JP2007326788A - Tissue fluorescent-staining agent composition for endoscopic use - Google Patents

Tissue fluorescent-staining agent composition for endoscopic use Download PDF

Info

Publication number
JP2007326788A
JP2007326788A JP2006156924A JP2006156924A JP2007326788A JP 2007326788 A JP2007326788 A JP 2007326788A JP 2006156924 A JP2006156924 A JP 2006156924A JP 2006156924 A JP2006156924 A JP 2006156924A JP 2007326788 A JP2007326788 A JP 2007326788A
Authority
JP
Japan
Prior art keywords
tissue
fluorescent
endoscope
digestive tract
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006156924A
Other languages
Japanese (ja)
Other versions
JP4847795B2 (en
Inventor
Akira Yamamoto
晃 山本
Yusuke Iimori
祐介 飯森
Mizue Sase
瑞恵 佐瀬
Mariko Ishiguro
麻梨子 石黒
Pilryon Lee
必連 李
Hiroyuki Sasaki
博之 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp filed Critical Pentax Corp
Priority to JP2006156924A priority Critical patent/JP4847795B2/en
Publication of JP2007326788A publication Critical patent/JP2007326788A/en
Application granted granted Critical
Publication of JP4847795B2 publication Critical patent/JP4847795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent-staining agent clearing the shapes of the surface of digestive tract interior lumen, etc., in visible light wavelength region and at the same time having a function of emitting fluorescent light excited by a specific wavelength light and further biologically suitable for endoscopic observation. <P>SOLUTION: This tissue fluorescent-staining agent composition for the endoscopic use contains a spirulina blue pigment. Also the staining agent is used for a cofocal endoscope, for an oral administration, a direct administration in digestive tract or an submucosa administration, and also for fluorescent-staining of the surface of digestive tract interior lumen and/or the inside of the cells of digestive tract interior lumen. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内視鏡による診断に用いる組織蛍光染色剤組成物に関する。   The present invention relates to a tissue fluorescent staining composition used for diagnosis by an endoscope.

内視鏡を用いた診断技術は、上部消化管及び下部消化管における消化管内視鏡検査を中心に、特に癌、消化性潰瘍、潰瘍性大腸炎等の疾患の診断に広く応用されている。これら内視鏡検査における組織の異常(病変部)の検出は、染色剤を用いることなく10〜500倍程度の可視光内視鏡によるのが一般的である。他方、組織表面に色素を含む溶液を撒布した状態で内視鏡観察する色素内視鏡法と呼ばれる方法がある。この色素内視鏡法は消化器内腔表面の形状を明確に観察することができるため、色調の変化によって微細な病変部であっても容易に発見することができる。これら色素内視鏡法に用いられる内視鏡としては可視光内視鏡及び蛍光内視鏡がある。   Diagnostic techniques using endoscopes are widely applied to diagnosis of diseases such as cancer, peptic ulcer, ulcerative colitis, etc., mainly in gastrointestinal endoscopy in the upper and lower gastrointestinal tract. In general, tissue abnormalities (lesions) in these endoscopic examinations are detected by a visible light endoscope of about 10 to 500 times without using a staining agent. On the other hand, there is a method called dye endoscopy in which endoscopic observation is performed with a solution containing a dye distributed on the tissue surface. Since this chromoendoscopy method can clearly observe the shape of the digestive luminal surface, even a minute lesion can be easily detected by the change in color tone. As endoscopes used for these dye endoscope methods, there are a visible light endoscope and a fluorescence endoscope.

これらの色素内視鏡法に用いられる色素としては、例えば可視光下での消化管内腔の染色にはインジゴカルミン(非特許文献1)、蛍光染色にはアクリフラビン及びフルオレセイン(非特許文献2)などが主に用いられている。   Examples of the dye used in these dye endoscopy methods include indigo carmine (Non-patent Document 1) for staining the digestive tract lumen under visible light, and acriflavine and fluorescein (Non-patent Document 2) for fluorescent staining. Etc. are mainly used.

一方、診断においては、生体の組織表面だけでなく、生体組織内部の観察も重要である。生体組織内部を観察する方法としては、バイオプシーなどで採取した組織の微小部を実験室で薄切し染色の後観察する方法が一般的である。また、生体組織の内部をその場で観察する方法では、例えば、MRI、PET、CT、軟X線法などが全身の観察のために適用されている。消化管内視鏡に関しては、生体組織の自家蛍光反応を応用した内視鏡が商業化されている。生体組織に特定波長の光を照射することで組織の内因性蛍光物質により自家蛍光が発生するので、その強度差及びスペクトラムにより正常部位と病変部位を視覚的に観察することができる。   On the other hand, in diagnosis, not only the surface of a living tissue but also the inside of the living tissue is important. As a method for observing the inside of a living tissue, a method is generally used in which a microscopic part of a tissue collected by biopsy or the like is sliced in a laboratory and observed after staining. As a method of observing the inside of a living tissue on the spot, for example, MRI, PET, CT, soft X-ray method, etc. are applied for whole body observation. Regarding gastrointestinal endoscopes, endoscopes that apply the autofluorescence reaction of living tissues are commercially available. By irradiating a living tissue with light of a specific wavelength, autofluorescence is generated by the endogenous fluorescent substance of the tissue, so that a normal site and a lesion site can be visually observed based on the intensity difference and spectrum.

しかし、通常の内視鏡観察では、病変部を経験的に判断し、組織片を切り取って、別途実験室内で組織染色等の手法により診断せざるを得ない。一方、最近開発された共焦点内視鏡によれば、組織を切り取ることなく、組織内部を観察することができる。すなわち、共焦点システムとは、検出器の前にピンホールを置くことにより、組織内の焦点面のみの反射光を検出し、明確な画像を得ることができる技術である。通常、共焦点光学システムは蛍光物質により染色された試料にレーザー光を走査してその蛍光像を観察する。そのため蛍光染色剤が必要となる。この共焦点システムを採用した共焦点内視鏡は、通常観察光学系と共焦点観察光学系の両者を有しているため、病変部のスクリーニングと、細胞を切り取らずに光学的な組織薄切による細胞の観察が低侵襲かつその場で可能となる点で有用である。   However, in normal endoscopic observation, it is necessary to empirically determine a lesioned part, cut out a tissue piece, and separately diagnose it by a technique such as tissue staining in a laboratory. On the other hand, according to a recently developed confocal endoscope, the inside of a tissue can be observed without cutting the tissue. That is, the confocal system is a technique that can detect a reflected light of only a focal plane in a tissue and obtain a clear image by placing a pinhole in front of a detector. Usually, the confocal optical system scans a sample stained with a fluorescent material with a laser beam and observes the fluorescent image. Therefore, a fluorescent stain is required. A confocal endoscope using this confocal system has both a normal observation optical system and a confocal observation optical system. Therefore, screening of lesions and optical tissue slicing without cutting cells are performed. It is useful in that the observation of cells by the method is minimally invasive and possible on the spot.

共焦点内視鏡による組織内観察を目的として用いられた蛍光色素としては、フルオレセイン及びアクリフラビンが知られている(非特許文献2)。この非特許文献2においては、多量のフルオレセインを静脈内投与し、消化管組織にフルオレセインが到達した時点で、共焦点内視鏡による組織内観察を行っている。また、アクリフラビンは消化管に局所的に撒布して組織内観察を行っているが、色素残留の可能性や変異原性などが憂慮されている。この二種の色素に関しては染色性は異なるが、組織観察において大差はないとされている(非特許文献3)。
多田正大、磯 彰格 他(臨床内科、vol.7、no.2、1992) Gastroenterology 2004, vol. 127, No.3, p.706-713 Gastrointestinal Endoscopy Clin of N Am, 2005, vol.12, p.715-731
Fluorescein and acriflavine are known as fluorescent dyes used for tissue observation with a confocal endoscope (Non-patent Document 2). In this non-patent document 2, a large amount of fluorescein is intravenously administered, and when the fluorescein reaches the digestive tract tissue, the tissue is observed with a confocal endoscope. Acriflavine is distributed locally in the gastrointestinal tract and observed in the tissue, but there is concern about the possibility of pigment residue and mutagenicity. Although these two types of dyes have different staining properties, it is considered that there is no great difference in tissue observation (Non-patent Document 3).
Masahiro Tada, Akinori Tsuji et al. (Clinical Internal Medicine, vol.7, no.2, 1992) Gastroenterology 2004, vol. 127, No. 3, p.706-713 Gastrointestinal Endoscopy Clin of N Am, 2005, vol.12, p.715-731

色素内視鏡、蛍光内視鏡、共焦点内視鏡では短時間でも細胞及び組織の染色が可能であり、さらに可視光観察及び蛍光励起光のいずれの光源に対しても組織表面の形状を鮮明にすることができる色素が求められており、さらに組織内部の染色も可能な色素が求められている。
従って、本発明の課題は、可視光波長領域における消化管内腔表面等の形状を鮮明化すると同時に、特定の波長の光により励起され蛍光を発する機能を有し、さらに組織表面及び内部が鮮明に蛍光染色でき、生物学的に内視鏡観察に適した蛍光染色剤を提供することにある。
Dye endoscopes, fluorescent endoscopes, and confocal endoscopes can stain cells and tissues even in a short time, and the shape of the tissue surface can be adjusted to both light source for visible light observation and fluorescence excitation light. There is a need for pigments that can be sharpened, and there is a need for pigments that can also stain tissues.
Accordingly, an object of the present invention is to clarify the shape of the digestive tract lumen surface and the like in the visible light wavelength region, and at the same time, has a function of emitting fluorescence when excited by light of a specific wavelength, and further clarifying the tissue surface and the inside. An object of the present invention is to provide a fluorescent staining agent that can be fluorescently stained and is biologically suitable for endoscopic observation.

本発明者は、安全性、可視光及び蛍光における染色性の点から天然色素に着目して種々検討した結果、スピルリナ青色素が通常の内視鏡における染色剤としても有用であり、さらに共焦点内視鏡における組織内染色用蛍光染色剤としても有用であり、かつそれらの染色像が鮮明であり早期の病変の検出に有用であることを見出した。   As a result of various studies paying attention to natural dyes from the viewpoint of safety, dyeability in visible light and fluorescence, the present inventor has found that Spirulina blue dye is useful as a stain for ordinary endoscopes, and further confocal. The present inventors have found that it is useful as a fluorescent staining agent for tissue staining in an endoscope, and that the stained image is clear and useful for early lesion detection.

すなわち、本発明はスピルリナ青色素を含有する内視鏡用組織蛍光染色剤組成物を提供するものである。   That is, the present invention provides a tissue fluorescent staining composition for endoscopes containing a Spirulina blue pigment.

本発明の蛍光組織染色剤を用いれば、可視光及び蛍光、共焦点内視鏡観察下において、すなわち組織を採取することなく、病変部の表面及び組織内部の可視化を同時に行うことができ、染色像が鮮明であることから、消化管疾患等の診断に有用である。   By using the fluorescent tissue staining agent of the present invention, the surface of the lesion and the inside of the tissue can be visualized simultaneously under visible light, fluorescence, and confocal endoscopic observation, that is, without collecting the tissue. Since the image is clear, it is useful for diagnosis of gastrointestinal diseases and the like.

本発明の内視鏡には、消化管内視鏡、呼吸器内視鏡、血管内視鏡、腹腔内視鏡、胸腔内視鏡などの医療用内視鏡が挙げられる。このうち消化管内視鏡が特に好ましい。本発明について、可視光内視鏡には、可視光で観察する内視鏡が全て含まれ、通常の内視鏡、拡大内視鏡、及び可視光を観察する色素内視鏡が含まれる。一方、蛍光内視鏡には、励起光を照射して生じる蛍光を測定する内視鏡が含まれ、これには拡大蛍光内視鏡が含まれる。また、共焦点内視鏡は、共焦点撮像システムを搭載した内視鏡をいう。なお、共焦点内視鏡は通常観察光学系と共焦点観察光学系の両者を有している。   Examples of the endoscope of the present invention include medical endoscopes such as a digestive tract endoscope, a respiratory endoscope, a blood vessel endoscope, an abdominal endoscope, and a thorax endoscope. Of these, the digestive tract endoscope is particularly preferable. Regarding the present invention, the visible light endoscope includes all endoscopes that observe with visible light, and includes a normal endoscope, a magnifying endoscope, and a dye endoscope that observes visible light. On the other hand, the fluorescence endoscope includes an endoscope that measures fluorescence generated by irradiating excitation light, and includes an enlarged fluorescence endoscope. A confocal endoscope refers to an endoscope equipped with a confocal imaging system. The confocal endoscope has both a normal observation optical system and a confocal observation optical system.

本発明の組織蛍光染色剤組成物は、スピルリナ青色素を含有する。スピルリナ青色素はユレモ科スピルリナ(Spirulina platensis(NORD.)GEITLER)の全藻より、室温時水で抽出して得られる。主色素はフィコシアニン(Phycocyanin)である。   The tissue fluorescent stain composition of the present invention contains Spirulina blue pigment. Spirulina blue pigment is obtained by extracting with water at room temperature from all algae of Spirulina platensis (NORD.) GEITLER. The main pigment is phycocyanin.

このスピルリナ青色素の市販品としては、例えばキリヤ化学のキリヤスブルーAN、キリヤスブルーAN−L、フナコシ株式会社のC−フィコシアニン、大日本インキのリナブルーA等が挙げられる。
またスピルリナ青色素は、化粧品や医薬品の着色剤として広く使用されている。従って、これらの成分の安全性は確立されている。しかし、これらの化合物が蛍光を発することは知られていたが、組織に適用した場合に組織内部において鮮明な蛍光像を呈することは全く知られていない。
Examples of commercially available Spirulina blue pigments include Kyrias Kyrias Blue AN, Kyrias Blue AN-L, Funakoshi C-Phycocyanin, Dainippon Ink Lina Blue A, and the like.
Spirulina blue pigment is widely used as a colorant for cosmetics and pharmaceuticals. Therefore, the safety of these components is established. However, although it has been known that these compounds emit fluorescence, it is not known at all that a clear fluorescent image is exhibited inside the tissue when applied to the tissue.

本発明の組織蛍光染色剤組成物中のスピルリナ青色素の含有量は、染色性及び染色像の鮮明さの点から、0.01〜70質量%、さらに0.01〜50質量%、特に0.01〜20質量%が好ましい。   The content of the spirulina blue dye in the tissue fluorescent staining composition of the present invention is 0.01 to 70% by mass, more preferably 0.01 to 50% by mass, particularly 0 from the viewpoint of dyeability and the clarity of the stained image. 0.01 to 20% by mass is preferable.

本発明の組織蛍光染色剤組成物は、液体、顆粒、錠剤等の形態で使用することができる。消化管内で撒布する場合又は粘膜下投与する場合は液体が好ましく、経口投与する場合は液体、顆粒、錠剤等が好ましい。   The tissue fluorescent stain composition of the present invention can be used in the form of liquid, granule, tablet and the like. Liquids are preferred for distribution in the digestive tract or submucosal administration, and liquids, granules, tablets, etc. are preferred for oral administration.

本発明の組織蛍光染色剤組成物には、その形態(剤型)に応じて種々の成分を配合できる。例えば、粘稠剤、増粘剤、界面活性剤、甘味剤、防腐剤、香料、pH調整剤、水等を配合できる。   Various components can be blended in the tissue fluorescent staining composition of the present invention depending on the form (form). For example, thickeners, thickeners, surfactants, sweeteners, preservatives, fragrances, pH adjusters, water and the like can be blended.

pH調整剤としては、pHを5〜9にするもの、例えば、塩酸、リン酸、クエン酸、リンゴ酸、酢酸及びこれらの塩、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、ピロリン酸四ナトリウムなどが挙げられる。   Examples of the pH adjuster include those having a pH of 5 to 9, such as hydrochloric acid, phosphoric acid, citric acid, malic acid, acetic acid and salts thereof, sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, tetrasodium pyrophosphate Etc.

また溶剤としてエタノール、水などを配合し得る。錠剤の場合は、結合剤、崩壊剤などの公知の錠剤用成分を用いることができる。   Moreover, ethanol, water, etc. can be mix | blended as a solvent. In the case of tablets, known tablet components such as binders and disintegrants can be used.

本発明の組織蛍光染色剤は、組織を青色系に染色することができるので、通常の可視光内視鏡観察時における組織内部染色剤として有用である。ここで用いられる内視鏡は通常の内視鏡及び拡大内視鏡であり、10〜500倍の倍率を有する可視光下での内視鏡観察に有用である。   Since the tissue fluorescent stain of the present invention can stain a tissue in a blue color, it is useful as a tissue internal stain during normal visible light endoscopic observation. The endoscope used here is a normal endoscope and a magnifying endoscope, and is useful for endoscopic observation under visible light having a magnification of 10 to 500 times.

スピルリナ青色素は白色光源下で青色を呈し、橙色の光源により励起されて赤紫色の蛍光を示す。励起波長は624nm近辺であり、639nm近辺に蛍光を発する。従って、共焦点観察する場合は、He−Neレーザーの光源を用いて633nmの励起光を照射すれば、蛍光像を得ることができる。   Spirulina blue pigment is blue under a white light source and is excited by an orange light source to exhibit reddish purple fluorescence. The excitation wavelength is around 624 nm and emits fluorescence around 639 nm. Therefore, in the case of confocal observation, a fluorescence image can be obtained by irradiating excitation light of 633 nm using a He—Ne laser light source.

後述の実施例で示すように、スピルリナ青色素は、他の食用色素に比べて、蛍光を発光するという特性を有するだけでなく、組織内部の蛍光染色像が鮮明であるという特性を有する。従って、本発明の染色剤は、内視鏡用組織蛍光染色剤として有用である。共焦点内視鏡としては、例えば観察深度は250μm(観察範囲は500μm×500μmで拡大率500倍)のものが実用化されている。従って、本発明の組織染色剤組成物を撒布又は経口投与後に、この共焦点内視鏡を用いれば、組織内部(例えば、250μmまで)の蛍光染色断層像が、容易に得られる。   As shown in Examples described later, Spirulina blue dye has not only a characteristic of emitting fluorescence, but also a characteristic that a fluorescent dyed image inside the tissue is clear as compared with other food dyes. Therefore, the stain of the present invention is useful as a tissue fluorescent stain for endoscopes. As a confocal endoscope, for example, one having an observation depth of 250 μm (observation range is 500 μm × 500 μm and magnification is 500 times) has been put into practical use. Therefore, a fluorescent staining tomographic image inside the tissue (for example, up to 250 μm) can be easily obtained by using this confocal endoscope after the tissue staining composition of the present invention is distributed or administered orally.

なお、共焦点光学システムを採用した内視鏡が、通常観察光学系と共焦点観察光学系との両者を有しているものであれば、通常光下での観察により病変部を肉眼観察し、次いで疑問になった病変部について、共焦点内視鏡により組織内部(例えば、250μmまで)の蛍光染色断層像を観察することにより、病変部組織を切り取ることなく消化管の組織表面及び組織内部の診断が可能となる。すなわち、生体組織の細胞や核の形状を生きた状態で観察することができる。この結果、前癌状態、癌、潰瘍、潰瘍性大腸炎等の消化管の疾患の診断が安全、迅速、低侵襲で可能となり、かつ精度が飛躍的に向上する。   In addition, if an endoscope using a confocal optical system has both a normal observation optical system and a confocal observation optical system, the lesioned part is visually observed by observation under normal light. Then, by observing the fluorescence stained tomographic image of the inside of the tissue (for example, up to 250 μm) with a confocal endoscope, the surface of the gastrointestinal tract and the inside of the gastrointestinal tract without cutting the lesioned tissue. Can be diagnosed. That is, the shape of cells and nuclei of living tissue can be observed in a living state. As a result, diagnosis of gastrointestinal diseases such as precancerous conditions, cancer, ulcers, and ulcerative colitis can be performed safely, rapidly, and with minimal invasiveness, and the accuracy is greatly improved.

これらの内視鏡観察においては、本発明の組織染色剤組成物は、消化管内腔に直接撒布又は粘膜下投与してもよく、経口的に投与してもよい。   In these endoscopic observations, the tissue stain composition of the present invention may be applied directly or submucosally to the digestive tract lumen, or may be administered orally.

次に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例に何ら制限されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated still in detail, this invention is not restrict | limited to these Examples at all.

実施例1
各種の天然物色素について吸光スペクトル測定、蛍光励起スペクトル測定を行い、蛍光を発する物質を検証した。測定した色素は、和光純薬より購入した。
測定は、以下の手順により実施した。各色素を濃度1〜0.1mg/mLとなるように水に溶解した溶液を調製した。色素の吸収極大波長は、分光光度計(島津製作所製、BioSpec-1600)により波長200nm〜600nmまでの吸光度を連続的に測定し、吸収極大となる波長を決定した。各色素に対しては吸収極大波長の光を励起光として照射し、その励起光の光軸に対して垂直方向に検出される散乱光の波長を分光光度計(島津製作所製、RF-1500)により限定、蛍光極大波長とした。
表1に示すようにスピルリナ青色素(フィコシアニン)は蛍光(散乱光)波長の励起波長よりも長波長側へのシフト(ストークスシフト)が観察された。スピルリナ青色素以外の色素ではストークスシフトが観察されなかった。また、図1にスピルリナ青色素の吸収及び蛍光スペクトルを示す。
Example 1
Absorption spectrum measurement and fluorescence excitation spectrum measurement were performed on various natural product dyes, and substances that emit fluorescence were verified. The measured dye was purchased from Wako Pure Chemical.
The measurement was performed according to the following procedure. A solution in which each dye was dissolved in water to a concentration of 1 to 0.1 mg / mL was prepared. The absorption maximum wavelength of the dye was determined by continuously measuring the absorbance up to a wavelength of 200 nm to 600 nm with a spectrophotometer (manufactured by Shimadzu Corporation, BioSpec-1600) to determine the wavelength at which the absorption maximum was reached. Each dye is irradiated with light having an absorption maximum wavelength as excitation light, and the wavelength of scattered light detected in a direction perpendicular to the optical axis of the excitation light is measured by a spectrophotometer (RF-1500, manufactured by Shimadzu Corporation) Therefore, the maximum wavelength of fluorescence was set.
As shown in Table 1, the Spirulina blue dye (phycocyanin) was observed to shift the fluorescence (scattered light) wavelength to the longer wavelength side (Stokes shift) than the excitation wavelength. No Stokes shift was observed with dyes other than the Spirulina blue dye. FIG. 1 shows absorption and fluorescence spectra of Spirulina blue dye.

実施例2
スピルリナ青色素について吸光スペクトル及び蛍光励起スペクトル測定を行った。スピルリナ青色素(フィコシアニン、和光純薬製)を0.01mg/mLに調整し、分光光度計(島津製作所製、BioSpec−1600)により波長200nm〜750nmまでの吸光度を連続的に測定し、吸収極大となる波長を決定した。得られた吸収極大波長が621nmであったため、これを励起波長として照射し、その励起光の光軸に対して垂直方向に検出される散乱光の波長を分光蛍光光度計(島津製作所製、RF−1500)により測定、蛍光極大波長を得た。(図1)
Example 2
Absorption spectrum and fluorescence excitation spectrum were measured for Spirulina blue dye. Spirulina blue pigment (phycocyanin, manufactured by Wako Pure Chemical Industries, Ltd.) is adjusted to 0.01 mg / mL, and the absorbance at wavelengths from 200 nm to 750 nm is continuously measured with a spectrophotometer (manufactured by Shimadzu Corporation, BioSpec-1600). Was determined. Since the obtained absorption maximum wavelength was 621 nm, this was irradiated as an excitation wavelength, and the wavelength of the scattered light detected in the direction perpendicular to the optical axis of the excitation light was measured using a spectrofluorometer (manufactured by Shimadzu Corporation, RF -1500) to obtain a fluorescence maximum wavelength. (Figure 1)

実施例3
スピルリナ青色素(和光純薬製)を0.1Mリン酸ナトリウム緩衝液を用いて2.0mg/mLに希釈調整し、共焦点顕微鏡(ライカ社製、TCS SP2)を使用し、共焦点画像の観察を行った。ホルマリン固定されたマウスの大腸片のサンプルを染色剤に浸漬し、He−Neレーザーの633nmの励起波長を照射し、648〜748nmの波長範囲で蛍光画像を検出した。共焦点顕微鏡の観察条件は、ピンホール径1.00airy、20倍レンズを使用した。図2に共焦点顕微鏡画像を示す。
組織内部断層像の観察も良好に行うことができた。
Example 3
Spirulina blue dye (manufactured by Wako Pure Chemical Industries, Ltd.) was diluted to 2.0 mg / mL with 0.1 M sodium phosphate buffer, and a confocal microscope (manufactured by Leica, TCS SP2) was used. Observations were made. Formalin-fixed mouse large intestine piece samples were immersed in a staining agent, irradiated with an excitation wavelength of 633 nm of a He-Ne laser, and fluorescence images were detected in the wavelength range of 648 to 748 nm. The observation conditions of the confocal microscope were a pinhole diameter of 1.00 airy and a 20 × lens. FIG. 2 shows a confocal microscope image.
It was also possible to observe the internal tomographic images well.

比較例1
グレープスキンは、励起極大波長500nm、蛍光極大波長527nmでストークスシフトが27であり、蛍光を有する染色剤組成物である。
図3に示すのは共焦点顕微鏡により撮影した画像であり、内腔観察が出来るくらい十分に染色されてはいない。
同様にアシッドレッドの励起極大波長は492nm、蛍光極大波長は531nmでストークスシフトは39である。しかし図4に示すように染色性が良いとはいえないため、共焦点顕微鏡による蛍光観察が十分に行われなかった。
Comparative Example 1
The grape skin is a staining composition having fluorescence with an excitation maximum wavelength of 500 nm, a fluorescence maximum wavelength of 527 nm and a Stokes shift of 27.
FIG. 3 shows an image taken with a confocal microscope, which is not sufficiently stained for luminal observation.
Similarly, Acid Red has an excitation maximum wavelength of 492 nm, a fluorescence maximum wavelength of 531 nm, and a Stokes shift of 39. However, as shown in FIG. 4, it cannot be said that the dyeability is good, so that the fluorescence observation with a confocal microscope was not sufficiently performed.

以下にグレープスキン、アシッドレッド及びスピルリナ青色素の特性を比較した。   The characteristics of grape skin, acid red and spirulina blue pigment are compared below.

実施例4
スピルリナ青色素を0.1Mリン酸ナトリウム緩衝液(pH7)を用いて10mg/mLに調製した。
これをマウス(ddY、6週齢、オス)の心臓から1500μl灌流させて染色した。
このマウスの大腸を摘出し、大腸内腔側を共焦点顕微鏡(ライカ社製、TCS SP2)により観察した。共焦点顕微鏡の観察条件は、ピンホール径1.00airy、20倍レンズを使用した。図5に共焦点顕微鏡画像を示す。図5の観察位置は、表層より30μm付近である。
Example 4
Spirulina blue dye was prepared to 10 mg / mL using 0.1 M sodium phosphate buffer (pH 7).
This was stained by perfusion of 1500 μl from the heart of a mouse (ddY, 6 weeks old, male).
The large intestine of this mouse was removed, and the large intestine lumen side was observed with a confocal microscope (Leica, TCS SP2). The observation conditions of the confocal microscope were a pinhole diameter of 1.00 airy and a 20 × lens. FIG. 5 shows a confocal microscope image. The observation position in FIG. 5 is around 30 μm from the surface layer.

スピルリナ青色素の吸収及び蛍光スペクトルを示す図である。It is a figure which shows the absorption and fluorescence spectrum of Spirulina blue pigment | dye. スピルリナ青色素で蛍光染色したマウス大腸の観察結果を示す図である。It is a figure which shows the observation result of the mouse | mouth large intestine fluorescent-stained with Spirulina blue pigment | dye. グレープスキン色素で蛍光染色したマウス大腸の観察結果を示す図である。It is a figure which shows the observation result of the mouse | mouth large intestine fluorescence-stained with the grape skin pigment | dye. アシッドレッド色素で蛍光染色したマウス大腸の観察結果を示す図である。It is a figure which shows the observation result of the mouse | mouth large intestine fluorescently stained with the acid red pigment | dye. スピルリナ青色素で蛍光染色(心臓灌流)したマウス大腸の観察結果を示す図である。It is a figure which shows the observation result of the mouse | mouth large intestine which carried out the fluorescence dyeing (heart perfusion) with Spirulina blue pigment | dye.

Claims (4)

スピルリナ青色素を含有する内視鏡用組織蛍光染色剤組成物。   An endoscopic tissue fluorescent staining composition containing Spirulina blue pigment. 内視鏡が、共焦点内視鏡である請求項1記載の染色剤組成物。   The staining composition according to claim 1, wherein the endoscope is a confocal endoscope. 経口投与、消化管内直接投与又は粘膜下投与するものである請求項1又は2項記載の染色剤組成物。   The staining composition according to claim 1 or 2, which is administered orally, directly in the digestive tract, or submucosally. 消化管内腔表面及び/又は消化管内腔細胞内を蛍光染色するものである請求項1〜3のいずれか1項記載の染色剤組成物。   The staining composition according to any one of claims 1 to 3, which is used for fluorescent staining of the digestive tract lumen surface and / or the digestive tract lumen cells.
JP2006156924A 2006-06-06 2006-06-06 Endoscopic tissue fluorescent stain composition Expired - Fee Related JP4847795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156924A JP4847795B2 (en) 2006-06-06 2006-06-06 Endoscopic tissue fluorescent stain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156924A JP4847795B2 (en) 2006-06-06 2006-06-06 Endoscopic tissue fluorescent stain composition

Publications (2)

Publication Number Publication Date
JP2007326788A true JP2007326788A (en) 2007-12-20
JP4847795B2 JP4847795B2 (en) 2011-12-28

Family

ID=38927516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156924A Expired - Fee Related JP4847795B2 (en) 2006-06-06 2006-06-06 Endoscopic tissue fluorescent stain composition

Country Status (1)

Country Link
JP (1) JP4847795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107076724A (en) * 2013-03-29 2017-08-18 国立大学法人三重大学 Organism coloring agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313823A (en) * 1995-05-15 1996-11-29 Olympus Optical Co Ltd Endoscopic image processing device
JP2002165757A (en) * 2000-11-30 2002-06-11 Olympus Optical Co Ltd Diagnostic supporting system
JP2003299613A (en) * 2001-11-09 2003-10-21 Ethicon Endo Surgery Inc Self-propelled intraluminal device with working channel and method of use
JP2004181096A (en) * 2002-12-05 2004-07-02 Olympus Corp Method for processing image
JP2006507885A (en) * 2002-11-29 2006-03-09 ギブン イメージング リミテッド In vivo diagnosis method, apparatus and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313823A (en) * 1995-05-15 1996-11-29 Olympus Optical Co Ltd Endoscopic image processing device
JP2002165757A (en) * 2000-11-30 2002-06-11 Olympus Optical Co Ltd Diagnostic supporting system
JP2003299613A (en) * 2001-11-09 2003-10-21 Ethicon Endo Surgery Inc Self-propelled intraluminal device with working channel and method of use
JP2006507885A (en) * 2002-11-29 2006-03-09 ギブン イメージング リミテッド In vivo diagnosis method, apparatus and system
JP2004181096A (en) * 2002-12-05 2004-07-02 Olympus Corp Method for processing image

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107076724A (en) * 2013-03-29 2017-08-18 国立大学法人三重大学 Organism coloring agent
CN107076724B (en) * 2013-03-29 2020-03-03 国立大学法人三重大学 Biological stain

Also Published As

Publication number Publication date
JP4847795B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP6281913B2 (en) Vital stain
Rogart et al. Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo
Belykh et al. Scanning fiber endoscope improves detection of 5-aminolevulinic acid–induced protoporphyrin IX fluorescence at the boundary of infiltrative glioma
König Clinical in vivo multiphoton FLIM tomography
Martirosyan et al. Potential application of a handheld confocal endomicroscope imaging system using a variety of fluorophores in experimental gliomas and normal brain
JP6019500B2 (en) Method for detecting cancer cells using fluorescently labeled L-glucose derivative and imaging agent for cancer cells containing the derivative
CN109414151B (en) Cancer detection device, cancer detection method, and staining agent for cancer detection
US20060241499A1 (en) Multifunctional fluorescence diagnosis system
Fu et al. Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution
CN105939731B (en) Liquid composition in the form of an emulsion or microemulsion for rectal administration and its use in diagnostic endoscopic procedures
US20070077202A1 (en) Histostain composition for endoscope
JP2006340796A (en) Sentinel lymph node detection system
US20080045796A1 (en) Histofluorescent stain composition for endoscopy
JP4847795B2 (en) Endoscopic tissue fluorescent stain composition
Katz et al. Multiphoton microscopy: applications in Urology and Andrology
JP4953761B2 (en) Endoscopic tissue stain composition
US20080069776A1 (en) Histofluorescent stain for endoscopy
CN113358615B (en) Application of Melan and sodium fluorescein double staining method in living cell imaging
Vijayan et al. Diagnostic aids used in the early detection of oral cancers
Kuznetsov et al. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques
Jiang et al. Diagnostic application of multiphoton microscopy in epithelial tissues
WO2022252104A1 (en) Staining method for live-cell imaging
Shao et al. Near-infrared fluorescence imaging for colonic cancer detection
WO2022252103A1 (en) Use of methylene blue and fluorescein sodium double-staining in live cell imaging
Patel Developing SCAPE Microscopy for Real-Time, Volumetric Imaging at the Point-of-Care

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080502

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees