JP2007329235A - Solid-state image sensing element and method for manufacturing the same - Google Patents

Solid-state image sensing element and method for manufacturing the same Download PDF

Info

Publication number
JP2007329235A
JP2007329235A JP2006158341A JP2006158341A JP2007329235A JP 2007329235 A JP2007329235 A JP 2007329235A JP 2006158341 A JP2006158341 A JP 2006158341A JP 2006158341 A JP2006158341 A JP 2006158341A JP 2007329235 A JP2007329235 A JP 2007329235A
Authority
JP
Japan
Prior art keywords
charge transfer
transfer electrode
silicon nitride
solid
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006158341A
Other languages
Japanese (ja)
Inventor
Kazuaki Igaki
和明 井垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006158341A priority Critical patent/JP2007329235A/en
Publication of JP2007329235A publication Critical patent/JP2007329235A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state image sensing element that can improve while defect and read characteristic, and also to provide a method for manufacturing the solid-state image sensing element. <P>SOLUTION: The solid-state image sensing element includes a semiconductor substrate 11, a photoelectric converter formed on the semiconductor substrate 11, a charge transfer 31 for transferring charges generated by the photoelectric converter, a first charge transfer electrode 17, and a second charge transfer electrode 21. In the method for manufacturing this solid-state image sensing element; a silicon oxide film 13, a silicon nitride film 14, and a silicon oxide film 15 are sequentially laminated on the semiconductor substrate 11 to form a gate insulating film 12. A part 16 where the silicon nitride film 14 is not provided is formed on the charge transfer 31, a first charge transfer electrode 17 is patterned, and an upper silicon nitride layer 18 is also formed on the part 16 extruded from the first charge transfer electrode 17. Thereafter, a second charge transfer electrode 21 is patterned. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体撮像素子及び固体撮像素子の製造方法に関する。   The present invention relates to a solid-state imaging device and a method for manufacturing the solid-state imaging device.

一般に、固体撮像素子は、シリコンなどの半導体基板に形成されたフォトダイオードなどの光電変換部と、前記光電変換部で生じた電荷を転送するための電荷転送電極とを備えた構成である。   In general, a solid-state imaging device includes a photoelectric conversion unit such as a photodiode formed on a semiconductor substrate such as silicon and a charge transfer electrode for transferring charges generated in the photoelectric conversion unit.

また、従来の固体撮像素子には、半導体基板と電荷転送電極との間に、第1酸化シリコン膜と、窒化シリコン膜と、第2酸化シリコン膜とを順に堆積してなるゲート絶縁膜を設けた構成のものがある。このような固体撮像素子では、電荷転送ゲートの電荷読み出し経路でホットキャリアが発生し、ゲート絶縁膜の窒化シリコン膜に、電荷がトラップされることに起因して読み出し電圧の経時劣化を引き起こしてしまうという問題があった。そこで、図4に示すように、半導体基板1上のゲート絶縁膜2を構成する、酸化シリコン膜3と、窒化シリコン膜4と、酸化シリコン膜5のうち、電荷がトラップされる箇所の窒化シリコン膜4を選択的にエッチングで除去した除去部6を形成することで読み出し電圧の経時劣化を抑制することを図っている(例えば、下記特許文献1から3参照)。図4において、7は第1電荷転送電極を示し、9は第2電荷転送電極を示し、8は層間絶縁膜を示している。tは電荷転送領域を示している。また、図5に示す固体撮像素子のように、半導体基板1上のゲート絶縁膜2を局所的に除去する構成のものがある。   Further, the conventional solid-state imaging device is provided with a gate insulating film formed by sequentially depositing a first silicon oxide film, a silicon nitride film, and a second silicon oxide film between the semiconductor substrate and the charge transfer electrode. There are things with different configurations. In such a solid-state imaging device, hot carriers are generated in the charge read path of the charge transfer gate, and the charge is trapped in the silicon nitride film of the gate insulating film, which causes deterioration of the read voltage over time. There was a problem. Therefore, as shown in FIG. 4, among the silicon oxide film 3, the silicon nitride film 4, and the silicon oxide film 5 constituting the gate insulating film 2 on the semiconductor substrate 1, the silicon nitride at the portion where charges are trapped. The removal portion 6 in which the film 4 is selectively removed by etching is formed to suppress deterioration with time of the read voltage (for example, see Patent Documents 1 to 3 below). In FIG. 4, 7 indicates a first charge transfer electrode, 9 indicates a second charge transfer electrode, and 8 indicates an interlayer insulating film. t indicates a charge transfer region. Further, there is a configuration in which the gate insulating film 2 on the semiconductor substrate 1 is locally removed as in the solid-state imaging device shown in FIG.

特許文献3は、特許文献2をさらに改良し、白キズの発生を防止することと、読み出し特性をより一層改善できる構造の固体撮像素子及びその製造方法に関するものである。   Patent Document 3 relates to a solid-state imaging device having a structure that can further improve Patent Document 2 to prevent the occurrence of white flaws and further improve readout characteristics, and a method for manufacturing the same.

特開2006−32547号公報JP 2006-32547 A 特開2006−41022号公報JP 2006-41022 A 特開2001−44407号公報JP 2001-44407 A

図4に示す固体撮像素子のように、ゲート絶縁膜2のうち窒化シリコン膜4を部分的に除去する構成では、第1電荷転送電極7と第2電荷転送電極9との間に層間絶縁膜8を形成するため、酸化工程を行う際に、半導体基板1と第1電荷転送電極7との境界部において、層間絶縁膜8が第1電荷転送電極7の底部側に入り込んだ状態で酸化されてしまう。このように、層間絶縁膜8が第1電荷転送電極7の底部側にオーバーハング状に入り込んだ部位を、断面視において、鳥の嘴状に見えることから、ゲートバーズビークともいう。この影響で、次の(i)から(iii)のような不具合が発生する。   In the configuration in which the silicon nitride film 4 is partially removed from the gate insulating film 2 as in the solid-state imaging device shown in FIG. 4, an interlayer insulating film is provided between the first charge transfer electrode 7 and the second charge transfer electrode 9. When the oxidation process is performed, the interlayer insulating film 8 is oxidized at the boundary between the semiconductor substrate 1 and the first charge transfer electrode 7 so as to enter the bottom side of the first charge transfer electrode 7. End up. As described above, the portion where the interlayer insulating film 8 enters the overhang shape on the bottom side of the first charge transfer electrode 7 is also referred to as a gate bird's beak because it looks like a bird cage in a cross-sectional view. Due to this influence, the following problems (i) to (iii) occur.

(i)電荷転送電極に印加した際の電界が、該電荷転送電極のエッジ部で本来加えるべき電界を加えることができず、電荷の読み出しを妨げる一つの要因となる。また、層間絶縁膜の厚さのばらつきに応じてゲートバーズビークの形状も変動して電荷の読み出し特性が不安定になる要因となる。
(ii)第1電荷転送電極と第2電荷転送電極との間に層間絶縁膜を形成する際の層間酸化時に生じるゲートバーズビークで応力が発生し、結晶欠陥が生じて白キズが増加する要因となる。
(iii)層間酸化時に、半導体基板の表面も酸化されて表面のボロン層が偏析により濃度が低下し、白キズの要因となる。
(I) The electric field applied to the charge transfer electrode cannot apply an electric field that should be originally applied at the edge portion of the charge transfer electrode, which is one factor that hinders reading of charges. In addition, the shape of the gate bird's beak varies according to the variation in the thickness of the interlayer insulating film, which causes the charge reading characteristics to become unstable.
(Ii) Factors in which stress is generated in the gate bird's beak generated during interlayer oxidation when an interlayer insulating film is formed between the first charge transfer electrode and the second charge transfer electrode, resulting in crystal defects and white defects increasing It becomes.
(Iii) During the interlayer oxidation, the surface of the semiconductor substrate is also oxidized, and the concentration of the boron layer on the surface is lowered due to segregation, which causes white scratches.

または、第1電荷転送電極と第2電荷転送電極との間の層間絶縁膜を熱酸化膜ではなく、CVD法で形成する構造の場合には、層間酸化膜を全面エッチングしてサイドウォールを形成し、該サイドウォールを層間酸化膜として用いることもできる。このような構成において、図4に示す窒化シリコン膜を部分的に除去した構成と組み合わせた場合に、図5に示すように、第1電荷転送電極7のパターニングの合わせずれマージンを確保するため、第1電荷転送電極7から電荷転送部t上にはみ出した部位をエッチング除去する。この除去の際に、半導体基板1の表面が露出し、露出した部位にエッチングダメージが発生して白キズが増加してしまう点で改善の余地があった。   Alternatively, in the case where the interlayer insulating film between the first charge transfer electrode and the second charge transfer electrode is formed not by a thermal oxide film but by a CVD method, the interlayer oxide film is entirely etched to form a sidewall. The sidewall can also be used as an interlayer oxide film. In such a configuration, when combined with the configuration in which the silicon nitride film shown in FIG. 4 is partially removed, as shown in FIG. 5, in order to secure a misalignment margin for patterning of the first charge transfer electrode 7, The portion protruding from the first charge transfer electrode 7 onto the charge transfer portion t is removed by etching. At the time of this removal, there is room for improvement in that the surface of the semiconductor substrate 1 is exposed, etching damage occurs in the exposed portion, and white scratches increase.

なお、特許文献1では、局所的に除去した箇所でシリコン基板が酸化されてしまい、応力発生や不純物の解析を引き起こすことや、電荷転送電極の底部でエッチング残りが発生してしまう点で改善の余地があった。   In addition, in patent document 1, a silicon substrate is oxidized in the location removed locally and causes analysis of stress generation and an impurity, and an etching residue generate | occur | produces in the bottom part of a charge transfer electrode. There was room.

本発明は、上記事情に鑑みてなされたもので、その目的は、白キズや読み出し特性を改善することができる固体撮像素子及び固体撮像素子の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a solid-state imaging device capable of improving white scratches and readout characteristics and a method for manufacturing the solid-state imaging device.

本発明の上記目的は、半導体基板と、前記半導体基板に形成された光電変換部と、前記光電変換部で生じた電荷を転送する電荷転送部と、第1電荷転送電極と、第2電荷転送電極とを備えた固体撮像素子の製造方法であって、前記半導体基板上に、酸化シリコン膜と、窒化シリコン膜と、酸化シリコン膜とを順に積層させてなるゲート絶縁膜が形成され、前記電荷転送部上に前記窒化シリコン膜を設けない除去部を形成し、前記第1電荷転送電極をパターン形成し、前記第1電荷転送電極からはみ出す前記除去部上に上層窒化シリコン膜を形成した後で、前記第2電荷転送電極をパターン形成することを特徴とする固体撮像素子の製造方法によって達成される。   The object of the present invention is to provide a semiconductor substrate, a photoelectric conversion unit formed on the semiconductor substrate, a charge transfer unit for transferring charges generated in the photoelectric conversion unit, a first charge transfer electrode, and a second charge transfer. A method of manufacturing a solid-state imaging device including an electrode, wherein a gate insulating film formed by sequentially stacking a silicon oxide film, a silicon nitride film, and a silicon oxide film is formed on the semiconductor substrate, and the charge After forming a removal portion without providing the silicon nitride film on the transfer portion, patterning the first charge transfer electrode, and forming an upper silicon nitride film on the removal portion protruding from the first charge transfer electrode This is achieved by a method of manufacturing a solid-state imaging device, wherein the second charge transfer electrode is patterned.

また、本発明の上記目的は、半導体基板と、前記半導体基板に形成された光電変換部と、前記光電変換部で生じた電荷を転送する電荷転送部と、第1電荷転送電極と、第2電荷転送電極とを備えた固体撮像素子であって、前記半導体基板上に、酸化シリコン膜と、窒化シリコン膜と、酸化シリコン膜とを順に積層させてなるゲート絶縁膜が形成され、前記電荷転送部上に前記窒化シリコン膜を設けない除去部が形成され、前記第1電荷転送電極からはみ出す前記除去部上に上層窒化シリコン膜が形成されていることを特徴とする固体撮像素子によって達成される。   In addition, the object of the present invention is to provide a semiconductor substrate, a photoelectric conversion unit formed on the semiconductor substrate, a charge transfer unit that transfers charges generated in the photoelectric conversion unit, a first charge transfer electrode, and a second charge transfer electrode. A solid-state imaging device including a charge transfer electrode, wherein a gate insulating film formed by sequentially stacking a silicon oxide film, a silicon nitride film, and a silicon oxide film is formed on the semiconductor substrate, and the charge transfer This is achieved by a solid-state imaging device, wherein a removal portion not provided with the silicon nitride film is formed on the portion, and an upper silicon nitride film is formed on the removal portion protruding from the first charge transfer electrode. .

本発明は、ゲート絶縁膜の窒化シリコン膜のない除去部に上層窒化シリコン膜を形成している。すると、第1電荷転送電極と第2電荷転送電極との間の層間絶縁膜を層間酸化で形成する際に、上層窒化シリコン膜が形成されている領域では層間絶縁膜が形成されることを防止できる。このため、層間酸化によって、第1電荷転送電極とゲート絶縁膜との間にゲートバーズビークが形成されることを防止することができる。また、窒化シリコン膜の除去部が、上層窒化シリコン膜によって覆われているため、半導体基板の表面が層間酸化の際に、ダメージをうけてしまうことを防止することができる。   In the present invention, the upper silicon nitride film is formed in the removed portion of the gate insulating film without the silicon nitride film. Then, when the interlayer insulating film between the first charge transfer electrode and the second charge transfer electrode is formed by interlayer oxidation, the interlayer insulating film is prevented from being formed in the region where the upper silicon nitride film is formed. it can. For this reason, it is possible to prevent the gate bird's beak from being formed between the first charge transfer electrode and the gate insulating film due to the interlayer oxidation. Further, since the removed portion of the silicon nitride film is covered with the upper silicon nitride film, it is possible to prevent the surface of the semiconductor substrate from being damaged during the interlayer oxidation.

本発明によれば、白キズや読み出し特性を改善することができる固体撮像素子及び固体撮像素子の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the solid-state image sensor and solid-state image sensor which can improve a white crack and read-out characteristic can be provided.

以下、本発明の実施形態を図面に基づいて詳しく説明する。
図1(a)から(c)は、第1実施形態の固体撮像素子の製造方法の手順を説明するための図である。
本実施形態の固体撮像素子は、シリコンなどの半導体基板11を備えており、半導体基板11には、図示しないフォトダイオードなどの光電変換部と、不純物イオンドーピングによって、電荷転送チャネルやストッパ領域が形成されている。また、半導体基板11には、光電変換部で生じた電荷を転送する電荷転送部31が形成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIGS. 1A to 1C are diagrams for explaining the procedure of the method for manufacturing the solid-state imaging device according to the first embodiment.
The solid-state imaging device of this embodiment includes a semiconductor substrate 11 such as silicon, and a charge transfer channel and a stopper region are formed in the semiconductor substrate 11 by a photoelectric conversion unit such as a photodiode (not shown) and impurity ion doping. Has been. The semiconductor substrate 11 is formed with a charge transfer unit 31 that transfers charges generated in the photoelectric conversion unit.

半導体基板11の上には、酸化シリコン膜13と、窒化シリコン膜14と、酸化シリコン膜15と、が順に、CVD法などによって積層されている。酸化シリコン(SiO)膜13と、窒化シリコン(Si)膜14と、酸化シリコン(SiO)膜15とにより、ゲート絶縁膜12が構成されており、いわゆる、ONO膜構造を有している。本実施形態では、酸化シリコン膜13の膜厚を35nmとし、窒化シリコン膜14の膜厚を50nmとし、酸化シリコン膜15の膜厚を5nmとした。 A silicon oxide film 13, a silicon nitride film 14, and a silicon oxide film 15 are sequentially stacked on the semiconductor substrate 11 by a CVD method or the like. A silicon oxide (SiO 2 ) film 13, a silicon nitride (Si 3 N 4 ) film 14, and a silicon oxide (SiO 2 ) film 15 constitute a gate insulating film 12, which has a so-called ONO film structure. is doing. In this embodiment, the silicon oxide film 13 has a thickness of 35 nm, the silicon nitride film 14 has a thickness of 50 nm, and the silicon oxide film 15 has a thickness of 5 nm.

ゲート絶縁膜12において、電荷転送部31上の領域には、窒化シリコン膜14を設けない、該窒化シリコン膜14の除去部16が形成されている。つまり、除去部16の領域においては、ゲート絶縁膜12が酸化シリコン膜13,15とを堆積させた構成となる。除去部16は、窒化シリコン膜14を酸化シリコン膜13上にCVD法で形成した後、除去部16を形成する箇所だけレジストをマスクに用いてエッチングし、該窒化シリコン膜14を除去することで形成される。除去部16を設けることで、電荷転送時に電荷転送部によって転送される電荷が窒化シリコン膜14にトラップされてしまうことを回避することができる。   In the gate insulating film 12, in the region on the charge transfer portion 31, the removal portion 16 of the silicon nitride film 14 that does not include the silicon nitride film 14 is formed. That is, in the region of the removal portion 16, the gate insulating film 12 is configured to deposit the silicon oxide films 13 and 15. The removal portion 16 forms the silicon nitride film 14 on the silicon oxide film 13 by the CVD method, and then etches only the portion where the removal portion 16 is formed using a resist as a mask to remove the silicon nitride film 14. It is formed. By providing the removal unit 16, it is possible to avoid the charge transferred by the charge transfer unit from being trapped in the silicon nitride film 14 during the charge transfer.

ゲート絶縁膜12を形成した後、ポリシリコンなどからなる電極材料層を積層し、レジストマスクでパターン形成することで第1電荷転送電極17を形成する。このとき、第1電荷転送電極とゲート絶縁膜12との境界部が、電荷転送部31上の領域に含まれるとともに、除去部16を形成した領域が、第1電荷転送電極17とゲート絶縁膜12との境界部からはみ出すように構成する。   After the gate insulating film 12 is formed, an electrode material layer made of polysilicon or the like is stacked, and a first charge transfer electrode 17 is formed by patterning with a resist mask. At this time, the boundary portion between the first charge transfer electrode and the gate insulating film 12 is included in the region on the charge transfer portion 31 and the region where the removal portion 16 is formed is the first charge transfer electrode 17 and the gate insulating film. 12 so that it protrudes from the boundary with 12.

図1(a)に示すように、本実施形態では、第1電荷転送電極17をパターン形成した後、できるだけ薄い膜厚(10〜20nm)で上層窒化シリコン(Si)膜18を形成する。このとき、窒化シリコン膜18は、第1電荷転送電極17とゲート絶縁膜12との境界部からはみ出ている除去部16を全て覆うように形成される。窒化シリコン膜18を形成する手順は、まず、ゲート絶縁膜12上の第1電荷転送電極17を含めた全面にCVD法などによって形成し、その後、第1電荷転送電極17とゲート絶縁膜12との境界部からはみ出ている除去部16を覆うように、パターニングする。 As shown in FIG. 1A, in the present embodiment, after patterning the first charge transfer electrode 17, an upper silicon nitride (Si 3 N 4 ) film 18 is formed with the smallest possible film thickness (10 to 20 nm). To do. At this time, the silicon nitride film 18 is formed so as to cover all of the removal portion 16 protruding from the boundary between the first charge transfer electrode 17 and the gate insulating film 12. The silicon nitride film 18 is formed by first forming the silicon nitride film 18 on the entire surface including the first charge transfer electrode 17 on the gate insulating film 12 by CVD or the like, and then forming the first charge transfer electrode 17, the gate insulating film 12, Patterning is performed so as to cover the removal portion 16 protruding from the boundary portion.

ここで、薄い膜厚の上層窒化シリコン膜18を用いるのは、層間絶縁膜を形成する際の層間酸化時に第1電荷転送電極17表面の酸化や除去部の酸化を抑制するためであり、第2電荷転送電極のエッチング時の選択比を考慮した最小限の厚さであればよい。また、上層窒化シリコン膜18は、更に上層に形成する図示しない遮光膜との位置関係にもよるが、薄ければ薄いほどスミアの増加を抑制することができる。   Here, the thin upper silicon nitride film 18 is used to suppress oxidation of the surface of the first charge transfer electrode 17 and oxidation of the removed portion during interlayer oxidation when forming the interlayer insulating film. A minimum thickness may be used in consideration of the selection ratio during etching of the two charge transfer electrodes. Further, although the upper silicon nitride film 18 further depends on the positional relationship with a light shielding film (not shown) formed in an upper layer, it is possible to suppress an increase in smear as the thickness is thinner.

図1(b)に示すように、上層窒化シリコン膜18を形成した後で、層間酸化を行い、第1電荷転送電極17の上面及び側面に層間絶縁膜19を形成する。本実施形態では、熱酸化によって層間絶縁膜19を形成する。このとき、第1電荷転送電極17の表面の、上層窒化シリコン膜18に覆われた箇所では、酸化が妨げられるため、層間絶縁膜が形成されない。そして、層間絶縁膜19を形成した後、図1(c)に示すように、第2電荷転送電極21をパターン形成する。なお、第2電荷転送電極は、第1電荷転送電極と同様に、レジストをマスクとして用いてエッチング除去することでパターニングすることができる。   As shown in FIG. 1B, after forming the upper silicon nitride film 18, interlayer oxidation is performed to form an interlayer insulating film 19 on the upper surface and side surfaces of the first charge transfer electrode 17. In this embodiment, the interlayer insulating film 19 is formed by thermal oxidation. At this time, since the oxidation is hindered at the portion of the surface of the first charge transfer electrode 17 covered with the upper silicon nitride film 18, the interlayer insulating film is not formed. Then, after the interlayer insulating film 19 is formed, the second charge transfer electrode 21 is patterned as shown in FIG. Note that the second charge transfer electrode can be patterned by etching away using a resist as a mask, like the first charge transfer electrode.

本実施形態の製造方法では、ゲート絶縁膜12の窒化シリコン膜14のない除去部16に上層窒化シリコン膜18を形成している。すると、第1電荷転送電極17と第2電荷転送電極21との間の層間絶縁膜19を層間酸化で形成する際に、上層窒化シリコン膜18が形成されている領域では層間絶縁膜19が形成されることを防止できる。このため、層間酸化によって、第1電荷転送電極17とゲート絶縁膜12との間にゲートバーズビークが形成されることを防止することができる。また、窒化シリコン膜14の除去部16が、上層窒化シリコン膜18によって覆われているため、半導体基板11の表面が層間酸化の際に、ダメージをうけてしまうことを防止することができる。   In the manufacturing method of the present embodiment, the upper silicon nitride film 18 is formed on the removed portion 16 of the gate insulating film 12 where the silicon nitride film 14 is not present. Then, when the interlayer insulating film 19 between the first charge transfer electrode 17 and the second charge transfer electrode 21 is formed by interlayer oxidation, the interlayer insulating film 19 is formed in the region where the upper silicon nitride film 18 is formed. Can be prevented. Therefore, it is possible to prevent the gate bird's beak from being formed between the first charge transfer electrode 17 and the gate insulating film 12 due to the interlayer oxidation. Further, since the removed portion 16 of the silicon nitride film 14 is covered with the upper silicon nitride film 18, it is possible to prevent the surface of the semiconductor substrate 11 from being damaged during the interlayer oxidation.

図2及び図3に、本発明にかかる第2実施形態を示す。なお、以下に説明する実施形態において、すでに説明した部材などと同等な構成・作用を有する部材等については、図中に同一の符号又は相当する符号を付すことにより、説明を簡略化或いは省略する。   2 and 3 show a second embodiment according to the present invention. In the embodiments described below, members having the same configuration / action as those already described are denoted by the same or corresponding reference numerals in the drawings, and the description is simplified or omitted. .

図2(a)に示すように、最初に、上記第1実施形態と同様に、半導体基板11上にゲート絶縁膜12を形成し、ゲート絶縁膜12上に第1電荷転送電極17を構成する材料層と、第1電荷転送電極17の上層に窒化シリコン膜17aとを形成する。本実施形態のゲート絶縁膜12は、第1実施形態と同様に、電荷転送部31上の領域に、窒化シリコン膜14を設けない、該窒化シリコン膜14の除去部16が形成されている。窒化シリコン膜17a上には、第1電荷転送電極17をパターンエッチングするためのレジスト層Rが形成されている。   As shown in FIG. 2A, first, similarly to the first embodiment, the gate insulating film 12 is formed on the semiconductor substrate 11 and the first charge transfer electrode 17 is formed on the gate insulating film 12. A silicon nitride film 17 a is formed on the material layer and on the first charge transfer electrode 17. As in the first embodiment, the gate insulating film 12 of the present embodiment is provided with a removal portion 16 of the silicon nitride film 14 that is not provided with the silicon nitride film 14 in a region on the charge transfer portion 31. A resist layer R for pattern etching the first charge transfer electrode 17 is formed on the silicon nitride film 17a.

図2(b)に示すように、エッチングによって、第1電荷転送電極17及び窒化シリコン膜17aをパターニングする。次に、図2(c)に示すように、第1電荷転送電極17からはみ出ている除去部16を完全に覆うように、窒化シリコン膜18を形成する。   As shown in FIG. 2B, the first charge transfer electrode 17 and the silicon nitride film 17a are patterned by etching. Next, as illustrated in FIG. 2C, a silicon nitride film 18 is formed so as to completely cover the removed portion 16 protruding from the first charge transfer electrode 17.

窒化シリコン膜18を形成した後、図3(a)に示すように、CVD法によって層間絶縁膜22を全面に形成する。そして、図3(b)に示すように、層間絶縁膜22を全面ドライエッチングにより除去することで、層間絶縁膜22を第1電荷転送電極17の両側(図3における左右の両側)にサイドウォール状に残す。そして、図3(c)に示すように、第1電荷転送電極17及び窒化シリコン膜および層間絶縁膜22を覆うように、全面に酸化シリコン膜23を形成し、その後、第2電荷転送電極21を上記実施形態と同様にパターン形成する。   After the silicon nitride film 18 is formed, an interlayer insulating film 22 is formed on the entire surface by CVD as shown in FIG. Then, as shown in FIG. 3B, the interlayer insulating film 22 is removed on the entire surface by dry etching, so that the interlayer insulating film 22 is sidewalls on both sides (left and right sides in FIG. 3) of the first charge transfer electrode 17. Leave in shape. Then, as shown in FIG. 3C, a silicon oxide film 23 is formed on the entire surface so as to cover the first charge transfer electrode 17, the silicon nitride film and the interlayer insulating film 22, and then the second charge transfer electrode 21. The pattern is formed in the same manner as in the above embodiment.

本実施形態の製造方法によれば、電荷転送電極17と第2電荷転送電極21との間の層間絶縁膜22をCVD法で形成する場合には、上層窒化シリコン膜18によってゲートバーズビークが形成されることを防止できる。また、窒化シリコン膜14の除去部16が、上層窒化シリコン膜18によって覆われているため、半導体基板11の表面が、層間絶縁膜22のエッチングの際に、エッチングダメージをうけてしまうことを防止することができる。   According to the manufacturing method of the present embodiment, when the interlayer insulating film 22 between the charge transfer electrode 17 and the second charge transfer electrode 21 is formed by the CVD method, the gate bird's beak is formed by the upper silicon nitride film 18. Can be prevented. Further, since the removed portion 16 of the silicon nitride film 14 is covered with the upper silicon nitride film 18, the surface of the semiconductor substrate 11 is prevented from being damaged by etching when the interlayer insulating film 22 is etched. can do.

第1実施形態の固体撮像素子の製造方法の手順を説明する図である。It is a figure explaining the procedure of the manufacturing method of the solid-state image sensor of 1st Embodiment. 第2実施形態の固体撮像素子の製造方法の手順を説明する図である。It is a figure explaining the procedure of the manufacturing method of the solid-state image sensor of 2nd Embodiment. 第2実施形態の固体撮像素子の製造方法の手順を説明する図である。It is a figure explaining the procedure of the manufacturing method of the solid-state image sensor of 2nd Embodiment. 従来の固体撮像素子の製造方法を説明する図である。It is a figure explaining the manufacturing method of the conventional solid-state image sensor. 従来の固体撮像素子の製造方法を説明する図である。It is a figure explaining the manufacturing method of the conventional solid-state image sensor.

符号の説明Explanation of symbols

11 半導体基板
12 ゲート絶縁膜
13,15 酸化シリコン膜
14 窒化シリコン膜
16 (窒化シリコン膜の)除去部
17 第1電荷転送電極
18 上層窒化シリコン膜
19,22 層間絶縁膜
21 第2電荷転送電極
31 電荷転送部
DESCRIPTION OF SYMBOLS 11 Semiconductor substrate 12 Gate insulating films 13 and 15 Silicon oxide film 14 Silicon nitride film 16 (silicon nitride film) removal part 17 First charge transfer electrode 18 Upper silicon nitride films 19 and 22 Interlayer insulating film 21 Second charge transfer electrode 31 Charge transfer unit

Claims (2)

半導体基板と、前記半導体基板に形成された光電変換部と、前記光電変換部で生じた電荷を転送する電荷転送部と、第1電荷転送電極と、第2電荷転送電極とを備えた固体撮像素子の製造方法であって、
前記半導体基板上に、酸化シリコン膜と、窒化シリコン膜と、酸化シリコン膜とを順に積層させてなるゲート絶縁膜が形成され、前記電荷転送部上に前記窒化シリコン膜を設けない除去部を形成し、前記第1電荷転送電極をパターン形成し、前記第1電荷転送電極からはみ出す前記除去部上に上層窒化シリコン膜を形成した後で、前記第2電荷転送電極をパターン形成することを特徴とする固体撮像素子の製造方法。
Solid-state imaging device comprising: a semiconductor substrate; a photoelectric conversion unit formed on the semiconductor substrate; a charge transfer unit that transfers charges generated in the photoelectric conversion unit; a first charge transfer electrode; and a second charge transfer electrode A method for manufacturing an element, comprising:
A gate insulating film formed by sequentially stacking a silicon oxide film, a silicon nitride film, and a silicon oxide film is formed on the semiconductor substrate, and a removal portion not provided with the silicon nitride film is formed on the charge transfer portion. And patterning the first charge transfer electrode, forming an upper silicon nitride film on the removal portion protruding from the first charge transfer electrode, and patterning the second charge transfer electrode. Manufacturing method of a solid-state imaging device.
半導体基板と、前記半導体基板に形成された光電変換部と、前記光電変換部で生じた電荷を転送する電荷転送部と、第1電荷転送電極と、第2電荷転送電極とを備えた固体撮像素子であって、
前記半導体基板上に、酸化シリコン膜と、窒化シリコン膜と、酸化シリコン膜とを順に積層させてなるゲート絶縁膜が形成され、前記電荷転送部上に前記窒化シリコン膜を設けない除去部が形成され、前記第1電荷転送電極からはみ出す前記除去部上に上層窒化シリコン膜が形成されていることを特徴とする固体撮像素子。
Solid-state imaging device comprising: a semiconductor substrate; a photoelectric conversion unit formed on the semiconductor substrate; a charge transfer unit that transfers charges generated in the photoelectric conversion unit; a first charge transfer electrode; and a second charge transfer electrode An element,
A gate insulating film formed by sequentially stacking a silicon oxide film, a silicon nitride film, and a silicon oxide film is formed on the semiconductor substrate, and a removal portion not provided with the silicon nitride film is formed on the charge transfer portion. A solid-state imaging device, wherein an upper silicon nitride film is formed on the removal portion that protrudes from the first charge transfer electrode.
JP2006158341A 2006-06-07 2006-06-07 Solid-state image sensing element and method for manufacturing the same Withdrawn JP2007329235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158341A JP2007329235A (en) 2006-06-07 2006-06-07 Solid-state image sensing element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158341A JP2007329235A (en) 2006-06-07 2006-06-07 Solid-state image sensing element and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2007329235A true JP2007329235A (en) 2007-12-20

Family

ID=38929513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158341A Withdrawn JP2007329235A (en) 2006-06-07 2006-06-07 Solid-state image sensing element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007329235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509005A (en) * 2009-10-27 2013-03-07 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Method for enhancing surface trapping by reducing surface recombination in solar cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509005A (en) * 2009-10-27 2013-03-07 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Method for enhancing surface trapping by reducing surface recombination in solar cells

Similar Documents

Publication Publication Date Title
JP5318955B2 (en) Shallow trench isolation structure having air gap, CMOS image sensor using the same, and method for manufacturing CMOS image sensor
JP2970158B2 (en) Method for manufacturing solid-state imaging device
JP5976500B2 (en) Method of manufacturing a CMOS image sensor for protecting a photodiode from plasma damage
CN103681709A (en) Pixel with negatively-charged shallow trench isolation (STI) liner and method for making the same
US8076207B2 (en) Gate structure and method of making the same
JP2007329235A (en) Solid-state image sensing element and method for manufacturing the same
US20230246043A1 (en) Semiconductor device and imaging apparatus
US20050196946A1 (en) Method for manufacturing solid-state imaging device
JP2003318384A (en) Solid-state image sensor and method for manufacturing the same
JP2011204740A (en) Solid-state image pickup device and manufacturing method of the same
JP4449298B2 (en) Solid-state image sensor manufacturing method and solid-state image sensor
JP2007201319A (en) Solid-state image pickup device and manufacturing method thereof
JP4759220B2 (en) Charge transfer device and manufacturing method thereof
JP2007067325A (en) Method for manufacturing solid-state imaging device
JP2621773B2 (en) Method for manufacturing solid-state imaging device
JP2002190587A (en) Method of manufacturing solid-state image pickup device
KR101132722B1 (en) Method for forming gate electrode in semiconductor device
JP2004363473A (en) Solid imaging device and its manufacturing method
JP2005286316A (en) Method of manufacturing solid-state imaging device
JPH05283668A (en) Solid state image pickup
JP2003197896A (en) Method for manufacturing solid state imaging element
JP2006278731A (en) Method for manufacturing solid state imaging device
JPS63136665A (en) Solid-state image sensing device and manufacture thereof
JP2009239058A (en) Solid-state imaging element, manufacturing method therefor, and electronic information apparatus
JPH0851196A (en) Preparation of charge-coupling device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110606