、主成長面の成長方向に垂直な方向に成長面を拡大させることが可能となるなど、目的に応じた各種の成長面を非常に簡単に形成できることを見出した。   By using this method, it becomes possible to arbitrarily adjust the shape of the growth surface according to the purpose. For example, when controlling the shape of the growth surface to be convex or flat, the growth of diamond Can be produced continuously for a long time, and large diamond production can be realized, and when the growth surface has a concave shape, the growth surface is perpendicular to the growth direction of the main growth surface. It has been found that various growth surfaces according to the purpose can be formed very easily, such as being able to be enlarged.

本発明は、これらの知見に基づいて完成されたものである。   The present invention has been completed based on these findings.

即ち、本発明は、下記のダイヤモンド製造方法、及びこの方法で用いることのできるダイヤモンド作製用基板支持体を提供するものである。
1. マイクロ波プラズマCVD法によって、ダイヤモンド基板上にダイヤモンド結晶を成長させる方法において、
CVD装置内に設置する基板支持体が、基板載置面の周囲に基板囲繞部を備えた導電性材料からなる支持体であって、該基板囲繞部を含む基板支持体は一体であるか又は基板囲繞部の天面から所定厚み部分が分離可能とされた構造であり、
該基板囲繞部の天面を含む部材の厚さを調整することによって、ダイヤモンド成長面の形状を制御してダイヤモンド成長を行うことを特徴とするダイヤモンド製造方法。
2. 基板囲繞部の天面を含む部材の厚さを大きくすることによって、ダイヤモンド基板の端面の成長を抑制する上記項1に記載の方法。
3. 基板囲繞部の天面を含む部材の厚さを小さくすることによって、ダイヤモンド基板の端面の成長を促進する上記項1に記載の方法。
4. 基板支持体における基板囲繞部の天面とダイヤモンド基板の表面がほぼ面一であっ
て、該基板囲繞部の天面を含む部材の厚さを、ダイヤモンド基板の厚さより大きくすることにより、ダイヤモンド成長面の形状を凸状とする上記項1に記載の方法。
5. 基板支持体における基板囲繞部の天面とダイヤモンド基板の表面がほぼ面一であって、該基板支持体における基板囲繞部の天面を含む部材の厚さを、ダイヤモンド基板の厚さとほぼ同一とすることにより、ダイヤモンド成長面の形状を平坦状とする上記項1に記載の方法。
6. 基板支持体における基板囲繞部の天面とダイヤモンド基板の表面がほぼ面一であって、該基板支持体における基板囲繞部の天面を含む部材の厚さを、ダイヤモンド基板の厚さより小さくすることにより、ダイヤモンド成長面の形状を凹状とする上記項1に記載の方法。
7. 基板支持体における基板囲繞部の天面とダイヤモンド基板の表面の高さの相違が0.3mm未満である上記項4〜6に記載の方法。
8. 上記項1〜7のいずれかの方法に用いられる基板載置面の周囲に基板囲繞部を備えた導電性材料からなる基板支持体であって、該基板囲繞部を含む基板支持体は一体であるか又は天面から所定厚み部分が分離可能とされた構造であるマイクロ波プラズマCVD法によるダイヤモンド製造用基板支持体。
That is, this invention provides the following diamond manufacturing method and the substrate support body for diamond preparation which can be used by this method.
1. In a method of growing a diamond crystal on a diamond substrate by a microwave plasma CVD method,
The substrate support installed in the CVD apparatus is a support made of a conductive material having a substrate surrounding portion around the substrate mounting surface, and the substrate support including the substrate surrounding portion is integral or It is a structure in which a predetermined thickness portion can be separated from the top surface of the substrate surrounding portion,
A diamond manufacturing method characterized in that diamond growth is performed by controlling a shape of a diamond growth surface by adjusting a thickness of a member including a top surface of the substrate surrounding portion.
2. Item 2. The method according to Item 1, wherein the growth of the end surface of the diamond substrate is suppressed by increasing the thickness of the member including the top surface of the substrate surrounding portion.
3. Item 2. The method according to Item 1, wherein the growth of the end surface of the diamond substrate is promoted by reducing the thickness of the member including the top surface of the substrate surrounding portion.
4). The top surface of the substrate surrounding portion of the substrate support is substantially flush with the surface of the diamond substrate, and the thickness of the member including the top surface of the substrate surrounding portion is made larger than the thickness of the diamond substrate, thereby growing the diamond. Item 2. The method according to Item 1, wherein the surface has a convex shape.
5). The top surface of the substrate surrounding portion in the substrate support is substantially flush with the surface of the diamond substrate, and the thickness of the member including the top surface of the substrate surrounding portion in the substrate support is substantially the same as the thickness of the diamond substrate. 2. The method according to item 1, wherein the diamond growth surface has a flat shape.
6). The top surface of the substrate surrounding portion in the substrate support is substantially flush with the surface of the diamond substrate, and the thickness of the member including the top surface of the substrate surrounding portion in the substrate support is made smaller than the thickness of the diamond substrate. 3. The method according to item 1, wherein the diamond growth surface has a concave shape.
7). Item 7. The method according to any one of Items 4 to 6, wherein the difference in height between the top surface of the substrate surrounding portion and the surface of the diamond substrate in the substrate support is less than 0.3 mm.
8). A substrate support made of a conductive material having a substrate surrounding portion around a substrate placement surface used in the method of any one of Items 1 to 7, wherein the substrate support including the substrate surrounding portion is integrated. A substrate support for producing diamond by a microwave plasma CVD method having a structure in which a predetermined thickness portion is separable from the top surface.

本発明では、ダイヤモンドの製造方法として、マイクロ波プラズマCVD法によって、ダイヤモンド基板上にダイヤモンド結晶を成長させる方法を採用する。   In the present invention, as a method for producing diamond, a method of growing a diamond crystal on a diamond substrate by a microwave plasma CVD method is employed.

図1に、マイクロ波プラズマCVD装置の一例の概略図を示す。図1に示す装置では、マイクロ波プラズマCVD装置1は、マイクロ波電源2、マイクロ波を伝搬させる導波管3、マイクロ波導入誘電体窓4、空洞共振器型の反応容器5、内部に冷却水Wが通っているステージ6、ステージ6上に設置される基板支持体7を備えている。   FIG. 1 shows a schematic diagram of an example of a microwave plasma CVD apparatus. In the apparatus shown in FIG. 1, a microwave plasma CVD apparatus 1 includes a microwave power source 2, a waveguide 3 for propagating microwaves, a microwave introduction dielectric window 4, a cavity resonator type reaction vessel 5, and cooling inside. A stage 6 through which water W passes and a substrate support 7 installed on the stage 6 are provided.

反応容器5には、原料ガスを導入するための原料ガス導入口5aと、容器内を真空引きするための排気口5bとが設けられている。   The reaction vessel 5 is provided with a source gas introduction port 5a for introducing a source gas and an exhaust port 5b for evacuating the inside of the vessel.

マイクロ波電源2で発生させられたマイクロ波は、図1に矢印で示すようにして反応容器5内に導入される。   The microwave generated by the microwave power source 2 is introduced into the reaction vessel 5 as indicated by an arrow in FIG.

具体的な製造条件については特に限定はなく、公知の条件に従って、ダイヤモンドを成長させればよい。原料ガスとしては、例えば、メタンガスと水素ガスの混合ガスを用いることができ、更に、これに窒素ガスを加えることによって、成長速度を向上させることができる。   There are no particular limitations on the specific production conditions, and diamond may be grown according to known conditions. As the raw material gas, for example, a mixed gas of methane gas and hydrogen gas can be used, and further, the growth rate can be improved by adding nitrogen gas thereto.

具体的なダイヤモンド成長条件の一例を示すと、反応ガスとして用いる水素、メタン及び窒素の混合気体では、メタンは、水素供給量1モルに対して、0.01〜0.33モル程度となる比率で供給し、窒素は、メタン供給量1モルに対して、0.0005〜0.1モル程度となる比率で供給することが好ましい。また、プラズマCVD装置内の圧力は、通常、13.3〜40kPa程度とすればよい。マイクロ波としては、通常、2.45GHz、915MHz等の工業および科学用に許可された周波数のマイクロ波が使用される。マイクロ波電力は、特に限定的ではないが、通常、0.5〜5kW程度とすればよい。この様な範囲内において、例えば、基板(ダイヤモンド種結晶)の温度が1000〜1300℃程度となるように各条件を設定すればよい。   As an example of specific diamond growth conditions, in a mixed gas of hydrogen, methane, and nitrogen used as a reaction gas, methane has a ratio of about 0.01 to 0.33 mol with respect to 1 mol of hydrogen supply. The nitrogen is preferably supplied at a ratio of about 0.0005 to 0.1 mol per 1 mol of methane supplied. Moreover, what is necessary is just to usually set the pressure in a plasma CVD apparatus to about 13.3-40 kPa. As the microwave, a microwave having a frequency permitted for industrial and scientific use such as 2.45 GHz and 915 MHz is usually used. The microwave power is not particularly limited, but is usually about 0.5 to 5 kW. Within such a range, for example, each condition may be set so that the temperature of the substrate (diamond seed crystal) is about 1000 to 1300 ° C.

本発明方法では、ダイヤモンド基板を載置する基板支持体として、基板載置面の周囲に基板囲繞部を備えた導電性材料からなる基板支持体を用いる。該支持体は、通常、Mo、W等の金属、合金等の導電体で形成される。この条件を満足する限り、基板支持体の形状は任意である。   In the method of the present invention, a substrate support made of a conductive material having a substrate surrounding portion around the substrate mounting surface is used as a substrate support for mounting the diamond substrate. The support is usually formed of a metal such as Mo or W, or a conductor such as an alloy. As long as this condition is satisfied, the shape of the substrate support is arbitrary.

尚、本発明では、基板支持体の基板載置部は、凹部によって形成されており、基板囲繞部とは、基板支持体の基板載置面に載置されたダイヤモンド基板を取り囲む周辺部分をいう。   In the present invention, the substrate placement portion of the substrate support is formed by a recess, and the substrate surrounding portion refers to a peripheral portion surrounding the diamond substrate placed on the substrate placement surface of the substrate support. .

図2は、本発明で使用する基板支持体の一例の概略を示す図面である。図2に示す基板支持体は、全体として円柱状の形状であって、基板載置面7aが、ダイヤモンド基板8と同一又は相似の平面形状であり、その周囲に基板囲繞部7bを備えている。   FIG. 2 is a schematic view showing an example of a substrate support used in the present invention. The substrate support shown in FIG. 2 has a cylindrical shape as a whole, the substrate mounting surface 7a has the same or similar planar shape as the diamond substrate 8, and has a substrate surrounding portion 7b around it. .

図2(a)は、基板囲繞部7bを含む基板支持体7が一体となった構造の支持体である。図 2(b)と図2(c)は、基板囲繞部7bを形成する部材と、基板載置面7aを含
む部材7cとが分離した構造の支持体である。具体的には、図2(b)に示す支持体では、基板囲繞部を形成する部材7bは、中央部分にダイヤモンド基板の形状と同一又は相似の中空部分を有する円盤状の部材である。基板囲繞部を形成する部材7bは、該部材と同一の直径を有する円柱状の部材7c上に設置されている。図2(c)に示す支持体では、基板囲繞部を形成する部材7bは、中央部分にダイヤモンド基板の形状と同一又は相似の中空部分を有する円盤状の部材であって、ダイヤモンド基板より厚さが小さい部材である。基板載置面7aを含む部材7cは、円柱状の部材であって、その一方の底面に基板載置部の一部となる凹部が形成されている。この部材における凹部の平面形状は、基板囲繞部を形成する部材7bの中空部分と同一形状である。基板囲繞部を形成する部材7bは、基板載置面7aを含む部材7c上に設置され、該部材7bにおけると中空部分と、基板載置面を含む部材7cの凹部によって、基板を載置する空間が形成される。
FIG. 2A shows a support having a structure in which the substrate support 7 including the substrate surrounding portion 7b is integrated. FIGS. 2B and 2C show a support having a structure in which a member forming the substrate surrounding portion 7b and a member 7c including the substrate mounting surface 7a are separated. Specifically, in the support shown in FIG. 2B, the member 7b forming the substrate surrounding portion is a disk-shaped member having a hollow portion that is the same as or similar to the shape of the diamond substrate in the central portion. The member 7b forming the substrate surrounding portion is installed on a columnar member 7c having the same diameter as the member. In the support shown in FIG. 2 (c), the member 7b forming the substrate surrounding portion is a disk-shaped member having a hollow portion at the center portion that is the same as or similar to the shape of the diamond substrate, and is thicker than the diamond substrate. Is a small member. The member 7c including the substrate placement surface 7a is a columnar member, and a concave portion serving as a part of the substrate placement portion is formed on one bottom surface thereof. The planar shape of the concave portion in this member is the same shape as the hollow portion of the member 7b forming the substrate surrounding portion. The member 7b forming the substrate surrounding portion is placed on the member 7c including the substrate placement surface 7a, and the substrate is placed by the hollow portion of the member 7b and the concave portion of the member 7c including the substrate placement surface. A space is formed.

本発明方法では、基板囲繞部の天面7dを含む部材の厚さtを適切な大きさに設定することによって、ダイヤモンド基板の成長面の形状を制御することができる。具体的には、基板囲繞部の天面7dを含む部材7bの厚さtを大きくすると、ダイヤモンド基板8の端部8aの成長を抑制することができ、天面7dを含む部材7bの厚さtを小さくすると、ダイヤモンド基板8の端部8aの成長を促進することができる。 In the method of the present invention, by setting the thickness t 2 of the member including a top surface 7d of the substrate surrounding portion to size, it is possible to control the shape of the growth surface of the diamond substrate. Specifically, increasing the thickness t 2 of the member 7b including top 7d of the substrate surrounding portion, it is possible to suppress the growth of the end portion 8a of the diamond substrate 8, the thickness of the member 7b including top 7d the smaller the t 2 is, it is possible to promote the growth of the end portion 8a of the diamond substrate 8.

以下、図2を参照して、本発明方法の実施態様について説明する。図2は、基板支持体における基板囲繞部の天面7dと、基板載置面に載置されたダイヤモンド基板8の表面がほぼ面一である場合を示す。   The embodiment of the method of the present invention will be described below with reference to FIG. FIG. 2 shows a case where the top surface 7d of the substrate surrounding portion of the substrate support is substantially flush with the surface of the diamond substrate 8 placed on the substrate placement surface.

図2(a)に示す支持体は、基板囲繞部7bを含む基板支持体7全体が一体となった構造であり、基板囲繞部の天面7dを含む部材の厚さtは、ダイヤモンド基板の厚さtより大きくなっている。この状態において、上記した条件でマイクロ波プラズマCVD法によって、ダイヤモンド基板8上にダイヤモンド結晶を成長させる場合には、ダイヤモンド基板の中央部8bと比較して、端部8aの成長が抑制され、ダイヤモンド成長面の形状は、中央部8bが***した凸状となる。この場合、天面7dを含む部材の厚さtは、ダイヤモンド基板の厚さtより大きければ良いが、通常、天面7dを含む部材の厚さtが、ダイヤモンド基板の厚さtより、0.3mm程度以上大きいことが好ましい。天面を含む部材の最大厚さは限定されないが、通常、ダイヤモンド基板の厚さtの5倍程度までの厚さとすればよい。 Support shown in FIG. 2 (a), the entire substrate support 7 comprising a substrate surrounding portion 7b is a structure in which an integrated, the thickness t 2 of the member including a top surface 7d of the substrate surrounding portion, the diamond substrate It is larger than the thickness t 1 of. In this state, when a diamond crystal is grown on the diamond substrate 8 by the microwave plasma CVD method under the above-described conditions, the growth of the end portion 8a is suppressed as compared with the central portion 8b of the diamond substrate. The shape of the growth surface is a convex shape with the central portion 8b raised. In this case, the thickness t 2 of the member including a top surface 7d is be greater than the thickness t 1 of the diamond substrate, usually, the thickness t 2 of the member including a top surface 7d is a diamond substrate thickness t 1 is preferably greater than about 0.3 mm. The maximum thickness of the member including a top surface, but are not limited to, usually, it may be the thickness of up to 5 times the thickness t 1 of the diamond substrate.

図2(b)に示す支持体は、中空部分を有する円盤状の部材7bと、基板載置面7aを含む円柱状の部材7cとが分離した構造の支持体である。該円盤状部材7bの中空部分の平面形状は、ダイヤモンド基板の平面形状と同一又は相似であり、該円盤状部材7bの厚さは、ダイヤモンド基板の厚さtとほぼ同一である。この場合、基板支持体の天面7dを含む部材7bの厚さtは、円盤状部材7bの厚さとなるので、基板囲繞部の天面7dを含む部材7bの厚さtは、ダイヤモンド基板の厚さtとほぼ同一となる。この状態
において、上記した条件でマイクロ波プラズマCVD法によって、ダイヤモンド基板8上にダイヤモンド結晶を成長させる場合には、ダイヤモンド基板の中央部8bと端部8aの成長はほぼ同程度となり、ダイヤモンド成長面は、平坦な形状となる。この場合、例えば、基板囲繞部の天面7dを含む部材7bの厚さtと、ダイヤモンド基板の厚さtとの相違が0.3mm程度未満の場合に同様に、上記した場合と同様にダイヤモンド成長面を平坦な形状とすることができる。
The support shown in FIG. 2B is a support having a structure in which a disk-shaped member 7b having a hollow portion and a columnar member 7c including a substrate mounting surface 7a are separated. The planar shape of the hollow portion of the disc-shaped member 7b is a plan shape identical or similar to diamond substrate, the thickness of the disc-shaped member 7b is substantially identical to the thickness t 1 of the diamond substrate. In this case, the thickness t 2 of the member 7b including top 7d of the substrate support, since the thickness of the disc-shaped member 7b, the thickness t 2 of the member 7b including top 7d of the substrate surrounding portion, diamond It is almost the same as the thickness t 1 of the substrate. In this state, when a diamond crystal is grown on the diamond substrate 8 by the microwave plasma CVD method under the above-described conditions, the growth of the central portion 8b and the end portion 8a of the diamond substrate is substantially the same, and the diamond growth surface. Becomes a flat shape. In this case, for example, the thickness t 2 of the member 7b including top 7d of the substrate surrounding portion, similarly to the case difference between the thickness t 1 of the diamond substrate is less than about 0.3 mm, similarly to the case of the In addition, the diamond growth surface can be made flat.

図2(c)に示す支持体では、基板囲繞部を形成する部材7bは、中央部分にダイヤモンド基板の形状と同一又は相似形の中空部分を有する円盤状の部材であって、ダイヤモンド基板8より厚さが小さい部材である。図2(c)における基板載置面7a周辺部の部分拡大図を図3に示す。基板載置面7aを含む部材7cは、円柱状の部材であって、その一方の底面に基板載置部の一部となる凹部が形成されている。この場合、基板囲繞部の天面7dを含む部材7bの厚さtは、円盤状部材の厚さとなり、ダイヤモンド基板の厚さtより小さくなっている。この状態において、上記した条件でマイクロ波プラズマCVD法によって、ダイヤモンド基板8上にダイヤモンド結晶を成長させる場合には、ダイヤモンド基板の中央部8bと比較して、端部8aの成長が促進され、ダイヤモンド成長面の形状は、中央部8bの成長が少なく、端部8aが大きく成長した凹状となる。この場合、天面7dを含む部材の厚さtを、ダイヤモンド基板の厚さtより小さくすれば良いが、通常、天面7dを含む部材の厚さtが、ダイヤモンド基板の厚さtより、0.3mm程度以上小さいことが好ましい。 In the support shown in FIG. 2 (c), the member 7 b forming the substrate surrounding portion is a disk-shaped member having a hollow portion that is the same as or similar to the shape of the diamond substrate at the center portion. It is a member with a small thickness. FIG. 3 shows a partially enlarged view of the periphery of the substrate placement surface 7a in FIG. The member 7c including the substrate placement surface 7a is a columnar member, and a concave portion serving as a part of the substrate placement portion is formed on one bottom surface thereof. In this case, the thickness t 2 of the member 7b including top 7d of the substrate surrounding portion becomes a thickness of the disc-shaped member is smaller than the thickness t 1 of the diamond substrate. In this state, when a diamond crystal is grown on the diamond substrate 8 by the microwave plasma CVD method under the above-described conditions, the growth of the end portion 8a is promoted compared to the central portion 8b of the diamond substrate. The shape of the growth surface is a concave shape in which the growth of the central portion 8b is small and the end portion 8a is greatly grown. In this case, the thickness t 2 of the member including the top surface 7d, may be smaller than the thickness t 1 of the diamond substrate, usually, the thickness t 2 of the member including the top surface 7d, the thickness of the diamond substrate than t 1, it is preferred not less than about 0.3mm smaller.

尚、上記図2(a)〜図2(c)に示すダイヤモンド成長面の制御方法では、基板支持体における基板囲繞部の天面7dと、基板載置面に載置されたダイヤモンド基板8の表面の位置(高さ)は、0.3mm程度の誤差範囲内で一致していることが好ましい。   In the diamond growth surface control method shown in FIGS. 2A to 2C, the top surface 7d of the substrate surrounding portion of the substrate support and the diamond substrate 8 placed on the substrate placement surface The surface position (height) is preferably matched within an error range of about 0.3 mm.

上記した方法によって成長面の形状を制御できる理由については、必ずしも明確ではないが、基板囲繞部の天面7dを含む部材7bの厚さtがダイヤモンド基板の厚さtより大きいと、プラズマCVD処理を行う際に、ダイヤモンド基板の端部8aに対する基板支持体による冷却効果が大きくなり、端部8aの成長が抑制されて、成長面の形状は中央部8bが***した凸状となり、一方、基板囲繞部の天面7dを含む部材7bの厚さtがダイヤモンド基板の厚さtより小さい場合には、ダイヤモンド基板の端部8aに対する基板支持体による冷却効果が小さくなり、特に、天面7dを含む部材7bと基板載置面を含む部材7cとが分離していることにより、この分離面が断熱効果を生じて、ダイヤモンド基板の端部8aに対する冷却効果がより一層低下し、その結果、端部8aの成長が促進されて、成長面の形状は端部8aが***した凹状となると考えられる。 For reasons that can control the shape of the growth surface by method described above, and although not necessarily clear, the thickness t 2 of the member 7b is larger than the thickness t 1 of the diamond substrate comprising a top surface 7d of the substrate surrounding portion, the plasma When performing the CVD process, the cooling effect by the substrate support on the end portion 8a of the diamond substrate is increased, the growth of the end portion 8a is suppressed, and the shape of the growth surface becomes a convex shape with the central portion 8b raised, , when the thickness t 2 of the member 7b including top 7d of the substrate surrounding portion is smaller than the thickness t 1 of the diamond substrate is smaller cooling effect of the substrate support relative to the end 8a of the diamond substrate, in particular, Since the member 7b including the top surface 7d and the member 7c including the substrate mounting surface are separated from each other, the separation surface generates a heat insulating effect, and the cooling of the end 8a of the diamond substrate is reduced. It is considered that the rejection effect is further reduced, and as a result, the growth of the end 8a is promoted, and the shape of the growth surface becomes a concave shape in which the end 8a is raised.

本発明方法では、使用する基板支持体の形状については、図2に示す形状の支持体に限定されず、基板載置面7aの周囲に基板囲繞部7bを備えた基板支持体、即ち、基板載置部が凹部によって形成されている基板支持体であれば、任意の形状の支持体を用いることができる。例えば、図2では、円柱状の基板支持体を用いているが、基板支持体の上面と比較して底面の面積が大きい円錐台状の基板支持体を用いてもよい。更に、後述する実施例1及び2において用いた、基板載置部を含む部材と外周縁部用部材とが分離した構造の基板支持体を用いることもできる。いずれの形状の支持体を用いる場合にも、図2に示す場合と同様に、基板囲繞部の天面を含む部材の厚さを調整することによって、ダイヤモンド成長面の形状を制御することができる。   In the method of the present invention, the shape of the substrate support to be used is not limited to the shape of the support shown in FIG. 2, and the substrate support having the substrate surrounding portion 7b around the substrate mounting surface 7a, that is, the substrate As long as the mounting portion is a substrate support formed by a concave portion, a support having an arbitrary shape can be used. For example, in FIG. 2, a columnar substrate support is used, but a truncated cone-shaped substrate support having a larger bottom surface area than the upper surface of the substrate support may be used. Furthermore, it is also possible to use a substrate support having a structure in which the member including the substrate mounting portion and the outer peripheral edge member used in Examples 1 and 2 described later are separated. In the case of using any shape of support, the shape of the diamond growth surface can be controlled by adjusting the thickness of the member including the top surface of the substrate surrounding portion as in the case shown in FIG. .

また、基板載置面7aの形状についても、使用するダイヤモンド基板と同一形状又は相似形に限定されず、ダイヤモンド基板を載置可能な形状であれば、任意の形状の載置面を有する基板を用いることができる。尚、ダイヤモンド基板の端面と基板囲繞部との間隔、即ち、ダイヤモンド基板端面8aと基板載置部の内壁面7eとの間隔については、特に限
定的ではないが、基板囲繞部による冷却効果を十分に発揮させるためには、0.5mm程度以
下であることが好ましく、0.1mm程度以下であることがより好ましい。
Also, the shape of the substrate placement surface 7a is not limited to the same shape or similar shape as the diamond substrate to be used, and any substrate having a placement surface of any shape can be used as long as the diamond substrate can be placed thereon. Can be used. The distance between the end surface of the diamond substrate and the substrate surrounding portion, that is, the distance between the diamond substrate end surface 8a and the inner wall surface 7e of the substrate mounting portion is not particularly limited, but the cooling effect by the substrate surrounding portion is sufficient. Therefore, it is preferably about 0.5 mm or less, more preferably about 0.1 mm or less.

図2は、ダイヤモンド基板表面が基板囲繞部の天面7dとほぼ面一となるようにダイヤモンド基板を載置した例であるが、これに限定されず、ダイヤモンド基板表面の位置を基板囲繞部の天面7dの位置より高く設定しても良く、或いは天面7dの位置より低く設定しても良い。この場合、ダイヤモンド基板表面の位置が高くなるに従って、ダイヤモンド基板の端面8aの成長が促進される傾向がある。このため、ダイヤモンド基板の成長面の形状を制御するためには、ダイヤモンド基板の表面位置に応じて、天面7dを含む部材の厚さtを決める必要がある。例えば、ダイヤモンド基板表面の位置が基板囲繞部の天面7dの位置より高い場合には、成長面の形状を凸状とするためには、ダイヤモンド基板表面が基板囲繞部の天面7dと面一の場合と比較して、天面7dを含む部材7bの厚さtを大きくすることが必要になる。同様に、ダイヤモンド基板表面の位置が基板囲繞部の天面7dの位置より低い場合には、成長面の形状を凹状とするためには、ダイヤモンド基板表面が基板囲繞部の天面7dと面一の場合と比較して、天面7dを含む部材7bの厚さtを小さくすることが必要になる。 FIG. 2 shows an example in which the diamond substrate is placed so that the surface of the diamond substrate is substantially flush with the top surface 7d of the substrate surrounding portion. However, the present invention is not limited to this, and the position of the diamond substrate surface is the position of the substrate surrounding portion. It may be set higher than the position of the top surface 7d, or may be set lower than the position of the top surface 7d. In this case, the growth of the end surface 8a of the diamond substrate tends to be promoted as the position of the diamond substrate surface increases. Therefore, in order to control the shape of the growth surface of the diamond substrate, according to the surface position of the diamond substrate, it is necessary to determine the thickness t 2 of the member including a top surface 7d. For example, when the position of the diamond substrate surface is higher than the position of the top surface 7d of the substrate surrounding portion, the surface of the diamond substrate is flush with the top surface 7d of the substrate surrounding portion in order to make the growth surface convex. as compared with the case of, it is necessary to increase the thickness t 2 of the member 7b including top 7d. Similarly, when the position of the surface of the diamond substrate is lower than the position of the top surface 7d of the substrate surrounding portion, the surface of the diamond substrate is flush with the top surface 7d of the substrate surrounding portion in order to make the shape of the growth surface concave. as compared with the case of, it is necessary to reduce the thickness t 2 of the member 7b including top 7d.

本発明方法によれば、従来のマイクロ波プラズマCVD法では困難であった成長面の形状(モフォロジー)を、簡単な方法で制御することができる。このため、本発明方法を採用することによって、使用目的に応じた形状のダイヤモンドを作製することが容易となる。   According to the method of the present invention, the shape (morphology) of the growth surface, which was difficult with the conventional microwave plasma CVD method, can be controlled by a simple method. For this reason, by adopting the method of the present invention, it becomes easy to produce diamond having a shape corresponding to the purpose of use.

例えば、ダイヤモンド成長面が凸状又は平坦状となるように条件を設定する場合には、ダイヤモンド成長を連続して行うことが可能となり、大型のダイヤモンド製造を容易に行うことができる。また、ダイヤモンド成長面が凹状となるように条件を設定する場合には、主成長方向に対して垂直方向に対して成長面が拡大することができる。   For example, when the conditions are set so that the diamond growth surface is convex or flat, diamond growth can be performed continuously, and large diamond can be manufactured easily. Further, when the conditions are set so that the diamond growth surface is concave, the growth surface can be enlarged in the direction perpendicular to the main growth direction.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
図1に示す空洞共振器型の反応容器を有するマイクロ波プラズマCVD装置を用い、冷却ステージ6のほぼ中心に、基板支持体7を設置した。
Example 1
A substrate support 7 was installed at substantially the center of the cooling stage 6 using a microwave plasma CVD apparatus having a cavity resonator type reaction vessel shown in FIG.

該基板支持体7は、基板載置部用部材と外周縁部用部材7fとから構成され、全体として円錐台状の形状を有するモリブデン製の支持体である。該基板載置部用部材は、基板囲繞部7bを含む部材と基板載置面7aを含む部材が一体となった構造の直径約12mm、高さ約8.5mmの円柱状であり、一方の底面の中央部に、深さ0.5mmの3mm×3mmの正方形の凹部が形成されている。外周縁部用部材7fは、底面の直径がそれぞれ20mmと12mmであり、高さが約8.5mmである円錐台の形状をしており、直径12mmの同心円状の空洞を有し、該空洞内に上記基板載置部用部材が配置されている。   The substrate support 7 is composed of a substrate mounting member and an outer peripheral edge member 7f, and is a molybdenum support having a truncated cone shape as a whole. The member for the substrate placement portion is a columnar shape having a diameter of about 12 mm and a height of about 8.5 mm, in which a member including the substrate surrounding portion 7b and a member including the substrate placement surface 7a are integrated. A 3 mm × 3 mm square recess having a depth of 0.5 mm is formed at the center of the bottom surface. The outer peripheral edge member 7f has a truncated cone shape with a bottom diameter of 20 mm and 12 mm, and a height of about 8.5 mm, and has a concentric cavity with a diameter of 12 mm. The substrate mounting portion member is disposed inside.

該基板支持体では、基板載置部用部材の凹部の3mm×3mmの底面が基板載置面7aであり、その周辺部が基板囲繞部7bである。   In the substrate support, the 3 mm × 3 mm bottom surface of the concave portion of the substrate mounting portion member is the substrate mounting surface 7a, and the peripheral portion thereof is the substrate surrounding portion 7b.

ダイヤモンド基板(種結晶)としては、高圧合成法によって得られた単結晶ダイヤモンドを{100}面に対して平行に切り出し研磨して得た3×3×0.5mmの板状結晶を使用した。 As the diamond substrate (seed crystal), a plate crystal of 3 × 3 × 0.5 mm 3 obtained by cutting and polishing a single crystal diamond obtained by a high-pressure synthesis method in parallel to the {100} plane was used. .

図4(a)は、ダイヤモンド基板(種結晶)8を基板支持体の載置面に載置した状態を
示す中央縦断正面図である。ダイヤモンド基板8は、載置部(凹部)に隙間無く載置されている。この状態では、基板支持体における基板囲繞部の天面7dとダイヤモンド基板の表面が面一であって、該基板囲繞部の天面7dを含む部材、即ち、基板支持体全体の厚さtは、ダイヤモンド基板の厚さtの5倍以上である。
FIG. 4A is a central longitudinal sectional front view showing a state in which the diamond substrate (seed crystal) 8 is placed on the placement surface of the substrate support. The diamond substrate 8 is placed on the placement portion (concave portion) without a gap. In this state, the top surface 7d of the substrate surrounding portion of the substrate support is flush with the surface of the diamond substrate, and the member including the top surface 7d of the substrate surrounding portion, that is, the thickness t 2 of the entire substrate support. Is 5 times or more the thickness t 1 of the diamond substrate.

まず、反応容器内を真空排気後、H2ガスを導入し、反応容器内の圧力を10 Torr(1333Pa)に設定し、マイクロ波(2.45GHz)電力500 Wを印加することによってプラズマを点火
した。その後、圧力、H2ガス流量、N2ガス流量、およびマイクロ波電力を徐々に増大させて、それぞれ圧力を180 Torr(24.0KPa)、H2ガス流量を500cc(標準状態)/分、N2ガス流量を1.8cc(標準状態)/分に設定した。次いで、マイクロ波電力を1000-3000 Wの間で基板温度が1130 ℃になるよう設定した後、N2ガス流量を0.6cc(標準状態)/分へ
と変化し、CH4ガス60cc(標準状態)/分を導入して定常的なダイヤモンド成長を行
った。
First, after evacuating the reaction vessel, H 2 gas was introduced, the pressure inside the reaction vessel was set to 10 Torr (1333 Pa), and the plasma was ignited by applying microwave (2.45 GHz) power of 500 W . Then, gradually increase the pressure, H 2 gas flow rate, N 2 gas flow rate, and microwave power, respectively, the pressure is 180 Torr (24.0 KPa), the H 2 gas flow rate is 500 cc (standard state) / min, N 2 The gas flow rate was set to 1.8 cc (standard condition) / min. Next, after setting the microwave power between 1000-3000 W so that the substrate temperature becomes 1130 ° C., the N 2 gas flow rate is changed to 0.6 cc (standard state) / min, and CH 4 gas 60 cc (standard) State) / min was introduced to perform steady diamond growth.

4時間成長を行った後、CH4およびN2ガスを止めることによって結晶成長を停止し、圧
力、H2ガス流量、およびマイクロ波電力を徐々に減少させてマイクロ波電力を0にし、反
応容器を大気開放した後、成長した結晶を取り出した。
After 4 hours of growth, stop crystal growth by stopping CH 4 and N 2 gases, gradually reduce pressure, H 2 gas flow rate, and microwave power to reduce microwave power to 0, and reaction vessel Was opened to the atmosphere, and the grown crystal was taken out.

得られたダイヤモンド単結晶の厚さをマイクロメータによって計測した結果、主成長方向へ厚さが約0.2mm増加していた。   As a result of measuring the thickness of the obtained diamond single crystal with a micrometer, the thickness increased by about 0.2 mm in the main growth direction.

図5(a)は、得られたダイヤモンド結晶を光学顕微鏡で観察した結果を示す概略断面
図である。この図面から明らかなように、ダイヤモンド基板8の表面に成長したダイヤモンド9の形状は凸状であった。
FIG. 5A is a schematic cross-sectional view showing the result of observing the obtained diamond crystal with an optical microscope. As is apparent from this drawing, the shape of the diamond 9 grown on the surface of the diamond substrate 8 was convex.

実施例2
マイクロ波プラズマCVD装置1としては、実施例1と同様のものを使用した。
基板支持体としては、基板載置面7aを含む円柱状の部材7c上に、中空部分を有する円盤状の部材7bを配置してなる載置部用部材と、外周縁部用部材7fとから構成される全体として円錐台状のモリブデン製の支持体を用いた。
Example 2
As the microwave plasma CVD apparatus 1, the same one as in Example 1 was used.
As the substrate support, there is a placement portion member in which a disc-like member 7b having a hollow portion is disposed on a columnar member 7c including a substrate placement surface 7a, and an outer peripheral edge member 7f. As a whole, a truncated cone-shaped support made of molybdenum was used.

載置部用部材としては、中央部分に3mm×3mmの中空部分を有する直径約12mm、厚さ約0.5mmの円盤状の部材7bを直径約12mm、高さ約8mmの円柱状の部材7cの上に配置した分離構造の部材を用いた。外周縁部用部材7fとしては、実施例1と同様のものを使用し、直径12mmの同心円状の空洞内に、上記した分離構造の載置部用部材を挿入した。   As the mounting member, a disk-shaped member 7b having a diameter of about 12 mm and a thickness of about 0.5 mm having a hollow portion of 3 mm × 3 mm at the center is a cylindrical member 7c having a diameter of about 12 mm and a height of about 8 mm. The member of the separation structure arranged on the top was used. As the outer peripheral edge member 7f, the same member as in Example 1 was used, and the mounting member having the above-described separation structure was inserted into a concentric cavity having a diameter of 12 mm.

ダイヤモンド基板(種結晶)としては、実施例1と同様に、高圧合成法によって得られた単結晶ダイヤモンドを{100}面に対して平行に切り出し研磨して得た3×3×0.5mmの板状結晶を使用した。 As a diamond substrate (seed crystal), 3 × 3 × 0.5 mm 3 obtained by cutting and polishing a single crystal diamond obtained by a high-pressure synthesis method in parallel to the {100} plane in the same manner as in Example 1. Plate-like crystals were used.

図4(b)は、ダイヤモンド基板(種結晶)8を上記基板支持体の基板載置面上に載置
した状態を示す中央縦断正面図である。ダイヤモンド基板8は、載置部に隙間無く載置されている。この状態では、基板支持体における基板囲繞部の天面7dとダイヤモンド基板の表面が面一であって、該基板囲繞部の天面を含む部材7bの厚さtと、ダイヤモンド基板の厚さtは同一である。
FIG. 4B is a central longitudinal sectional front view showing a state in which the diamond substrate (seed crystal) 8 is placed on the substrate placement surface of the substrate support. The diamond substrate 8 is placed on the placement portion without any gap. In this state, the top surface 7d and the diamond surface of the substrate of the substrate surrounding portion of the substrate support a flush, the thickness t 2 of the member 7b including top surface of the substrate surrounding portion, the thickness of the diamond substrate t 1 is the same.

上記した方法で、ダイヤモンド基板を基板支持体上に載置して、実施例1と同様の条件で3時間ダイヤモンド成長を行い、成長した結晶を取り出した。   With the method described above, the diamond substrate was placed on the substrate support, diamond was grown for 3 hours under the same conditions as in Example 1, and the grown crystal was taken out.

得られたダイヤモンド単結晶の厚さをマイクロメータによって計測した結果、主成長方向へ厚さが約0.2 mm増加していた。   As a result of measuring the thickness of the obtained diamond single crystal with a micrometer, the thickness increased by about 0.2 mm in the main growth direction.

図5(b)は、得られたダイヤモンド結晶を光学顕微鏡で観察した結果を示す概略断面図である。この図面から明らかなように、ダイヤモンド基板8の表面に成長したダイヤモンド9の形状はほぼ平滑であった。   FIG.5 (b) is a schematic sectional drawing which shows the result of having observed the obtained diamond crystal with the optical microscope. As is apparent from this drawing, the shape of the diamond 9 grown on the surface of the diamond substrate 8 was almost smooth.

マイクロ波プラズマCVD装置の内部構造を概略的に示す概略構成図である。It is a schematic block diagram which shows schematically the internal structure of a microwave plasma CVD apparatus. ダイヤモンド基板支持体の3態様例(a)、(b)(c)を示し、上図が平面図、下図が中央縦断正面図である。Three examples (a), (b) and (c) of the diamond substrate support are shown, the upper diagram is a plan view, and the lower diagram is a central longitudinal front view. 図2(c)のダイヤモンド基板支持体の中央縦断正面図の部分拡大図である。It is the elements on larger scale of the center longitudinal section front view of the diamond substrate support of Drawing 2 (c). 実施例1及び2における基板支持体載置部にダイヤモンド基板を載置した状態を模式的に示す中央縦断正面図であり、図4(a)が実施例1、図4(b)が実施例2の状態を示す。FIG. 4 is a central longitudinal sectional front view schematically showing a state in which a diamond substrate is placed on a substrate support placing part in Examples 1 and 2, FIG. 4A is Example 1, and FIG. 4B is Example. The state of 2 is shown. 実施例1及び2において得られたダイヤモンド結晶の縦断面の顕微鏡写真を模式的に示す図面であり、図5(a)が実施例1で得られたダイヤモンド結晶、図5(b)が実施例2で得られたダイヤモンド結晶を示す。It is drawing which shows typically the microscope picture of the longitudinal cross-section of the diamond crystal obtained in Example 1 and 2, FIG. 5 (a) is the diamond crystal obtained in Example 1, FIG.5 (b) is an Example. The diamond crystal obtained in 2 is shown.

符号の説明Explanation of symbols

1 マイクロ波プラズマCVD装置、 2 マイクロ波電源
3 マイクロ波を伝搬させる導波管、 4 マイクロ波導入石英窓
5 空洞共振器型の反応容器、 5a 原料ガス導入口
5b 排気口、 6 内部に冷却水Wが通っている冷却ステージ
7 ダイヤモンド基板支持体、 7a 基板支持体の基板載置面
7b 基板囲繞部の天面を含む部材、 7c 基板支持体の基板載置面を含む部材
7d 基板囲繞部の天面 7e 基板載置部の内壁面
7f 基板支持体の外周縁部用部材
8 ダイヤモンド基板、 8a ダイヤモンド基板の端部、
8b ダイヤモンド基板の中央部
9 ダイヤモンド成長部分
DESCRIPTION OF SYMBOLS 1 Microwave plasma CVD apparatus, 2 Microwave power supply 3 Waveguide which propagates microwave, 4 Microwave introduction quartz window 5 Cavity resonator type reaction vessel, 5a Source gas introduction port 5b Exhaust port, 6 Cooling water inside Cooling stage 7 through which W passes Diamond substrate support, 7a Substrate mounting surface 7b of substrate support member including top surface of substrate surrounding portion, 7c Member 7d including substrate mounting surface of substrate support portion of substrate surrounding portion Top surface 7e inner wall surface 7f of substrate mounting portion member 8 for outer peripheral edge of substrate support 8 diamond substrate, 8a end of diamond substrate,
8b Central part of diamond substrate 9 Diamond growth part

Claims (8)

マイクロ波プラズマCVD法によって、ダイヤモンド基板上にダイヤモン繞ド結晶を成長させる方法において、
CVD装置内に設置する基板支持体が、基板載置面の周囲に基板囲繞部を備えた導電性材料からなる支持体であって、該基板囲繞部を含む基板支持体は一体であるか又は基板囲繞部の天面から所定厚み部分が分離可能とされた構造であり、
該基板囲繞部の天面を含む部材の厚さを調整することによって、ダイヤモンド成長面の形状を制御してダイヤモンド成長を行うことを特徴とするダイヤモンド製造方法。
In a method of growing a diamond crystal on a diamond substrate by a microwave plasma CVD method,
The substrate support installed in the CVD apparatus is a support made of a conductive material having a substrate surrounding portion around the substrate mounting surface, and the substrate support including the substrate surrounding portion is integral or It is a structure in which a predetermined thickness portion can be separated from the top surface of the substrate surrounding portion,
A diamond manufacturing method characterized in that diamond growth is performed by controlling a shape of a diamond growth surface by adjusting a thickness of a member including a top surface of the substrate surrounding portion.
基板囲繞部の天面を含む部材の厚さを大きくすることによって、ダイヤモンド基板の端面の成長を抑制する請求項1に記載の方法。 The method according to claim 1, wherein the growth of the end face of the diamond substrate is suppressed by increasing the thickness of the member including the top surface of the substrate surrounding portion. 基板囲繞部の天面を含む部材の厚さを小さくすることによって、ダイヤモンド基板の端面の成長を促進する請求項1に記載の方法。 The method according to claim 1, wherein the growth of the end face of the diamond substrate is promoted by reducing the thickness of the member including the top surface of the substrate surrounding portion. 基板支持体における基板囲繞部の天面とダイヤモンド基板の表面がほぼ面一であって、該基板囲繞部の天面を含む部材の厚さを、ダイヤモンド基板の厚さより大きくすることにより、ダイヤモンド成長面の形状を凸状とする請求項1に記載の方法。 The top surface of the substrate surrounding portion of the substrate support is substantially flush with the surface of the diamond substrate, and the thickness of the member including the top surface of the substrate surrounding portion is made larger than the thickness of the diamond substrate, thereby growing the diamond. The method according to claim 1, wherein the surface has a convex shape. 基板支持体における基板囲繞部の天面とダイヤモンド基板の表面がほぼ面一であって、該基板支持体における基板囲繞部の天面を含む部材の厚さを、ダイヤモンド基板の厚さとほぼ同一とすることにより、ダイヤモンド成長面の形状を平坦状とする請求項1に記載の方法。 The top surface of the substrate surrounding portion in the substrate support is substantially flush with the surface of the diamond substrate, and the thickness of the member including the top surface of the substrate surrounding portion in the substrate support is substantially the same as the thickness of the diamond substrate. The method according to claim 1, wherein the shape of the diamond growth surface is made flat. 基板支持体における基板囲繞部の天面とダイヤモンド基板の表面がほぼ面一であって、該基板支持体における基板囲繞部の天面を含む部材の厚さを、ダイヤモンド基板の厚さより小さくすることにより、ダイヤモンド成長面の形状を凹状とする請求項1に記載の方法。 The top surface of the substrate surrounding portion in the substrate support is substantially flush with the surface of the diamond substrate, and the thickness of the member including the top surface of the substrate surrounding portion in the substrate support is made smaller than the thickness of the diamond substrate. The method according to claim 1, wherein the shape of the diamond growth surface is made concave. 基板支持体における基板囲繞部の天面とダイヤモンド基板の表面の高さの相違が0.3mm未
満である請求項4〜6に記載の方法。
The method according to claim 4, wherein the difference in height between the top surface of the substrate surrounding portion and the surface of the diamond substrate in the substrate support is less than 0.3 mm.
請求項1〜7のいずれかの方法に用いられる基板載置面の周囲に基板囲繞部を備えた導電性材料からなる基板支持体であって、該基板囲繞部を含む基板支持体は一体であるか又は天面から所定厚み部分が分離可能とされた構造であるマイクロ波プラズマCVD法によるダイヤモンド製造用基板支持体。   A substrate support made of a conductive material provided with a substrate surrounding portion around a substrate mounting surface used in the method according to claim 1, wherein the substrate support including the substrate surrounding portion is integrated. A substrate support for producing diamond by a microwave plasma CVD method having a structure in which a predetermined thickness portion is separable from the top surface.
JP2006162256A 2006-06-12 2006-06-12 Method for producing diamond Pending JP2007331955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162256A JP2007331955A (en) 2006-06-12 2006-06-12 Method for producing diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162256A JP2007331955A (en) 2006-06-12 2006-06-12 Method for producing diamond

Publications (1)

Publication Number Publication Date
JP2007331955A true JP2007331955A (en) 2007-12-27

Family

ID=38931790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162256A Pending JP2007331955A (en) 2006-06-12 2006-06-12 Method for producing diamond

Country Status (1)

Country Link
JP (1) JP2007331955A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196832A (en) * 2008-02-20 2009-09-03 National Institute Of Advanced Industrial & Technology Method for manufacturing single crystal diamond by plasma cvd process
JP2010123628A (en) * 2008-11-17 2010-06-03 Mitsubishi Heavy Ind Ltd Vacuum processing equipment
GB2486783A (en) * 2010-12-23 2012-06-27 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
US8859058B2 (en) 2010-12-23 2014-10-14 Element Six Limited Microwave plasma reactors and substrates for synthetic diamond manufacture
US8955456B2 (en) 2010-12-23 2015-02-17 Element Six Limited Microwave plasma reactor for manufacturing synthetic diamond material
JP2015096463A (en) * 2010-12-23 2015-05-21 エレメント シックス リミテッド Doping control of synthetic diamond material
US9142389B2 (en) 2010-12-23 2015-09-22 Element Six Technologies Limited Microwave power delivery system for plasma reactors
CN104988578A (en) * 2015-07-24 2015-10-21 哈尔滨工业大学 Method for optimizing monocrystal diamond homoepitaxial growth by utilizing plasma baffle
CN106048719A (en) * 2016-07-08 2016-10-26 武汉大学 Substrate holder and method for growing monocrystalline diamond
CN106929828A (en) * 2017-05-12 2017-07-07 中国工程物理研究院应用电子学研究所 A kind of chip bench that diamond film is prepared for MPCVD method
CN109913947A (en) * 2019-01-31 2019-06-21 长沙新材料产业研究院有限公司 Diamond synthesizing substrate and diamond synthesis system with coat
US10403477B2 (en) 2010-12-23 2019-09-03 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material
CN112831835A (en) * 2021-02-25 2021-05-25 廊坊西波尔钻石技术有限公司 Substrate table structure for diamond growth and use method thereof
US11371147B2 (en) 2010-12-23 2022-06-28 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188494A (en) * 1989-01-13 1990-07-24 Idemitsu Petrochem Co Ltd Production of thin film of diamond or the like and device therefor
JPH07101798A (en) * 1993-10-05 1995-04-18 Nippondenso Co Ltd Production of diamond film and device therefor
JP2004244298A (en) * 2002-12-17 2004-09-02 Kobe Steel Ltd Substrate holder for vapor-phase diamond synthesis and method of vapor-phase diamond synthesis
JP2005508279A (en) * 2001-11-07 2005-03-31 カーネギー インスチチューション オブ ワシントン Diamond manufacturing apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188494A (en) * 1989-01-13 1990-07-24 Idemitsu Petrochem Co Ltd Production of thin film of diamond or the like and device therefor
JPH07101798A (en) * 1993-10-05 1995-04-18 Nippondenso Co Ltd Production of diamond film and device therefor
JP2005508279A (en) * 2001-11-07 2005-03-31 カーネギー インスチチューション オブ ワシントン Diamond manufacturing apparatus and method
JP2004244298A (en) * 2002-12-17 2004-09-02 Kobe Steel Ltd Substrate holder for vapor-phase diamond synthesis and method of vapor-phase diamond synthesis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012063708; 山田英明ら: 'マイクロ波プラズマCVDにおけるダイヤモンド成長面の巨視的モフォロジーの制御' ダイヤモンドシンポジウム講演要旨集 vol.19th, 2005, 52-53 *
JPN6012063710; 杢野由明ら: 'マイクロ波プラズマCVDによる単結晶ダイヤモンドの高速成長II' ダイヤモンドシンポジウム講演要旨集 vol.18th, 2004, 48-49 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196832A (en) * 2008-02-20 2009-09-03 National Institute Of Advanced Industrial & Technology Method for manufacturing single crystal diamond by plasma cvd process
JP2010123628A (en) * 2008-11-17 2010-06-03 Mitsubishi Heavy Ind Ltd Vacuum processing equipment
US10403477B2 (en) 2010-12-23 2019-09-03 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material
US9637838B2 (en) 2010-12-23 2017-05-02 Element Six Limited Methods of manufacturing synthetic diamond material by microwave plasma enhanced chemical vapor deposition from a microwave generator and gas inlet(s) disposed opposite the growth surface area
US8859058B2 (en) 2010-12-23 2014-10-14 Element Six Limited Microwave plasma reactors and substrates for synthetic diamond manufacture
US8955456B2 (en) 2010-12-23 2015-02-17 Element Six Limited Microwave plasma reactor for manufacturing synthetic diamond material
JP2015096463A (en) * 2010-12-23 2015-05-21 エレメント シックス リミテッド Doping control of synthetic diamond material
US9142389B2 (en) 2010-12-23 2015-09-22 Element Six Technologies Limited Microwave power delivery system for plasma reactors
US11488805B2 (en) 2010-12-23 2022-11-01 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material
US9410242B2 (en) 2010-12-23 2016-08-09 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material
US11371147B2 (en) 2010-12-23 2022-06-28 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material
GB2486783B (en) * 2010-12-23 2014-02-12 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB2486783A (en) * 2010-12-23 2012-06-27 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
US9738970B2 (en) 2010-12-23 2017-08-22 Element Six Limited Microwave plasma reactors and substrates for synthetic diamond manufacture
CN104988578A (en) * 2015-07-24 2015-10-21 哈尔滨工业大学 Method for optimizing monocrystal diamond homoepitaxial growth by utilizing plasma baffle
CN106048719A (en) * 2016-07-08 2016-10-26 武汉大学 Substrate holder and method for growing monocrystalline diamond
CN106929828A (en) * 2017-05-12 2017-07-07 中国工程物理研究院应用电子学研究所 A kind of chip bench that diamond film is prepared for MPCVD method
CN109913947A (en) * 2019-01-31 2019-06-21 长沙新材料产业研究院有限公司 Diamond synthesizing substrate and diamond synthesis system with coat
CN112831835A (en) * 2021-02-25 2021-05-25 廊坊西波尔钻石技术有限公司 Substrate table structure for diamond growth and use method thereof
CN112831835B (en) * 2021-02-25 2023-09-05 廊坊西波尔钻石技术有限公司 Substrate table structure for diamond growth and use method thereof

Similar Documents

Publication Publication Date Title
JP2007331955A (en) Method for producing diamond
JP4613314B2 (en) Single crystal manufacturing method
JP5540162B2 (en) Method for producing synthetic diamond material by chemical vapor deposition
US11066757B2 (en) Diamond substrate and freestanding diamond substrate
CN105579624B (en) The manufacturing method of cvd diamond substrate and cvd diamond substrate
JP6353986B2 (en) Apparatus and method for producing free-standing CVD polycrystalline diamond film
EP2851457B1 (en) Method for manufacturing a single crystal diamond
RU2725428C1 (en) Modular precipitation reactor using microwave plasma
JP2011084411A (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
JPWO2018174105A1 (en) Method for producing modified SiC wafer, SiC wafer with epitaxial layer, method for producing the same, and surface treatment method
JP6450920B2 (en) Diamond substrate and method for manufacturing diamond substrate
CN108385086A (en) Chip bench system and the method for improving diamond film growth uniformity using the system
US20150329989A1 (en) Multi-crystal diamond body
CN114667371A (en) Diameter enlargement of aluminum nitride crystal
JP4729741B2 (en) Diamond manufacturing method
JP2023086900A (en) Method for growing single crystal diamond, supported by polycrystal diamond growth
WO2015012190A1 (en) METHOD FOR PRODUCING SiC SUBSTRATES
JP4366500B2 (en) Substrate support for microwave plasma CVD equipment
JP2009196832A (en) Method for manufacturing single crystal diamond by plasma cvd process
JP5545567B2 (en) Base material for single crystal diamond growth and method for producing single crystal diamond
JP2013256401A (en) Production apparatus of single crystal
JP6944699B2 (en) Method for manufacturing hexagonal boron nitride film
Biard et al. Tailored Polycrystalline Substrate for SmartSiCTM Substrates Enabling High Performance Power Devices
KR20240021807A (en) Diamond substrate and its manufacturing method
JP2007204307A (en) Method for synthesizing diamond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203