JP2007321222A - Surface treated steel sheet having excellent corrosion resistance and water resistance - Google Patents

Surface treated steel sheet having excellent corrosion resistance and water resistance Download PDF

Info

Publication number
JP2007321222A
JP2007321222A JP2006155500A JP2006155500A JP2007321222A JP 2007321222 A JP2007321222 A JP 2007321222A JP 2006155500 A JP2006155500 A JP 2006155500A JP 2006155500 A JP2006155500 A JP 2006155500A JP 2007321222 A JP2007321222 A JP 2007321222A
Authority
JP
Japan
Prior art keywords
film
steel sheet
compound
phosphoric acid
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006155500A
Other languages
Japanese (ja)
Inventor
Akira Matsuzaki
晃 松崎
Kazuhisa Okai
和久 岡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006155500A priority Critical patent/JP2007321222A/en
Publication of JP2007321222A publication Critical patent/JP2007321222A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a surface treated steel sheet having excellent corrosion resistance and water resistance. <P>SOLUTION: The surface of a galvanized steel sheet is provided with a surface treatment film with a prescribed coating weight comprising: (A) a tetravalent vanadium compound; (B) a phosphoric acid or a phosphoric acid compound; (C) a bifunctional type silane compound; and (D) a water base organic resin. By the incorporation of the bifunctional type silane compound into the treatment agent, the stability of the treatment liquid improves, and the barrier properties of the surface treatment film and its adhesion with the plating film are strengthened, thus, even in the case of the one treated with the treatment liquid with the lapse of time after preparation, excellent corrosion resistance and water resistance can be obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車、家電、建材用途に最適な表面処理鋼板に関し、表面処理皮膜中に6価クロムを全く含まない環境適応型亜鉛系めっき鋼板に関するものである。   The present invention relates to a surface-treated steel sheet that is optimal for use in automobiles, home appliances, and building materials, and relates to an environment-adaptive zinc-based plated steel sheet that does not contain hexavalent chromium in the surface-treated film.

家電、建材、自動車用鋼板には、従来から亜鉛系めっき鋼板の表面に耐食性を向上させる目的で、クロム酸、重クロム酸又はその塩類を主要成分とした処理液によるクロメート処理が施された鋼板が幅広く用いられている。クロメート皮膜は主として難溶性のクロム水酸化物により耐食性や密着性等を発現し、皮膜形成方法としては電解処理を伴わない塗布法や電解処理法等が採られる。   Steel sheets for home appliances, building materials, and automobiles that have been conventionally chromated with a treatment liquid containing chromic acid, dichromic acid, or salts thereof as the main component for the purpose of improving the corrosion resistance of the surface of galvanized steel sheets. Is widely used. The chromate film exhibits corrosion resistance, adhesion, etc. mainly due to poorly soluble chromium hydroxide, and as a film formation method, a coating method without electrolytic treatment, an electrolytic treatment method, or the like is adopted.

クロメート処理は公害規制物質である6価クロムを使用しているが、この6価クロムはいずれの皮膜形成方法においてもクローズドシステムで処理されること、さらに塗布法ではその上層に形成する有機皮膜によるシーリング作用、電解法ではカソード電解による6価クロムの3価クロムへの還元反応により、クロメート皮膜中からのクロム溶出もほぼゼロにできることから、実質的には6価クロムによって人体や環境が汚染されることはない。しかしながら、近年の地球環境問題に対する関心の高まりとともに、従来の作業環境や排水処理を重視した法規制だけではなく、環境負荷や環境調和を重視した法規制もはじまりつつある。また、製造者を環境貢献度で評価する時代背景もあり、6価クロムの使用を削減しようとする動きが高まりつつある。   The chromate treatment uses hexavalent chromium which is a pollution control substance, but this hexavalent chromium can be processed by a closed system in any film forming method, and further by an organic film formed on the upper layer in the coating method. In the sealing and electrolysis methods, the reduction of hexavalent chromium to trivalent chromium by cathodic electrolysis can reduce the elution of chromium from the chromate film to almost zero, so the human body and the environment are substantially contaminated by hexavalent chromium. Never happen. However, with increasing interest in global environmental issues in recent years, not only laws and regulations that emphasize the conventional work environment and wastewater treatment, but also laws and regulations that emphasize environmental load and environmental harmony are beginning. In addition, with the background of the times when manufacturers are evaluated for their environmental contribution, there is an increasing trend to reduce the use of hexavalent chromium.

このような背景の下で、6価クロムを用いない亜鉛系めっき鋼板の耐食性向上技術としてクロメートフリー技術が数多く提案されている。クロメートフリー皮膜では、クロメート皮膜と同様に難溶性化合物による皮膜形成が性能発現にとって不可欠であり、例えば以下に示すような、バナジウムを含有した処理液を塗布乾燥して化成皮膜を形成する方法が提案されている。
特許文献1〜3には、2〜4価のバナジウム化合物と、Zr、Ti、Mo、W、Mn、Ceの中から選ばれる少なくとも1種の金属を含む金属化合物と、水溶性有機樹脂又は/及び水分散性有機樹脂と、リン酸やフッ化水素酸等のエッチング剤を含有する処理剤で化成皮膜を形成する方法が提案されている。また、特許文献4には、4価のバナジウム化合物と、リン酸化合物と、Si化合物と、水溶性有機樹脂又は/及び水分散性有機樹脂を含有する処理剤で化成皮膜を形成する方法が提案されている。さらに、特許文献5〜7には、4価のバナジウム化合物と、リン酸化合物と、シラン化合物と、水溶性有機樹脂又は/及び水分散性有機樹脂を含有する処理剤で化成皮膜を形成する方法が提案されている。
Against this background, many chromate-free techniques have been proposed as techniques for improving the corrosion resistance of galvanized steel sheets that do not use hexavalent chromium. For chromate-free coatings, as with chromate coatings, film formation with poorly soluble compounds is indispensable for performance.For example, the following method for forming a conversion coating by applying and drying a treatment solution containing vanadium is proposed. Has been.
In Patent Documents 1 to 3, a divalent to tetravalent vanadium compound, a metal compound containing at least one metal selected from Zr, Ti, Mo, W, Mn, and Ce, and a water-soluble organic resin or / In addition, a method of forming a chemical conversion film using a water-dispersible organic resin and a treatment agent containing an etching agent such as phosphoric acid or hydrofluoric acid has been proposed. Patent Document 4 proposes a method of forming a chemical conversion film with a treatment agent containing a tetravalent vanadium compound, a phosphoric acid compound, a Si compound, and a water-soluble organic resin and / or a water-dispersible organic resin. Has been. Further, Patent Documents 5 to 7 disclose a method for forming a chemical conversion film with a treatment agent containing a tetravalent vanadium compound, a phosphoric acid compound, a silane compound, and a water-soluble organic resin or / and a water-dispersible organic resin. Has been proposed.

特開2001−181860号公報JP 2001-181860 A 特開2002−30460号公報JP 2002-30460 A 特開2004−183015号公報JP 2004-183015 A 特開2005−48199号公報JP 2005-48199 A 特開2005−290436号公報JP 2005-290436 A 特開2005−290534号公報JP 2005-290534 A 特開2005−290535号公報JP 2005-290535 A

しかし、特許文献1〜3に示されている方法は、化成皮膜中に可溶性の2、3価のバナジウム化合物が不可避的に混在してしまい、十分な耐食性が得られない。また、湿潤環境下において2、3価のバナジウムが容易に溶出して化成皮膜が着色するため、外観品質が極めて劣ったものとなり、使用に堪え得ない。
また、特許文献4に示されている方法は、化成皮膜中に2、3価のバナジウム化合物を含んでいないため、上記のような問題は生じない。特に、エッチング剤であるリン酸化合物を含有させることにより、4価のバナジウムの難溶化を促進し、極めて高い外観品質が得られる。しかし、製造後に鋼板を積み重ねて保管(スタック状態)する際、温度や湿度変化によって鋼板間に結露水が溜まることがあり、これにより化成皮膜中のエッチング剤が溶出してめっき皮膜を変質させ、外観が白化する現象が生じることがある。
However, in the methods shown in Patent Documents 1 to 3, soluble divalent and trivalent vanadium compounds are inevitably mixed in the chemical conversion film, and sufficient corrosion resistance cannot be obtained. In addition, since the bivalent and trivalent vanadium easily dissolves in a wet environment and the chemical conversion film is colored, the appearance quality is extremely inferior and cannot be used.
Moreover, since the method shown by patent document 4 does not contain the bivalent and trivalent vanadium compound in a chemical conversion film, the above problems do not arise. In particular, by containing a phosphoric acid compound that is an etching agent, the insolubilization of tetravalent vanadium is promoted and an extremely high appearance quality is obtained. However, when the steel sheets are stacked and stored after being manufactured (stacked state), dew condensation water may accumulate between the steel sheets due to temperature and humidity changes, which causes the etching agent in the chemical conversion film to elute and alter the plating film, The appearance may be whitened.

一方、特許文献5〜7に示されている方法は、Si化合物としてエポキシ基又は/及びアミノ基を有するシラン化合物を含有することにより、上記スタック状態での保管でも優れた外観品質(耐水性)が得られる。このシラン化合物中のアルコキシシランは処理液中で加水分解してシラノール(Si−OH)基となり、めっき皮膜上に塗布すると水素結合によりめっき皮膜と水素結合する。さらに、皮膜形成時には、乾燥により脱水縮合反応が起こり、化学結合して強固な密着性が得られる。このため、たとえスタック状態で化成皮膜中からエッチング剤が溶出しても、めっき皮膜に到達できず、良好な耐水性が得られる。しかし、上記シラン化合物から得られたシラノール基は不安定であるため、処理液安定性に乏しい欠点がある。すなわち、処理液中のシラノール基は経時により自己縮合反応を起してシロキサン結合が生じるため、調製してまもない処理液から得られた化成皮膜では良好な耐食性と耐水性を示したとしても、数日間経時した処理液では、ゲル化が生じて塗布困難となったり、たとえ塗布できたとしても、耐食性と耐水性が著しく低下してしまう。このため、比較的高価なシラン化合物を含有するにも関わらず、処理液の再利用化ができず、コストアップに繋がってしまう。   On the other hand, the methods shown in Patent Documents 5 to 7 contain a silane compound having an epoxy group or / and an amino group as a Si compound, so that the appearance quality (water resistance) is excellent even when stored in the stacked state. Is obtained. The alkoxysilane in the silane compound is hydrolyzed into a silanol (Si—OH) group in the treatment solution, and when applied on the plating film, hydrogen bonds to the plating film by hydrogen bonding. Furthermore, when a film is formed, a dehydration condensation reaction occurs by drying, and chemical bonding results in strong adhesion. For this reason, even if the etching agent is eluted from the chemical conversion film in a stacked state, it cannot reach the plating film, and good water resistance is obtained. However, since the silanol group obtained from the silane compound is unstable, there is a disadvantage that the treatment liquid stability is poor. That is, silanol groups in the treatment liquid undergo a self-condensation reaction over time, resulting in a siloxane bond. Even if the chemical conversion film obtained from the treatment liquid that is not prepared has good corrosion resistance and water resistance, In the case of a treatment solution that has been aged for several days, gelation occurs and it becomes difficult to apply, or even if it can be applied, the corrosion resistance and water resistance are significantly reduced. For this reason, although a relatively expensive silane compound is contained, the treatment liquid cannot be reused, leading to an increase in cost.

したがって本発明の目的は、調製してから経時した処理液で処理したものであっても優れた耐食性と耐水性が得られる表面処理鋼板を提供することにある。   Accordingly, an object of the present invention is to provide a surface-treated steel sheet that can provide excellent corrosion resistance and water resistance even if it is treated with a treatment solution that has been aged since preparation.

上記課題を解決するための本発明の表面処理鋼板は、亜鉛系めっき鋼板の表面に、4価の価数を有するバナジウム化合物(A)と、リン酸又は/及びリン酸化合物(B)と、双官能型シラン化合物(C)と、水溶性有機樹脂又は/及び水分散性有機樹脂(D)を含有し、前記バナジウム化合物(A)の付着量が金属V換算で1〜100mg/m、前記リン酸又は/及びリン酸化合物(B)の付着量がP換算で5〜200mg/m、前記双官能型シラン化合物(C)の付着量がSi換算で5〜300mg/mであって、皮膜厚が0.2〜3μmの表面処理皮膜が形成されていることを特徴とする耐食性及び耐水性に優れた表面処理鋼板である。 The surface-treated steel sheet of the present invention for solving the above-mentioned problems is a vanadium compound (A) having a tetravalent valence on the surface of a zinc-based plated steel sheet, phosphoric acid or / and a phosphoric acid compound (B), A bifunctional silane compound (C) and a water-soluble organic resin or / and a water-dispersible organic resin (D) are contained, and the amount of the vanadium compound (A) attached is 1 to 100 mg / m 2 in terms of metal V, The adhesion amount of the phosphoric acid or / and phosphoric acid compound (B) was 5 to 200 mg / m 2 in terms of P, and the adhesion amount of the bifunctional silane compound (C) was 5 to 300 mg / m 2 in terms of Si. The surface-treated steel sheet is excellent in corrosion resistance and water resistance, characterized in that a surface-treated film having a film thickness of 0.2 to 3 μm is formed.

本発明の表面処理鋼板は、処理剤中に双官能型シラン化合物を含有することにより処理液安定性が向上し、表面処理皮膜のバリア性とめっき皮膜との密着性が強化されるため、調製してから経時した処理液で処理したものであっても優れた耐食性と耐水性が得られる。   The surface-treated steel sheet of the present invention contains a bifunctional silane compound in the treatment agent, so that the stability of the treatment solution is improved, and the barrier property of the surface treatment film and the adhesion with the plating film are enhanced. Even if it is processed with a processing solution that has passed over time, excellent corrosion resistance and water resistance can be obtained.

本発明によれば、亜鉛系めっき鋼板の表面に、4価の価数を有するバナジウム化合物(A)と、リン酸又は/及びリン酸化合物(B)と、双官能型シラン化合物(C)と、水溶性有機樹脂又は/及び水分散性有機樹脂(D)を含有する表面処理皮膜を形成することにより、表面処理皮膜のバリア性とめっき皮膜との密着性が強化され、優れた耐食性と耐水性を発揮するクロメートフリー皮膜を形成することができる。   According to the present invention, a vanadium compound (A) having a tetravalent valence, phosphoric acid or / and a phosphoric acid compound (B), and a bifunctional silane compound (C) are formed on the surface of a zinc-based plated steel sheet. By forming a surface-treated film containing a water-soluble organic resin and / or water-dispersible organic resin (D), the barrier property of the surface-treated film and the adhesion with the plating film are strengthened, and excellent corrosion resistance and water resistance It is possible to form a chromate-free film that exhibits its properties.

本発明の表面処理鋼板の原板となる亜鉛系めっき鋼板は、亜鉛めっき鋼板、Zn−Ni合金めっき鋼板、Zn−Fe合金めっき鋼板(電気めっき鋼板、合金化溶融亜鉛めっき鋼板)、Zn−Cr合金めっき鋼板、Zn−Mn合金めっき鋼板、Zn−Co合金めっき鋼板、Zn−Co−Cr合金めっき鋼板、Zn−Cr−Ni合金めっき鋼板、Zn−Cr−Fe合金めっき鋼板、Zn−Al合金めっき鋼板(例えば、Zn−5%Al合金めっき鋼板)、Zn−Mg合金めっき鋼板、Zn−Al−Mg合金めっき鋼板、さらにはこれらのめっき皮膜中に金属酸化物、ポリマーなどを分散した亜鉛系複合めっき鋼板(例えば、Zn−SiO分散めっき鋼板)を用いることができる。但し、Alを合金めっき成分とする亜鉛系めっき鋼板は、めっき皮膜中のAl含有量が25mass%未満のものに限る。 The galvanized steel sheet used as the original sheet of the surface-treated steel sheet of the present invention includes a galvanized steel sheet, a Zn—Ni alloy plated steel sheet, a Zn—Fe alloy plated steel sheet (electroplated steel sheet, galvannealed steel sheet), and Zn—Cr alloy. Plated steel sheet, Zn-Mn alloy plated steel sheet, Zn-Co alloy plated steel sheet, Zn-Co-Cr alloy plated steel sheet, Zn-Cr-Ni alloy plated steel sheet, Zn-Cr-Fe alloy plated steel sheet, Zn-Al alloy plated steel sheet (For example, Zn-5% Al alloy-plated steel sheet), Zn-Mg alloy-plated steel sheet, Zn-Al-Mg alloy-plated steel sheet, and zinc-based composite plating in which metal oxides, polymers, etc. are dispersed in these plating films A steel plate (for example, a Zn—SiO 2 dispersion-plated steel plate) can be used. However, the zinc-based plated steel sheet containing Al as an alloy plating component is limited to those in which the Al content in the plating film is less than 25 mass%.

また、上記のようなめっきのうち、同種または異種のものを2層以上めっきした複層めっき鋼板を用いることができる。
また、めっき鋼板としては、鋼板面にあらかじめNiなどの薄目付けのめっきを施し、その上に上記のような各種めっきを施したものであってもよい。
めっきの方法としては、電解法(水溶液中での電解または非水溶媒中での電解)、溶融法、気相法のうち、実施可能ないずれの方法を採用することができる。
Moreover, the multilayer plating steel plate which plated two or more layers of the same kind or different kind among the above plating can be used.
Moreover, as a plated steel plate, the steel plate surface may be pre-plated with light-weight plating such as Ni and the above-described various plating may be performed thereon.
As a plating method, any feasible method among an electrolytic method (electrolysis in an aqueous solution or electrolysis in a non-aqueous solvent), a melting method, and a gas phase method can be adopted.

また、使用環境下での黒変(めっき表面の酸化現象の一種)を防止する目的で、必要に応じて予めめっき表面に鉄族金属イオン(Niイオン,Coイオン,Feイオンの1種以上)を含む酸性又はアルカリ性水溶液による表面調整処理を施しておくこともできる。
また、電気亜鉛めっき鋼板を下地鋼板として用いる場合には、黒変を防止する目的で電気めっき浴に鉄族金属イオン(Niイオン,Coイオン,Feイオンの1種以上)を添加し、めっき皮膜中にこれらの金属を1ppm以上含有させておくことができる。この場合、めっき皮膜中の鉄族金属濃度の上限については特に限定はない。
In addition, for the purpose of preventing blackening in the usage environment (a kind of oxidation phenomenon on the plating surface), an iron group metal ion (one or more of Ni ion, Co ion, Fe ion) is previously applied to the plating surface as necessary. Surface adjustment treatment with an acidic or alkaline aqueous solution containing can also be performed.
When using an electrogalvanized steel sheet as the base steel sheet, iron group metal ions (one or more of Ni ions, Co ions, Fe ions) are added to the electroplating bath for the purpose of preventing blackening, and the plating film These metals can be contained in an amount of 1 ppm or more. In this case, there is no particular limitation on the upper limit of the iron group metal concentration in the plating film.

次に、亜鉛系めっき鋼板の表面に形成する表面処理皮膜について説明する。
この表面処理皮膜は、4価の価数を有するバナジウム化合物(A)と、リン酸又は/及びリン酸化合物(B)と、双官能型シラン化合物(C)と、水溶性有機樹脂又は/及び水分散性有機樹脂(D)を含有する(好ましくは主成分とする)ものである。
バナジウム化合物の中で代表的な5価のバナジウム化合物は、その酸化作用のためにバナジウム自体は還元され、酸化物や水酸化物として皮膜がめっき層の表面に形成される。その際、皮膜形成時における局部的なpHの上昇の違い(バナジウム化合物還元時の水素イオン消費による局部的なpH上昇の違い)によって2〜4価の化合物が混在すると考えられる。すなわち、易溶性の2、3価のバナジウム化合物も存在し、その部分が腐食の起点となってしまう。一方、本発明で用いる4価のバナジウム化合物は、5価のバナジウム化合物と異なり、酸化作用がないため、2、3価のバナジウム化合物は形成されにくく、皮膜は化学的に安定な4価のバナジウム化合物で形成される。その結果、高い耐食性を発揮すると推測される。
Next, the surface treatment film formed on the surface of the galvanized steel sheet will be described.
This surface treatment film is composed of a vanadium compound (A) having a tetravalent valence, phosphoric acid or / and a phosphoric acid compound (B), a bifunctional silane compound (C), a water-soluble organic resin, and / or It contains the water-dispersible organic resin (D) (preferably mainly).
Among the vanadium compounds, a typical pentavalent vanadium compound is reduced by vanadium itself due to its oxidizing action, and a film is formed on the surface of the plating layer as an oxide or hydroxide. At that time, it is considered that divalent to tetravalent compounds are mixed due to a difference in local pH increase during film formation (difference in local pH increase due to hydrogen ion consumption during vanadium compound reduction). That is, a readily soluble divalent or trivalent vanadium compound also exists, and that portion becomes a starting point of corrosion. On the other hand, the tetravalent vanadium compound used in the present invention does not have an oxidizing action unlike the pentavalent vanadium compound. Therefore, the divalent and trivalent vanadium compounds are hardly formed, and the film is chemically stable tetravalent vanadium. Formed with compounds. As a result, it is estimated that high corrosion resistance is exhibited.

4価のバナジウム化合物(A)としては、バナジウムの酸化物、水酸化物、硫化物、硫酸物、炭酸物、ハロゲン化物、窒化物、フッ化物、炭化物、シアン化物及びこれらの塩などが挙げられる。また、5価のバナジウム化合物にメタノール等のアルコール類、ホルムアルデヒド等のアルデヒド化合物、酒石酸等の有機酸、グルコース等の単糖類、ショ糖等の多糖類などの1種以上を添加して還元した4価のバナジウム化合物でもよい。このようなバナジウムの供給源は特別な制約はなく、これらのうちの1種又は2種以上を用いることができる。但し、4価のバナジウム化合物の中でも、硫酸酸化バナジウムや5酸化バナジウムの還元物は耐食性と耐黒変性の両立が容易であり、また水に易溶であるため好ましい。
表面処理皮膜中でのバナジウム化合物(A)の付着量は、V換算で1〜100mg/mとする。V換算の付着量が1mg/m未満では耐食性の向上効果が十分に得られず、一方、付着量が100mg/mを超えると付着量に見合う耐食性向上効果が得られないため、経済的に不利である。
Examples of the tetravalent vanadium compound (A) include vanadium oxides, hydroxides, sulfides, sulfates, carbonates, halides, nitrides, fluorides, carbides, cyanides, and salts thereof. . In addition, the pentavalent vanadium compound was reduced by adding one or more of alcohols such as methanol, aldehyde compounds such as formaldehyde, organic acids such as tartaric acid, monosaccharides such as glucose, polysaccharides such as sucrose, and the like 4 A valent vanadium compound may be used. Such a supply source of vanadium is not particularly limited, and one or more of these can be used. However, among the tetravalent vanadium compounds, reduced products of vanadium sulfate oxide and vanadium pentoxide are preferable because they can easily achieve both corrosion resistance and blackening resistance and are easily soluble in water.
The adhesion amount of the vanadium compound (A) in the surface treatment film is 1 to 100 mg / m 2 in terms of V. If the adhesion amount in terms of V is less than 1 mg / m 2 , the effect of improving corrosion resistance is not sufficiently obtained. On the other hand, if the adhesion amount exceeds 100 mg / m 2 , the effect of improving corrosion resistance commensurate with the adhesion amount cannot be obtained. Disadvantageous.

リン酸又は/及びリン酸化合物(B)を4価のバナジウム化合物(A)に複合添加することによって、飛躍的に耐食性を向上させることができる。リン酸やリン酸化合物の添加によってめっき皮膜のエッチング作用が促進されると、表面処理皮膜中に取り込まれるめっき金属が増加し、4価のバナジウム化合物の分子構造の対称性が増すことが物理解析により明らかになっており、その結果、難溶化が促進されるものと推定される。
リン酸、リン酸化合物としては、可溶性であれば特別に制約はなく、リン酸、第一リン酸塩、第二リン酸塩、第三リン酸塩、ピロリン酸、ピロリン酸塩、トリポリリン酸、トリポリリン酸塩などの縮合リン酸塩、亜リン酸、亜リン酸塩、次亜リン酸、次亜リン酸塩等が挙げられ、これらのうちの1種又は2種以上を用いることができる。
表面処理皮膜中でのリン酸又は/及びリン酸化合物(B)の付着量は、P換算で5〜200mg/mとする。P換算の付着量が5mg/m未満では耐食性の向上効果が小さく、一方、付着量が200mg/mを超えると耐水性が著しく低下する。
By adding the phosphoric acid and / or the phosphoric acid compound (B) to the tetravalent vanadium compound (A), the corrosion resistance can be drastically improved. When the etching action of the plating film is promoted by the addition of phosphoric acid or phosphoric acid compound, the plating metal taken into the surface treatment film increases, and the physical analysis shows that the symmetry of the molecular structure of the tetravalent vanadium compound increases. As a result, it is estimated that poor solubility is promoted.
The phosphoric acid and phosphoric acid compound are not particularly limited as long as they are soluble, and phosphoric acid, primary phosphate, secondary phosphate, tertiary phosphate, pyrophosphoric acid, pyrophosphate, tripolyphosphoric acid, Examples include condensed phosphates such as tripolyphosphate, phosphorous acid, phosphite, hypophosphorous acid, hypophosphite, and the like, and one or more of these can be used.
The adhesion amount of phosphoric acid and / or phosphoric acid compound (B) in the surface treatment film is 5 to 200 mg / m 2 in terms of P. When the adhesion amount in terms of P is less than 5 mg / m 2 , the effect of improving the corrosion resistance is small, whereas when the adhesion amount exceeds 200 mg / m 2 , the water resistance is remarkably lowered.

シラン化合物は加水分解してシラノール(Si−OH)基を生じるアルコキシシラン(Si(OR)、Rはメチル基、エチル基)を有する有機アルキル化合物である。アルキル基の一端にSiに結合した3個のアルコキシ基があり、他端にアミノ基、グリシジル基、ビニル基、メルカプト基などの有機官能基を有すものを単官能型シラン化合物という。一方、有機官能基がなく、アルキル基の両端にアルコキシシランを有するもの(中間にアミノ基やS結合などを有するものを含む)を双官能型シラン化合物という。 The silane compound is an organic alkyl compound having an alkoxysilane (Si (OR) 3 , R is a methyl group, an ethyl group) that hydrolyzes to generate a silanol (Si—OH) group. A monofunctional silane compound having three alkoxy groups bonded to Si at one end of an alkyl group and having an organic functional group such as an amino group, a glycidyl group, a vinyl group, or a mercapto group at the other end is referred to as a monofunctional silane compound. On the other hand, those having no organic functional group and having an alkoxysilane at both ends of the alkyl group (including those having an amino group or S bond in the middle) are referred to as bifunctional silane compounds.

シラン化合物は水に溶解し、そのアルコキシシランは加水分解してシラノール(Si−OH)基となる。この溶液を亜鉛系めっき鋼板表面に塗布し加熱すると、シラノール基がめっき金属や皮膜中の金属成分であるバナジウム表面のOH基と水素結合して密着性を発現するとともに、脱水縮合反応により高分子化してポリシロキサン皮膜を形成し、バリア性も発現する。しかし、アルコキシシランから加水分解により得られるシラノール基は不安定であり、経時により水溶液中で自己縮合反応が起こる。このため、調製してまもない処理液から得られた表面処理皮膜では、上記作用により十分な耐食性と耐水性が得られたとしても、経時した処理液から得られた表面処理皮膜は耐食性と耐水性が著しく劣ったものとなる。そこで種々検討した結果、シラン化合物として双官能型シラン化合物を適用することにより、経時した処理液から得られた表面処理皮膜であっても耐食性と耐水性の劣化は見られず、極めて安定した性能が得られることが判った。   The silane compound is dissolved in water, and the alkoxysilane is hydrolyzed to a silanol (Si—OH) group. When this solution is applied to the surface of a galvanized steel sheet and heated, the silanol group hydrogen bonds with the OH group on the surface of the plated metal or vanadium, which is a metal component in the coating, to exhibit adhesion, and the dehydration condensation reaction results in a polymer. To form a polysiloxane film and exhibit barrier properties. However, silanol groups obtained by hydrolysis from alkoxysilanes are unstable, and a self-condensation reaction occurs in an aqueous solution over time. For this reason, even if sufficient corrosion resistance and water resistance are obtained by the above action in the surface treatment film obtained from the treatment liquid that is not prepared, the surface treatment film obtained from the time-treated treatment liquid has corrosion resistance. The water resistance is remarkably inferior. As a result of various investigations, by applying a bifunctional silane compound as a silane compound, even with a surface treatment film obtained from a time-treated treatment liquid, there is no deterioration in corrosion resistance and water resistance, and extremely stable performance Was found to be obtained.

この理由は必ずしも明らかではないが、(1)双官能型シラン化合物は単官能型シラン化合物に比べて自己縮合反応が極めて遅いこと、(2)双官能型シラン化合物は1分子当たりに含まれるアルコキシシランの数が単官能型シラン化合物の2倍であるため、得られる皮膜が上記のような密着性とバリア性を効果的に発揮できること、(3)双官能型シラン化合物は有機樹脂中で架橋剤としても作用し、表面処理皮膜の強靱化にも寄与すること、等の作用が考えられ、これらの作用が複合する結果、スタック状態でエッチング剤が溶出しても、表面処理皮膜が障壁として作用して侵入を抑制するとともに、めっき皮膜−表面処理皮膜の高度の密着性とポリシロキサン皮膜のバリア効果によりめっき皮膜の変質を防ぐことができるものと考えられる。   The reason for this is not always clear, but (1) the bifunctional silane compound has a very slow self-condensation reaction compared to the monofunctional silane compound, and (2) the bifunctional silane compound is an alkoxy contained per molecule. Since the number of silanes is twice that of monofunctional silane compounds, the resulting film can effectively exhibit the above adhesion and barrier properties. (3) Bifunctional silane compounds are crosslinked in organic resins. It can also act as an agent, contributing to the toughening of the surface treatment film, etc., and as a result of combining these actions, even if the etching agent elutes in the stack state, the surface treatment film acts as a barrier. It is thought that it can prevent the deterioration of the plating film due to the high adhesion between the plating film and the surface treatment film and the barrier effect of the polysiloxane film while acting to suppress the penetration.

双官能型シラン化合物(C)としては、bis-1,2-[triethoxysilyl]ethane(以下、「BTSE」という)、bis-1,2-[triethoxysilylpropyl]amine(以下、「BTSPA」という)、bis-1,2-[triethoxysilylpropyl]tetrasulfide(以下、「BTSPS」という)等が挙げられ、これらの1種を単独で又は2種以上を混合して用いることができる。但し、これらの双官能型シラン化合物の中でも、処理液安定性の観点からは特にBTSEが好ましい。
表面処理皮膜中で双官能型シラン化合物(C)の付着量は、Si換算で5〜300mg/mとする。Si換算での付着量が5mg/m未満では耐水性の向上効果が殆ど得られず、一方、付着量が300mg/m超えると却って耐食性が低下してしまう。また、以上の観点からより好ましい付着量の範囲は10〜60mg/mである。
Examples of the bifunctional silane compound (C) include bis-1,2- [triethoxysilyl] ethane (hereinafter referred to as “BTSE”), bis-1,2- [triethoxysilylpropyl] amine (hereinafter referred to as “BTSPA”), bis -1,2- [triethoxysilylpropyl] tetrasulfide (hereinafter referred to as “BTSPS”), and the like can be used alone or in combination of two or more. However, among these bifunctional silane compounds, BTSE is particularly preferable from the viewpoint of processing solution stability.
The adhesion amount of the bifunctional silane compound (C) in the surface treatment film is 5 to 300 mg / m 2 in terms of Si. If the adhesion amount in terms of Si is less than 5 mg / m 2 , the effect of improving the water resistance is hardly obtained, whereas if the adhesion amount exceeds 300 mg / m 2 , the corrosion resistance is lowered. Moreover, the range of the more preferable adhesion amount from the above viewpoint is 10-60 mg / m < 2 >.

水溶性有機樹脂又は/及び水分散性有機樹脂(D)については特に制限はなく、例えば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、フェノール樹脂等の1種又は2種以上を用いることができ、また、これに潤滑剤を混合してもよい。
また、表面処理皮膜中には、必要に応じて防錆添加剤や酸化物ゾルを添加することもできる。また、反応性制御の観点から、フッ酸等の無機酸及びその塩やカルボン酸等の有機酸及びその塩などの添加が可能である。また、密着性改善の観点から単官能型シラン化合物などの添加も支障がない限り可能である。以上のような成分の1種又は2種以上を添加することができる。
表面処理皮膜の皮膜厚は0.2〜3μmとすることが好ましい。皮膜厚が0.2μm未満では、十分な耐食性が得られない。一方、皮膜厚が3μmを超えると、皮膜が着色して外観が劣ったものとなる。
There is no restriction | limiting in particular about water-soluble organic resin or / and water-dispersible organic resin (D), For example, 1 type (s) or 2 or more types, such as an acrylic resin, a urethane resin, an epoxy resin, a phenol resin, can be used, A lubricant may be mixed with this.
Moreover, a rust preventive additive and oxide sol can also be added in a surface treatment film as needed. Further, from the viewpoint of reactivity control, it is possible to add an inorganic acid such as hydrofluoric acid and a salt thereof, an organic acid such as a carboxylic acid and a salt thereof, and the like. In addition, addition of a monofunctional silane compound or the like is possible from the viewpoint of improving adhesion as long as there is no problem. One or more of the above components can be added.
The film thickness of the surface treatment film is preferably 0.2 to 3 μm. If the film thickness is less than 0.2 μm, sufficient corrosion resistance cannot be obtained. On the other hand, when the film thickness exceeds 3 μm, the film is colored and the appearance is inferior.

亜鉛系めっき鋼板の表面に表面処理皮膜を形成する方法としては、通常行われている塗布処理方法を用いることができる。例えば、塗布法、浸漬法、スプレー法等により表面処理組成物(処理液)を塗布した後、加熱乾燥を行う。塗布法の場合には、ロールコーター(3ロール方式、2ロール方式など)、スクイズコーターなどいずれの方法でもよい。また、スクイズコーターなどによる塗布処理、或いは浸漬処理やスプレー処理の後に、エアナイフ法やロール絞り法により塗布量の調整、外観の均一化、膜厚の均一化を行うことも可能である。加熱乾燥手段としてはドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができる。加熱処理は、到達板温で300℃以下、好ましくは250℃以下とすることが適当である。加熱温度が300℃を超えると非経済的であるだけでなく、皮膜にクラックが生じて耐食性が低下する。   As a method of forming the surface treatment film on the surface of the zinc-based plated steel sheet, a commonly applied coating treatment method can be used. For example, the surface treatment composition (treatment liquid) is applied by a coating method, a dipping method, a spray method, or the like, and then dried by heating. In the case of the coating method, any method such as a roll coater (3-roll method, 2-roll method, etc.), a squeeze coater, etc. may be used. In addition, after the coating process with a squeeze coater or the like, or the dipping process or the spray process, the coating amount can be adjusted, the appearance can be made uniform, and the film thickness can be made uniform by an air knife method or a roll drawing method. As the heating and drying means, a dryer, a hot air furnace, a high frequency induction heating furnace, an infrared furnace or the like can be used. It is appropriate that the heat treatment is 300 ° C. or less, preferably 250 ° C. or less at the ultimate plate temperature. When the heating temperature exceeds 300 ° C., not only is it uneconomical, but cracks occur in the film, and the corrosion resistance decreases.

電気亜鉛めっき鋼板(片面当たりめっき付着量:20g/m)をアルカリ脱脂処理、水洗・乾燥した後、表1及び表2に示す組成の処理液を、調製直後と調製して1ヶ月後にそれぞれ塗布し、140℃で乾燥した。皮膜の膜厚は、皮膜組成物の固形分(加熱残分)や処理時間等により調整し、1.5μmとした。得られた表面処理鋼板の品質性能を表3及び表4に示す。品質性能の評価方法は、以下のとおりである。
(1)湿潤試験後外観
供試材を温度80℃、相対湿度98%RH雰囲気に制御された恒温恒湿機に24時間立てかけて静置した後、供試材表面を目視で評価した。評価基準は以下のとおりである。
○:着色及び変色なし(試験前と差無し)
△:斜めからみて確認できる程度のごく薄い着色あり
×:明らかな着色及び変色あり
After electrogalvanized steel sheet (plating adhesion amount per side: 20 g / m 2 ) is subjected to alkaline degreasing treatment, washed with water and dried, treatment liquids having the compositions shown in Table 1 and Table 2 are prepared immediately after preparation and one month after preparation. It was applied and dried at 140 ° C. The film thickness of the film was adjusted to 1.5 μm by adjusting the solid content (heating residue) of the film composition, the treatment time, and the like. Tables 3 and 4 show the quality performance of the obtained surface-treated steel sheets. The quality performance evaluation method is as follows.
(1) Appearance after wetting test The specimen was allowed to stand for 24 hours in a thermostatic oven controlled at a temperature of 80 ° C. and a relative humidity of 98% RH, and then the surface of the specimen was visually evaluated. The evaluation criteria are as follows.
○: No coloring or discoloration (no difference from before test)
Δ: Very thin color that can be confirmed when viewed from an angle ×: Clear coloration and discoloration

(2)スタック状態での湿潤試験後外観(耐水性)
供試材をスタック状態にして湿潤試験機(HCT)に4週間放置した後、供試材表面を目視で評価した。評価基準は以下のとおりである。
○:白化なし(試験前と差無し)
△:斜めからみて確認できる程度のごく薄い白化あり
×:明らかな白化あり
(3)耐食性
端部と裏面をテープシールした供試材に対してJIS Z 2371の塩水噴霧試験を行い、312時間後の白錆面積率を測定した。評価基準は以下のとおりである。
◎:白錆面積率5%未満
○:白錆面積率5%以上10%未満
△:白錆面積率10%以上50%未満
×:白錆面積率50%以上
(2) Appearance after wet test in a stacked state (water resistance)
The test material was put in a stacked state and left in a wet testing machine (HCT) for 4 weeks, and then the surface of the test material was visually evaluated. The evaluation criteria are as follows.
○: No whitening (no difference from before test)
△: Very thin whitening that can be confirmed from an angle ×: Clear whitening (3) Corrosion resistance JIS Z 2371 salt spray test was performed on the specimen with the end and back tape sealed, and after 312 hours The white rust area ratio was measured. The evaluation criteria are as follows.
◎: White rust area ratio of less than 5% ○: White rust area ratio of 5% or more and less than 10% △: White rust area ratio of 10% or more and less than 50% ×: White rust area ratio of 50% or more

Figure 2007321222
Figure 2007321222

Figure 2007321222
Figure 2007321222

Figure 2007321222
Figure 2007321222

Figure 2007321222
Figure 2007321222

Claims (1)

亜鉛系めっき鋼板の表面に、4価の価数を有するバナジウム化合物(A)と、リン酸又は/及びリン酸化合物(B)と、双官能型シラン化合物(C)と、水溶性有機樹脂又は/及び水分散性有機樹脂(D)を含有し、前記バナジウム化合物(A)の付着量がV換算で1〜100mg/m、前記リン酸又は/及びリン酸化合物(B)の付着量がP換算で5〜200mg/m、前記双官能型シラン化合物(C)の付着量がSi換算で5〜300mg/mであって、皮膜厚が0.2〜3μmの表面処理皮膜が形成されていることを特徴とする耐食性及び耐水性に優れた表面処理鋼板。 On the surface of the galvanized steel sheet, a vanadium compound (A) having a tetravalent valence, phosphoric acid or / and a phosphoric acid compound (B), a bifunctional silane compound (C), a water-soluble organic resin or / And a water-dispersible organic resin (D), the adhesion amount of the vanadium compound (A) is 1 to 100 mg / m 2 in terms of V, and the adhesion amount of the phosphoric acid or / and the phosphoric acid compound (B) is 5 to 200 mg / m 2 in terms of P, the amount of the bifunctional silane compound (C) attached is 5 to 300 mg / m 2 in terms of Si, and a coating film thickness of 0.2 to 3 μm is formed. A surface-treated steel sheet excellent in corrosion resistance and water resistance, characterized in that
JP2006155500A 2006-06-04 2006-06-04 Surface treated steel sheet having excellent corrosion resistance and water resistance Pending JP2007321222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006155500A JP2007321222A (en) 2006-06-04 2006-06-04 Surface treated steel sheet having excellent corrosion resistance and water resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006155500A JP2007321222A (en) 2006-06-04 2006-06-04 Surface treated steel sheet having excellent corrosion resistance and water resistance

Publications (1)

Publication Number Publication Date
JP2007321222A true JP2007321222A (en) 2007-12-13

Family

ID=38854295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006155500A Pending JP2007321222A (en) 2006-06-04 2006-06-04 Surface treated steel sheet having excellent corrosion resistance and water resistance

Country Status (1)

Country Link
JP (1) JP2007321222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032528A (en) * 2009-07-31 2011-02-17 Jfe Steel Corp Chemical conversion treated electrogalvanized steel sheet and method of manufacturing the same
JP2015027662A (en) * 2013-07-16 2015-02-12 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Method for application of aqueous treatment solution on surface of moved steel strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032528A (en) * 2009-07-31 2011-02-17 Jfe Steel Corp Chemical conversion treated electrogalvanized steel sheet and method of manufacturing the same
JP2015027662A (en) * 2013-07-16 2015-02-12 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Method for application of aqueous treatment solution on surface of moved steel strip

Similar Documents

Publication Publication Date Title
KR20130051997A (en) Surface treatment fluid for zinc-plated steel sheet, zinc-plated steel sheet, and manufacturing method for same
JP5258557B2 (en) Galvanized steel with composite coating treated with excellent corrosion resistance, blackening resistance, paint adhesion and alkali resistance
JP5075321B2 (en) Aqueous treatment agent for metal surface
EP3730672B1 (en) Surface treatment solution composition for ternary hot-dip zinc alloy-plated steel sheet, providing excellent corrosion resistance and blackening resistance, ternary hot-dip zinc alloy-plated steel sheet surface-treated using same, and manufacturing method therefor
JP2006213958A (en) Composition for surface treatment of metallic material, and treatment method
TWI550099B (en) Galvanized steel sheet containing aluminum and its manufacturing method
WO2007064008A1 (en) Surface-treated steel sheet
TW200837220A (en) Aqueous surface-treating agent for environmentally acceptable pre-coated metallic materials, and surface-treated metallic material and environmentally acceptable pre-coated metallic material
CN114502673B (en) Surface treatment solution composition, ternary hot-dip galvanized alloy steel sheet surface-treated with the same, and method for producing the same
JP4970773B2 (en) Metal surface treatment agent, metal material surface treatment method and surface treatment metal material
JP5537340B2 (en) Surface treatment liquid, surface treated steel plate and method for producing the same
KR101696604B1 (en) Organic-inorganic hybrid coating composition for plated steel sheet
KR101723329B1 (en) Aqueous hydrophilizing surface treatment agent, hydrophilic coating film and hydrophilizing surface treatment method
JP2005048199A (en) Surface-treated steel plate of excellent corrosion resistance, conductivity and film appearance
JP2002332574A (en) Plated steel with chromate-free treated film having excellent corrosion resistance
WO2006123556A1 (en) Water-based surface treatments for environment-friendly precoated metal materials and method of surface treatment
JP4517737B2 (en) Surface-treated steel sheet with excellent corrosion resistance, conductivity, and coating appearance
JP2007321222A (en) Surface treated steel sheet having excellent corrosion resistance and water resistance
JP2007321223A (en) CHROMATE-FREE SURFACE-TREATED Al-Zn-BASED ALLOY-PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND ITS PRODUCTION METHOD
JP4777705B2 (en) Heat-resistant pre-coated steel sheet
JP2011032576A (en) Surface-treated plated steel sheet and surface treatment solution
JP2009174010A (en) Chemical conversion treated steel sheet
JP2001234350A (en) Metallic sheet material excellent in corrosion resistance, coatability, fingerprint resistance and workability and its producing method
JP2007321224A (en) CHROMATE-FREE SURFACE-TREATED Al-Zn-BASED ALLOY-PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND ITS PRODUCTION METHOD
JP4765902B2 (en) Surface-treated metal material with excellent adhesion and film adhesion