JP2007321860A - Low-friction sliding member - Google Patents

Low-friction sliding member Download PDF

Info

Publication number
JP2007321860A
JP2007321860A JP2006152381A JP2006152381A JP2007321860A JP 2007321860 A JP2007321860 A JP 2007321860A JP 2006152381 A JP2006152381 A JP 2006152381A JP 2006152381 A JP2006152381 A JP 2006152381A JP 2007321860 A JP2007321860 A JP 2007321860A
Authority
JP
Japan
Prior art keywords
fine
sliding member
sliding
recess
fine recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006152381A
Other languages
Japanese (ja)
Inventor
Yosuke Hizuka
洋輔 肥塚
Toshikazu Nanbu
俊和 南部
Yoshiteru Yasuda
芳輝 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006152381A priority Critical patent/JP2007321860A/en
Publication of JP2007321860A publication Critical patent/JP2007321860A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide low-friction sliding members such as a piston and a cylinder for an internal combustion engine, which relatively slide under the existence of lubricating oil while less producing friction and wear between the sliding faces. <P>SOLUTION: The low friction sliding members for the internal combustion engine, which relatively slide under the existence of lubricating oil, have a number of finely recessed portions formed in the sliding faces on at least one side. The finely recessed portions consist of a number of first finely recessed portions, and second finely recessed portions formed therebetween in the sliding faces with their widths and depths smaller than those of the first finely recessed portions in the sliding direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、潤滑油の存在下で相対的に摺動する低摩擦摺動部材に関する。   The present invention relates to a low friction sliding member that slides relatively in the presence of lubricating oil.

例えば、ピストンおよびシリンダは、一般的に金属でできているため、高速で摺動することによる摺動面の摩耗や焼付きが問題となる。このような摩耗などを防止するには、摺動面相互間に粘性流体を介在させる方法があるが、摩擦などの低減は、十分でない。   For example, since pistons and cylinders are generally made of metal, there is a problem of wear and seizure of the sliding surface due to sliding at high speed. In order to prevent such wear and the like, there is a method of interposing a viscous fluid between the sliding surfaces, but reduction of friction or the like is not sufficient.

更に摩擦などを低減するために、従来から、摺動面に凹凸面などを形成する方法が行われている。例えば、下記特許文献1では、潤滑油を介して互いに摺動する摺動部材において、潤滑油の油膜厚さを保持するよう、摺動部材の摺動面間の隙間に対する潤滑油の流入量と流出量がバランスするときの摺動面間の最接近距離を、摺動面に形成する凹凸部の最大高さよりも大きくする手段が開示されている。これにより、潤滑油の油膜厚さが確保され、摩擦が低減する。   In order to further reduce friction and the like, conventionally, a method of forming an uneven surface on a sliding surface has been performed. For example, in the following Patent Document 1, in the sliding members that slide with each other through the lubricating oil, the inflow amount of the lubricating oil with respect to the gap between the sliding surfaces of the sliding member to maintain the oil film thickness of the lubricating oil Means is disclosed in which the closest distance between the sliding surfaces when the amount of outflow is balanced is made larger than the maximum height of the concavo-convex portion formed on the sliding surface. Thereby, the oil film thickness of lubricating oil is ensured and friction reduces.

しかし、上記のような従来の摺動部材においても、摩擦の低減を実現しうるものの、更なる摩擦の低減が要望されている。
特開2002−213612号公報(要約、図1参照)
However, even in the conventional sliding member as described above, although it is possible to reduce friction, further reduction of friction is desired.
Japanese Patent Laid-Open No. 2002-213612 (Summary, see FIG. 1)

本発明は、潤滑油の存在下で相対的に摺動する内燃機関用の低摩擦摺動部材における、摺動面間に生じる摩擦及び摩耗を低減し得る低摩擦摺動部材を提供することを目的とする。   The present invention provides a low friction sliding member that can reduce friction and wear generated between sliding surfaces in a low friction sliding member for an internal combustion engine that slides relatively in the presence of lubricating oil. Objective.

本発明は、潤滑油の存在下で相対的に摺動する摺動部材の少なくとも一方の摺動部材の摺動面に多数の微細凹部を形成した低摩擦摺動部材であって、前記微細凹部は、多数の第1微細凹部間に、摺動方向の幅及び深さが前記第1微細凹部より小さな値の第2微細凹部を形成したことを特徴とする低摩擦摺動部材である。   The present invention is a low friction sliding member in which a plurality of fine concave portions are formed on a sliding surface of at least one sliding member of a sliding member that slides relatively in the presence of lubricating oil, the fine concave portion Is a low-friction sliding member characterized in that a second fine recess having a smaller width and depth in the sliding direction than the first fine recess is formed between a number of first fine recesses.

本発明の低摩擦摺動部材によれば、潤滑油の存在下で相対的に摺動する摺動部材の摺動面に多数の第1微細凹部を形成し、この第1微細凹部間に第2の微細凹部を形成したので、摺動面上での保油性が向上し、摺動面間に生じる摩擦を低減することができる。また、第2の微細凹部の摺動方向の幅及び深さを第1微細凹部より小さな値とすることにより負荷容量の低下による直接接触を発生させることなく、摩擦を低減することが可能となる。なお、本明細書においては、「微細凹部」とは、ミクロンオーダーの極めて小さな凹部をいう。   According to the low friction sliding member of the present invention, a large number of first fine recesses are formed on the sliding surface of the sliding member that slides relatively in the presence of lubricating oil, and the first fine recesses are formed between the first fine recesses. Since the two minute recesses are formed, the oil retaining property on the sliding surface is improved, and the friction generated between the sliding surfaces can be reduced. Further, by making the width and depth of the second fine recess in the sliding direction smaller than those of the first fine recess, it becomes possible to reduce friction without causing direct contact due to a decrease in load capacity. . In the present specification, the “fine concave portion” means an extremely small concave portion on the order of microns.

以下、本発明に係る低摩擦摺動面材について、詳細に説明する。   Hereinafter, the low friction sliding face material according to the present invention will be described in detail.

図1は本発明の実施形態に係る低摩擦摺動部材が使用されるエンジンの要部を示す概略断面図、図2は同低摩擦摺動部材の要部を示す概略斜視図、図3は同低摩擦摺動部材の凹部を示す平面図、図4は図3の4−4線に沿う端面図である。   1 is a schematic cross-sectional view showing a main part of an engine in which a low friction sliding member according to an embodiment of the present invention is used, FIG. 2 is a schematic perspective view showing the main part of the low friction sliding member, and FIG. FIG. 4 is a plan view showing a concave portion of the low friction sliding member, and FIG. 4 is an end view taken along line 4-4 of FIG.

本実施形態に係る低摩擦摺動部材は、例えば、図1に示すようなエンジンのピストン1とシリンダ2、クランクシャフト3とメタル軸受4などのように、潤滑油の存在下で摺動する部分の摩擦を大幅に低減するために使用される。   The low-friction sliding member according to the present embodiment is a portion that slides in the presence of lubricating oil, such as an engine piston 1 and cylinder 2, a crankshaft 3 and a metal bearing 4 as shown in FIG. Used to greatly reduce friction.

潤滑油の存在下で、相互に接して摺動する一対の摺動部材においては、一方の摺動部材に形成された摺動方向に平行な方向の凸部の長さが、他方の摺動部材に形成された摺動方向に平行な方向の凹部の長さよりも大きいと、摺動の際、潤滑油を凹部に閉じ込めることができ、摺動部材相互間に一定の油膜厚さを保持でき、低摩擦を実現することができる。しかし、凹部が大きすぎたり深すぎると、負荷容量が低下し直接接触が生じやすくなる。本発明者らは、このような知見に基づき本発明を完成させたものである。つまり、本発明は、負荷容量に与える影響が小さい状態で、潤滑油の保油性を向上させるために、摺動方向または潤滑油の流れ方向に対して小さく、深さが浅い凹部を形成したもので、シリンダ2のボアやメタル軸受4の内周面のような円弧状内面を有する部品側に適用して好適なものである。   In a pair of sliding members that slide in contact with each other in the presence of lubricating oil, the length of the convex portion formed in one sliding member in a direction parallel to the sliding direction is the other sliding member. If it is longer than the length of the recess in the direction parallel to the sliding direction formed on the member, the lubricating oil can be trapped in the recess during sliding, and a constant oil film thickness can be maintained between the sliding members. Low friction can be realized. However, if the recess is too large or too deep, the load capacity decreases and direct contact tends to occur. The present inventors have completed the present invention based on such findings. That is, in the present invention, in order to improve the oil retaining property of the lubricating oil in a state where the influence on the load capacity is small, a concave portion having a small depth and a shallow depth is formed in the sliding direction or the lubricating oil flow direction. Thus, the present invention is suitable for application to a component side having an arcuate inner surface such as the bore of the cylinder 2 or the inner peripheral surface of the metal bearing 4.

さらに詳述する。本実施形態の低摩擦摺動部材は、潤滑油の存在下で、図2に示す矢印の方向に相対的に摺動する第1の摺動部材10と第2の摺動部材11とからなり、両摺動部材10,11の摺動面10a,11aには、大きな多数の第1微細凹部12と、これら第1微細凹部12間に形成され、第1微細凹部12より小さな多数の第2微細凹部13と、が形成されている。   Further details will be described. The low-friction sliding member of the present embodiment includes a first sliding member 10 and a second sliding member 11 that slide relatively in the direction of the arrow shown in FIG. 2 in the presence of lubricating oil. The sliding surfaces 10 a, 11 a of both sliding members 10, 11 are formed with a large number of first fine recesses 12 and a plurality of second fine recesses 12 formed between these first fine recesses 12 and smaller than the first fine recesses 12. A fine recess 13 is formed.

第1微細凹部12は、図2〜4に示すように、摺動方向と直交する方向に扁平な凹部で、幅X1及び深さh1の値を有し、第2微細凹部13は、第1微細凹部12間の摺動面10a,11aに形成され、摺動方向において、第1微細凹部12の幅X1及び深さh1より小さな値である幅X2及び深さh2を有している。このように第1微細凹部12の間の平坦部に、油溜りとなる第2微細凹部13が存在すると、保油性が向上し摩擦の低減と,耐焼付き性の向上を行うことができる。   2-4, the 1st fine recessed part 12 is a flat part flat in the direction orthogonal to a sliding direction, has the value of width X1 and depth h1, and the 2nd fine recessed part 13 is 1st. It is formed on the sliding surfaces 10a and 11a between the fine concave portions 12, and has a width X2 and a depth h2 which are smaller than the width X1 and the depth h1 of the first fine concave portion 12 in the sliding direction. Thus, when the 2nd fine recessed part 13 used as an oil reservoir exists in the flat part between the 1st fine recessed parts 12, oil retention property can improve, a friction can be reduced, and seizure resistance can be improved.

しかし、保油性の向上と摩擦の低減を図るには、第1微細凹部12や第2微細凹部13の大きさが問題で、この大きさは、摺動方向又は油の流れの方向に対して小さく、深さも浅いものとすべきである。本実施形態では、第2微細凹部13の摺動方向の幅X2と第1微細凹部12の摺動方向の幅X1との比(X2/X1)を、1/15〜2/3とし、第2微細凹部13の深さh2と第1微細凹部12の深さh1との比(h2/h1)を、1/10〜1/2としている。   However, in order to improve oil retention and reduce friction, the size of the first fine concave portion 12 and the second fine concave portion 13 is a problem, and this size depends on the sliding direction or the oil flow direction. It should be small and shallow. In the present embodiment, the ratio (X2 / X1) of the width X2 in the sliding direction of the second fine recess 13 to the width X1 in the sliding direction of the first fine recess 12 is 1/15 to 2/3, The ratio (h2 / h1) between the depth h2 of the second fine recess 13 and the depth h1 of the first fine recess 12 is set to 1/10 to 1/2.

第2微細凹部13が大きすぎると、面積率が大きくなりすぎるため、負荷容量が低下して直接接触が生じやすくなり、深さが深すぎる場合も同様である。したがって、負荷容量に与える影響が小さい状態で、表面の油の保油性を向上させるために、比X2/X1やh2/h1は、上記の値とすることが好ましいことが実験により確認されている。   If the second fine recess 13 is too large, the area ratio becomes too large, so that the load capacity decreases and direct contact is likely to occur, and the same is true when the depth is too deep. Therefore, it has been confirmed by experiments that the ratios X2 / X1 and h2 / h1 are preferably set to the above values in order to improve the oil retaining property of the surface oil in a state where the influence on the load capacity is small. .

負荷容量に与える影響や表面の保油性は、このような比のみでなく、第1微細凹部12と第2微細凹部13の摺動部材の摺動面10a,11a全体に対する比率、つまり、面積率(%)、深さ、個々の大きさなども重要な要素なため、これらについても明らかにする。   The influence on the load capacity and the oil retaining property of the surface are not only such a ratio but also the ratio of the sliding members of the first fine recess 12 and the second fine recess 13 to the entire sliding surfaces 10a, 11a, that is, the area ratio. (%), Depth, and individual size are also important factors.

第1微細凹部12の面積率(%)は、0.3%〜10%であることが好ましい。0.3%以下では、油膜を厚くする効果が十分に得られず、また,10%以上では負荷容量が低下し直接接触が発生しやすくなり、摩擦低減効果を十分に得ることができない。このような面積率は、例えば、表面観察写真を画像処理することにより算出することができる。   The area ratio (%) of the first fine recess 12 is preferably 0.3% to 10%. If it is 0.3% or less, the effect of thickening the oil film cannot be obtained sufficiently, and if it is 10% or more, the load capacity decreases and direct contact tends to occur, and the friction reduction effect cannot be sufficiently obtained. Such an area ratio can be calculated, for example, by subjecting a surface observation photograph to image processing.

第1微細凹部12の深さに関しては、最大深さが0.5μm〜20μmであることが好ましい。0.5μm以下では、動圧効果が発揮されず、油閉じ込め効果が十分でないため、フリクション低現効果が十分に発現されない。20μmを超えると負荷容量の低下を招き、金属接触が発生しやすくなり、十分なフリクション低減が発現できない。このような凹部の深さの測定は、三次元表面構造解析顕微鏡NewView5032(ザイゴ株式会社製)を用い、非接触三次元白色光位相変調干渉方式などにより測定する。   Regarding the depth of the first fine recess 12, the maximum depth is preferably 0.5 μm to 20 μm. If it is 0.5 μm or less, the dynamic pressure effect is not exhibited and the oil confinement effect is not sufficient, so that the friction reduction effect is not sufficiently exhibited. If it exceeds 20 μm, the load capacity is reduced, metal contact is likely to occur, and sufficient friction reduction cannot be realized. The depth of the concave portion is measured by a non-contact three-dimensional white light phase modulation interference method using a three-dimensional surface structure analysis microscope NewView 5032 (manufactured by Zygo Corporation).

第1微細凹部12の大きさは、短辺の長さが50μm〜150μmであり、長辺の長さを短辺の2倍以上10倍以下であることが望ましい。微細な凹部の短辺が50μm以下の場合、油が微細な凹部へ十分に流入せず動圧の効果が十分に得られず、150μm以上では負荷容量が低下し金属接触が起こりやすくなる虞がある。したがって、この範囲であれば、第1微細凹部12は、動圧効果を十分に発揮し、油膜を厚くすることでフリクション低減効果を発現できることになる。   Regarding the size of the first fine recess 12, the length of the short side is preferably 50 μm to 150 μm, and the length of the long side is preferably not less than 2 times and not more than 10 times the short side. If the short side of the fine recess is 50 μm or less, the oil does not sufficiently flow into the fine recess and the effect of dynamic pressure cannot be obtained sufficiently, and if it is 150 μm or more, the load capacity decreases and metal contact may occur easily. is there. Therefore, if it is this range, the 1st fine recessed part 12 will fully exhibit a dynamic pressure effect, and can express the friction reduction effect by thickening an oil film.

一方、第2微細凹部13の面積率(%)は、0.5%〜20%であることが好ましい。0.5%以下の場合は、第2微細凹部13による油溜まりの効果が十分でなくフリクション低減効果が十分発現されず、20%以上になると負荷容量の低下により,摩擦特性の悪化が生じる。   On the other hand, the area ratio (%) of the second fine recess 13 is preferably 0.5% to 20%. In the case of 0.5% or less, the effect of the oil reservoir by the second fine concave portion 13 is not sufficient, and the friction reducing effect is not sufficiently expressed, and in the case of 20% or more, the load capacity is reduced and the friction characteristics are deteriorated.

第2微細凹部13の深さは、第1微細凹部12よりも浅く、最大深さが第1微細凹部12の最大深さの1/2〜1/10であることが好ましい。第2微細凹部13の深さが深すぎる場合、負荷容量の低下を招き、金属接触が発生しやすくなる。また、浅すぎる場合にも油を保持する能力がなくなり、金属接触が発生しやすくなる。   The depth of the second fine recess 13 is shallower than that of the first fine recess 12, and the maximum depth is preferably 1/2 to 1/10 of the maximum depth of the first fine recess 12. When the depth of the 2nd fine recessed part 13 is too deep, the fall of a load capacity will be caused and it will become easy to generate | occur | produce a metal contact. In addition, when it is too shallow, the ability to retain oil is lost, and metal contact tends to occur.

第2微細凹部13の大きさは、摺動方向に対する幅が第1微細凹部12の幅より小さく、摺動方向に対する幅が第1微細凹部12の幅の1/15〜2/3であることが好ましい。第2微細凹部13が小さすぎる場合には、油の保持効果がなくなり、金属接触が発生しやすくなる。また、大きすぎる場合には、負荷容量が低下し、金属接触が発生しやすくなる。   The size of the second fine recess 13 is such that the width in the sliding direction is smaller than the width of the first fine recess 12 and the width in the sliding direction is 1/15 to 2/3 of the width of the first fine recess 12. Is preferred. If the second fine recess 13 is too small, the oil retaining effect is lost and metal contact is likely to occur. Moreover, when too large, load capacity will fall and it will become easy to generate | occur | produce a metal contact.

第1微細凹部12や第2微細凹部13の面積率(%)×深さ(μm)の値の合計は、30以下であることが好ましい。これら各凹部12と13の面積率(%)×深さ(μm)の値が30を超えると,負荷容量の低下と共に凹部に入り込む油の量が多くなるため,油膜が薄くなり,直接接触が発生しやすくなり、十分なフリクション低減が発現できないからである。   The sum of the area ratio (%) × depth (μm) values of the first fine recess 12 and the second fine recess 13 is preferably 30 or less. If the value of the area ratio (%) x depth (μm) of each of these recesses 12 and 13 exceeds 30, the amount of oil that enters the recesses increases as the load capacity decreases, so the oil film becomes thinner and direct contact is reduced. This is because they tend to occur and sufficient friction reduction cannot be realized.

第1微細凹部12や第2微細凹部13の形状は、図3では矩形状をしたものであるが、これのみに制限されるものではなく、長方形、楕円、不定形などあらゆる形状が採用されうる。   The shape of the first fine concave portion 12 and the second fine concave portion 13 is a rectangular shape in FIG. 3, but is not limited to this, and any shape such as a rectangle, an ellipse, and an indefinite shape can be adopted. .

特に、第2微細凹部13の形状は、保油性を向上させる油溜まりの役割として形成するため、それぞれが独立して形成されたものであってもよいが、連続した溝状であってもよい。図5A〜Eは第2微細凹部の種々の形状例を示す概略図である。   In particular, since the shape of the second fine recess 13 is formed as a role of an oil reservoir for improving oil retention, each may be formed independently, but may be a continuous groove shape. . 5A to 5E are schematic views illustrating various shape examples of the second fine recess.

第2微細凹部13の形状に関しては、例えば、図5Aに示すように、図3に示すものよりさらに多数のものを第1微細凹部12間の摺動面11aに形成したものであってもよく、図5Bに示すように、第1微細凹部12間の摺動面11aで連続的に伸延する溝状であってもよい。溝状の第2微細凹部13の場合、図5Cに示すように、第1微細凹部12と平行に形成してもよい。場合によっては、第2微細凹部13は、図5Dに示すように、ドット状に形成したものであってもよい。ただし、このような形状の第2微細凹部13であっても、前述の面積率や深さとすべきである。   Regarding the shape of the second fine recess 13, for example, as shown in FIG. 5A, a larger number than that shown in FIG. 3 may be formed on the sliding surface 11 a between the first fine recesses 12. As shown in FIG. 5B, a groove shape that continuously extends on the sliding surface 11 a between the first fine recesses 12 may be used. In the case of the groove-shaped second fine recess 13, it may be formed in parallel with the first fine recess 12 as shown in FIG. 5C. Depending on the case, the 2nd fine recessed part 13 may be formed in dot shape, as shown to FIG. 5D. However, even the second fine concave portion 13 having such a shape should have the above-described area ratio and depth.

さらに、第2微細凹部13の形状は、図5Eに示すように、ランダムに筋状に形成したもの(以下、ランダム溝と称す)であっても油膜を保持する機能が発現できる。   Further, as shown in FIG. 5E, the second fine concave portion 13 can exhibit a function of retaining an oil film even when it is randomly formed in a streak shape (hereinafter referred to as a random groove).

第2微細凹部13をランダム溝15とした場合には、第1微細凹部12間の表面粗さRzが、0.03μm≦Rz≦0.25μmであることが好ましい。   When the second fine recess 13 is a random groove 15, the surface roughness Rz between the first fine recesses 12 is preferably 0.03 μm ≦ Rz ≦ 0.25 μm.

表面粗さRzが0.03μm以下の場合には、表面が平滑なため油の保持効果が不十分になり、表面粗さRzが0.25μm以上の場合には、粗さが大きすぎ、粗さの凸部の増加に起因する直接接触が発生し、十分に摩擦が低減されないことになる。なお、表面粗さRzは、例えば、触針式表面形状測定装置FormTalysurf−120L(Taylor−Hobson社製)により測定される。   When the surface roughness Rz is 0.03 μm or less, the oil is not sufficiently retained because the surface is smooth, and when the surface roughness Rz is 0.25 μm or more, the roughness is too large, The direct contact resulting from the increase in the height of the protrusion occurs, and the friction is not sufficiently reduced. The surface roughness Rz is measured by, for example, a stylus type surface shape measuring device FormTalysurf-120L (manufactured by Taylor-Hobson).

また、ランダム溝15は、表面粗さのゆがみ(Rsk;JIS B 0601記載)の値が負であることが好ましい。表面粗さのゆがみのRsk値を負とすれば、粗さ成分の表面から窪んだ部分の分布が増え、保油性に優れたものとなり、好ましい。   Further, the random groove 15 preferably has a negative surface roughness distortion (Rsk; described in JIS B 0601). If the Rsk value of the distortion of the surface roughness is negative, the distribution of the recessed portion from the surface of the roughness component is increased, and the oil retaining property is excellent, which is preferable.

(実施例1)
図6は試験片を往復動させる試験機の要部を示す概略斜視図、図7Aはピン試験片の平面図、図7Bはピン試験片の側面図、図8Aは平板試験片の大きさを示す平面図、図8Bは平板試験片の側面図である。
Example 1
6 is a schematic perspective view showing a main part of a test machine for reciprocating the test piece, FIG. 7A is a plan view of the pin test piece, FIG. 7B is a side view of the pin test piece, and FIG. 8A shows the size of the flat plate test piece. FIG. 8B is a side view of a flat plate test piece.

実験は、図6に示すように、平坦な面に様々な凹形状を形成した平板試験片20上で、ピン試験片21に垂直荷重Wを掛けた状態で、両矢印方向に往復摺動させることにより行った。平板試験片20の大きさは、厚さ7mm、長さ60mm、幅40mmであるが、摺動面は、表面に第1微細凹部12と第2微細凹部13を形成した。ピン試験片21の大きさは、厚さ8mm、長さ40mm、高さ11.5mmで、先端面は、曲率半径Rを有しているが、CVD法を用いて、硬質炭素薄膜であるDLC(ダイヤモンドライクカーボン)をコーティングした。   In the experiment, as shown in FIG. 6, on a flat plate test piece 20 having various concave shapes formed on a flat surface, the pin test piece 21 is slid back and forth in the direction of a double arrow with a vertical load W applied. Was done. The flat test piece 20 has a thickness of 7 mm, a length of 60 mm, and a width of 40 mm. On the sliding surface, the first fine concave portion 12 and the second fine concave portion 13 were formed on the surface. The pin test piece 21 has a thickness of 8 mm, a length of 40 mm, and a height of 11.5 mm. The tip surface has a radius of curvature R, but is a DLC that is a hard carbon thin film using a CVD method. (Diamond like carbon) was coated.

ピン試験片21に対する垂直荷重Wは、25kgf、速度は、600rpm、潤滑油は、5W30の油(油温度80℃)を0.8cc/minで滴下し、摩擦係数を測定し、後述の比較例1の場合の摩擦係数を「1」とし、これと比較した。   The vertical load W with respect to the pin test piece 21 is 25 kgf, the speed is 600 rpm, and the lubricating oil is 5W30 oil (oil temperature 80 ° C.) dropped at 0.8 cc / min, and the friction coefficient is measured. The friction coefficient in the case of 1 was set to “1” and compared with this.

ここに、比較例1は、研磨加工により平滑な鏡面にした後に、その表面に第1微細凹部12のみを形成したもので、平坦部の表面粗さは、Rz=0.3μm、第1微細凹部12は、矩形状で、大きさが80μm×320μm、深さが3μm、面積率1%とした。   Here, in Comparative Example 1, after making a smooth mirror surface by polishing, only the first fine concave portion 12 is formed on the surface, and the surface roughness of the flat portion is Rz = 0.3 μm, the first fine surface. The recess 12 was rectangular and had a size of 80 μm × 320 μm, a depth of 3 μm, and an area ratio of 1%.

比較例2は、平坦部に第1微細凹部12を形成せず、平坦部の表面粗さをRz=3μmのクロスハッチ目で加工したものである。   In Comparative Example 2, the first fine concave portion 12 is not formed in the flat portion, and the surface roughness of the flat portion is processed with a cross hatch of Rz = 3 μm.

実施例1は、平坦部の表面粗さをRz=0.3μmとし、第1微細凹部12は、矩形状で、大きさが80μm×320μm、深さが3μm、面積率1%とし、さらに第2の微細凹部13は、クロスハッチ状の溝で、摺動方向の長さX2が20μm、深さが1μm、面積率10%とした。   In Example 1, the surface roughness of the flat portion is Rz = 0.3 μm, the first fine recess 12 is rectangular, has a size of 80 μm × 320 μm, a depth of 3 μm, an area ratio of 1%, The second fine recess 13 is a cross-hatched groove having a length X2 in the sliding direction of 20 μm, a depth of 1 μm, and an area ratio of 10%.

図9,10,11は、比較例1,2と実施例1の断面曲線を示すグラフであり、縦軸には表面粗さ、横軸に位置を示している。図9と図11には要部を拡大して示す図を併記しているが、この要部拡大図は、縦軸の表面粗さを1μm単位で示し、横軸の位置を200μm単位で示している。この図9〜11より明らかなように、比較例1の表面は極めて平滑な面であり、比較例2の表面は粗く、実施例1の表面は極めて平滑な面と粗い部分が併存している。   9, 10, and 11 are graphs showing the cross-sectional curves of Comparative Examples 1 and 2 and Example 1, in which the vertical axis indicates the surface roughness and the horizontal axis indicates the position. FIGS. 9 and 11 also show enlarged views of the main part. This enlarged view of the main part shows the surface roughness of the vertical axis in units of 1 μm and the position of the horizontal axis in units of 200 μm. ing. As is apparent from FIGS. 9 to 11, the surface of Comparative Example 1 is a very smooth surface, the surface of Comparative Example 2 is rough, and the surface of Example 1 has both a very smooth surface and a rough portion. .

実施例としては、実施例1の他に実施例2〜7があるが、これら実施例2〜7は、実施例1と第2の微細凹部13が、下記のように相違している。つまり、実施例2〜7は、実施例1と同様、平坦部の表面粗さをRz=0.3μmに加工し、第1微細凹部12が、矩形状で、大きさが80μm×320μm、深さが3μm、面積率1%のものを形成し、さらに第2の微細凹部13をクロスハッチ状の溝としているが、実施例2〜7においては、第2の微細凹部13が、表1にも示しているが、下記の点で相違している。   Examples include Examples 2 to 7 in addition to Example 1. In Examples 2 to 7, Example 1 and second fine recess 13 are different as described below. That is, in Examples 2 to 7, as in Example 1, the surface roughness of the flat portion was processed to Rz = 0.3 μm, the first fine recess 12 was rectangular, the size was 80 μm × 320 μm, and the depth Is formed with a thickness of 3 μm and an area ratio of 1%, and the second fine concave portion 13 is a cross-hatched groove. In Examples 2 to 7, the second fine concave portion 13 is shown in Table 1. This also shows differences in the following points.

実施例2では、第2の微細凹部13が、摺動方向の長さX2が20μm、深さが1μm、面積率25%である。   In Example 2, the second fine recess 13 has a sliding direction length X2 of 20 μm, a depth of 1 μm, and an area ratio of 25%.

実施例3では、第2の微細凹部13が、摺動方向の長さX2が20μm、深さが1μm、面積率0.5%である。   In Example 3, the second fine recess 13 has a length X2 in the sliding direction of 20 μm, a depth of 1 μm, and an area ratio of 0.5%.

実施例4では、第2の微細凹部13が、摺動方向の長さX2が20μm、深さが0.2μm、面積率10%である。   In Example 4, the second fine recess 13 has a sliding direction length X2 of 20 μm, a depth of 0.2 μm, and an area ratio of 10%.

実施例5では、第2の微細凹部13が、摺動方向の長さX2が20μm、深さが2μm、面積率20%である。   In Example 5, the second fine recess 13 has a sliding direction length X2 of 20 μm, a depth of 2 μm, and an area ratio of 20%.

実施例6では、第2の微細凹部13が、摺動方向の長さX2が60μm、深さが1μm、面積率10%である。   In Example 6, the second fine recess 13 has a sliding direction length X2 of 60 μm, a depth of 1 μm, and an area ratio of 10%.

実施例7では、第2の微細凹部13が、摺動方向の長さX2が10μm、深さが1μm、面積率10%である。   In Example 7, the second fine recess 13 has a sliding direction length X2 of 10 μm, a depth of 1 μm, and an area ratio of 10%.

実施例8,9は、第1微細凹部12の平坦部の表面粗さをRz=0.3μmに加工し、第1微細凹部12として、矩形状のもので、大きさが80μm×320μm、深さが3μm、とした点は、前記実施例と同様であるが、第1微細凹部12の面積率を5%とし、さらに第2の微細凹部13をクロスハッチ状の溝として形成している。ただし、実施例8は、第2の微細凹部13の面積率を20%とし、実施例9は、第2の微細凹部13の面積率を10%としている。   In Examples 8 and 9, the surface roughness of the flat portion of the first fine recess 12 is processed to Rz = 0.3 μm, and the first fine recess 12 has a rectangular shape with a size of 80 μm × 320 μm and a depth of 8 μm. However, the area ratio of the first fine recesses 12 is set to 5%, and the second fine recesses 13 are formed as cross-hatched grooves. However, in Example 8, the area ratio of the second fine concave portion 13 is set to 20%, and in Example 9, the area ratio of the second fine concave portion 13 is set to 10%.

これら実施例および比較例における、第1微細凹部12と第2の微細凹部13の大きさ、深さ、面積率、深さと面積率の積をまとめるとともに実験結果を示すと、表1のようになる。   In these examples and comparative examples, the size, depth, area ratio, product of depth and area ratio of the first fine recess 12 and the second fine recess 13 are summarized, and the experimental results are shown in Table 1. Become.

表1から明らかなように、研磨加工により鏡面にした表面に、比較的大きな第1微細凹部12を形成した比較例1や、細かなクロスハッチ目のみを有する比較例2よりも、本発明を適用した実施例の方が、大部分のものにおいて摩擦抵抗が減少していることがわかる。本発明を適用した実施例は、平滑な面に、比較的大きな第1微細凹部12と、クロスハッチ状の溝などからなる第2の微細凹部13とを形成したものであるが、第1微細凹部12自体の油溜りとしての機能に、第1微細凹部12の間の平坦部に形成した小さな第2微細凹部13による油溜りとしての機能が加わり、微細凹部全体としての保油性が大幅に向上し、摩擦低減効果が発揮されたものである。特に、第2微細凹部13が多数あるいは連続的に存在することにより、これが第1微細凹部12の保油性を、摺動面全体的にわたり補うことになり、摩擦抵抗の低減に大きく寄与することになっている。   As is apparent from Table 1, the present invention is more effective than Comparative Example 1 in which a relatively large first fine recess 12 is formed on a mirror-finished surface and Comparative Example 2 having only fine cross-hatch eyes. It can be seen that in the applied embodiment, the frictional resistance is reduced in most cases. In the embodiment to which the present invention is applied, a relatively large first fine concave portion 12 and a second fine concave portion 13 made of a cross-hatched groove or the like are formed on a smooth surface. The function of the recess 12 itself as an oil reservoir is added to the function of an oil reservoir by the small second micro recess 13 formed in the flat portion between the first micro recesses 12, thereby greatly improving the oil retaining property of the entire micro recess. In addition, the friction reducing effect is exhibited. In particular, the presence or absence of a large number or a plurality of second fine recesses 13 supplements the oil retaining property of the first fine recesses 12 over the entire sliding surface, and contributes greatly to the reduction of frictional resistance. It has become.

このような本発明の低摩擦摺動部材を、潤滑油の存在下で摺動する内燃機関用の摺動部材、例えば、シリンダ、メタル軸受などの、円弧状内面を形成するものに適用すると、第1微細凹部12や第2微細凹部13が、保油性を向上させる油溜まりの役割を発揮し、これら凹部に入り込む油の量が多くなり、負荷容量の低下や油膜が薄くなる事態を防止し、金属同士の直接接触が発生せず、摩擦抵抗が低減する好ましい内燃機関になる。   When the low friction sliding member of the present invention is applied to a sliding member for an internal combustion engine that slides in the presence of lubricating oil, for example, a cylinder, a metal bearing, or the like that forms an arc-shaped inner surface, The 1st fine recessed part 12 and the 2nd fine recessed part 13 exhibit the role of the oil sump which improves oil retention, and the amount of the oil which penetrates into these recessed parts increases, and the situation where the load capacity falls and the oil film becomes thin is prevented. In addition, it is a preferable internal combustion engine in which direct contact between metals does not occur and frictional resistance is reduced.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲の範囲内で種々改変することができる。例えば、上述した実施形態では、平坦な低摩擦摺動部材に第1微細凹部12や第2微細凹部13を形成したものであるが、これのみでなく、他の種々の形状を有するもの、例えば、ある程度湾曲したものあるいは円弧状の面を有するもの、又は球面のものなどにも適用することもできる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims. For example, in the above-described embodiment, the first micro concave portion 12 and the second micro concave portion 13 are formed on a flat low friction sliding member. However, not only this but also other various shapes, for example, Also, the present invention can be applied to one that is curved to some extent, one that has an arcuate surface, or one that is spherical.

本発明は、潤滑油の存在下で摺動する摺動部材の摺動摩擦を低減した内燃機関用部品、特に、ピストンやシリンダあるいは軸受部材に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for an internal combustion engine component that reduces sliding friction of a sliding member that slides in the presence of lubricating oil, particularly a piston, cylinder, or bearing member.

本発明の実施形態に係る低摩擦摺動部材が使用されるエンジンの要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the engine in which the low friction sliding member which concerns on embodiment of this invention is used. 同低摩擦摺動部材の要部を示す概略斜視図である。It is a schematic perspective view which shows the principal part of the same low friction sliding member. 同低摩擦摺動部材の凹部を示す平面図である。It is a top view which shows the recessed part of the same low friction sliding member. 図3の4−4線に沿う端面図である。FIG. 4 is an end view taken along line 4-4 of FIG. 3. 第2微細凹部の種々の形状例を示す概略図である。It is the schematic which shows the example of various shapes of a 2nd fine recessed part. 往復動試験機の要部を示す概略斜視図である。It is a schematic perspective view which shows the principal part of a reciprocating test machine. Aはピン試験片の平面図、Bはピン試験片の側面図である。A is a plan view of a pin test piece, and B is a side view of the pin test piece. Aは平板試験片の大きさを示す平面図、Bは平板試験片の側面図である。A is a plan view showing the size of a flat test piece, and B is a side view of the flat test piece. 比較例1の断面曲線を示すグラフである。6 is a graph showing a cross-sectional curve of Comparative Example 1. 比較例2の断面曲線を示すグラフである。10 is a graph showing a cross-sectional curve of Comparative Example 2. 実施例1の断面曲線を示すグラフである。3 is a graph showing a cross-sectional curve of Example 1.

符号の説明Explanation of symbols

10,11…摺動部材、
10a,11a…摺動面、
12…第1微細凹部、
13…第2微細凹部。
10, 11 ... sliding member,
10a, 11a ... sliding surface,
12 ... 1st minute recessed part,
13 ... 2nd fine recessed part.

Claims (11)

潤滑油の存在下で相対的に摺動する摺動部材の少なくとも一方の摺動部材の摺動面に多数の微細凹部を形成した低摩擦摺動部材であって、前記微細凹部は、多数の第1微細凹部間に、摺動方向の幅及び深さが前記第1微細凹部より小さな値の第2微細凹部を形成したことを特徴とする低摩擦摺動部材。   A low-friction sliding member in which a large number of fine recesses are formed on the sliding surface of at least one of the sliding members that slide relatively in the presence of lubricating oil. A low-friction sliding member characterized in that a second fine recess having a smaller width and depth in the sliding direction than the first fine recess is formed between the first fine recesses. 前記第2微細凹部は、相互に独立に形成したことを特徴とする請求項1記載の低摩擦摺動部材。   The low-friction sliding member according to claim 1, wherein the second fine recesses are formed independently of each other. 前記第2微細凹部は、前記第1微細凹部間の摺動面を連続的に伸延する溝状に形成したことを特徴とする請求項1に記載の低摩擦摺動部材。   2. The low friction sliding member according to claim 1, wherein the second fine recess is formed in a groove shape that continuously extends a sliding surface between the first fine recesses. 前記第1微細凹部は、前記摺動方向と直交する方向に扁平形状の凹部である請求項1〜3のいずれかに記載の低摩擦摺動部材。   The low friction sliding member according to any one of claims 1 to 3, wherein the first fine recess is a recess having a flat shape in a direction orthogonal to the sliding direction. 前記第2微細凹部の前記摺動方向の幅(X2)と前記第1微細凹部の前記摺動方向の幅(X1)との比(X2/X1)が、1/15〜2/3であり、前記第2微細凹部の深さ(h2)と前記第1微細凹部の深さ(h1)との比(h2/h1)が、1/10〜1/2である請求項1〜4のいずれかに記載の低摩擦摺動部材。   The ratio (X2 / X1) of the width (X2) in the sliding direction of the second fine recess to the width (X1) in the sliding direction of the first fine recess is 1/15 to 2/3. The ratio (h2 / h1) between the depth (h2) of the second fine recess and the depth (h1) of the first fine recess is 1/10 to 1/2. A low friction sliding member according to claim 1. 前記第1微細凹部及び第2微細凹部が前記摺動面で占有する面積率(%)×深さ(μm)の値が30以下であることを特徴とする請求項1〜5のいずれかに記載の低摩擦摺動部材。   The value of the area ratio (%) × depth (μm) occupied by the sliding surface by the first fine concave portion and the second fine concave portion is 30 or less. The low friction sliding member as described. 前記第2微細凹部は、前記摺動面で占有する面積率が0.5〜20%であることを特徴とする請求項1〜6のいずれかに記載の低摩擦摺動部材。   The low-friction sliding member according to any one of claims 1 to 6, wherein the second fine recess has an area ratio of 0.5 to 20% occupied by the sliding surface. 前記第2微細凹部は、前記第1微細凹部間の表面粗さ(Rz)が、
0.03μm≦Rz≦0.25μm
であり、表面粗さのゆがみ(Rsk;JIS B 0601記載)の値が負であるランダム溝としたことを特徴とする請求項1に記載の低摩擦摺動部材。
The second fine recess has a surface roughness (Rz) between the first fine recesses,
0.03 μm ≦ Rz ≦ 0.25 μm
The low friction sliding member according to claim 1, wherein the groove is a random groove having a negative surface roughness distortion (Rsk; described in JIS B 0601).
前記第1微細凹部は、前記摺動面で占有する面積率(%)が0.3%〜10%である請求項1〜8のいずれかに記載の低摩擦摺動部材。   The low-friction sliding member according to any one of claims 1 to 8, wherein the first fine recess has an area ratio (%) occupied by the sliding surface of 0.3% to 10%. 前記第1微細凹部は、最大深さが0.5μm〜20μmである請求項1〜9のいずれかに記載の低摩擦摺動部材。   The low friction sliding member according to claim 1, wherein the first fine recess has a maximum depth of 0.5 μm to 20 μm. 前記第1微細凹部は、短辺の長さが50μm〜150μmであり、長辺の長さを短辺の2倍以上10倍以下としたことを特徴とする請求項1〜10のいずれかに記載の低摩擦摺動部材。   11. The first fine recess according to claim 1, wherein a length of a short side is 50 μm to 150 μm, and a length of the long side is set to be 2 to 10 times the short side. The low friction sliding member as described.
JP2006152381A 2006-05-31 2006-05-31 Low-friction sliding member Pending JP2007321860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006152381A JP2007321860A (en) 2006-05-31 2006-05-31 Low-friction sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006152381A JP2007321860A (en) 2006-05-31 2006-05-31 Low-friction sliding member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012137194A Division JP5429329B2 (en) 2012-06-18 2012-06-18 Low friction sliding member

Publications (1)

Publication Number Publication Date
JP2007321860A true JP2007321860A (en) 2007-12-13

Family

ID=38854859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006152381A Pending JP2007321860A (en) 2006-05-31 2006-05-31 Low-friction sliding member

Country Status (1)

Country Link
JP (1) JP2007321860A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001939A (en) * 2011-06-15 2013-01-07 Sanyo Electric Co Ltd Sliding member and compressor
WO2013022062A1 (en) * 2011-08-09 2013-02-14 スズキ株式会社 Piston for internal combustion engine
WO2014065156A1 (en) * 2012-10-26 2014-05-01 いすゞ自動車株式会社 Cylinder block and honing method
KR101461677B1 (en) * 2008-12-18 2014-11-14 두산인프라코어 주식회사 Sliding motion assembly
DE102014002397A1 (en) * 2014-02-24 2015-05-28 Mtu Friedrichshafen Gmbh Piston ring, cylinder liner and sliding mating
KR20150090007A (en) * 2015-07-21 2015-08-05 두산인프라코어 주식회사 Sliding motion assembly
WO2019130553A1 (en) * 2017-12-28 2019-07-04 日産自動車株式会社 Low-friction sliding mechanism

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882212A (en) * 1972-02-07 1973-11-02
JPH0754849A (en) * 1993-05-31 1995-02-28 Ntn Corp Rolling or sliding machine parts
JP2002213612A (en) * 2000-11-20 2002-07-31 Nissan Motor Co Ltd Sliding part for internal combustion engine and internal combustion engine using the sliding part
JP2002235852A (en) * 2001-02-09 2002-08-23 Nissan Motor Co Ltd Low frictional sliding member
JP2003184883A (en) * 2001-12-20 2003-07-03 Nissan Motor Co Ltd Bearing sliding member
JP2004278705A (en) * 2003-03-17 2004-10-07 Nissan Motor Co Ltd Sliding member, crankshaft, and variable compression ratio engine
JP2004340248A (en) * 2003-05-15 2004-12-02 Daido Metal Co Ltd Sliding member
JP2005320934A (en) * 2004-05-11 2005-11-17 Toyo Drilube Co Ltd Reciprocatingly moving member
JP2006077856A (en) * 2004-09-08 2006-03-23 Nissan Motor Co Ltd Low friction sliding member
JP2006097708A (en) * 2004-09-28 2006-04-13 Nissan Motor Co Ltd Controlling method for sliding member

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882212A (en) * 1972-02-07 1973-11-02
JPH0754849A (en) * 1993-05-31 1995-02-28 Ntn Corp Rolling or sliding machine parts
JP2002213612A (en) * 2000-11-20 2002-07-31 Nissan Motor Co Ltd Sliding part for internal combustion engine and internal combustion engine using the sliding part
JP2002235852A (en) * 2001-02-09 2002-08-23 Nissan Motor Co Ltd Low frictional sliding member
JP2003184883A (en) * 2001-12-20 2003-07-03 Nissan Motor Co Ltd Bearing sliding member
JP2004278705A (en) * 2003-03-17 2004-10-07 Nissan Motor Co Ltd Sliding member, crankshaft, and variable compression ratio engine
JP2004340248A (en) * 2003-05-15 2004-12-02 Daido Metal Co Ltd Sliding member
JP2005320934A (en) * 2004-05-11 2005-11-17 Toyo Drilube Co Ltd Reciprocatingly moving member
JP2006077856A (en) * 2004-09-08 2006-03-23 Nissan Motor Co Ltd Low friction sliding member
JP2006097708A (en) * 2004-09-28 2006-04-13 Nissan Motor Co Ltd Controlling method for sliding member

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461677B1 (en) * 2008-12-18 2014-11-14 두산인프라코어 주식회사 Sliding motion assembly
JP2013001939A (en) * 2011-06-15 2013-01-07 Sanyo Electric Co Ltd Sliding member and compressor
WO2013022062A1 (en) * 2011-08-09 2013-02-14 スズキ株式会社 Piston for internal combustion engine
JP2013036415A (en) * 2011-08-09 2013-02-21 Suzuki Motor Corp Piston for internal combustion engine
US9086030B2 (en) 2011-08-09 2015-07-21 Suzuki Motor Corporation Piston for internal combustion engine
WO2014065156A1 (en) * 2012-10-26 2014-05-01 いすゞ自動車株式会社 Cylinder block and honing method
DE102014002397A1 (en) * 2014-02-24 2015-05-28 Mtu Friedrichshafen Gmbh Piston ring, cylinder liner and sliding mating
KR20150090007A (en) * 2015-07-21 2015-08-05 두산인프라코어 주식회사 Sliding motion assembly
KR101587383B1 (en) * 2015-07-21 2016-01-22 두산인프라코어 주식회사 Sliding motion assembly
WO2019130553A1 (en) * 2017-12-28 2019-07-04 日産自動車株式会社 Low-friction sliding mechanism
US11186795B2 (en) 2017-12-28 2021-11-30 Nissan Motor Co., Ltd. Low friction sliding mechanism

Similar Documents

Publication Publication Date Title
JP4779841B2 (en) Internal combustion engine
JP2007321860A (en) Low-friction sliding member
JP5429329B2 (en) Low friction sliding member
EP1630396B1 (en) A sliding structure for a reciprocating internal combustion engine and a reciprocating internal combustion engine using the sliding structure
JP3712052B2 (en) Low friction sliding member
TW444101B (en) Sliding members and the piston used for the combustion engine
JP3890495B2 (en) Sliding part for internal combustion engine and internal combustion engine using the same
US9915345B2 (en) Piston assembly
JP6222023B2 (en) Oil ring
JP2014224601A (en) Slide bearing
JP2008095721A (en) Sliding member
JPWO2019008780A1 (en) Combination oil ring
JP2017096396A (en) Half-split bearing
JP2008223663A (en) Engine piston
JP2018009705A (en) Oil ring
JP2007046660A (en) Slide receiving member
CN110418883B (en) Cylinder liner
JP4956769B2 (en) Low friction sliding member
JPWO2020158949A1 (en) Combination oil ring
JP2013002340A (en) Cylinder block
JP2005249194A (en) Sliding member
JP2019132387A (en) bearing
JP2008095808A (en) Sliding linear guide
JP7045383B2 (en) piston ring
KR20110071176A (en) Micro grooves structure of the cylinder liner bore for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120625

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411