JP2007318887A - Drive using electromechanical transducer - Google Patents

Drive using electromechanical transducer Download PDF

Info

Publication number
JP2007318887A
JP2007318887A JP2006144793A JP2006144793A JP2007318887A JP 2007318887 A JP2007318887 A JP 2007318887A JP 2006144793 A JP2006144793 A JP 2006144793A JP 2006144793 A JP2006144793 A JP 2006144793A JP 2007318887 A JP2007318887 A JP 2007318887A
Authority
JP
Japan
Prior art keywords
drive
moving member
moving
conversion element
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006144793A
Other languages
Japanese (ja)
Inventor
Shuji Aizawa
周二 相澤
Eikichi Yoshida
栄吉 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006144793A priority Critical patent/JP2007318887A/en
Publication of JP2007318887A publication Critical patent/JP2007318887A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Lens Barrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive that can easily obtain a minute positioning below several μm with satisfactory reproducibility, and uses an electromechanical transducer. <P>SOLUTION: The drive comprises: the electromechanical transducer; a drive member 2 connected to the transducer for driving with the transducer; and a moving member 3 in frictional connection with the drive member 2. The surface of a friction connection surface 5 between the drive and moving members 2, 3 has an uneven shape at a fixed interval along the traveling direction of the moving member 3 respectively, thus achieving a minute positioning below several μm with satisfactory reproducibility. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、カメラその他の精密機器を構成する部材を駆動する電気−機械変換素子を使用した駆動装置に関するものである。   The present invention relates to a drive device using an electromechanical conversion element for driving a member constituting a camera or other precision equipment.

カメラにオートフォーカスやズーム機能を持たせるためには、光軸に沿って光学レンズを移動させる機構が必要であり、従来から電磁式のモータを用いた方法が知られている。近年、デジタルカメラやカメラ付き携帯電話にみられるように、機器の小型化が急速に進み、それに伴って電磁式のモータから、圧電素子に代表される電気−機械変換素子によるレンズ移動の方法が提案されている。   In order to provide the camera with an autofocus or zoom function, a mechanism for moving the optical lens along the optical axis is necessary, and a method using an electromagnetic motor has been conventionally known. In recent years, as seen in digital cameras and camera-equipped mobile phones, the miniaturization of devices has rapidly progressed. Accordingly, there is a method of moving a lens from an electromagnetic motor to an electro-mechanical conversion element represented by a piezoelectric element. Proposed.

特許文献1には、駆動摩擦部材を圧電素子に接着し、駆動摩擦部材を振動させることで光学レンズを駆動させる構造が開示されており、図3は従来の電気−機械変換素子を使用した駆動装置の駆動原理を示す説明図である。電気−機械変換素子11の端部に錘12が接続され、他端に駆動部材13が接続される。駆動部材13には摩擦結合面15を介して移動部材14が結合している。このとき、電気−機械変換素子11に電圧をパルス的に印加することで急激に伸ばし、その後ゆっくりと縮める、という操作を連続的に行うと、移動部材14は駆動部材13の軸方向に沿って移動する。また、電気−機械変換素子11を、ゆっくりと伸ばし、その後急激に縮めるという操作を施すと、移動部材14は逆方向に移動する。このとき、移動部材14の移動量は、電気−機械変換素子11の伸縮量によって決まるため、移動部材14はパルス的に連続移動する。   Patent Document 1 discloses a structure in which an optical lens is driven by adhering a driving friction member to a piezoelectric element and vibrating the driving friction member. FIG. 3 shows driving using a conventional electromechanical conversion element. It is explanatory drawing which shows the drive principle of an apparatus. A weight 12 is connected to the end of the electromechanical conversion element 11 and a driving member 13 is connected to the other end. A moving member 14 is coupled to the driving member 13 via a friction coupling surface 15. At this time, when the operation of extending rapidly by applying a voltage to the electro-mechanical conversion element 11 and then contracting it slowly is performed, the moving member 14 moves along the axial direction of the driving member 13. Moving. Further, when the electro-mechanical conversion element 11 is slowly extended and then rapidly contracted, the moving member 14 moves in the opposite direction. At this time, since the moving amount of the moving member 14 is determined by the expansion / contraction amount of the electromechanical conversion element 11, the moving member 14 continuously moves in a pulse manner.

また、特許文献2には、駆動部材と移動部材とが面で接触するように構成することで、安定した駆動力が得られる構造が開示されている。   Further, Patent Document 2 discloses a structure in which a stable driving force can be obtained by configuring the driving member and the moving member in contact with each other.

特開2002−218773号公報JP 2002-218773 A 特開平07−274543号公報JP 07-274543 A

特許文献1に開示されている方法では、圧電素子の伸びの速度と縮みの速度とを異ならせる電圧印加手段によって圧電素子を周期的に伸縮させ、レンズ保持体等の移動部材を間欠的に微小送りさせている。すなわち、圧電素子の伸縮量が移動部材の位置決め精度にほぼ一致している。   In the method disclosed in Patent Document 1, the piezoelectric element is periodically expanded and contracted by a voltage application unit that makes the expansion speed and contraction speed of the piezoelectric element different, and a moving member such as a lens holding body is intermittently made minute. I am sending you. That is, the expansion / contraction amount of the piezoelectric element substantially matches the positioning accuracy of the moving member.

しかしながら、圧電素子を数10kHz以上の超音波領域で高周波動作させると、電圧印加開始および停止時において、圧電素子の過渡特性により伸縮量が変化する。即ち、電気−機械変換素子の過渡特性によって電圧印加時と停止時の伸縮量が変化するため、移動部材の総移動量は、印加した電圧パルス数と1パルス当たりの移動量との積とは一般には一致しない問題があった。   However, when the piezoelectric element is operated at a high frequency in an ultrasonic region of several tens of kHz or more, the expansion / contraction amount changes due to the transient characteristics of the piezoelectric element at the start and stop of voltage application. That is, since the amount of expansion and contraction at the time of voltage application and stop changes depending on the transient characteristics of the electromechanical conversion element, the total amount of movement of the moving member is the product of the number of applied voltage pulses and the amount of movement per pulse. In general, there was a problem that did not match.

また、特許文献2では、移動部材と駆動部材の摩擦力のばらつきなどが原因で、数μm程度以下の微小な位置決めを再現性良く実現することが困難であった。   Further, in Patent Document 2, it is difficult to realize minute positioning of about several μm or less with high reproducibility due to variations in frictional force between the moving member and the driving member.

本発明は、従来の電気−機械変換素子を使用した駆動装置の欠点を解消し、この状況にあって、単純な構造を持ち、数μm程度以下の微小な位置決めを容易で再現性良く得られる、電気−機械変換素子を使用した駆動装置を提供することにある。   The present invention eliminates the drawbacks of the conventional drive device using the electromechanical conversion element, and in this situation, it has a simple structure and can easily obtain a minute positioning of about several μm or less with good reproducibility. An object of the present invention is to provide a drive device using an electro-mechanical conversion element.

本発明は、前記課題の解決のため、電気−機械変換素子と、前記電気−機械変換素子に結合し、ともに駆動する駆動部材と、駆動部材に摩擦結合した移動部材から構成してなる駆動装置において、駆動部材と移動部材の摩擦結合面の表面が、それぞれ、移動部材の移動方向に沿って一定間隔で凹凸形状を有していることを特徴とする電気−機械変換素子を使用した駆動装置である。   In order to solve the above-described problems, the present invention provides an electro-mechanical conversion element, a drive member coupled to the electro-mechanical conversion element and driven together, and a drive member frictionally coupled to the drive member. The drive device using an electro-mechanical conversion element characterized in that the surfaces of the frictional coupling surfaces of the drive member and the moving member each have a concavo-convex shape at regular intervals along the moving direction of the moving member It is.

さらに、凹凸形状の高さが1〜10μmの範囲で、かつ、凹凸形状の凹凸間の距離が移動部材の移動方向に沿って、0.5〜5μmの範囲で形成してなることを特徴とする電気−機械変換素子を使用した駆動装置である。   Further, the height of the uneven shape is in the range of 1 to 10 μm, and the distance between the uneven shapes of the uneven shape is formed in the range of 0.5 to 5 μm along the moving direction of the moving member. It is the drive device which uses the electro-mechanical conversion element.

従って、本発明によれば、駆動部材と移動部材の摩擦結合面の表面が、それぞれ、移動部材の移動方向に沿って、一定間隔で凹凸形状を有しているため、凹凸の間隔を位置決め精度とする電気−機械変換素子を使用した駆動装置を得ることができる。   Therefore, according to the present invention, the surfaces of the frictional coupling surfaces of the driving member and the moving member each have a concavo-convex shape at regular intervals along the moving direction of the moving member. A drive device using the electromechanical conversion element can be obtained.

また、凹凸形状の高さが1〜10μmの範囲で、かつ、移動部材の移動方向に沿って0.5μm〜5μmの範囲の一定間隔で形成することにより、デジタルカメラやカメラ付き携帯電話などの光学レンズの駆動装置に応用でき、オートフォーカスやズーム機構に利用できる。   In addition, by forming the uneven shape in the range of 1 to 10 μm and at regular intervals in the range of 0.5 μm to 5 μm along the moving direction of the moving member, a digital camera, a mobile phone with a camera, etc. It can be applied to optical lens drive devices and can be used for autofocus and zoom mechanisms.

図1は、本発明の実施の形態に係わる駆動装置の説明図である。図1(a)は分解図、図1(b)は組立図である。本発明の実施の形態を、図面を参照しながら説明する。電気−機械変換素子として積層型圧電セラミック素子1を直方体状に作製し、この積層型圧電セラミック素子1の端部にステンレス製の錘4を接着する。さらに、他端に、カーボンを分散したポリカーボネートを材質とする円筒形の駆動部材2を接着する。   FIG. 1 is an explanatory diagram of a driving apparatus according to an embodiment of the present invention. FIG. 1A is an exploded view, and FIG. 1B is an assembly view. Embodiments of the present invention will be described with reference to the drawings. A multilayer piezoelectric ceramic element 1 is produced in a rectangular parallelepiped shape as an electro-mechanical conversion element, and a stainless steel weight 4 is bonded to the end of the multilayer piezoelectric ceramic element 1. Further, a cylindrical driving member 2 made of polycarbonate in which carbon is dispersed is bonded to the other end.

また、カーボンを分散したポリカーボネートを材質とし、射出成形法にて作製した移動部材3は、所定の外径、内径を有したリング状構造であり、末端を割りピンから成るねじ部材(図示せず)によって駆動部材2を締め付けることで、摩擦結合面5における摩擦力を調整できるようにしている。   Further, the moving member 3 made of polycarbonate in which carbon is dispersed and manufactured by an injection molding method has a ring-like structure having a predetermined outer diameter and inner diameter, and a screw member (not shown) having a split pin at the end. ), The frictional force on the friction coupling surface 5 can be adjusted.

ここで、電気−機械変換素子として積層型圧電セラミック素子1を用いたが、素子の構造は特に限定されず、バイモルフ型振動子あるいはユニモルフ型振動子を用いることもできる。また、駆動部材2の形状を中実円筒としたが、中空円筒や直方体や立方体または矩形板でも構わない。また、積層型圧電セラミック素子1の形状も矩形以外に円盤形状とすることもできる。   Here, the multilayer piezoelectric ceramic element 1 is used as the electromechanical conversion element, but the structure of the element is not particularly limited, and a bimorph type vibrator or a unimorph type vibrator can also be used. Moreover, although the shape of the drive member 2 is a solid cylinder, it may be a hollow cylinder, a rectangular parallelepiped, a cube, or a rectangular plate. Moreover, the shape of the multilayer piezoelectric ceramic element 1 can also be a disk shape other than a rectangle.

本実施の形態においては、摩擦結合面5の凹凸部を、移動部材3と駆動部材2のそれぞれの内径、外径表面全体に形成したが、必ずしも表面全体に形成する必要はなく、移動部材3の移動方向に沿って適当な幅で形成されていれば本発明の効果が得られる。   In the present embodiment, the concavo-convex portion of the frictional coupling surface 5 is formed on the entire inner diameter and outer diameter surfaces of the moving member 3 and the drive member 2, but it is not necessarily formed on the entire surface. If it is formed with an appropriate width along the moving direction, the effect of the present invention can be obtained.

また、積層型圧電セラミック素子1の材質は、ジルコン酸チタン酸鉛[Pb(Zr・Ti)O3]を主成分とする圧電セラミックスであることが好適であるが、他に、ビスマス層状セラミックス、ニオブ酸カリウムあるいはニオブ酸ナトリウムを主成分とするセラミックスなどの、非鉛材料なども使用可能である。また、ニオブ酸リチウムなどの単結晶材料も使用可能である。 The material of the multilayer piezoelectric ceramic element 1 is preferably a piezoelectric ceramic mainly composed of lead zirconate titanate [Pb (Zr · Ti) O 3 ], but in addition, a bismuth layered ceramic, Lead-free materials such as ceramics mainly composed of potassium niobate or sodium niobate can also be used. A single crystal material such as lithium niobate can also be used.

ジルコン酸チタン酸鉛[Pb(Zr・Ti)O3]を主成分とする圧電セラミックスによる積層型圧電セラミック素子1の作製については、一般的な圧電セラミクスの製法により、焼結体を製造し、機械加工などにより所定の形状とした後、銀などを用いて外部電極を形成後、厚さ方向に分極処理を施す。その後、錘4に接着することで、駆動部材2を製造する。また、積層型圧電セラミック素子1の圧電セラミックスの厚さを薄くして積層数を大きくすることで、発生変位を大きくでき、駆動電圧の低電圧化にも有効である。 For the production of the laminated piezoelectric ceramic element 1 made of piezoelectric ceramics mainly composed of lead zirconate titanate [Pb (Zr · Ti) O 3 ], a sintered body is produced by a general piezoelectric ceramic manufacturing method. After forming into a predetermined shape by machining or the like, an external electrode is formed using silver or the like, and then a polarization treatment is performed in the thickness direction. Thereafter, the drive member 2 is manufactured by bonding to the weight 4. Further, by reducing the thickness of the piezoelectric ceramics of the multilayer piezoelectric ceramic element 1 and increasing the number of stacked layers, the generated displacement can be increased, which is effective for lowering the drive voltage.

積層型圧電セラミック素子1の製造方法は、一般的な方法を用いればよい。たとえば、ドクターブレード法などの方法で所定の厚さのセラミックグリーンシートを製造し、スクリーン印刷法などで所定の形状にAg/PdペーストやCuペーストを内部電極として印刷した後、トリミングおよび所定枚数を積層する。熱プレス後に所定の形状に打ち抜き、脱バインダー、焼結の工程により製造すればよい。   A general method may be used as a method of manufacturing the multilayer piezoelectric ceramic element 1. For example, a ceramic green sheet having a predetermined thickness is manufactured by a method such as a doctor blade method, and after printing Ag / Pd paste or Cu paste as an internal electrode in a predetermined shape by a screen printing method or the like, trimming and a predetermined number of sheets are performed. Laminate. What is necessary is just to manufacture by the process of punching to a defined shape after a hot press, a binder removal, and a sintering.

移動部材3と駆動部材2は、摩擦結合面5の凹凸形状を形成可能な材質であればカーボンを分散したポリカーボネートには限定されない。   The moving member 3 and the driving member 2 are not limited to polycarbonate in which carbon is dispersed as long as the material can form the uneven shape of the frictional coupling surface 5.

図2は、本発明の実施の形態に係わる摩擦結合面の断面の概念図である。本発明の実施の形態を、図面を参照しながら説明する。移動部材3と駆動部材2の摩擦結合面5は、一定間隔で凹凸形状を有している。凹凸部の高さt、すなわち移動方向に対する凹部及び凸部の頂点間の垂直距離を1〜10μmとし、前記2つの頂点間の移動方向の水平距離dを0.5〜5μmとするのが良い。   FIG. 2 is a conceptual view of a cross section of the frictional coupling surface according to the embodiment of the present invention. Embodiments of the present invention will be described with reference to the drawings. The frictional coupling surfaces 5 of the moving member 3 and the driving member 2 have an uneven shape at regular intervals. The height t of the concavo-convex portion, that is, the vertical distance between the vertices of the concave and convex portions with respect to the moving direction is preferably 1 to 10 μm, and the horizontal distance d in the moving direction between the two vertices is preferably 0.5 to 5 μm. .

圧電素子の発生変位、および、摩擦結合面5の摩擦力を調整することで、移動部材3の1パルス当たりの移動量を適宜調整することが可能であり、移動部材3の移動量にあわせて凹凸間の距離は適宜決定される。しかし、一般的な圧電素子の発生変位から、dの上限は5μ程度とし、また、移動部材3と駆動部材2の加工精度の点からdの下限値は0.5μm程度とすることが好ましい。   By adjusting the generated displacement of the piezoelectric element and the frictional force of the friction coupling surface 5, it is possible to appropriately adjust the moving amount per pulse of the moving member 3, and according to the moving amount of the moving member 3. The distance between the irregularities is appropriately determined. However, the upper limit of d is preferably about 5 μm from the generated displacement of a general piezoelectric element, and the lower limit value of d is preferably about 0.5 μm from the viewpoint of processing accuracy of the moving member 3 and the drive member 2.

凹凸部の高さtについては、10μmを超えると圧電素子の発生変位によらず移動部材3が移動することが困難となり、1μm未満では本発明による効果がなくなるため、tの範囲は1〜10μmが好適である。なお、図2に示した凹凸形状に限定されるものではなく、矩形状、サインカーブ状の曲線状など適宜選択するのがよいが、種々の実験結果によれば、図2のような鋸刃形状が好ましい。   If the height t of the concavo-convex portion exceeds 10 μm, it is difficult for the moving member 3 to move regardless of the generated displacement of the piezoelectric element, and if it is less than 1 μm, the effect of the present invention is lost, so the range of t is 1 to 10 μm. Is preferred. 2 is not limited to the uneven shape shown in FIG. 2, but a rectangular shape, a sine curve shape, or the like may be appropriately selected. However, according to various experimental results, a saw blade as shown in FIG. Shape is preferred.

圧電素子の発生変位が0.5μm程度以下の場合や、摩擦結合面5の摩擦力がばらついて移動部材3の1パルス当たりの移動量が0.5μm程度以下となった場合も、摩擦結合面5の摩擦力を調整することで、移動部材3を移動させることが可能である。印加電圧のパルス数と移動部材3の移動量を1対1で対応させることは困難となるが、この場合においても、本発明の実施の形態によれば移動部材3の位置は常にデジタル的に決定できるため、従来技術に比較して、位置決め精度を向上させることが容易となる。   When the generated displacement of the piezoelectric element is about 0.5 μm or less, or when the frictional force of the frictional coupling surface 5 varies and the moving amount of the moving member 3 per pulse is about 0.5 μm or less, the frictional coupling surface The moving member 3 can be moved by adjusting the frictional force 5. Although it is difficult to make the number of applied voltage pulses correspond to the amount of movement of the moving member 3 on a one-to-one basis, according to the embodiment of the present invention, the position of the moving member 3 is always digital. Since it can be determined, it becomes easy to improve positioning accuracy as compared with the prior art.

次に、具体的な実施例を挙げ、本発明の電気−機械変換素子を使用した駆動装置について、さらに詳しく説明する。   Next, a specific example is given and the drive device using the electromechanical conversion element of the present invention will be described in more detail.

図1(a)、図1(b)で示した電気−機械変換素子として積層型圧電セラミック素子1を断面2×2mm、高さ4mmの大きさの矩形板状に作製した。このとき、印加電圧0〜20Vに対して、発生変位は1.5μmであった。この積層型圧電セラミック素子1の端部にステンレス製の錘4を接着し、さらに、他端に、カーボンを分散したポリカーボネートを材質とする、直径1.5mm×長さ10mmの円筒形の駆動部材2を接着した。   As the electro-mechanical conversion element shown in FIGS. 1 (a) and 1 (b), a multilayer piezoelectric ceramic element 1 was formed in a rectangular plate shape having a cross section of 2 × 2 mm and a height of 4 mm. At this time, the generated displacement was 1.5 μm with respect to the applied voltage of 0 to 20V. A cylindrical driving member having a diameter of 1.5 mm and a length of 10 mm, made of a polycarbonate material in which a stainless steel weight 4 is bonded to the end of the multilayer piezoelectric ceramic element 1 and carbon is dispersed on the other end. 2 was bonded.

また、カーボンを分散したポリカーボネートを材質とし、射出成形法にて作製した移動部材3は、外径1.7mm、内径1.4mmのリング状構造であり、末端を割りピンから成るねじ部材によって移動部材3を駆動部材2に締め付けることで、摩擦結合面5における摩擦力を調整できるようにした。   The moving member 3 made of polycarbonate with carbon dispersed and made by injection molding has a ring-like structure with an outer diameter of 1.7 mm and an inner diameter of 1.4 mm, and the end is moved by a screw member made of a split pin. By tightening the member 3 to the driving member 2, the frictional force on the friction coupling surface 5 can be adjusted.

次に、積層型圧電セラミック素子1に振幅が0〜20Vの鋸刃形状のパルス電圧を連続的に印加すると、移動部材3は1パルス当たり、大略1μm移動し、摩擦結合面5の距離dを1μmとして形成しているため、1パルスで1μmの移動が可能となった。また、電圧印加開始、停止時の過渡状態において1パルス当たりの移動量が1μm未満であると凸部を乗り越えることができず、移動部材3は移動しなかった。   Next, when a sawtooth-shaped pulse voltage having an amplitude of 0 to 20 V is continuously applied to the multilayer piezoelectric ceramic element 1, the moving member 3 moves approximately 1 μm per pulse, and the distance d of the frictional coupling surface 5 is increased. Since it is formed as 1 μm, it is possible to move 1 μm by one pulse. In addition, when the amount of movement per pulse was less than 1 μm in the transient state at the start and stop of voltage application, the protrusion could not be overcome and the moving member 3 did not move.

電圧印加開始、停止時の過渡状態において、1パルス当たりの移動量が1μm未満となるパルス数を予め測定しておけば、入力パルス数から正確な移動量を設定することができた。本発明の実施の形態においては、印加開始、停止時において、それぞれ3パルスの移動量が1μm未満であった。   If the number of pulses at which the amount of movement per pulse is less than 1 μm is measured in advance in a transient state at the start and stop of voltage application, the exact amount of movement can be set from the number of input pulses. In the embodiment of the present invention, the amount of movement of three pulses was less than 1 μm at the start and stop of application, respectively.

図1および図2の最良の実施の形態において、パルス電圧として20Vpp(ピークトゥーピーク)の鋸刃形状の電圧を所定パルス数を印加し、そのときの移動体の移動量を測定した。測定は5回繰り返し行い、その平均値とばらつきを表1に示した。比較として、摩擦結合面に凹凸を形成していない従来法による結果も従来例として示した。   In the best embodiment of FIG. 1 and FIG. 2, a predetermined number of pulses were applied as a pulse voltage with a sawtooth voltage of 20 Vpp (peak to peak), and the amount of movement of the moving body at that time was measured. The measurement was repeated 5 times, and the average values and variations are shown in Table 1. As a comparison, the result of the conventional method in which unevenness is not formed on the frictional coupling surface is also shown as a conventional example.

Figure 2007318887
Figure 2007318887

表1から、本発明により、数μm以下の位置決め精度が得られていることが分かった。   From Table 1, it was found that positioning accuracy of several μm or less was obtained by the present invention.

本発明の実施の形態に係わる駆動装置の説明図。図1(a)は分解図、図1(b)は組立図。Explanatory drawing of the drive device concerning embodiment of this invention. FIG. 1A is an exploded view, and FIG. 本発明の実施の形態に係わる摩擦結合面の断面の概念図である。It is a conceptual diagram of the cross section of the friction coupling surface concerning embodiment of this invention. 従来の電気−機械変換素子を使用した駆動装置の駆動原理を示す説明図。Explanatory drawing which shows the drive principle of the drive device using the conventional electromechanical conversion element.

符号の説明Explanation of symbols

1 積層型圧電セラミック素子
2 駆動部材
3 移動部材
4 錘
5 摩擦結合面
11 電気−機械変換素子
12 錘
13 駆動部材
14 移動部材
15 摩擦結合面
DESCRIPTION OF SYMBOLS 1 Multilayer piezoelectric ceramic element 2 Driving member 3 Moving member 4 Weight 5 Friction coupling surface 11 Electro-mechanical conversion element 12 Weight 13 Driving member 14 Moving member 15 Friction coupling surface

Claims (2)

電気−機械変換素子と、前記電気−機械変換素子に結合し、ともに駆動する駆動部材と、前記駆動部材に摩擦結合した移動部材から構成してなる駆動装置において、前記駆動部材と前記移動部材の摩擦結合面の表面が、それぞれ、前記移動部材の移動方向に沿って一定間隔で凹凸形状を有していることを特徴とする電気−機械変換素子を使用した駆動装置。   In a drive device comprising an electro-mechanical conversion element, a drive member coupled to and driven by the electro-mechanical conversion element, and a moving member frictionally coupled to the drive member, the drive member and the moving member A drive device using an electro-mechanical conversion element, wherein the surfaces of the frictional coupling surfaces each have a concavo-convex shape at regular intervals along the moving direction of the moving member. 前記凹凸形状の高さが1〜10μmの範囲で、かつ、前記凹凸形状の凹凸間の距離が前記移動部材の移動方向に沿って、0.5〜5μmの範囲で形成してなることを特徴とする請求項1に記載の電気−機械変換素子を使用した駆動装置。   The height of the uneven shape is in the range of 1 to 10 μm, and the distance between the uneven shapes of the uneven shape is formed in the range of 0.5 to 5 μm along the moving direction of the moving member. A drive device using the electromechanical conversion element according to claim 1.
JP2006144793A 2006-05-25 2006-05-25 Drive using electromechanical transducer Withdrawn JP2007318887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144793A JP2007318887A (en) 2006-05-25 2006-05-25 Drive using electromechanical transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144793A JP2007318887A (en) 2006-05-25 2006-05-25 Drive using electromechanical transducer

Publications (1)

Publication Number Publication Date
JP2007318887A true JP2007318887A (en) 2007-12-06

Family

ID=38852228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144793A Withdrawn JP2007318887A (en) 2006-05-25 2006-05-25 Drive using electromechanical transducer

Country Status (1)

Country Link
JP (1) JP2007318887A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084323A1 (en) * 2007-12-27 2009-07-09 Murata Manufacturing Co., Ltd. Actuator
US7949429B2 (en) 2007-12-27 2011-05-24 Murata Manufacturing Co., Ltd. Plural actuator system and control method thereof
JP2015175195A (en) * 2014-03-17 2015-10-05 日本ステップ工業株式会社 Cover for underground structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084323A1 (en) * 2007-12-27 2009-07-09 Murata Manufacturing Co., Ltd. Actuator
US7888846B2 (en) 2007-12-27 2011-02-15 Murata Manufacturing Co., Ltd. Actuator
US7949429B2 (en) 2007-12-27 2011-05-24 Murata Manufacturing Co., Ltd. Plural actuator system and control method thereof
JP2015175195A (en) * 2014-03-17 2015-10-05 日本ステップ工業株式会社 Cover for underground structure

Similar Documents

Publication Publication Date Title
US6208065B1 (en) Piezoelectric transducer and actuator using said piezoelectric transducer
JP5430367B2 (en) Dust removing device and dust removing method
US7531948B2 (en) Stacked piezoelectric element, manufacturing method thereof and vibration wave driving apparatus
JP4214268B2 (en) Lens module
WO2011077660A1 (en) Electrical machine conversion element and drive device
JP2007318887A (en) Drive using electromechanical transducer
JP2009273303A (en) Linear driving device, method of manufacturing vibration member, lens driving device, camera, and mobile phone with camera
US7732982B2 (en) Driving device capable of reducing height thereof
JP6711908B2 (en) Piezoelectric actuator
JP2007114748A (en) Lens module
JP5151995B2 (en) Drive device
JP5790612B2 (en) DRIVE DEVICE AND IMAGING DEVICE USING THE SAME
US20070182288A1 (en) Multilayered piezoelectric element and method of manufacturing the same
JP2585322B2 (en) Piezo actuator
JP6809818B2 (en) Piezoelectric actuator
JP2005033174A (en) Cylindrical piezoelectric actuator, cylindrical piezoelectric actuator array, and manufacturing method therefor
JP2000174353A (en) Helical piezoelectric-crystal element and its manufacture
CN219536760U (en) Laminated piezoelectric vibrator
JP6927848B2 (en) Piezoelectric actuator
WO2024090171A1 (en) Vibration actuator, optical device, and electronic device
JP2000077737A (en) Piezoelectric conversion element, manufacture thereof and actuator using the same
JP2024011699A (en) Vibration type actuator and electronic equipment
JPWO2020004269A1 (en) Piezoelectric actuator
CN116782742A (en) Laminated piezoelectric vibrator and manufacturing method thereof
JP2001037262A (en) Piezoelectric crystal element and actuator using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110531