JP2007321911A - Cage for bearing - Google Patents

Cage for bearing Download PDF

Info

Publication number
JP2007321911A
JP2007321911A JP2006154298A JP2006154298A JP2007321911A JP 2007321911 A JP2007321911 A JP 2007321911A JP 2006154298 A JP2006154298 A JP 2006154298A JP 2006154298 A JP2006154298 A JP 2006154298A JP 2007321911 A JP2007321911 A JP 2007321911A
Authority
JP
Japan
Prior art keywords
bearing
annular
cage
pocket
rolling elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006154298A
Other languages
Japanese (ja)
Inventor
Daiki Umehara
大樹 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006154298A priority Critical patent/JP2007321911A/en
Publication of JP2007321911A publication Critical patent/JP2007321911A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cage for a bearing capable of reducing stress concentrations generated at four corners of a pocket without reducing strength. <P>SOLUTION: This cage for the bearing revolving along the inside of the bearing while holding a plurality of rolling elements rotatably is provided with at least one annular ring 2 or 4 continuous in the peripheral direction along the inside of the bearing, a plurality of pillars 6 extending from the annular rings along the inside of the bearing and arranged at a predetermined interval in the peripheral direction along the annular rings, and a plurality of pockets 8 partitioned by the annular rings and the plurality of pillars and holding the plurality of rolling elements one by one rotatably. A relief part 10 formed by recessing a part adjacent to the pillar in the annular ring by a predetermined depth is provided in each pocket. The relief part is constituted of one flat face 10s formed into a flat state by making the annular ring cross two circular arc-like faces R1, R2 continuous from both sides of the flat face toward the annular rings and the pillars at predetermined curvatures. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、強度を損なうこと無く応力集中を低減することが可能な軸受用保持器に関する。   The present invention relates to a bearing cage capable of reducing stress concentration without impairing strength.

従来、鉄道車両をはじめとする各種の駆動装置には、その回転機構を回転自在に支持する軸受が適用されており、当該軸受には、内外輪間に組み込まれた複数の転動体を回転自在に保持する複数のポケットを有する保持器が設けられている。かかる軸受としては、比較的小さな荷重を支持する際に適用する玉軸受と、比較的大きな荷重を支持する際に適用するころ軸受とがあるが、近年における高荷重下での高速回転に対応するために、ころ軸受が適用される場合が多くなっている。   Conventionally, various drive devices such as railway vehicles have been applied with bearings that rotatably support the rotation mechanism, and a plurality of rolling elements incorporated between the inner and outer rings can be freely rotated on the bearings. A retainer having a plurality of pockets to be held on is provided. As such a bearing, there are a ball bearing that is applied when supporting a relatively small load and a roller bearing that is applied when supporting a relatively large load, which corresponds to high-speed rotation under a high load in recent years. For this reason, roller bearings are often used.

この場合、ころ軸受の回転中において、複数の転動体と共に公転する保持器には、各転動体(ころ)からの荷重が常時作用することになるが、このとき、各ポケットの四隅には、過度の応力集中が生じる場合がある。そこで、従来では、各ポケットの四隅の曲率半径を大きく設定することにより、その応力集中を低減する方策が講じられている。   In this case, during the rotation of the roller bearing, a load from each rolling element (roller) always acts on the cage that revolves together with the plurality of rolling elements, but at this time, at the four corners of each pocket, Excessive stress concentration may occur. Therefore, conventionally, measures have been taken to reduce the stress concentration by setting the radius of curvature of the four corners of each pocket to be large.

具体的に説明すると、各ポケットの四隅は、転動体(ころ)の面取りとの干渉を考慮すると、その曲率半径を転動体(ころ)の面取り寸法以下に設定する必要がある。この場合、ポケットの四隅の曲率半径を大きく設定すると共に、かかる設定値以下となるように転動体(ころ)の面取り寸法も大きくすることで、ポケットの四隅への過度の応力集中を低減することができる。しかしながら、ころ軸受の負荷容量を低下させないようにするためには、ポケットの四隅の曲率半径を大きく設定するには一定の限界がある。   Specifically, the four corners of each pocket need to have a radius of curvature equal to or less than the chamfer dimension of the rolling element (roller) in consideration of interference with the chamfering of the rolling element (roller). In this case, excessive stress concentration at the four corners of the pocket can be reduced by setting the radius of curvature of the four corners of the pocket to a large value and also increasing the chamfer dimension of the rolling elements (rollers) to be below the set value. Can do. However, in order not to reduce the load capacity of the roller bearing, there is a certain limit in setting a large radius of curvature at the four corners of the pocket.

そこで、例えば特許文献1〜3には、各ポケットの四隅に逃げ部(ぬすみ部、隅R部とも言う)が形成された保持器が提案されており、かかる逃げ部は、ポケットの四隅を所定の曲率半径に沿って連続的に凹ませて(窪ませて)形成されている。これにより、転動体(ころ)の面取りに干渉すること無くポケットの四隅の曲率半径が大きく設定され、その結果、ポケットの四隅への応力集中の低減が図られている。   In view of this, for example, Patent Documents 1 to 3 propose a cage in which relief portions (also referred to as thin portions and corner R portions) are formed at the four corners of each pocket, and the relief portions have predetermined four corners of the pocket. Are continuously recessed along the radius of curvature. Thus, the radius of curvature of the four corners of the pocket is set large without interfering with the chamfering of the rolling elements (rollers), and as a result, the stress concentration at the four corners of the pocket is reduced.

ところで、特許文献1〜3において、各ポケットの四隅の逃げ部は、それぞれ単一の曲率半径に沿って連続して形成されているため、過度の応力集中を効率よく且つ確実に低減させるためには、各逃げ部の曲率半径を可能な限り大きく設定する必要がある。しかしながら、各逃げ部の曲率半径を大きく設定すると、その分だけ保持器の肉厚(例えば、各ポケットを構成する円環部や柱部の肉厚)が薄くなってしまうため、保持器全体としての強度を一定に維持することが困難になってしまう場合がある。
特開平11−51060号公報 特開平9−177793号公報 特開2002−242938号公報
By the way, in patent documents 1-3, since the relief part of the four corners of each pocket is formed continuously along a single curvature radius, respectively, in order to reduce excessive stress concentration efficiently and reliably Therefore, it is necessary to set the radius of curvature of each relief portion as large as possible. However, if the radius of curvature of each relief portion is set large, the thickness of the cage (e.g., the thickness of the annular portion or column portion constituting each pocket) will be reduced accordingly, so the cage as a whole It may be difficult to maintain a constant strength.
Japanese Patent Laid-Open No. 11-51060 JP-A-9-177793 JP 2002-242938 A

本発明は、このような問題を解決するためになされており、その目的は、強度を損なうこと無くポケットの四隅に生じる応力集中を低減することが可能な軸受用保持器を提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide a bearing cage capable of reducing the stress concentration generated at the four corners of the pocket without impairing the strength. .

このような目的を達成するために、本発明は、軸受内部において複数の転動体を回転自在に保持しながら、これら複数の転動体と共に軸受内部に沿って公転する軸受用保持器であって、軸受内部に沿って周方向に連続した少なくとも1つの円環部と、円環部から軸受内部に沿って延出し、当該円環部に沿って周方向に所定間隔で配列された複数の柱部と、円環部と複数の柱部とによって区画され、複数の転動体を1つずつ回転自在に保持する複数のポケットとを具備し、各ポケットには、円環部のうち柱部に隣接した部分を所定深さだけ窪ませて形成した逃げ部が設けられており、逃げ部は、円環部を横断して平坦状に形成された1つの平坦状面と、平坦状面の両側から円環部及び柱部に向けて所定の曲率で連続した2つの円弧状面とから構成されている。   In order to achieve such an object, the present invention is a bearing retainer that revolves along the inside of the bearing together with the plurality of rolling elements while rotatably holding the plurality of rolling elements inside the bearing, At least one annular portion that is continuous in the circumferential direction along the inside of the bearing, and a plurality of column portions that extend from the annular portion along the inside of the bearing and are arranged at predetermined intervals in the circumferential direction along the annular portion And a plurality of pockets that are partitioned by an annular portion and a plurality of column portions and that rotatably hold the plurality of rolling elements one by one, and each pocket is adjacent to the column portion of the annular portion. An escape portion is formed by recessing the above-mentioned part by a predetermined depth, and the escape portion is formed from one flat surface formed flat across the torus and from both sides of the flat surface. Consists of two arcuate surfaces with a predetermined curvature toward the torus and column. It is.

この場合、転動体としてころを適用した軸受において、逃げ部は、2つの円弧状面から1つの平坦状面に亘る全体の幅寸法をころの端面に形成された面取り寸法よりも大きく設定して構成されている。また、逃げ部は、その深さ寸法を円環部の幅寸法の10%〜30%の範囲に設定して構成されている。また、かかる構成の軸受用保持器は、鉄道車両に設けられた回転軸を支持する軸受に適用可能である。   In this case, in the bearing to which the roller is applied as the rolling element, the clearance portion is set so that the overall width dimension from the two arcuate surfaces to one flat surface is larger than the chamfer dimension formed on the end surface of the roller. It is configured. Further, the relief portion is configured by setting the depth dimension to a range of 10% to 30% of the width dimension of the annular portion. In addition, the bearing cage having such a configuration can be applied to a bearing that supports a rotating shaft provided in a railway vehicle.

本発明によれば、強度を損なうこと無くポケットの四隅に生じる応力集中を低減することが可能な軸受用保持器を実現することができる。   According to the present invention, it is possible to realize a bearing cage capable of reducing stress concentration generated at the four corners of the pocket without impairing strength.

以下、本発明の一実施の形態に係る軸受用保持器について、添付図面を参照して説明する。なお、軸受には、例えば鉄道車両や自動車、或いは、各種の産業用及び工業用の装置に設けられた回転軸を支持する軸受などがあるが、ここでは一例として、新幹線などの高速鉄道車両に設けられた回転軸(例えば、車軸)や、その主電動機の出力軸を支持する軸受を想定する。この場合、軸受としては、ラジアル軸受やスラスト軸受を適用することができるが、ここでは一例として、互いに相対回転可能にラジアル方向に対向配置された内輪及び外輪とを備えたラジアル軸受(図示しない)を想定する。   Hereinafter, a bearing cage according to an embodiment of the present invention will be described with reference to the accompanying drawings. The bearing includes, for example, a railcar and an automobile, or a bearing that supports a rotating shaft provided in various industrial and industrial devices. Here, as an example, a high-speed railcar such as a Shinkansen is used. Assume a rotating shaft (for example, an axle) provided and a bearing that supports the output shaft of the main motor. In this case, a radial bearing or a thrust bearing can be applied as the bearing, but here, as an example, a radial bearing (not shown) including an inner ring and an outer ring that are arranged to face each other in a radial direction so as to be relatively rotatable with each other. Is assumed.

本実施の形態に係る軸受用保持器は、上述した軸受内部において、内外輪間に組み込まれた複数の転動体を回転自在に保持しながら、これら複数の転動体と共に軸受内部に沿って公転するように構成されている。この場合、転動体としては、玉やころを適用することが可能であるが、ここでは一例として、ころ(図示しない)を想定する。また、ころとしては、例えば円筒ころ、針状ころ、円すいころ、球面ころなどを適用することができる。   The bearing cage according to the present embodiment revolves along the inside of the bearing together with the plurality of rolling elements while rotatably holding the plurality of rolling elements incorporated between the inner and outer rings inside the bearing described above. It is configured as follows. In this case, balls or rollers can be applied as the rolling elements, but here, rollers (not shown) are assumed as an example. Moreover, as a roller, a cylindrical roller, a needle roller, a tapered roller, a spherical roller etc. are applicable, for example.

特に図示しないが、ころは、周方向に連続した転動面(内外輪に沿って摺接しながら転がる周面)と、その両側の円形の側面とで構成され、転動面と側面との間には、周方向に沿って連続した環状の端面が形成されており、ここに所定の面取りが施されている。この場合、面取りは、内外輪間を転動する際に、例えば内外輪の軌道面やころの磨耗や摩損などを低減させるために施されており、その面取り寸法は、例えば内外輪の軌道面やころの形状や材質などに応じて任意に設定されるため、ここでは特に数値限定はしない。   Although not particularly shown, the roller is composed of a rolling surface that is continuous in the circumferential direction (a circumferential surface that rolls while sliding along the inner and outer rings) and circular side surfaces on both sides of the rolling surface. Is formed with an annular end face that is continuous in the circumferential direction, and a predetermined chamfer is provided thereon. In this case, chamfering is performed, for example, in order to reduce wear and wear of the inner and outer ring raceway surfaces and rollers when rolling between the inner and outer races. Since it is arbitrarily set according to the shape and material of the roller, the numerical value is not particularly limited here.

図1(a)には、本実施の形態に係る軸受用保持器の全体構成が例示されており、当該軸受用保持器は、軸受内部に沿って周方向に連続した少なくとも1つの円環部2,4と、円環部2,4から軸受内部に沿って延出し、当該円環部2,4に沿って周方向に所定間隔で配列された複数の柱部6と、円環部2,4と複数の柱部6とによって区画され、複数の転動体(ころ:図示しない)を1つずつ回転自在に保持する複数のポケット8とを備えている。同図では一例として、互いに径の異なる2つの円環部2,4が互いに同中心に所定の間隔を空けて対向配置されており、複数の柱部6は、これら一対の円環部2,4の間に亘って延出し、その両端部6eが各円環部2,4に接合されている。この場合、各ポケット8は、対向する円環部2,4の内周面2s,4sと、その両側の柱部6の内壁面6sとによって区画されている。   FIG. 1A illustrates the overall configuration of the bearing cage according to the present embodiment, and the bearing cage includes at least one annular portion that is continuous in the circumferential direction along the bearing interior. 2, 4 and a plurality of column portions 6 extending from the annular portions 2 and 4 along the inside of the bearing and arranged in the circumferential direction along the annular portions 2 and 4 at predetermined intervals, and the annular portion 2 , 4 and a plurality of pillars 6, and a plurality of pockets 8 that rotatably hold a plurality of rolling elements (rollers: not shown) one by one. In the figure, as an example, two annular parts 2 and 4 having different diameters are arranged opposite to each other at a predetermined interval in the same center, and a plurality of column parts 6 are composed of a pair of annular parts 2 and 2. 4 extends at both ends, and both end portions 6e thereof are joined to the annular portions 2 and 4, respectively. In this case, each pocket 8 is partitioned by the inner peripheral surfaces 2s, 4s of the annular portions 2, 4 facing each other and the inner wall surfaces 6s of the column portions 6 on both sides thereof.

なお、一対の円環部2,4と複数の柱部6とは、保持器成形時に一体成形しても良いし、或いは、複数の柱部6を別体で成形し、その両端部6eを一対の円環部2,4に後付けしても良い。この場合、後付けする方法としては、各柱部6の両端部6eを一対の円環部2,4に対して例えば接着、溶着、嵌合、ネジ止めするなどの各種の方法を適用することができるため、ここでは特に限定しない。また、保持器(円環部2,4、柱部6)の材質としては、樹脂を適用しても良いし、或いは、例えば鋼板や黄銅などの他の金属材料を適用しても良い。更に、保持器の種類としては、例えばもみぬき形保持器、波形保持器、冠形保持器、かご形保持器、合せ保持器などを適用することができる。   The pair of ring portions 2, 4 and the plurality of column portions 6 may be integrally formed at the time of forming the cage, or the plurality of column portions 6 may be formed separately, and both end portions 6e thereof may be formed. It may be retrofitted to the pair of annular portions 2 and 4. In this case, as a method of retrofitting, various methods such as bonding, welding, fitting, and screwing the both end portions 6e of each column portion 6 to the pair of annular portions 2, 4 may be applied. Since it can do, it does not specifically limit here. Further, as the material of the cage (ring portions 2, 4 and column portion 6), resin may be applied, or other metal material such as steel plate or brass may be applied. Further, as the type of cage, for example, a rice brace cage, a corrugated cage, a crown cage, a cage cage, a mating cage, etc. can be applied.

本実施の形態では、このような保持器において、各ポケット8には、円環部2,4のうち柱部6の両端部6eに隣接した部分を所定深さだけ窪ませて形成した逃げ部10が設けられている。この場合、逃げ部10は、各ポケット8の四隅に設けられており、軸受の回転中心軸(図示しない)に沿った方向に窪ませて(凹ませて)形成されている。別の言い方をすると、各逃げ部10は、軸受回転方向に沿って窪ませて(凹ませて)形成されてはいない。   In the present embodiment, in such a cage, each pocket 8 has a relief portion formed by recessing portions adjacent to both end portions 6e of the column portion 6 in the annular portions 2 and 4 by a predetermined depth. 10 is provided. In this case, the relief portions 10 are provided at the four corners of each pocket 8 and are formed to be recessed (recessed) in the direction along the rotation center axis (not shown) of the bearing. In other words, each relief portion 10 is not formed to be recessed (recessed) along the bearing rotation direction.

具体的に説明すると、図1(b)〜(d)に示すように、逃げ部10は、円環部2,4を横断して平坦状に形成された1つの平坦状面10sと、平坦状面10sの両側から円環部2,4及び柱部6に向けて所定の曲率(例えば、曲率半径)で連続した2つの円弧状面R1,R2とから構成されている。ここで、平坦状面10sは、軸受の回転中心軸を直交する方向に沿って平行に円環部2,4を横断して形成されており、2つの円弧状面R1,R2のうち、一方の円弧状面R1は、平坦状面10sの一方側から円環部2,4の内周面2s,4sに連続し、且つ、他方の円弧状面R2は、平坦状面10sの他方側から柱部6の内壁面6sに連続している。   More specifically, as shown in FIGS. 1B to 1D, the escape portion 10 has a flat surface 10s formed flat across the annular portions 2 and 4 and a flat surface. It is composed of two arcuate surfaces R1 and R2 that are continuous with a predetermined curvature (for example, a radius of curvature) from both sides of the surface 10s toward the annular portions 2 and 4 and the column portion 6. Here, the flat surface 10s is formed so as to cross the annular portions 2 and 4 in parallel along the direction orthogonal to the rotation center axis of the bearing, and one of the two arc-shaped surfaces R1 and R2. The arcuate surface R1 is continuous from one side of the flat surface 10s to the inner peripheral surfaces 2s and 4s of the annular portions 2 and 4, and the other arcuate surface R2 is from the other side of the flat surface 10s. It is continuous with the inner wall surface 6 s of the column portion 6.

このような逃げ部10において、2つの円弧状面R1,R2から1つの平坦状面10sに亘る全体の幅寸法を2nとすると、当該幅寸法2nは、ころの端面に形成された面取り寸法(図示しない)よりも大きく設定されている。また、逃げ部10は、その深さ寸法kを円環部2,4の幅寸法Hの10%〜30%の範囲に設定して構成されている。ここで、逃げ部10の深さ寸法kが円弧状面R1,R2の曲率半径ρと近似(ρ=k)しているとして、曲率半径ρと幅寸法Hとの比(ρ/H)で表わすと、当該逃げ部10は、0.1≦ρ/H≦0.3なる関係を満足するように設定されている。   In such a relief portion 10, assuming that the overall width dimension from the two arcuate surfaces R1, R2 to one flat surface 10s is 2n, the width dimension 2n is a chamfer dimension formed on the end face of the roller ( It is set larger than (not shown). Further, the relief portion 10 is configured by setting the depth dimension k within a range of 10% to 30% of the width dimension H of the annular portions 2 and 4. Here, assuming that the depth dimension k of the relief portion 10 approximates the curvature radius ρ of the arcuate surfaces R1 and R2 (ρ = k), the ratio (ρ / H) of the curvature radius ρ and the width dimension H In terms of representation, the clearance 10 is set so as to satisfy the relationship of 0.1 ≦ ρ / H ≦ 0.3.

なお、図面上において、各円弧状面R1,R2は、連続した一定(単一)の曲率半径ρで形成されているが、この場合、曲率半径ρの大きさは、例えば逃げ部10の深さ寸法kや幅寸法2nに応じて任意に設定されるため、ここでは特に数値限定はしない。また、逃げ部10の深さ寸法kや幅寸法2nは、例えば図示しない転動体(ころ)の大きさや形状、当該転動体(ころ)を保持するポケット8の大きさや形状に応じて任意に設定されるため、ここでは特に数値限定はしない。   In the drawing, each of the arcuate surfaces R1 and R2 is formed with a continuous constant (single) radius of curvature ρ. In this case, the magnitude of the radius of curvature ρ is, for example, the depth of the relief portion 10. Since it is arbitrarily set according to the length dimension k and the width dimension 2n, the numerical value is not particularly limited here. Further, the depth dimension k and the width dimension 2n of the relief portion 10 are arbitrarily set according to, for example, the size and shape of a rolling element (roller) (not shown) and the size and shape of the pocket 8 that holds the rolling element (roller). Therefore, the numerical values are not particularly limited here.

以上、本実施の形態の軸受用保持器によれば、1つの平坦状面10sの両側から円環部2,4及び柱部6に向けて所定の曲率半径ρで連続した2つの円弧状面で構成された逃げ部10をポケット8の四隅に設けたことにより、曲率半径の増大が制約された条件下においてもポケット8の四隅への過度の応力集中を低減することができる。これにより、従来に比べて保持器の強度を一定に維持することが可能となり、その結果、当該保持器の延命化や信頼性の向上を図ることができる。   As described above, according to the bearing cage of the present embodiment, two arc-shaped surfaces that are continuous with a predetermined radius of curvature ρ from both sides of one flat surface 10 s toward the annular portions 2, 4 and the column portion 6. By providing the relief portions 10 configured as described above at the four corners of the pocket 8, excessive stress concentration at the four corners of the pocket 8 can be reduced even under a condition in which an increase in the radius of curvature is restricted. As a result, the strength of the cage can be maintained constant as compared with the conventional case, and as a result, the life of the cage can be extended and the reliability can be improved.

また、本実施の形態によれば、逃げ部10の幅寸法2nをころの端面に形成された面取り寸法よりも大きく設定したことにより、軸受に封入されている潤滑剤(グリース、油)の掻き取り防止や当該保持器のポケット8の偏磨耗の防止を図ることができる。即ち、各ポケット8の四隅において、潤滑剤をころの端面に付着・保持させることが可能となり、これにより、ころの端面と内外輪のつば面(軌道面の両側に突設されたころ案内面)との接触部位に常時潤滑剤を供給し続けることができる。この結果、ころ及び内外輪の磨耗や摩損を低減させることが可能となり、軸受寿命の延命化を図ることができる。   Further, according to the present embodiment, the width dimension 2n of the relief portion 10 is set larger than the chamfer dimension formed on the end face of the roller, so that the lubricant (grease, oil) sealed in the bearing is scraped. It is possible to prevent removal and uneven wear of the pocket 8 of the cage. That is, at the four corners of each pocket 8, it becomes possible to adhere and hold the lubricant to the end face of the roller. The lubricant can be continuously supplied to the contact area with the). As a result, it becomes possible to reduce wear and wear of the rollers and the inner and outer rings, and to extend the life of the bearing.

更に、本実施の形態によれば、逃げ部10の深さ寸法kを円環部2,4の幅寸法Hの10%〜30%の範囲に設定したことにより、保持器全体としての強度を一定に維持することが可能となり、その結果、軸受の回転性能を長期に亘って一定に維持することができる。特に新幹線などの高速鉄道車両に設けられた回転軸(例えば、車軸)や、その主電動機の出力軸を支持する軸受には、高速回転下において高負荷が作用するため、それに対応するように保持器の強度も高いものが要求されるが、本実施の形態の保持器は、これに充分に対応することができる。   Furthermore, according to the present embodiment, the depth k of the relief portion 10 is set in the range of 10% to 30% of the width H of the annular portions 2 and 4, thereby increasing the strength of the entire cage. It becomes possible to keep constant, and as a result, the rotational performance of the bearing can be kept constant over a long period of time. In particular, the bearings that support the rotating shafts (for example, axles) provided on high-speed railway vehicles such as the Shinkansen and the output shafts of the main motors are subjected to high loads under high-speed rotation. Although a container having a high strength is required, the cage of the present embodiment can sufficiently cope with this.

ここで、上述したような本実施の形態の軸受用保持器の効果について、応力の発生モデルを用いて実証する。
図2(a)には、ポケット8(図1)に逃げ部10の無い保持器モデルが示されており、その円環部2,4は、厚さ寸法T=8、幅寸法H=10の割合に設定され、その柱部6は、長さ寸法E=15、円環部中央までの柱長L=20の割合に設定されている。そして、柱部6に荷重F=50(例えば、50ニュートン)を作用させて保持器モデルにモーメントMを発生させる。このとき、柱部6には均等な分布荷重Wが作用しているものとする。
Here, the effect of the bearing cage of the present embodiment as described above will be demonstrated using a stress generation model.
FIG. 2 (a) shows a cage model in which the pocket 8 (FIG. 1) does not have a relief portion 10, and the annular portions 2, 4 have a thickness dimension T = 8 and a width dimension H = 10. The column portion 6 is set to have a length dimension E = 15 and a column length L = 20 to the center of the annular portion. Then, a load F = 50 (for example, 50 Newton) is applied to the column portion 6 to generate a moment M in the cage model. At this time, it is assumed that a uniform distributed load W acts on the column portion 6.

かかる条件下における材料力学的な関係から、柱部6に生じる応力σ(基準応力)は、下記の(2)(3)式より(1)式として算出される。
σ=M/Z (Z:断面係数) … (1)
M=W・L/2 … (2)
Z=T・H/6 … (3)
From the material mechanical relationship under such conditions, the stress σ 0 (reference stress) generated in the column portion 6 is calculated as the following equation (1) from the following equations (2) and (3).
σ 0 = M / Z (Z: section modulus) (1)
M = W · L 2/2 ... (2)
Z = T · H 2/6 ... (3)

図2(b)には、ポケット8(図1)に既存の逃げ部10aを有する保持器モデルが示されており、逃げ部10aは、柱部6の端部6eに隣接した部分において、単一の曲率半径ρのみで形成された円弧形状を成している。この場合、円環部2,4に生じる曲げ応力を材料力学的な関係から求めると、応力集中を考慮した場合の各ポケット8の四隅で発生する引張応力σmaxは、(4)式として算出される。
σmax=ασ (α:応力集中係数) … (4)
FIG. 2 (b) shows a cage model having an existing relief portion 10a in the pocket 8 (FIG. 1), and the relief portion 10a is formed at a portion adjacent to the end portion 6e of the column portion 6 at a single position. It has an arc shape formed with only one curvature radius ρ. In this case, when the bending stress generated in the annular portions 2 and 4 is obtained from the material mechanical relationship, the tensile stress σmax generated at the four corners of each pocket 8 in consideration of the stress concentration is calculated as Equation (4). The
σmax = ασ 0 (α: Stress concentration factor) (4)

ここで、図2(b)の保持器モデルについて、有限要素法に基づく構造解析(FEM解析)を行って、その解析結果から得られたσmaxと材料力学的に求めた基準応力σとから応力集中係数αは、(5)式として算出される。
α=σmax/σ … (5)
Here, structural analysis (FEM analysis) based on the finite element method is performed on the cage model of FIG. 2B, and from σmax obtained from the analysis result and the reference stress σ 0 obtained from material mechanics. The stress concentration coefficient α is calculated as equation (5).
α = σmax / σ 0 (5)

図3(a)には、図2(b)の保持器モデルにおける応力集中係数αの算出結果が示されており、逃げ部10aの曲率半径をρ、深さ寸法をk、円環部2,4の幅寸法をHとし、ρ=kとすると、応力集中係数αは、ρ/H=0.1〜0.3の範囲で極値(α=3.65〜3.76、αmin=3.39)をとることがわかる。   FIG. 3 (a) shows the calculation result of the stress concentration coefficient α in the cage model of FIG. 2 (b). The radius of curvature of the relief portion 10a is ρ, the depth dimension is k, and the annular portion 2 is shown. , 4 is H and ρ = k, the stress concentration coefficient α is an extreme value (α = 3.65 to 3.76, αmin = in the range of ρ / H = 0.1 to 0.3). It can be seen that 3.39) is taken.

図2(c)には、ポケット8(図1)に既存の逃げ部10を有する本実施の形態の保持器モデルが示されており、逃げ部10の幅寸法を2n、ρ/H=0.2とし、これに基づいて応力集中係数αを算出すると、図3(b)に示すような算出結果が得られる。かかる算出結果によれば、n/ρ=1.0は、図3(a)の応力集中係数αの最小値(αmin=3.39)を示した諸寸法(単一の曲率半径ρ)であり、当該n/ρが1.0を越えると、応力集中係数αが減少し、応力の集中を低減させる効果を発揮することがわかる。この場合、n/ρ=2.0以降は略一定の極値をとるため、n/ρが2.0以上となるように逃げ部10を設定することが好ましい。   FIG. 2C shows a cage model of the present embodiment having an existing relief portion 10 in the pocket 8 (FIG. 1), where the width dimension of the relief portion 10 is 2n, ρ / H = 0. When the stress concentration coefficient α is calculated based on this, a calculation result as shown in FIG. 3B is obtained. According to this calculation result, n / ρ = 1.0 is the dimensions (single curvature radius ρ) indicating the minimum value (αmin = 3.39) of the stress concentration coefficient α in FIG. It can be seen that when n / ρ exceeds 1.0, the stress concentration coefficient α decreases, and the effect of reducing stress concentration is exhibited. In this case, since n / ρ = 2.0 or later takes a substantially constant extreme value, it is preferable to set the relief portion 10 so that n / ρ is 2.0 or more.

(a)は、本発明の一実施の形態に係る軸受用保持器の全体の構成例を示す斜視図、(b)は、同図(a)の保持器の一部を外側から見た拡大図、(c)は、同図(a)の保持器の一部を内側から見た拡大図、(d)は、逃げ部の構成を拡大して示す図。(a) is a perspective view showing an overall configuration example of a bearing cage according to an embodiment of the present invention, (b) is an enlarged view of a part of the cage of FIG. FIG. 3C is an enlarged view of a part of the cage of FIG. 1A as viewed from the inside, and FIG. 応力の発生モデルを示す図であって、(a)は、ポケットに逃げ部の無い保持器モデル、(b)は、既存の逃げ部を有する保持器モデル、(c)は、本実施の形態の保持器モデル。It is a figure which shows the generation | occurrence | production model of stress, Comprising: (a) is a cage model without a relief part in a pocket, (b) is a cage model which has an existing relief part, (c) is this embodiment. Cage model. 応力集中計数のFEM解析結果を示す図であって、(a)は、既存の保持器における解析結果、(b)は、本実施の形態の保持器の解析結果。It is a figure which shows the FEM analysis result of stress concentration count, Comprising: (a) is the analysis result in the existing cage, (b) is the analysis result of the cage of this Embodiment.

符号の説明Explanation of symbols

2,4 円環部
6 柱部
8 ポケット
10 逃げ部
10s 平坦状面
R1,R2 円弧状面
2,4 Ring part 6 Column part 8 Pocket 10 Escape part 10s Flat surface
R1, R2 Arc surface

Claims (4)

軸受内部において複数の転動体を回転自在に保持しながら、これら複数の転動体と共に軸受内部に沿って公転する軸受用保持器であって、
軸受内部に沿って周方向に連続した少なくとも1つの円環部と、
円環部から軸受内部に沿って延出し、当該円環部に沿って周方向に所定間隔で配列された複数の柱部と、
円環部と複数の柱部とによって区画され、複数の転動体を1つずつ回転自在に保持する複数のポケットとを具備し、
各ポケットには、円環部のうち柱部に隣接した部分を所定深さだけ窪ませて形成した逃げ部が設けられており、
逃げ部は、円環部を横断して平坦状に形成された1つの平坦状面と、平坦状面の両側から円環部及び柱部に向けて所定の曲率で連続した2つの円弧状面とから構成されていることを特徴とする軸受用保持器。
A bearing retainer that revolves along the inside of the bearing together with the plurality of rolling elements while holding the plurality of rolling elements within the bearing rotatably,
At least one annular portion that is circumferentially continuous along the bearing interior;
A plurality of pillars extending from the annular part along the inside of the bearing, and arranged at predetermined intervals in the circumferential direction along the annular part;
A plurality of pockets that are partitioned by an annular portion and a plurality of pillars, and that hold a plurality of rolling elements one by one in a freely rotatable manner;
Each pocket is provided with a relief portion formed by recessing a portion of the annular portion adjacent to the pillar portion by a predetermined depth,
The escape portion includes one flat surface formed flat across the annular portion, and two arc-shaped surfaces continuous at a predetermined curvature from both sides of the flat surface toward the annular portion and the column portion. A bearing retainer characterized by comprising:
転動体としてころを適用した軸受において、逃げ部は、2つの円弧状面から1つの平坦状面に亘る全体の幅寸法をころの端面に形成された面取り寸法よりも大きく設定して構成されていることを特徴とする請求項1に記載の軸受用保持器。   In a bearing to which a roller is applied as a rolling element, the relief portion is configured by setting the overall width dimension from two arcuate surfaces to one flat surface larger than the chamfer dimension formed on the end surface of the roller. The bearing retainer according to claim 1, wherein the bearing retainer is provided. 逃げ部は、その深さ寸法を円環部の幅寸法の10%〜30%の範囲に設定して構成されていることを特徴とする請求項1又は2に記載の軸受用保持器。   The bearing retainer according to claim 1 or 2, wherein the escape portion is configured with a depth dimension set in a range of 10% to 30% of a width dimension of the annular portion. 鉄道車両に設けられた回転軸を支持する軸受に適用可能であることを特徴とする請求項1〜3のいずれかに記載の軸受用保持器。
The bearing retainer according to any one of claims 1 to 3, wherein the bearing retainer is applicable to a bearing that supports a rotating shaft provided in a railway vehicle.
JP2006154298A 2006-06-02 2006-06-02 Cage for bearing Pending JP2007321911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006154298A JP2007321911A (en) 2006-06-02 2006-06-02 Cage for bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006154298A JP2007321911A (en) 2006-06-02 2006-06-02 Cage for bearing

Publications (1)

Publication Number Publication Date
JP2007321911A true JP2007321911A (en) 2007-12-13

Family

ID=38854905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006154298A Pending JP2007321911A (en) 2006-06-02 2006-06-02 Cage for bearing

Country Status (1)

Country Link
JP (1) JP2007321911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292857B1 (en) * 2008-07-08 2013-08-07 닛본 세이고 가부시끼가이샤 Resin retainer for tapered roller bearing, and tapered roller bearing
JP2015059647A (en) * 2013-09-20 2015-03-30 Ntn株式会社 Snap cage and ball bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292857B1 (en) * 2008-07-08 2013-08-07 닛본 세이고 가부시끼가이샤 Resin retainer for tapered roller bearing, and tapered roller bearing
US9039288B2 (en) 2008-07-08 2015-05-26 Nsk Ltd. Tapered roller bearing resin cage and tapered roller bearing
JP2015059647A (en) * 2013-09-20 2015-03-30 Ntn株式会社 Snap cage and ball bearing

Similar Documents

Publication Publication Date Title
WO2011062269A1 (en) Rotation support device for pinion shaft
JP2000170775A (en) Conical roller bearing and gear shaft support device for vehicle
JP2008298105A (en) Bearing cage
JP2008185062A (en) Load supporting device
JP2008106869A (en) Ball bearing
EP1878929A1 (en) Rolling bearing
JP2008002534A (en) Retainer for bearings
JP2007303608A (en) Double-row roller bearing with cage
JP2008180246A (en) Tapered roller bearing
JP2008232295A (en) Tapered roller bearing
JP2007321940A (en) Cage for bearing, rolling bearing, and bearing assembling method
JP2007321911A (en) Cage for bearing
JP2011094716A (en) Thrust roller bearing
JP6472671B2 (en) Tapered roller bearing
JP2007321939A (en) Bearing assembling method, rolling bearing, and cage for bearing
JP2003314542A (en) Tapered roller bearing
JP5862162B2 (en) Tandem angular contact ball bearings
JP2011106649A (en) Tandem angular contact ball bearing
WO2017208908A1 (en) Roller bearing
JP2007333084A (en) Cage for bearing
JP4206715B2 (en) Tapered roller bearing
JP2007321941A (en) Cage for bearing
JP6236754B2 (en) Tandem double-row angular contact ball bearing, differential device, and automobile
JP2006044375A (en) Electric power steering device
JP2005265094A (en) Double row obliquely contacting ball bearing and pinion shaft support bearing device