JP2007327132A - Titanium alloy with excellent press formability, and press formed member - Google Patents

Titanium alloy with excellent press formability, and press formed member Download PDF

Info

Publication number
JP2007327132A
JP2007327132A JP2006161573A JP2006161573A JP2007327132A JP 2007327132 A JP2007327132 A JP 2007327132A JP 2006161573 A JP2006161573 A JP 2006161573A JP 2006161573 A JP2006161573 A JP 2006161573A JP 2007327132 A JP2007327132 A JP 2007327132A
Authority
JP
Japan
Prior art keywords
titanium alloy
press
less
cold workability
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006161573A
Other languages
Japanese (ja)
Other versions
JP4783214B2 (en
Inventor
Tomofumi Tanaka
智文 田中
Yoshio Henmi
義男 逸見
Makoto Yamaguchi
誠 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Osaka Titanium Technologies Co Ltd
Original Assignee
Kobe Steel Ltd
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Osaka Titanium Technologies Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2006161573A priority Critical patent/JP4783214B2/en
Publication of JP2007327132A publication Critical patent/JP2007327132A/en
Application granted granted Critical
Publication of JP4783214B2 publication Critical patent/JP4783214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new beta titanium alloy having excellent press formability, which has low proof stress after solution heat treatment, high ductility and excellent cold workability and hardly causes rough surface even when subjected to complicated forming. <P>SOLUTION: The titanium alloy has a composition consisting of (by mass, the same applies to the following) 12 to 20% V, 0.5 to 3.5% Fe, 4 to 15% Sn, ≤0.15% (not including 0%) O and the balance Ti with inevitable impurities. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プレス加工性に優れたチタン合金およびプレス成形部材に関し、詳細には、高延性、低耐力、高冷間加工性を有しており、プレス加工後の肌荒れが生じにくいチタン合金およびプレス成形部材に関するものである。本発明のチタン合金は、例えば、プレート式熱交換器・燃料電池のセパレータ、携帯電話・モバイルパソコン・カメラなどの筐体などのプレス成形加工品、メガネのフレームなどのように、高度で複雑なプレス加工性が要求される部材に好適に用いられる。   The present invention relates to a titanium alloy excellent in press workability and a press-molded member, and in particular, has a high ductility, low proof stress, and high cold workability, and is less susceptible to rough skin after press work and The present invention relates to a press-formed member. The titanium alloy of the present invention is a sophisticated and complicated material such as a plate heat exchanger, a separator for a fuel cell, a press-molded product such as a case of a mobile phone, a mobile personal computer, a camera, or a frame of glasses. It is suitably used for members that require press workability.

チタンは、その優れた耐食性や比強度などを利用して、例えば、熱交換器、化学プラント部材、沿岸部の構造材(特に、海水が接触し腐食が促進するような湾岸構造材)などに汎用されている。特に、海水に対して極めて高い耐食性を示すことから、チタンは、海水を利用した熱交換器などに好適である。プレート式熱交換器では、伝熱効率の向上を目的として、チタン合金材をプレス成形して表面に凹凸形状の加工を施している。近年、伝熱効率向上に対する要請は益々強くなっており、チタン合金材の薄肉化や凹凸形状の複雑化などのニーズに充分対応可能なプレス加工性に優れたチタン合金の開発が進められている。   Titanium uses its excellent corrosion resistance and specific strength, for example, for heat exchangers, chemical plant members, coastal structural materials (particularly Gulf structural materials that contact seawater and promote corrosion), etc. It is widely used. Titanium is particularly suitable for heat exchangers using seawater because it exhibits extremely high corrosion resistance to seawater. In the plate type heat exchanger, for the purpose of improving the heat transfer efficiency, a titanium alloy material is press-molded so that the surface is processed to have an uneven shape. In recent years, demands for improving heat transfer efficiency have been increasing, and development of a titanium alloy having excellent press workability that can sufficiently meet the needs such as thinning of the titanium alloy material and complication of the uneven shape has been promoted.

一般に、β型合金は、成形加工性に優れる体心立方晶の結晶構造を主体にしているため、α型合金やα+β型合金に比べ、延性に優れ、室温での成形加工が可能であるだけでなく、時効処理後の強度上昇も期待できるため、例えば、純チタンでは強度を充分確保できない用途への適用が拡大されつつある。   In general, β-type alloys mainly have a body-centered cubic crystal structure with excellent formability, so they have superior ductility and can be formed at room temperature compared to α-type and α + β-type alloys. In addition, since an increase in strength after aging treatment can also be expected, for example, application to applications in which pure titanium cannot sufficiently secure the strength is being expanded.

従来、β型合金としては、例えば、Ti―15V−3Cr−3Sn−3Al合金、Ti−15Mo−5Zr−3Al合金、Ti−3Al−8V−6Cr−4Mo−4Sn合金、Ti−13V−11Cr−3Al合金などが汎用されている。これらのβ型合金は、室温での変形能(溶体化処理後であって、時効熱処理の前)は比較的良好であるが、耐力(0.2%耐力)が高いため、成形加工時にスプリングバック現象が起こり易いという問題がある。また、上記のβ型合金は、複雑な成形加工に用いるには冷間加工性および延性が不充分であり、更なる改善が求められている。溶体化処理は、β相単相で行なうために粒成長速度が大きく、溶体化時に粗大粒になりやすい。従って、複雑な成形加工を行うと、表面に肌荒れが生じるなどの問題も指摘されている。   Conventionally, as a β-type alloy, for example, Ti-15V-3Cr-3Sn-3Al alloy, Ti-15Mo-5Zr-3Al alloy, Ti-3Al-8V-6Cr-4Mo-4Sn alloy, Ti-13V-11Cr-3Al Alloys are widely used. These β-type alloys have relatively good deformability at room temperature (after solution treatment and before aging heat treatment), but they have high proof stress (0.2% proof stress), so springs during forming process There is a problem that the back phenomenon easily occurs. Further, the above β-type alloys are insufficient in cold workability and ductility for use in complicated forming processes, and further improvements are required. Since the solution treatment is performed in a β-phase single phase, the grain growth rate is high and the particles are likely to become coarse particles during solution treatment. Accordingly, it has been pointed out that when complex molding is performed, the surface becomes rough.

そこで、例えば、プレート式熱交換器などのように高度で複雑なプレス加工性が要求される部材にも適用可能なβ型チタン合金の開発が望まれている。具体的には、従来よりも溶体化処理後の耐力が低く延性が高く、冷間加工性に優れており、高度で複雑な成形加工を行っても肌荒れが生じない、プレス加工性に優れたβ型チタン合金の開発が望まれている。   Therefore, for example, it is desired to develop a β-type titanium alloy that can be applied to a member that requires high and complex press workability such as a plate heat exchanger. Specifically, the yield strength after solution treatment is lower than before, the ductility is high, the cold workability is excellent, the rough surface does not occur even if advanced and complicated molding processing is performed, and the press workability is excellent. Development of β-type titanium alloys is desired.

これまで、主に冷間加工性などの向上を目的として、例えば、特許文献1〜特許文献3に記載のチタン合金が提案されている。   So far, for example, titanium alloys described in Patent Documents 1 to 3 have been proposed mainly for the purpose of improving cold workability.

特許文献1には、重量%で、V:8〜25%、Al:0.5〜5%、Cr:1.0%未満、Fe:1.0%以下、Mn:1.0%以下を含み、残部:Tiおよび不可避不純物からなり、溶体化処理後の硬さがHRC25以下である冷間塑性加工性に優れたチタン合金が開示されている。   In Patent Document 1, V: 8 to 25%, Al: 0.5 to 5%, Cr: less than 1.0%, Fe: 1.0% or less, Mn: 1.0% or less by weight% In addition, there is disclosed a titanium alloy that is excellent in cold plastic workability, including the balance: Ti and inevitable impurities, and having a hardness after solution treatment of HRC25 or less.

ここでは、Vのみが硬さを高くすることなく冷間塑性加工性を改善できるという知見に基づき、Vの含有量が制御されている。また、Alは、時効処理後の延性を高くするという観点に基づき、積極的に添加されている。一方、Feは、溶体化処理後の硬さを低くするためにはできるだけ少ない方が良いという観点に基づき、1.0%以下(実施例では0.1〜0.2%)の範囲に抑制されている。Snは含有していない。   Here, the content of V is controlled based on the knowledge that only V can improve the cold plastic workability without increasing the hardness. Further, Al is actively added from the viewpoint of increasing the ductility after aging treatment. On the other hand, Fe is suppressed to a range of 1.0% or less (0.1 to 0.2% in the examples) based on the viewpoint that it is better to reduce the hardness after solution treatment as much as possible. Has been. Sn is not contained.

特許文献2には、重量%で、V:15〜25%、Al:2.5〜5.0%、Sn:0.5〜4%、酸素(O):0.12%以下、残部:Tiおよび不可避不純物からなる冷間加工性に優れたβ型チタン合金が開示されている。   In Patent Document 2, V: 15 to 25%, Al: 2.5 to 5.0%, Sn: 0.5 to 4%, oxygen (O): 0.12% or less, balance:% by weight. A β-type titanium alloy made of Ti and inevitable impurities and having excellent cold workability is disclosed.

ここでは、特に、AlとSnの含有量が適切に制御されている。Alは、時効析出したα相の硬化に有効であるが、溶体化時の固溶体化作用が大きいため過度の添加は冷間加工性の低下をもたらすという観点に基づき、Alの一部を、固溶硬化作用の小さいSnに置き換え、冷間加工性の低下を防止している。ただし、Snは過剰に添加すると素地の硬度上昇を招くため、その上限を4%に定めている。更に、不純物のOに着目し、冷間加工性向上の観点から上限を規定している。一方、Feは、溶体化処理後の硬度を高くする有害元素であるという認識に基づき、できるだけ少ない方が望ましい(例えば、0.3%以下)と記載されている。   Here, in particular, the contents of Al and Sn are appropriately controlled. Al is effective for hardening the α phase which has been aged. However, excessive addition of Al causes a decrease in cold workability because of its large solid solution action during solution treatment. It is replaced with Sn, which has a low solution hardening effect, to prevent a decrease in cold workability. However, if Sn is added excessively, the hardness of the substrate is increased, so the upper limit is set to 4%. Further, focusing on the impurity O, the upper limit is defined from the viewpoint of improving cold workability. On the other hand, Fe is described as being preferably as small as possible (for example, 0.3% or less) based on the recognition that Fe is a harmful element that increases the hardness after solution treatment.

特許文献3には、Moおよび/またはNbを0.5〜18重量%、V:13〜19重量%、Al:0.5〜6重量%、Sn:0.5〜6重量%を含有し、残部:Tiおよび不可避不純物からなる冷間鍛造性に優れたチタン合金が開示されている。   Patent Document 3 contains Mo and / or Nb in an amount of 0.5 to 18% by weight, V: 13 to 19% by weight, Al: 0.5 to 6% by weight, and Sn: 0.5 to 6% by weight. The remainder: a titanium alloy having excellent cold forgeability composed of Ti and inevitable impurities is disclosed.

ここでは、Alを適量添加して適当な強度を確保したうえで、Mo、Nbのβ相安定化元素を添加すれば、変形抵抗を低く抑えつつ据込み限界を高められるという知見に基づき、チタン合金の組成を上記のように定めている。また、Snの上限が6%を超えると変形抵抗が上昇するため、上限を6%に定めている。特許文献3には、Feについて何も記載されていない。
特公平6−99765号公報 特許第2669004号公報 特許第2936754号公報
Here, based on the knowledge that, if an appropriate amount of Al is added to ensure an appropriate strength and then a β-phase stabilizing element of Mo and Nb is added, the upsetting limit can be increased while keeping the deformation resistance low. The composition of the alloy is determined as described above. Further, when the upper limit of Sn exceeds 6%, the deformation resistance increases, so the upper limit is set to 6%. Patent Document 3 does not describe anything about Fe.
Japanese Patent Publication No. 6-99765 Japanese Patent No. 2669004 Japanese Patent No. 2936754

本発明は、上記事情に鑑みてなされたものであり、その目的は、溶体化処理後の耐力が低く延性が高く、冷間加工性に優れており、複雑な成形加工を行っても肌荒れが生じ難い新規なプレス成形性に優れたチタン合金、およびプレス成形部材を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is that the yield strength after solution treatment is low, the ductility is high, the cold workability is excellent, and even when complex molding is performed, rough skin is caused. It is an object of the present invention to provide a new titanium alloy excellent in press formability that is unlikely to occur, and a press-formed member.

上記課題を解決することのできた本発明のチタン合金は、V:12〜20%(質量%の意味、以下同じ。)、Fe:0.5〜3.5%、Sn:4〜15%、O:0.15%以下(0%は含まない)を含み、残部:Tiおよび不可避的不純物であることに要旨を有している。   The titanium alloy of the present invention that has been able to solve the above problems is V: 12-20% (meaning mass%, the same shall apply hereinafter), Fe: 0.5-3.5%, Sn: 4-15%, O: Contains 0.15% or less (not including 0%), and balance: Ti and inevitable impurities.

好ましい実施形態において、本発明のチタン合金は、更に、Al:3.5%以下(0%をふくまない)を含有している。   In a preferred embodiment, the titanium alloy of the present invention further contains Al: 3.5% or less (not including 0%).

本発明には、上記のチタン合金を用いて得られるプレス成形部材も本発明の範囲内に包含される。   The present invention also includes a press-molded member obtained using the above titanium alloy within the scope of the present invention.

本発明のチタン合金は、上記のように、成分が適切に制御されているため、溶体化処理後の延性が高く耐力が低く、冷間加工性も良好であり、既存のβ型チタン合金と同等以上の優れた特性を有している。更に、本発明のチタン合金は、大きな変形を加えてもプレス成形性に優れ、肌荒れの発生がほとんど見られず、既存のβ型チタン合金では得られ難い優れた特性も兼ね備えている。   Since the titanium alloy of the present invention is appropriately controlled as described above, the ductility after solution treatment is high, the yield strength is low, the cold workability is good, and the existing β-type titanium alloy and It has the same or better characteristics. Furthermore, the titanium alloy of the present invention is excellent in press formability even when subjected to large deformations, hardly causes rough skin, and has excellent characteristics that are difficult to obtain with existing β-type titanium alloys.

従って、本発明のチタン合金は、形状の種類(板状、棒状、線状、管状など)にかかわらず、良好なプレス加工性を発揮することができる。そのため、本発明者のチタン合金は、例えば、高度で複雑な成形加工性や冷間加工性が要求される分野(薄板分野など)に好適に用いられる。   Therefore, the titanium alloy of the present invention can exhibit good press workability regardless of the type of shape (plate shape, rod shape, linear shape, tubular shape, etc.). Therefore, the titanium alloy of the present inventor is suitably used, for example, in a field (such as a thin plate field) where high and complex forming workability and cold workability are required.

本発明者は、高延性および低耐力を有し、冷間加工性に優れるだけでなく、加工後の肌荒れも防止し得る新規な組成のチタン合金を提供するため、鋭意検討してきた。成分設計の基本指針としては、原料のコスト低減を目的として、特許文献3に提案されているような比較的高価なMoやNbを使用しないことを掲げ、具体的には、Ti−V−Fe−Sn合金をベースにして検討を進めてきた。   The present inventor has intensively studied in order to provide a titanium alloy having a novel composition that has high ductility and low proof stress, is excellent in cold workability, and can prevent rough skin after processing. As a basic guideline for component design, for the purpose of reducing the cost of raw materials, it is stated that relatively expensive Mo and Nb as proposed in Patent Document 3 are not used. Specifically, Ti—V—Fe is used. Studies have been conducted based on the Sn alloy.

その結果、下記(1)〜(2)の知見を見出し、本発明のTi合金に到達した。
(1)本発明者の実験によれば、加工後の肌荒れを防止するためには、従来、有害元素として全く着目されていなかったFeを適切量添加することが極めて有効であることが分かった(後記する実施例を参照)。このように、本発明では、Feを積極的に添加している点で、前述した特許文献1〜特許文献3の技術と相違している。
(2)更に、本発明者の実験によれば、溶体化処理後の強度上昇を招くことなく延性のみを高めて冷間加工性を向上するためには、Alを添加せず、Snの含有量を従来よりも高く設定することが有効であることが分かった。
As a result, the following findings (1) to (2) were found and the present Ti alloy was reached.
(1) According to the experiments by the present inventors, it has been found that it is extremely effective to add an appropriate amount of Fe that has not been noticed as a harmful element in the past in order to prevent rough skin after processing. (See examples below). Thus, in this invention, it is different from the technique of patent document 1-patent document 3 mentioned above by the point which adds Fe actively.
(2) Furthermore, according to the experiment by the present inventors, in order to improve only the ductility and improve the cold workability without causing an increase in strength after the solution treatment, Al is not added, but Sn is contained. It was found that setting the amount higher than before was effective.

従来、延性低下の原因となる脆化相(ω相)を抑制するためにはAlまたはSnの添加が有用であることは知られているが、本発明では、Alは強度の上昇を招くという悪影響を考慮し、Snのみによる脆化相の抑制効果を狙って延性の向上を図ることにした。そして、そのような作用を有効に発揮し得るSnの量を種々検討したところ、Sn量を従来よりも高めて添加すれば良いことを突き止めた。   Conventionally, it is known that the addition of Al or Sn is useful in order to suppress the embrittlement phase (ω phase) that causes a decrease in ductility, but in the present invention, Al causes an increase in strength. Considering the adverse effects, it was decided to improve ductility with the aim of suppressing the embrittlement phase by Sn alone. And when various amount of Sn which can exhibit such an effect | action was examined variously, it discovered that it should just add Sn amount higher than before and should add.

Sn量に関しては、例えば、前述した特許文献2や特許文献3に記載されているように、ω相の生成抑制作用を有することは知られていたが、多量の添加は、溶体化処理後の固溶硬化により強度の上昇や変形抵抗の増加を招くため避けられていたのが実情である。これに対し、本発明では、Snを多量に含有させることで、溶体化処理後の耐力を低下させ、延性の向上を図るものである点で、上記特許文献の技術と相違している。   As for the amount of Sn, for example, as described in Patent Document 2 and Patent Document 3 described above, it has been known that it has an ω-phase formation inhibitory effect. However, a large amount of Sn is added after solution treatment. In reality, it has been avoided because it causes an increase in strength and an increase in deformation resistance due to solid solution hardening. On the other hand, the present invention is different from the technique of the above-mentioned patent document in that, by containing a large amount of Sn, the yield strength after the solution treatment is reduced and the ductility is improved.

なお、AlとSnの関係については、前述した特許文献2にも上記とほぼ同様の内容が記載されているが、最終的に、特許文献2に記載のTi合金と本願発明とは、組成が異なるチタン合金に到達している。すなわち、特許文献2では、Alを必須成分とし、Sn量の上限が4%(実施例ではすべて1%)に制限されたチタン合金を提案している点で、Alを必須成分として含有せず、Sn量を4〜15%の範囲内で多量に含有する本発明のチタン合金とは、成分組成が相違している。   In addition, regarding the relationship between Al and Sn, the above-described Patent Document 2 describes almost the same content as above, but finally, the composition of the Ti alloy described in Patent Document 2 and the present invention is different. A different titanium alloy has been reached. That is, Patent Document 2 proposes a titanium alloy in which Al is an essential component and the upper limit of Sn content is limited to 4% (all 1% in the examples), and thus Al is not contained as an essential component. The component composition is different from that of the titanium alloy of the present invention containing a large amount of Sn in the range of 4 to 15%.

本発明のチタン合金は、以下に詳述するように、各構成成分の含有量が適切に制御されているため、従来のようにAlを全く添加しなくても、既存のβ型チタン合金と同等以上の特性が発揮されるほか、更に、加工後の肌荒れも防止できる点で、極めて有用である。   As will be described in detail below, the titanium alloy of the present invention is appropriately controlled in the content of each component, so that even if no Al is added as in the prior art, the existing β-type titanium alloy and In addition to exhibiting the same or better characteristics, it is extremely useful in that it can prevent rough skin after processing.

本明細書において、「プレス加工性に優れている」とは、溶体化処理後の耐力(0.2%耐力)が低く延性(破断伸び)が高く、冷間加工性に優れており、高度で複雑な成形加工を行って肌荒れが生じないことを意味している。   In this specification, “excellent in press workability” means low yield strength (0.2% yield strength) after solution treatment, high ductility (break elongation), excellent cold workability, It means that rough skin does not occur by performing complicated molding process.

以下、本発明のチタン合金を構成する各元素について説明する。   Hereinafter, each element which comprises the titanium alloy of this invention is demonstrated.

V:12〜20%
Vは、変形抵抗を殆ど上昇させずに、β相を安定化して所望のβ単相組織を確保すると共に、延性向上作用を有する元素である。このような作用を有効に発揮させるため、Vの下限を12%とする。Vが12%未満では、溶体化処理後に所望のβ単相が得られない。また、冷間加工性も著しく低下する。
V: 12-20%
V is an element that stabilizes the β phase and secures a desired β single-phase structure without increasing the deformation resistance, and has a ductility improving effect. In order to effectively exhibit such an action, the lower limit of V is set to 12%. If V is less than 12%, a desired β single phase cannot be obtained after the solution treatment. Also, cold workability is significantly reduced.

ただし、過剰に添加しても上記作用が飽和してしまい、逆に、強度が増加するなどの不具合を招き、コストも上昇するため、Vの上限を20%とする。V量は、13%以上19%以下であることが好ましく、14%以上18%以下であることがより好ましい。   However, even if it is added excessively, the above action is saturated, and conversely, problems such as an increase in strength are caused and the cost is increased, so the upper limit of V is made 20%. The amount of V is preferably 13% or more and 19% or less, and more preferably 14% or more and 18% or less.

Fe:0.5〜3.5%
Feは、β相を安定化する効果を有し、マルテンサイト変態を抑制して冷間加工性を大きく向上させる作用を有している。また、Feは、成形加工後の肌荒れ抑制効果も有している。Feによる肌荒れ抑制作用のメカニズムは、詳細には不明であるが、おそらく、Feの添加によってβ変態点の低下に伴い適切な溶体化処理温度が下がるため、結晶粒成長速度の低下が可能となり、さらにTi中に固溶したFeが粒界移動を拘束する効果が発揮されるためではないかと推察される。
Fe: 0.5 to 3.5%
Fe has the effect of stabilizing the β phase, and has the effect of greatly improving cold workability by suppressing martensitic transformation. Fe also has an effect of suppressing rough skin after molding. Although the mechanism of the skin roughening suppression effect by Fe is unknown in detail, it is possible to reduce the crystal growth rate because the appropriate solution treatment temperature is lowered with the decrease of the β transformation point due to the addition of Fe, Further, it is presumed that Fe dissolved in Ti exerts an effect of restraining grain boundary movement.

Feによる上記作用を有効に発揮させるため、Feの下限を0.5%とする。ただし、Feを過剰に添加すると、Feの固溶硬化によって耐力が上昇し、それに伴って延性が劣化してしまう。また、鋳塊製造時の偏析が顕著になり、品質の安定性に悪影響を及ぼすようになるため、Feの上限を3.5%とする。Fe量は、1.0%以上3.0%以下であることが好ましく、1.5%以上2.5%以下であることがより好ましい。   In order to effectively exhibit the above action by Fe, the lower limit of Fe is set to 0.5%. However, if Fe is added excessively, the yield strength increases due to the solid solution hardening of Fe, and the ductility deteriorates accordingly. Further, segregation during the production of the ingot becomes prominent and adversely affects the stability of quality, so the upper limit of Fe is set to 3.5%. The amount of Fe is preferably 1.0% or more and 3.0% or less, and more preferably 1.5% or more and 2.5% or less.

Sn:4〜15%
Snは、β相を若干安定にし、脆化相として知られているω相の析出を抑制する作用を有している。特に、Snを上記範囲内に制御すれば、溶体化処理後の強度上昇を殆ど招くことなく延性のみを高めて冷間加工性を向上し得ることが分かった(後記する実施例を参照)。
Sn: 4-15%
Sn has the effect of stabilizing the β phase slightly and suppressing the precipitation of the ω phase known as the embrittlement phase. In particular, it has been found that if Sn is controlled within the above range, only the ductility can be increased and the cold workability can be improved with almost no increase in strength after the solution treatment (see examples described later).

Sn量が4%未満の場合、ω相の抑制が不十分であり、脆化が見られるため、Sn量の下限を4%とした。ただし、SnはTiより高密度であり、Sn量の過剰な添加は、Tiによる低密度化特性を損なうため避けるべきであり、後記する実施例に示すように、Sn量が15%を超えると、延性の低下および強度の上昇が見られた。Sn量は、5%以上12%以下であることが好ましく、6%以上10%以下であることがより好ましい。   When the Sn content is less than 4%, the suppression of the ω phase is insufficient and embrittlement is observed, so the lower limit of the Sn content was set to 4%. However, Sn has a higher density than Ti, and excessive addition of Sn should be avoided because it impairs the density reduction characteristics due to Ti. As shown in the examples described later, when the Sn amount exceeds 15% A decrease in ductility and an increase in strength were observed. The Sn content is preferably 5% or more and 12% or less, and more preferably 6% or more and 10% or less.

O:0.15%以下(0%は含まない)
Oは、固溶強化元素であり、過剰に添加すると耐力の上昇を招くため、上限を0.15%とした。O量は出来るだけ少ない方が良く、例えば、0.15%以下であることが好ましく、0.13%であることがより好ましく、0.11%以下であることが更に好ましい。
O: 0.15% or less (excluding 0%)
O is a solid solution strengthening element, and if added excessively, the yield strength is increased, so the upper limit was made 0.15%. The amount of O is preferably as small as possible. For example, it is preferably 0.15% or less, more preferably 0.13%, and still more preferably 0.11% or less.

本発明のチタン合金は上記の成分を含有し、残部:Tiおよび不可避的不純物である。   The titanium alloy of the present invention contains the above components, and the balance is Ti and inevitable impurities.

ただし、上記の成分以外に、他の更なる特性の付与を目的として、例えば、AlやCrを以下の範囲で含有してもよい。   However, in addition to the above components, for the purpose of imparting other additional characteristics, for example, Al or Cr may be contained in the following range.

Al:3.5%以下
前述したように、Alは、本発明の必須成分ではないが、時効処理による強度の上昇を促進する作用を有しているため、選択成分として用いることができる。
Al: 3.5% or less As described above, Al is not an essential component of the present invention, but can be used as a selective component because it has an action of promoting an increase in strength by aging treatment.

Alによる上記作用を有効に発揮させるため、Alの下限を1.0%とすることが好ましい。ただし、過剰に添加すると、固溶強化による耐力の上昇および延性の低下を招くため、Alの上限を3.5%とすることが好ましい。Al量は、1.2%以上3.0%以下であることが好ましい。   In order to effectively exhibit the above action by Al, the lower limit of Al is preferably set to 1.0%. However, if added in excess, it causes an increase in yield strength and a decrease in ductility due to solid solution strengthening, so the upper limit of Al is preferably set to 3.5%. The Al content is preferably 1.2% or more and 3.0% or less.

Cr:5.0%以下
本発明のチタン合金は、更に、Crを含有してもよい。
Crは、Feと同様、共析型のβ相安定化元素であり、冷間加工性を高める作用を有している。このような作用を有効に発揮させるため、Crの下限を0.5%とすることが好ましい。ただし、Cr量が過剰になると、溶体化処理後の耐力が高くなり、冷間加工性が低下するため、Cr量の上限を5.0%とすることが好ましい。Cr量は、1%以上3%以下であることがより好ましい。
Cr: 5.0% or less The titanium alloy of the present invention may further contain Cr.
Similar to Fe, Cr is a eutectoid β-phase stabilizing element and has an effect of improving cold workability. In order to effectively exhibit such an effect, the lower limit of Cr is preferably 0.5%. However, if the Cr amount is excessive, the yield strength after the solution treatment is increased and the cold workability is lowered, so the upper limit of the Cr amount is preferably 5.0%. The amount of Cr is more preferably 1% or more and 3% or less.

本発明に係るチタン合金の製造に当たっては、例えば、Feを0.2〜2%含有するスポンジチタン(低級スポンジチタン)を主原料として用いることができる。   In manufacturing the titanium alloy according to the present invention, for example, sponge titanium (lower sponge titanium) containing 0.2 to 2% of Fe can be used as a main raw material.

前述したように、従来、Feは、溶体化処理後の硬度が高くなるなどの理由から出来る限り低く抑えられており、そのため、例えば、Fe含有量が約0.05%以下に低減された高純度なスポンジチタン(高級スポンジチタン)を用いて製造するなどしていた。これに対し、本発明では、Feによる加工後の肌荒れ防止が有効に発揮されるように、Feを積極的に所定量添加しているため、上記のような低級スポンジチタンを利用することが可能であり、これにより、製造コストを削減することができる。   As described above, conventionally, Fe has been kept as low as possible for reasons such as increased hardness after solution treatment, and, for example, therefore, Fe content has been reduced to about 0.05% or less. It was manufactured using pure sponge titanium (high-grade sponge titanium). On the other hand, in the present invention, since a predetermined amount of Fe is positively added so as to effectively prevent roughening after processing with Fe, it is possible to use the lower sponge titanium as described above. Thus, the manufacturing cost can be reduced.

具体的には、Feを0.2〜2%含有する低級スポンジチタンを、その他の添加元素と共にアーク溶解法、電子ビーム溶解法、プラズマアーク溶解などの方法(好ましくはアーク溶解法)で溶製し、製造すれば良い。   Specifically, lower sponge titanium containing 0.2 to 2% Fe is melted together with other additive elements by a method such as arc melting, electron beam melting, plasma arc melting (preferably arc melting). And can be manufactured.

本発明のプレス成形部材は、上記の成分組成からなるチタン合金を用いて得られるものであり、具体的には、例えば、プレート式熱交換器・燃料電池のセパレータなどのプレス成形加工品、携帯電話・モバイルパソコン・カメラなどの筐体、メガネのフレームなどのように、高度で複雑なプレス加工性が要求される部材などが好適に挙げられる。   The press-molded member of the present invention is obtained by using a titanium alloy having the above component composition. Specifically, for example, a press-molded product such as a plate heat exchanger and a fuel cell separator, Preferred examples include a member such as a case of a telephone, a mobile personal computer, a camera, a frame of glasses, or the like that requires high and complex press workability.

プレス成形部材の製造方法は、特に限定されず、所定の成分組成からなるチタン合金を用い、例えば、熱間圧延および冷間加工を行った後、溶体化処理を行なえば良い。溶体化処理は、通常、チタン合金の延性を更に高め、高度の成形加工性を確保するために実施されており、通常、β単相域での溶体化処理が行なわれている。溶体化処理の条件は特に限定されないが、例えば、約650℃〜750℃の温度で約0.5〜120分保持する方法などが挙げられる。   The manufacturing method of a press-molded member is not particularly limited, and a solution treatment may be performed after, for example, hot rolling and cold working using a titanium alloy having a predetermined component composition. The solution treatment is usually performed in order to further improve the ductility of the titanium alloy and ensure a high degree of formability, and the solution treatment in the β single phase region is usually performed. The conditions for the solution treatment are not particularly limited, and examples thereof include a method of holding at a temperature of about 650 ° C. to 750 ° C. for about 0.5 to 120 minutes.

更に、強度の更なる向上を目的として、溶体化処理を行った後、必要に応じて時効処理を更に行っても良い。時効処理の条件は、特に限定されないが、例えば、約450〜600℃の温度で約4〜12時間保持した後に冷却する(空冷または水冷)などの方法が挙げられる。   Furthermore, for the purpose of further improving the strength, an aging treatment may be further performed as necessary after the solution treatment. The conditions for the aging treatment are not particularly limited, and examples thereof include a method of cooling (air cooling or water cooling) after holding at a temperature of about 450 to 600 ° C. for about 4 to 12 hours.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されるものではなく、前・後記の趣旨に適合し得る範囲で適切に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. Any of these may be included in the technical scope of the present invention.

表1に記載の成分組成からなる原料をアーク溶解法にて溶製し、直径50mm×15mmの鋳塊(重量約120g)を得た。得られた鋳塊を1150℃に加熱し、10mmの厚さになるまで熱間圧延した後、更に950℃に加熱して再度熱間圧延を行ない、表面に形成されたスケールを除去して1.0mmの厚さとした。その後、80%の冷間加工を行い、大気炉にて、(β変態点+50℃)の温度で30分保持して溶体化処理を行なった後、空冷した。その後、表面に形成されたスケールを除去し、厚さ1.0mmの供試材を得た(表1のNo.1〜20)。   The raw material which consists of a component composition of Table 1 was melted by the arc melting method, and the ingot (weight about 120g) of diameter 50mm x 15mm was obtained. The obtained ingot was heated to 1150 ° C. and hot-rolled to a thickness of 10 mm, then further heated to 950 ° C. and again hot-rolled to remove the scale formed on the surface. The thickness was 0.0 mm. After that, 80% cold working was performed, and after a solution treatment by holding at a temperature of (β transformation point + 50 ° C.) for 30 minutes in an atmospheric furnace, air cooling was performed. Thereafter, the scale formed on the surface was removed to obtain a specimen having a thickness of 1.0 mm (No. 1 to 20 in Table 1).

上記のようにして得られた溶体化処理後の供試材について、下記の特性を評価した。   The following properties were evaluated for the specimens after solution treatment obtained as described above.

(0.2%耐力および破断伸び)
供試材からゲージ長25.0mm,厚さ1.0mmの引張試験片を切り出し、JIS Z 2241の試験法に基づき、圧延方向と同方向に引張試験を実施し、0.2%耐力および破断伸びを測定した。詳細には、JIS14号B試験片を用い、歪量1%まで0.5%/min、それ以降は30%/minの引張強度で引張試験を行なった。
ここでは、0.2%耐力:720MPa以下、破断伸び:20.0%以上のものを合格とした。
(0.2% proof stress and elongation at break)
A tensile test piece having a gauge length of 25.0 mm and a thickness of 1.0 mm was cut out from the test material, and a tensile test was performed in the same direction as the rolling direction based on the test method of JIS Z 2241. Elongation was measured. Specifically, a JIS No. 14 B test piece was used, and a tensile test was performed with a tensile strength of 0.5% / min up to a strain amount of 1%, and thereafter 30% / min.
Here, 0.2% proof stress: 720 MPa or less and elongation at break: 20.0% or more were accepted.

(冷間加工性の評価)
以下に示す方法で冷間加工率90%での耳割れ性を測定し、冷間加工性評価した。
引張試験に用いた板片(ゲージ長25.0mm、厚さ1.0mm)から幅20mm、長さ100mmの板片を採取し、厚さが0.1mmになるまで冷間加工(冷間加工率90%)を行なったときの耳割れの程度を目視で確認した。
(Evaluation of cold workability)
Ear crackability at a cold work rate of 90% was measured by the method shown below, and cold workability was evaluated.
A plate piece having a width of 20 mm and a length of 100 mm is taken from a plate piece (gauge length 25.0 mm, thickness 1.0 mm) used for the tensile test, and cold working (cold working) is performed until the thickness becomes 0.1 mm. The degree of ear cracking when the rate was 90%) was visually confirmed.

冷間加工性は、下記基準に従って評価した。ここでは、評価が○のものを合格とした。
○:耳割れがみられなかったもの
△:1mm未満の耳割れがみられたもの
×:1mm以上の耳割れがみられたもの。
Cold workability was evaluated according to the following criteria. Here, the evaluation was ○.
○: No cracks were observed. Δ: Ear cracks of less than 1 mm were observed. ×: Ear cracks of 1 mm or more were observed.

(プレス成形性)
本実施例では、複雑な成形加工を行ったときのプレス成形性を評価する目的で、以下の実験を行なった。
(Press formability)
In this example, the following experiment was conducted for the purpose of evaluating the press formability when a complicated forming process was performed.

まず、90mm×90mm×1mmtのサイズに加工した試料を用意し、JIS Z2247に記載のエリクセン試験に基づいて7.0mmまで押し込みを行なった後に試験をストップさせ、表面の割れ発生程度を目視で確認し、下記基準に基づいて評価した。
0:肌荒れ、及び微小な割れがない。
1:肌荒れがごく僅かに発生している。
2:肌荒れが発生しているものの微小なものを含めた割れはない。
3:割れ発生。
この評価基準において、肌荒れがほぼ無くプレス成形性が可能(合格)と判断されるものは、0または1段階とし、2段階および3段階は不合格であるとした。
First, a sample processed to a size of 90 mm × 90 mm × 1 mmt is prepared, and after pushing down to 7.0 mm based on the Erichsen test described in JIS Z2247, the test is stopped and the degree of surface cracking is visually confirmed And evaluated based on the following criteria.
0: No rough skin and fine cracks.
1: Very little rough skin occurs.
2: Although there is rough skin, there are no cracks including minute ones.
3: Cracking occurred.
In this evaluation standard, it was judged that there was almost no rough skin and press formability was judged to be possible (accepted), and 0 or 1 stage, and 2 or 3 stages were rejected.

更に、表1のNo.16〜19について、溶体化処理後に500℃×8時間の時効処理を行った。   Furthermore, No. 1 in Table 1 About 16-19, the aging treatment of 500 degreeC x 8 hours was performed after the solution treatment.

時効処理を行った上記の供試材について、時効後のビッカース硬さ(Hv)を測定した(荷重10kg、3点の平均値)。
ここでは、ビッカース硬さ:350Hv以上のものを合格とした。
About the said test material which performed the aging treatment, the Vickers hardness (Hv) after aging was measured (10 kg of loads, the average value of 3 points | pieces).
Here, a Vickers hardness of 350 Hv or more was regarded as acceptable.

これらの結果を表1にまとめて記載する。
なお、表1には、「プレス加工性の総合評価」の欄を設け、下記基準で評価した。
○:冷間加工性、0.2%耐力、破断伸び、プレス成形性のすべての項目が○
△:冷間加工性、0.2%耐力、破断伸び、プレス成形性の項目のうち
1〜2個が○でないもの
×:冷間加工性、0.2%耐力、破断伸び、プレス成形性の項目のうち
3〜4個が○でないもの
These results are summarized in Table 1.
In Table 1, a column of “Comprehensive evaluation of press workability” was provided, and evaluation was performed according to the following criteria.
○: All items of cold workability, 0.2% proof stress, elongation at break and press formability are ○
Δ: One or two of the items of cold workability, 0.2% yield strength, breaking elongation, and press formability are not good. X: cold workability, 0.2% yield strength, elongation at break, press formability. 3-4 items are not ○

Figure 2007327132
Figure 2007327132

表1の結果より、以下のように考察することができる。   From the results in Table 1, it can be considered as follows.

表1中、No.2〜4、7〜9、12〜13、16〜18は、いずれも、本発明の範囲を満足するチタン合金であり、低耐力、高延性、高度の冷間加工性を有しており、加工後の肌荒れも見られず、プレス加工性に優れている。   In Table 1, No. 2 to 4, 7 to 9, 12 to 13, and 16 to 18 are all titanium alloys that satisfy the scope of the present invention, and have low proof stress, high ductility, and high cold workability. No roughening of the skin after processing is seen, and the press workability is excellent.

上記のうち、溶体化処理後に時効処理を行なったNo.16〜18は、いずれも、時効により硬度の上昇が見られた。特に、Alを本発明の好ましい範囲内で含有するNo.17〜18では、冷間加工性などを阻害することなしに、Al添加による固溶強化作用が有効に発揮されている。   Among the above, No. which performed the aging treatment after the solution treatment. As for 16-18, the raise of the hardness was seen by aging all. In particular, No. 1 containing Al within the preferred range of the present invention. In Nos. 17 to 18, the solid solution strengthening effect by the addition of Al is effectively exhibited without impairing the cold workability.

これに対し、本発明の要件のいずれかを満足しない下記の比較例は、以下の不具合を有している。   On the other hand, the following comparative examples that do not satisfy any of the requirements of the present invention have the following problems.

No.1は、Vの含有量が少ないため、冷間加工性および延性が大きく低下し、更に耐力の上昇が著しい。   No. No. 1 has a low V content, so that cold workability and ductility are greatly reduced, and the yield strength is remarkably increased.

No.5は、Vの含有量が多いため、強度(0.2%耐力)が上昇し、破断伸びが低下した。   No. In No. 5, since the V content was large, the strength (0.2% yield strength) was increased and the elongation at break was decreased.

No.6は、Snの含有量が少ないため、冷間加工性が若干低下し、破断伸びも低下した。   No. In No. 6, since the Sn content was small, the cold workability was slightly lowered and the elongation at break was also lowered.

No.10は、Snの含有量が多いため、強度が上昇し、破断伸びが低下した。   No. No. 10 had a large Sn content, so the strength increased and the breaking elongation decreased.

No.11は、Feの含有量が少ないため、冷間加工性が若干低下したほか、プレス成形性も低下した。   No. No. 11 had a small Fe content, so that the cold workability was slightly lowered and the press formability was also lowered.

No.14は、Feの含有量が多いため、強度が上昇し、破断伸びが低下した。   No. In No. 14, since the content of Fe was large, the strength increased and the breaking elongation decreased.

No.15は、Oの含有量が多いため、冷間加工性が低下した。   No. Since No. 15 had much content of O, cold workability fell.

No.19は、Alの含有量が本発明の好ましい範囲を超える例であり、冷間加工性が若干低下し、破断伸びも低下した。   No. No. 19 is an example in which the Al content exceeds the preferable range of the present invention, the cold workability is slightly lowered, and the elongation at break is also lowered.

No.20は、従来のTi−15V−3Cr−3Sn−3Al合金を模擬した参考例であり、冷間加工性、強度、および破断伸びは良好であるが、プレス成形性が低下した。   No. Reference numeral 20 is a reference example simulating a conventional Ti-15V-3Cr-3Sn-3Al alloy. Although cold workability, strength, and elongation at break were good, press formability was lowered.

Claims (3)

V :12〜20%(質量%の意味、以下同じ。)、
Fe:0.5〜3.5%、
Sn:4〜15%、
O :0.15%以下(0%は含まない)
を含み、
残部:Tiおよび不可避的不純物であることを特徴とするプレス加工性に優れたチタン合金。
V: 12 to 20% (meaning mass%, the same shall apply hereinafter),
Fe: 0.5 to 3.5%,
Sn: 4-15%,
O: 0.15% or less (excluding 0%)
Including
The balance: titanium alloy excellent in press workability, characterized by being Ti and inevitable impurities.
更に、Al:3.5%以下(0%を含まない)を含有する請求項1に記載のチタン合金。   The titanium alloy according to claim 1, further comprising Al: 3.5% or less (excluding 0%). 請求項1または2に記載のチタン合金を用いて得られるプレス成形部材。
A press-molded member obtained by using the titanium alloy according to claim 1.
JP2006161573A 2006-06-09 2006-06-09 Titanium alloys and press-molded parts with excellent press workability Expired - Fee Related JP4783214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161573A JP4783214B2 (en) 2006-06-09 2006-06-09 Titanium alloys and press-molded parts with excellent press workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006161573A JP4783214B2 (en) 2006-06-09 2006-06-09 Titanium alloys and press-molded parts with excellent press workability

Publications (2)

Publication Number Publication Date
JP2007327132A true JP2007327132A (en) 2007-12-20
JP4783214B2 JP4783214B2 (en) 2011-09-28

Family

ID=38927786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161573A Expired - Fee Related JP4783214B2 (en) 2006-06-09 2006-06-09 Titanium alloys and press-molded parts with excellent press workability

Country Status (1)

Country Link
JP (1) JP4783214B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365042A (en) * 1986-09-08 1988-03-23 Mitsubishi Metal Corp Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture
JPH01184242A (en) * 1988-01-18 1989-07-21 Nippon Stainless Steel Co Ltd Titanium alloy having excellent ductility
JPH0379736A (en) * 1989-08-22 1991-04-04 Nippon Stainless Steel Co Ltd High ductility and high strength ti alloy
WO2002077305A1 (en) * 2001-03-26 2002-10-03 Kabushiki Kaisha Toyota Chuo Kenkyusho High strength titanium alloy and method for production thereof
JP2005302713A (en) * 2004-03-18 2005-10-27 Jfe Steel Kk Metal material for energizing member, fuel cell separator using it and fuel cell
JP2006089803A (en) * 2004-09-24 2006-04-06 Kobe Steel Ltd Superelastic titanium alloy and manufacturing method therefor
WO2006041166A1 (en) * 2004-10-15 2006-04-20 Sumitomo Metal Industries, Ltd. β-TITANIUM ALLOY

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365042A (en) * 1986-09-08 1988-03-23 Mitsubishi Metal Corp Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture
JPH01184242A (en) * 1988-01-18 1989-07-21 Nippon Stainless Steel Co Ltd Titanium alloy having excellent ductility
JPH0379736A (en) * 1989-08-22 1991-04-04 Nippon Stainless Steel Co Ltd High ductility and high strength ti alloy
WO2002077305A1 (en) * 2001-03-26 2002-10-03 Kabushiki Kaisha Toyota Chuo Kenkyusho High strength titanium alloy and method for production thereof
JP2005302713A (en) * 2004-03-18 2005-10-27 Jfe Steel Kk Metal material for energizing member, fuel cell separator using it and fuel cell
JP2006089803A (en) * 2004-09-24 2006-04-06 Kobe Steel Ltd Superelastic titanium alloy and manufacturing method therefor
WO2006041166A1 (en) * 2004-10-15 2006-04-20 Sumitomo Metal Industries, Ltd. β-TITANIUM ALLOY
JP2006111934A (en) * 2004-10-15 2006-04-27 Sumitomo Metal Ind Ltd beta-TYPE TITANIUM ALLOY

Also Published As

Publication number Publication date
JP4783214B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
JP5183911B2 (en) Titanium alloy plate excellent in bendability and stretchability and manufacturing method thereof
JP5112723B2 (en) Titanium alloy material excellent in strength and formability and manufacturing method thereof
EP2615186A1 (en) Titanium material
JP2007084865A (en) alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP2007084864A (en) alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
US20240043948A1 (en) Method for manufacturing austenitic stainless steel strip
WO2010093016A1 (en) Titanium plate
JP2018518594A (en) Beta titanium alloy sheet for high temperature applications
CN111032894B (en) Titanium plate
JP5491882B2 (en) High strength titanium plate with excellent cold rolling properties
JP4507094B2 (en) Ultra high strength α-β type titanium alloy with good ductility
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
WO2016140231A1 (en) Thin titanium sheet and manufacturing method therefor
JP5064356B2 (en) Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate
JP4783214B2 (en) Titanium alloys and press-molded parts with excellent press workability
JP2006034414A (en) Spike for shoe
JP2009215650A (en) Shape memory alloy
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
US8986470B2 (en) Nickel material for chemical plant
JP7387139B2 (en) Titanium alloy, its manufacturing method, and engine parts using it
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same
JP4371201B2 (en) β-type titanium alloy and method for producing the same
JP2017057473A (en) α+β TYPE TITANIUM ALLOY SHEET AND MANUFACTURING METHOD THEREFOR
JP4476884B2 (en) Titanium alloy with excellent formability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4783214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees