JP2007314831A - Galvanized steel sheet provided with chromate-free coating superior in white rust resistance - Google Patents

Galvanized steel sheet provided with chromate-free coating superior in white rust resistance Download PDF

Info

Publication number
JP2007314831A
JP2007314831A JP2006144596A JP2006144596A JP2007314831A JP 2007314831 A JP2007314831 A JP 2007314831A JP 2006144596 A JP2006144596 A JP 2006144596A JP 2006144596 A JP2006144596 A JP 2006144596A JP 2007314831 A JP2007314831 A JP 2007314831A
Authority
JP
Japan
Prior art keywords
chromate
steel sheet
rust resistance
white rust
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006144596A
Other languages
Japanese (ja)
Other versions
JP4704956B2 (en
Inventor
Takatoshi Yoshida
貴敏 吉田
Koji Irie
広司 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006144596A priority Critical patent/JP4704956B2/en
Publication of JP2007314831A publication Critical patent/JP2007314831A/en
Application granted granted Critical
Publication of JP4704956B2 publication Critical patent/JP4704956B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrosion prevention technology which can reliably impart white rust resistance equivalent to that of a conventional chromate coating film to a galvanized steel sheet without causing dross formation that is a practical problem in a real operation, by improving the rust resistance of a galvanizing layer in itself and combining the improved galvanizing layer with a chromate-free coating. <P>SOLUTION: The galvanized steel sheet provided with the chromate-free coating superior in white rust resistance has the chromate-free coating film formed on a galvanized steel sheet. The hot-dip galvanizing layer comprises 0.08-0.70 mass% Al, 0.0010-0.008 mass% Mn and the balance Zn with unavoidable impurities; has an oxide containing Mn (preferably a complexed oxide of Mn and Al and/or Fe) on its surface; and has a chromate-free coating film with a thickness of 0.2 to 3.0 μm further on the surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は耐白錆性に優れた溶融亜鉛めっき鋼板に関し、より具体的には、溶融亜鉛めっき層中に微量のAlとMnを含有させることで防錆性を高めた溶融亜鉛めっき層の表面をノンクロメート皮膜で被覆し、耐白錆性の一段と高められた表面被覆溶融亜鉛めっき鋼板に関するものである。   The present invention relates to a hot-dip galvanized steel sheet having excellent white rust resistance, and more specifically, the surface of a hot-dip galvanized layer that has improved rust resistance by containing a small amount of Al and Mn in the hot-dip galvanized layer. Is coated with a non-chromate film, and relates to a surface-coated hot-dip galvanized steel sheet that is further enhanced in white rust resistance.

溶融亜鉛めっき鋼板の耐食性改善対策としては、古くからクロメート皮膜で被覆する方法が採用されてきた。これは、クロメート皮膜が有する自己修復作用によって亜鉛めっき層の腐食を防止できるからである。ところがクロメート皮膜は、水と接触すると人体に有害な6価クロムを溶出し環境汚染の原因になることから、最近ではその使用を削減しようとする動きが高まっている。   As a measure for improving the corrosion resistance of hot-dip galvanized steel sheets, a method of coating with a chromate film has been adopted for a long time. This is because corrosion of the galvanized layer can be prevented by the self-repairing action of the chromate film. However, when the chromate film comes into contact with water, hexavalent chromium harmful to the human body is eluted and causes environmental pollution. Recently, there has been an increasing trend to reduce its use.

こうした状況の下で、クロメート皮膜に代わる防食手段としてノンクロメート皮膜についても多くの研究が進められており、それなりの防食効果を得ている。しかし、性能面からするとクロメート皮膜に優る防食皮膜は開発されておらず、高度の防食性が求められる用途については依然としてクロメート皮膜が用いられている。しかし、環境汚染が社会問題化してくるにつれてクロメート処理を一掃しようとする要望も強く、クロメート処理に匹敵する耐食性を持ったノンクロメート被覆技術の開発が求められている。   Under these circumstances, many studies have been conducted on non-chromate coatings as an alternative to chromate coatings, and they have obtained a certain anti-corrosion effect. However, in terms of performance, an anticorrosion film superior to the chromate film has not been developed, and the chromate film is still used for applications that require a high degree of corrosion resistance. However, as environmental pollution becomes a social problem, there is a strong demand for eliminating chromate treatment, and development of a non-chromate coating technology having corrosion resistance comparable to chromate treatment is required.

こうした状況の下で、例えば特許文献1には、亜鉛めっき層中の含有元素の種類と量を規定することによって亜鉛めっき層自体の耐食性を高め、該亜鉛めっき層をノンクロメート皮膜で被覆することで、相加的ないし相乗的作用効果により耐食性を高める技術が開示されている。   Under such circumstances, for example, Patent Document 1 discloses that the corrosion resistance of the galvanized layer itself is improved by defining the type and amount of elements contained in the galvanized layer, and the galvanized layer is coated with a non-chromate film. Thus, a technique for enhancing the corrosion resistance by an additive or synergistic effect is disclosed.

ところがこの文献1に開示された技術では、溶融亜鉛めっき層中に添加されるFe,Co,Ni,Mn,Mg,Al,Ce,In等の元素量が多いため、溶融亜鉛めっき浴中に多量のドロスが生成し、めっき不良や外観劣化の問題を引き起こす恐れがあるばかりか、めっき後の化成処理性や上塗り塗膜の塗装性に悪影響を及ぼす懸念もあり、実用化には更なる改善が必要と思われる。   However, in the technique disclosed in this document 1, since the amount of elements such as Fe, Co, Ni, Mn, Mg, Al, Ce, and In added to the hot dip galvanized layer is large, a large amount is contained in the hot dip galvanizing bath. In addition to the possibility of causing dross of plating and causing problems of plating defects and appearance deterioration, there is also a concern that it may adversely affect the chemical conversion treatment performance after plating and the coatability of the top coat film, and further improvement in practical use It seems necessary.

またこの文献1では、上記金属元素に加えて、Si,Ti,V,Mo,Zrの酸化物粒子をめっき層内に存在させることで、耐白錆性が一段と高められると記載されている。しかしこの文献では、上記Fe,Co,Ni,Mn,Mg,Al,Ce,Inなどの元素については、めっき層中に酸化物として存在させることは全く意図していない。
特開2004−263252号公報
Moreover, in this literature 1, in addition to the said metal element, it describes that white rust resistance can be improved further by making the oxide particle of Si, Ti, V, Mo, and Zr exist in a plating layer. However, this document does not intend at all to make the elements such as Fe, Co, Ni, Mn, Mg, Al, Ce, and In exist as oxides in the plating layer.
JP 2004-263252 A

本発明は上記の様な事情に着目してなされたものであり、その目的は、亜鉛めっき層自体の防錆性を高めると共に、これにノンクロメート被覆を組み合せることで、実操業面で現実的なドロス生成などの問題を生じることなく、旧来のクロメート被覆に匹敵する耐白錆性を保証し得る様な防食技術を提供することにある。   The present invention has been made by paying attention to the above-described circumstances, and its purpose is to enhance the rust prevention of the galvanized layer itself and to combine it with a non-chromate coating, so that it can be realized in actual operation. An object of the present invention is to provide an anticorrosion technique capable of guaranteeing white rust resistance comparable to that of the conventional chromate coating without causing problems such as generation of dross.

上記課題を解決することのできた本発明に係る耐白錆性に優れたノンクロメート被覆溶融亜鉛めっき鋼板とは、ノンクロメート皮膜で被覆された溶融亜鉛めっき鋼板であって、溶融亜鉛めっき層は、Al:0.08〜0.70質量%とMn:0.0010〜0.008質量%を含み、残部はZnと不可避不純物からなり、該溶融亜鉛めっき層の表面にはMnを含む酸化物が存在すると共に、その表面は、厚さ0.2〜3.0μmのノンクロメート皮膜で被覆されているところに要旨が存在する。   The non-chromate-coated hot-dip galvanized steel sheet excellent in white rust resistance according to the present invention that has solved the above problems is a hot-dip galvanized steel sheet coated with a non-chromate film, Al: 0.08 to 0.70% by mass and Mn: 0.0010 to 0.008% by mass, the balance is made of Zn and inevitable impurities, and an oxide containing Mn is formed on the surface of the hot dip galvanized layer. In addition, there is a gist where the surface is coated with a non-chromate film having a thickness of 0.2 to 3.0 μm.

本発明において上記Mnを含む酸化物は、MnとAlおよび/またはFeとの複合酸化物としてめっき層表面に存在していることが好ましく、しかもMnを含む該酸化物は、めっき層の表面に、平均直径が1.0μm以上の異相として、めっき層表面の1辺が100μmの正方形領域に平均で20個以上分散していることが望ましい。   In the present invention, the oxide containing Mn is preferably present on the surface of the plating layer as a composite oxide of Mn and Al and / or Fe, and the oxide containing Mn is present on the surface of the plating layer. As a different phase having an average diameter of 1.0 μm or more, it is desirable that 20 or more on an average are dispersed in a square region having a side of the plating layer of 100 μm.

また、めっき層の表面に被覆される上記ノンクロメート被覆中に1〜30質量%のシリカ微粒子を含有させておけば、全体としての耐白錆性が一段と高められるので好ましい。   Further, it is preferable to add 1 to 30% by mass of silica fine particles in the non-chromate coating to be coated on the surface of the plating layer, since the white rust resistance as a whole is further improved.

本発明によれば、溶融亜鉛めっき層中に微量のAlとMnを含有させることで、溶融亜鉛めっき層自体の耐食性を高め、且つ、これをノンクロメート皮膜で被覆することで、それらの相加的ないし相乗的作用効果によって、クロメート皮膜に匹敵する防錆能を与えることができ、耐白錆性が良好で環境に優しいノンクロメート被覆溶融亜鉛めっき鋼板を提供できる。   According to the present invention, by adding a trace amount of Al and Mn in the hot dip galvanized layer, the corrosion resistance of the hot dip galvanized layer itself is increased, and by adding this to the non-chromate film, the additive of them. The anti-corrosion ability comparable to a chromate film can be imparted by an effective or synergistic effect, and a non-chromate-coated hot-dip galvanized steel sheet having good white rust resistance and environmental friendliness can be provided.

本発明では、溶融亜鉛めっき層中に微量のAlとMnを含有させると共に、それらをめっき層の表面にMnを含む酸化物、具体的にはMnとAlおよび/または(鋼板から混入してくる)Feとの複合酸化物として存在させることで耐食性を高め、更にはその表面を所定厚さのノンクロメート皮膜で被覆することで、それらの相加的乃至相乗的作用効果により、溶融亜鉛めっき鋼板全体としての耐白錆性を、クロメート皮膜に匹敵し、もしくはこれを凌駕するレベルまで高めることができる。   In the present invention, a small amount of Al and Mn are contained in the hot dip galvanized layer, and these are mixed from the oxide containing Mn on the surface of the plated layer, specifically Mn, Al and / or (from the steel plate). ) Corrosion resistance is enhanced by being present as a complex oxide with Fe, and further, the surface thereof is coated with a non-chromate film having a predetermined thickness, so that by its additive or synergistic effect, hot dip galvanized steel sheet The overall white rust resistance can be increased to a level comparable to or exceeding the chromate film.

ここで、溶融亜鉛めっき層中のAl含量を「0.08〜0.70質量%」の範囲に定めたのは、Al含量が0.08質量%未満では、鋼板に対する溶融亜鉛めっき層の密着性が不十分となり、逆にAl含量が0.70質量%を超えて多くなり過ぎると、溶融亜鉛めっき浴中のドロス生成量が多くなって、部分的に不めっき部ができたりめっき密着性が低下したりするなど、結果的に満足のいく耐食性が得られなくなるからである。こうした観点からAlのより好ましい含有量は0.10質量%以上、0.50質量%以下、更に好ましくは0.15質量%以上、0.30質量%以下である。   Here, the Al content in the hot dip galvanized layer was determined to be in the range of “0.08 to 0.70 mass%” because, when the Al content is less than 0.08 mass%, the hot dip galvanized layer adheres to the steel sheet. On the other hand, if the Al content exceeds 0.70% by mass, the amount of dross generated in the hot dip galvanizing bath increases, resulting in partial non-plating or plating adhesion. As a result, satisfactory corrosion resistance cannot be obtained. From such a viewpoint, the more preferable content of Al is 0.10% by mass or more and 0.50% by mass or less, and further preferably 0.15% by mass or more and 0.30% by mass or less.

なおAlは、非合金化溶融亜鉛めっき鋼板の場合、素地鋼板と亜鉛めっき層の接合界面に濃化してバリア層を形成し、相互の拡散を抑える作用を発揮することが知られている。しかし本発明では、めっき浴中に添加する少量のMnが、該Alおよび/または鋼素地から混入してくるFeと共に複合酸化物を形成し、めっき層の表面に存在することで、亜鉛の腐食を抑制するものと考えている。   In the case of a non-alloyed hot-dip galvanized steel sheet, Al is known to be concentrated at the bonding interface between the base steel sheet and the galvanized layer to form a barrier layer and to exert an effect of suppressing mutual diffusion. However, according to the present invention, a small amount of Mn added to the plating bath forms a composite oxide together with the Al and / or Fe mixed from the steel substrate, and is present on the surface of the plating layer. We think that we suppress.

本発明においては、溶融亜鉛めっき層中のMn含量も極めて重要であり、本発明で意図するレベルの耐白錆性を得るには、溶融亜鉛めっき層中に0.0010〜0.008質量%のMnを含有させることが不可欠の要件となる。Mn量が0.0010質量%未満では十分な耐白錆性向上効果が認められず、また0.008%を超えてMn含量が多くなり過ぎると、溶融亜鉛めっき浴中でドロスの生成量が増加し、それに起因する不めっき部が発生し易くなるからである。Mnのより好ましい含有量は0.003質量%以上、0.007質量%以下、更に好ましく0.005質量%以上、0.006質量%以下である。   In the present invention, the Mn content in the hot dip galvanized layer is also extremely important. To obtain the level of white rust resistance intended in the present invention, 0.0010 to 0.008 mass% in the hot dip galvanized layer. It is an indispensable requirement to contain Mn. If the amount of Mn is less than 0.0010% by mass, a sufficient white rust resistance improving effect is not recognized, and if the amount of Mn exceeds 0.008% and the Mn content is excessive, the amount of dross produced in the hot dip galvanizing bath is increased. It is because it increases and the non-plating part resulting from it becomes easy to generate | occur | produce. The more preferable content of Mn is 0.003% by mass or more and 0.007% by mass or less, and further preferably 0.005% by mass or more and 0.006% by mass or less.

Mn添加によって耐白錆性が高められる明確なメカニズムも未だ不明であるが、Mnは酸素との親和力が強いため、めっき層表面にMn系酸化物として安定な状態で生成し、該酸化物の存在がZnの腐食を抑えていると推定される。なお、上記の様にAlも酸素との親和力が強く、酸化物を形成してめっき層表面に存在すると考えられるが、本発明者らが実験によって確認したところによると、亜鉛めっき層中にAlやFeが存在するだけでは、たとえそれらの酸化物が亜鉛めっき層中に存在していたとしても、耐白錆性は殆ど改善されず、Mnを含む酸化物の形態でめっき層の表面に存在することが必須の要件となるのである。   The clear mechanism by which white rust resistance is enhanced by the addition of Mn is still unclear, but since Mn has a strong affinity for oxygen, it is generated in a stable state as a Mn-based oxide on the surface of the plating layer. Presence is presumed to suppress corrosion of Zn. As described above, Al also has a strong affinity for oxygen and is considered to be present on the surface of the plating layer by forming an oxide. However, according to the results confirmed by the inventors through experiments, Al is present in the galvanizing layer. Even if only Fe and Fe are present, even if these oxides are present in the galvanized layer, the white rust resistance is hardly improved, and they are present on the surface of the plated layer in the form of oxides containing Mn. This is an essential requirement.

但し、MnもAlと同様に酸化され易いため、亜鉛浴中に多く存在するとドロスの生成を助長することになり、不めっき部の発生やめっき密着性低下の要因となるので、上記上限値を超えて含有させることは避けるべきである。   However, since Mn is also easily oxidized like Al, if it is present in a large amount in the zinc bath, it will promote the generation of dross, which will cause generation of non-plated parts and reduced plating adhesion. Excessive content should be avoided.

ところで、本発明における溶融亜鉛めっき液中のMnやAlは酸素親和力が強いため、溶融亜鉛めっき後の冷却条件をうまくコントロールすれば、鋼板表面に付着した溶融亜鉛が凝固する際に、MnやAlが鋼板から混入してくるFeと共にめっき層表面で複合酸化物を形成し、めっき層の表層に濃化してくるものと推定される。そして検討の結果、少なくともMnを含む平均直径が1μm程度以上の複合酸化物がZnマトリクス中に異相として1辺が100μmの正方形領域内に平均で20個以上存在しているときは、明らかな耐白錆性改善効果が認められた。ここで平均直径とは、該酸化物の長径と短径の和を2で割った値を意味する。   By the way, since Mn and Al in the hot dip galvanizing solution in the present invention have strong oxygen affinity, when the cooling conditions after hot dip galvanization are well controlled, when hot dip zinc adhering to the steel sheet surface solidifies, Mn and Al It is presumed that a complex oxide is formed on the surface of the plating layer together with Fe mixed in from the steel sheet and is concentrated on the surface of the plating layer. As a result of the study, when 20 or more composite oxides containing at least Mn and having an average diameter of about 1 μm or more are present in the Zn matrix as a different phase in an average of 20 or more in a square region having a side of 100 μm, an obvious resistance White rust improvement effect was recognized. Here, the average diameter means a value obtained by dividing the sum of the major axis and the minor axis of the oxide by 2.

このMnとAlおよび/またはFeとの複合酸化物が、耐白錆性を向上させる詳細なメカニズムは不明であるが、通常はノンクロメート皮膜の欠陥部から亜鉛の腐食が進行することを考慮すると、前記Mn系の複合酸化物がめっき表面に多数分散して存在することで、腐食反応の起こる亜鉛の露出を防ぐ効果を発揮しているものと推定される。こうしたMn系複合酸化物の腐食抑制効果は、めっき層表面に存在する当該複合酸化物の個数が多いほど有効に発揮されるが、実験により確認したところでは、平均直径で1μm以上のものがめっき表面の1辺が100μmの正方形領域内に平均で20個以上存在するときは、腐食抑制効果が明確に認められたことから、この個数が、亜鉛の露出を防ぐために必要な最小限の被覆状態であると考えられる。   The detailed mechanism by which this complex oxide of Mn and Al and / or Fe improves the white rust resistance is unknown, but considering that zinc corrosion usually proceeds from a defect portion of the non-chromate film. The presence of a large number of Mn-based composite oxides dispersed on the plating surface is presumed to exhibit an effect of preventing the exposure of zinc in which a corrosion reaction occurs. The corrosion inhibition effect of such a Mn-based composite oxide is more effective as the number of the composite oxides present on the surface of the plating layer increases. However, as confirmed by experiments, those having an average diameter of 1 μm or more are plated. When there are 20 or more on one side of the surface within a square area of 100 μm on average, the corrosion-inhibiting effect was clearly recognized, and this number is the minimum covering state necessary to prevent zinc exposure. It is thought that.

尚、複合酸化物のサイズを「平均直径で1μm以上」と定めたのは、前掲のAl,Mn含量を満たす亜鉛めっき浴を用いて溶融亜鉛めっきを行ったときに生成する前記複合酸化物のサイズは殆どが上記サイズ以上であり、それ未満のMn系複合酸化物の数は極めて少なく、実質的に腐食抑制に殆ど寄与していないと考えたからである。   The size of the composite oxide was determined to be “average diameter of 1 μm or more” because the composite oxide produced when hot dip galvanization was performed using a galvanizing bath satisfying the Al and Mn contents described above. This is because most of the sizes are larger than the above-mentioned size, and the number of Mn-based composite oxides less than that is extremely small, and it is considered that the size hardly contributes to corrosion inhibition.

また、上記サイズ以上のMn系複合酸化物の個数に上限は特に存在せず、多ければ多いほど腐食抑制効果は向上する。しかし、溶融亜鉛めっき中の前記AlおよびMn含量からすると、該個数の好ましい上限は「めっき表面の1辺が100μmの正方形領域内」に100個程度と考えられ、Mn系複合酸化物の個数が100個を超える場合は、めっき浴中でのドロスの発生に伴う障害が顕著になることを確認している。   Further, there is no particular upper limit to the number of Mn-based composite oxides having the above size, and the greater the number, the more the corrosion inhibition effect is improved. However, considering the Al and Mn contents in the hot dip galvanizing, the preferable upper limit of the number is considered to be about 100 in “a square area with one side of the plating surface being 100 μm”, and the number of Mn-based composite oxides is When the number exceeds 100, it has been confirmed that the troubles associated with the generation of dross in the plating bath become remarkable.

なお、上記のMn系複合酸化物が、めっき層表面の一部に局所的に多数存在している場合、存在個数の少ない部分の耐食性は当然不十分になるので、全域に満遍なく分布していることが好ましい。しかし、以下に示す好ましい溶融亜鉛めっき法を採用した場合は、めっき浴中のAl,Mn,Fe含量に応じた個数のMn系複合酸化物が、めっき層のほぼ全域に満遍なく生成することを確認している。   In addition, when a large number of the Mn-based composite oxides are locally present on a part of the surface of the plating layer, the corrosion resistance of the portion with a small number of existence is naturally insufficient, and is therefore distributed evenly throughout the entire area. It is preferable. However, when the preferred hot dip galvanizing method shown below is adopted, it is confirmed that the number of Mn-based composite oxides corresponding to the Al, Mn, and Fe contents in the plating bath is uniformly generated over almost the entire plating layer. is doing.

即ち、めっき層表面に上記Mn系複合酸化物を生成させるための好ましいめっき条件は、Al,Mn含量の調整された溶融亜鉛めっき浴を使用し、めっき付着量が好ましくは20〜200g/m、より好ましくは35〜150g/mとなる様に浸漬時間とワイピング条件を調整し、めっき浴を出た後に、酸化性雰囲気中でめっき層が凝固する約420℃までを10℃/秒以下、より好ましくは5℃/秒以下の速度で徐冷する方法である。この様な条件を採用すれば、めっき液が凝固するまでの間に表面に移行してきたMnやAl,Feが逐次酸化を受けて複合酸化物を形成し、それに伴って表層側へのMnやAl,Feの拡散移行も促されるので、めっき層表面にMn系複合酸化物が濃化して生成することになる。しかも、この条件で生成するMn系複合酸化物のサイズは、平均半径で殆どが1μm以上となるのである。 That is, preferable plating conditions for generating the Mn-based composite oxide on the surface of the plating layer use a hot dip galvanizing bath with an adjusted Al and Mn content, and the plating adhesion amount is preferably 20 to 200 g / m 2. More preferably, the immersion time and wiping conditions are adjusted so as to be 35 to 150 g / m 2, and after leaving the plating bath, up to about 420 ° C. where the plating layer solidifies in an oxidizing atmosphere is 10 ° C./second or less. More preferably, it is a method of slow cooling at a rate of 5 ° C./second or less. If such conditions are adopted, Mn, Al, and Fe that have moved to the surface before the plating solution solidifies undergoes sequential oxidation to form a composite oxide, and accordingly Mn and Since the diffusion transfer of Al and Fe is also promoted, the Mn-based complex oxide is concentrated and formed on the surface of the plating layer. Moreover, the size of the Mn-based composite oxide produced under these conditions is almost 1 μm or more in terms of average radius.

上記の様にして得られる溶融亜鉛めっき層は、表面が適量(個数)のMn系複合酸化物で覆われており、それなりに耐食性は高められているが、全面がMn系複合酸化物で覆われている訳ではないから、そのままではクロメート被覆を施したものに比べると耐白錆性が若干劣ることは否めない。そこで本発明では、該耐白錆性不足を補うため、該溶融亜鉛めっき層の表面を、ノンクロメート皮膜で被覆する。   The surface of the hot-dip galvanized layer obtained as described above is covered with an appropriate amount (number) of Mn-based composite oxide, and the corrosion resistance is improved accordingly, but the entire surface is covered with Mn-based composite oxide. Therefore, it is undeniable that the white rust resistance is slightly inferior to that with a chromate coating as it is. Therefore, in the present invention, the surface of the hot dip galvanized layer is covered with a non-chromate film in order to compensate for the lack of white rust resistance.

該ノンクロメート皮膜は、クロムさえ含んでいなければ特に制限はなく、有機系もしくは無機系の防錆皮膜を使用できる。無機系防錆皮膜の具体例としては、例えばリチウムシリケートや珪酸ソーダ、リン酸化合物などが挙げられ、市販品としては、例えば日産化学社製の品番「リチウムシリケート45」や日本化学社製の品番「珪酸ソーダ3号」、米山化学社製の燐酸二水素アンモニウムなどが例示される。また有機系の防錆皮膜としては、エチレン−アクリル系樹脂、スチレン−マレイン酸系樹脂、スチレン−アクリル系樹脂、ポリウレタン系樹脂などが挙げられ、市販品としては、例えば、日本純薬社製のアクリル酸系樹脂、品番「AC−10S」、第一工業製薬社製の商品名「スーパーフレックス150」、東邦化学社製の商品名「ハイテックS−3121」、サートマー社製の商品名「SMA3000H」)、第一工業製薬社製の商品名「スーパーフレックス820」、楠本化成社/Avecia社製の商品名「BT−44」などが例示される。   The non-chromate film is not particularly limited as long as it does not contain chromium, and an organic or inorganic rust preventive film can be used. Specific examples of the inorganic rust preventive film include, for example, lithium silicate, sodium silicate, and phosphoric acid compound. Examples of commercially available products include a product number “Lithium silicate 45” manufactured by Nissan Chemical Co., Ltd. and a product number manufactured by Nippon Chemical Co., Ltd. Examples include “Sodium silicate 3”, Yoneyama Chemical's ammonium dihydrogen phosphate, and the like. Examples of the organic rust preventive film include ethylene-acrylic resins, styrene-maleic acid resins, styrene-acrylic resins, polyurethane resins, and the like. Acrylic acid resin, product number “AC-10S”, product name “Superflex 150” manufactured by Daiichi Kogyo Seiyaku Co., Ltd., product name “Hitech S-3121” manufactured by Toho Chemical Co., Ltd., product name “SMA3000H” manufactured by Sartomer ), Trade name “Superflex 820” manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name “BT-44” manufactured by Enomoto Kasei / Avecia, and the like.

膜厚も特に制限されないが、好ましいのは0.2〜3.0μm、より好ましくは0.8〜1.5μmの範囲である。ちなみに0.2μm未満では、Mn系複合酸化物が生成し前記溶融亜鉛めっき層に不足する耐白錆性を十分に補うことができず、最終的に満足のいく耐白錆性を確保できなくなり、逆に3.0μmを超えて過度に厚くすると、防錆鋼板として実用化する際に必要となるスポット溶接性が著しく損なわれるからである。   The film thickness is not particularly limited, but is preferably in the range of 0.2 to 3.0 [mu] m, more preferably 0.8 to 1.5 [mu] m. By the way, if it is less than 0.2 μm, Mn-based composite oxide is formed, and the white rust resistance insufficient for the hot dip galvanized layer cannot be sufficiently compensated, and finally it is impossible to secure a satisfactory white rust resistance. On the other hand, if the thickness exceeds 3.0 μm, the spot weldability required for practical use as a rust-proof steel sheet is significantly impaired.

なお該防錆被覆中に適量のシリカ微粒子を添加すると、全体としての耐白錆性を更に高めることができるので好ましい。ここでシリカ微粒子とは、一時粒子の状態で平均粒子径が数nm1〜数百nmレベルの微粒子を言い、代表的なのはコロイダルシリカである。そして、防錆被覆中に代表的なシリカ微粒子であるコロイダルシリカを含有させると、例えば「鉄と鋼」Vol.89(2003年、株式会社神戸製鋼所より発行)の第116〜122頁「有機皮膜中シリカの亜鉛めっき鋼板に対する防錆挙動」にも記載されている如く、腐食の起点となるめっき欠陥部に防錆皮膜中のシリカが溶出し再析出することで、欠陥部の腐食を防ぎ、全体としての耐白錆性を大幅に高めるからである。こうしたコロイダルシリカの添加効果を有効に発揮させるには、防錆被覆の固形物中に占める比率で1〜30質量%の範囲で用いることが好ましい。1質量%未満では配合による上記効果が殆ど有効に発揮されず、逆に30質量%を超えて使用すると、その効果が飽和するだけでなく防錆被覆としての造膜性や密着性が劣化するからである。コロイダルシリカのより好ましい配合量は、5〜20質量%である。   In addition, it is preferable to add an appropriate amount of silica fine particles to the rust-proof coating because the white rust resistance as a whole can be further improved. Here, the silica fine particles are fine particles having an average particle diameter of several nanometers to several hundred nanometers in the state of temporary particles, and representative one is colloidal silica. When colloidal silica, which is a typical silica fine particle, is contained in the rust-proof coating, for example, “Iron and Steel” Vol. No. 89 (2003, issued by Kobe Steel Co., Ltd.), pages 116-122, “The anti-corrosion behavior of silica in galvanized steel sheet against galvanized steel sheet”. This is because silica in the rust preventive film is eluted and re-precipitated, thereby preventing corrosion of the defective portion and greatly improving the white rust resistance as a whole. In order to effectively exhibit the effect of addition of such colloidal silica, it is preferable to use it in the range of 1 to 30% by mass in the ratio of the rust preventive coating to the solid. If the amount is less than 1% by mass, the above-mentioned effects due to the blending are hardly exhibited. On the other hand, if the amount exceeds 30% by mass, not only the effect is saturated but also the film forming property and adhesion as an anticorrosive coating are deteriorated. Because. The more preferable amount of colloidal silica is 5 to 20% by mass.

コロイダルシリカの種類も特に制限されないが、市販品としては、例えば「スノーテックス(登録商標)」シリーズ(日産化学工業社製)の「XL」、「OL」、「O」、「40」、「N」、「UP」等が好適に用いることができる。   Although the kind of colloidal silica is not particularly limited, examples of commercially available products include “XL”, “OL”, “O”, “40”, “40”, “Snowtex (registered trademark)” series (manufactured by Nissan Chemical Industries, Ltd.), “ N ”,“ UP ”and the like can be preferably used.

ノンクロメート被覆の形成法にも格別の制限はなく、スプレーリンガー方式やロールコーター方式、浸漬コート方式等いずれの方法を採用してもよい。   The method for forming the non-chromate coating is not particularly limited, and any method such as a spray ringer method, a roll coater method, or a dip coating method may be adopted.

本発明は以上の様に構成されており、溶融亜鉛めっき層中に含まれるMnとAl,Fe含量を特定し、該めっき層の表面にMnを含む酸化物、好ましくはMnと共にAlおよび/またはFeを含む複合酸化物を生成させると共に、その表面を特定厚さのノンクロメート皮膜で被覆して耐食性強化を図ることにより、クロメート被覆に匹敵する耐白錆性を発揮する環境に優しい耐食性鋼板を提供できることになった。   The present invention is configured as described above, specifies the contents of Mn, Al, and Fe contained in the hot dip galvanized layer, and an oxide containing Mn on the surface of the plated layer, preferably Al and / or Mn together with Mn. An environmentally friendly corrosion-resistant steel sheet that exhibits white rust resistance comparable to chromate coating by forming a complex oxide containing Fe and coating the surface with a non-chromate coating of a specific thickness to enhance corrosion resistance. It became possible to provide.

以下、実験例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実験例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described more specifically with reference to experimental examples.However, the present invention is not limited by the following experimental examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

実験例
Alキルド鋼(冷延鋼板)を使用し、実験機を用いて下記の条件で溶融亜鉛めっきを行った。
めっき雰囲気 :N−5%H
還元処理 :850℃×30秒
Zn浴温 :460℃(侵入板温460℃):Zn浴組成は表1参照(なお表1では、Al濃度とMn濃度に関し何れもZn浴中の濃度を示している。しかし、Zn浴中のAl,Mn濃度とめっき層中のAl,Mn濃度はほぼ等しく、このことはICP発光分析によっても確認している。)
浸漬時間 :2秒(狙いめっき付着量;約100g/m
めっき層の凝固:上記還元性雰囲気でめっきを行った後、酸素を100ppm含む窒素ガスを送り込みながら、5℃/secまたは10℃/secで冷却してめっき層を凝固させた。
Experimental Example An aluminum killed steel (cold rolled steel sheet) was used, and hot dip galvanizing was performed using an experimental machine under the following conditions.
Plating atmosphere: N 2 -5% H 2
Reduction treatment: 850 ° C. × 30 seconds Zn bath temperature: 460 ° C. (penetration plate temperature: 460 ° C.): Refer to Table 1 for the Zn bath composition (Note that Table 1 shows the concentration in the Zn bath for both Al concentration and Mn concentration) However, the Al and Mn concentrations in the Zn bath are almost equal to the Al and Mn concentrations in the plating layer, and this is confirmed by ICP emission analysis.)
Immersion time: 2 seconds (target plating adhesion amount: about 100 g / m 2 )
Solidification of plating layer: After plating in the reducing atmosphere, the plating layer was solidified by cooling at 5 ° C./sec or 10 ° C./sec while feeding nitrogen gas containing 100 ppm of oxygen.

得られた溶融亜鉛めっき鋼板のめっき層を採取して(1:1)塩酸水溶液に溶解し、ICP発光分析法によってMnおよびAlの含有量を測定した。分析には、セイコー電子社製の誘導プラズマ発光分光分析装置「SPS1500VR」を用いた。   A plated layer of the obtained hot-dip galvanized steel sheet was collected (1: 1) and dissolved in an aqueous hydrochloric acid solution, and the contents of Mn and Al were measured by ICP emission analysis. For the analysis, an induction plasma emission spectroscopic analyzer “SPS 1500VR” manufactured by Seiko Denshi was used.

また、各溶融亜鉛めっき層の表面をEPMA(日本電子社製の商品名「JXA−8100」を使用、倍率:500倍)によって無作為に3視野を観察し、その写真画像から無作為に5箇所を選んで1辺が100μmの正方形領域内に観察される平均直径が1μm以上のMn系複合酸化物の個数をカウントし、平均個数を求めた。EPMA写真の一例は図1に示す通りであり、図1の上側の写真は、Mn添加なしの溶融亜鉛めっき浴で行っためっき鋼板、下側の写真は、本発明の代表例として実験No.4(Al含量:0.2質量%、Mn含量:0.005質量%)の溶融亜鉛めっき浴を用いためっき鋼板である。   Further, the surface of each hot-dip galvanized layer was randomly observed by EPMA (trade name “JXA-8100” manufactured by JEOL Ltd., magnification: 500 times), and 3 fields were randomly observed. The number of Mn-based composite oxides having an average diameter of 1 μm or more observed in a square region having a side of 100 μm was selected and the average number was obtained. An example of the EPMA photograph is as shown in FIG. 1. The upper photograph in FIG. 1 is a plated steel sheet performed in a hot dip galvanizing bath without addition of Mn, and the lower photograph is an experiment No. 1 as a representative example of the present invention. 4 (Al content: 0.2 mass%, Mn content: 0.005 mass%) is a plated steel sheet using a hot dip galvanizing bath.

これらの写真を比較すれば明らかな様に、めっき浴中に適量のMnとAlを添加しためっき層では、表面のほぼ全面に複合酸化物が斑点状に満遍なく生成しているのに対し、Mn無添加のめっき層を用いたものでは、複合酸化物の生成は殆ど確認できない。これは、めっき浴中にAlやFeが存在していても、Mnが含まれていなければ本発明で意図する様な表面保護効果を示す複合酸化物が生成しないためと考えられる。   As is clear from comparison of these photographs, in the plating layer in which appropriate amounts of Mn and Al are added in the plating bath, complex oxides are uniformly formed in spots almost all over the surface, whereas Mn In the case of using an additive-free plating layer, formation of a complex oxide can hardly be confirmed. This is presumably because even if Al or Fe is present in the plating bath, a complex oxide exhibiting a surface protection effect as intended in the present invention is not produced unless Mn is contained.

この際、めっき工程でのめっき性(目視で不めっき部のない良好な外観が得られたものは良好:○、不めっき部が観察されたものは不良:×とした)を調べると共に、めっき表面に付着したドロスの付着量を目視観察し、ドロス生成状態の良否を評価した(Mn無添加浴でめっきを行った場合のドロス付着量と同等未満であるものは良好:○、それ以上のものは不良:×)。   In this case, the plating property in the plating process (when the visual appearance with no unplated part was obtained was good: ○, when the non-plated part was observed was judged as poor: x) and plating was performed. The amount of dross adhering to the surface was visually observed to evaluate the quality of the dross generation state (those that are less than equivalent to the amount of dross when plating is performed in a Mn-free bath is good: ○, more Things are bad: x).

次いで、得られた溶融亜鉛めっき鋼板の表面に、下記の方法で調製したノンクロメート被覆剤を膜厚が約1μmとなる様に塗布し、200℃で10秒間乾燥することにより、本発明の耐白錆性溶融亜鉛めっき鋼板を得た。   Next, a non-chromate coating agent prepared by the following method was applied to the surface of the obtained hot-dip galvanized steel sheet so as to have a film thickness of about 1 μm, and dried at 200 ° C. for 10 seconds. A white rust galvanized steel sheet was obtained.

[ノンクロメート被覆剤]
有機系としてエチレン−アクリル酸系樹脂(東邦化学社製の商品名「ハイテックS−3121」)塗料、スチレン−マレイン酸共重合体(サートマー社製の商品名「SMA3000H」)塗料、ポリウレタン樹脂(第一工業製薬社製の商品名「スーパーフレックス820」)塗料、またはスチレン−アクリル共重合体(楠本化成社/Avecia社製の商品名「BT−44」)塗料を使用し、無機系としては、[シリカ系皮膜形成材(日産化学社製の商品名「スノーテックスXS」)70質量部にバインダーとしてポリウレタン樹脂水溶液(樹脂成分については下記参照)20質量部と信越化学社製のシランカップリング材「KBM403」を10質量部添加したもの]を使用し、これを、上記めっき鋼板の表面にバーコート法で表3に示す所定の膜厚となる様に塗布した後、200℃×10秒で乾燥させた。また、ノンクロメート塗布液の一部については、耐白錆性向上のためコロイダルシリカを1〜30質量%添加した。
[Non-chromate coating]
As organic materials, ethylene-acrylic acid resin (trade name “HITEC S-3121” manufactured by Toho Chemical Co., Ltd.), styrene-maleic acid copolymer (trade name “SMA3000H” manufactured by Sartomer), polyurethane resin (No. 1) Ichi Kogyo Seiyaku Co., Ltd. trade name “Superflex 820”) paint, or styrene-acrylic copolymer (Enomoto Kasei Co./Avecia trade name “BT-44”) paint, [Silica-based film forming material (trade name “Snowtex XS” manufactured by Nissan Chemical Co., Ltd.) 20 parts by mass of a polyurethane resin aqueous solution (see below for resin components) as a binder and 70 parts by mass of silane coupling material manufactured by Shin-Etsu Chemical Co., Ltd. “KBM403” with 10 parts by mass added] is used, and this is shown in Table 3 by the bar coating method on the surface of the plated steel sheet. After coating so as to be constant in thickness, and dried at 200 ° C. × 10 seconds. Moreover, about a part of non-chromate coating liquid, 1-30 mass% of colloidal silica was added in order to improve white rust resistance.

[ポリウレタン樹脂水溶液]
撹拌機、温度計、温度コントローラーを備えた内容量0.8リットルの容器に、ポリオール成分として保土ヶ谷化学社製のポリテトラメチレンエーテルグリコールを60g、1,4−シクロヘキサンジメタノールを14g、ジメチロールプロピオン酸を20g仕込み、更に反応溶媒としてN−メチルピロリドン30.0g加える。次いでこれに、イソシアネート成分としてトリレンジイソシアネートを104g仕込み、80〜85℃に昇温して5時間反応させる。その後、トリエチルアミン16gを加えて中和し、更にエチレンジアミン16gと水480gの混合水溶液を加えて50℃で4時間乳化し、鎖延長反応させてポリウレタン樹脂を得た。
[Polyurethane resin aqueous solution]
In a container with a capacity of 0.8 liter equipped with a stirrer, thermometer and temperature controller, 60 g of polytetramethylene ether glycol manufactured by Hodogaya Chemical Co., Ltd. as a polyol component, 14 g of 1,4-cyclohexanedimethanol, dimethylolpropion 20 g of acid is charged, and 30.0 g of N-methylpyrrolidone is further added as a reaction solvent. Next, 104 g of tolylene diisocyanate is added thereto as an isocyanate component, and the temperature is raised to 80 to 85 ° C. and reacted for 5 hours. Thereafter, 16 g of triethylamine was added for neutralization, and a mixed aqueous solution of 16 g of ethylenediamine and 480 g of water was further added and emulsified at 50 ° C. for 4 hours, followed by chain extension reaction to obtain a polyurethane resin.

上記で得た各溶融亜鉛めっきとノンクロメート被覆を設けた表面被覆鋼板について、各々下記の方法で耐白錆性を評価し、結果を表2,3に併記した。   The surface-coated steel sheets provided with the hot dip galvanizing and non-chromate coatings obtained above were evaluated for white rust resistance by the following methods, and the results are shown in Tables 2 and 3.

これらの表より、次の様に考えることができる。   From these tables, we can think as follows.

まず表1,2において、No.1は、めっき浴中のMn濃度が低く、従ってめっき層中のMn量が規定値に達していないため、十分な耐白錆性が得られていない。No.6,11は、逆にめっき浴中のMn濃度が高すぎるため、耐白錆性は良好であるがめっき浴内で多量のドロスが発生し、めっき性が低下すると共にめっき層の外観も悪くなる。   First, in Tables 1 and 2, No. No. 1 has a low Mn concentration in the plating bath, and therefore the amount of Mn in the plating layer does not reach the specified value, so that sufficient white rust resistance is not obtained. No. 6 and 11, on the contrary, since the Mn concentration in the plating bath is too high, the white rust resistance is good, but a large amount of dross is generated in the plating bath, the plating property is lowered and the appearance of the plating layer is also bad. Become.

No.12は、めっき浴中のAl含量が不足するため、めっき密着性不足によって満足な耐白錆性が得られていない。No.15は、逆にめっき浴中のAl含量が多すぎるため、耐白錆性は良好であるがめっき浴内で多量のドロスが発生し、めっき性が低下すると共にめっき層の外観も劣悪となる。またNo.16は、ノンクロメート被覆がされていないため、従来のクロメート被覆に比べると耐白錆性が悪い。   No. In No. 12, since the Al content in the plating bath is insufficient, satisfactory white rust resistance is not obtained due to insufficient plating adhesion. No. No. 15, on the contrary, because the Al content in the plating bath is too large, the white rust resistance is good, but a large amount of dross is generated in the plating bath, the plating property is lowered and the appearance of the plating layer is also deteriorated. . No. No. 16 is not coated with non-chromate, so white rust resistance is worse than conventional chromate coating.

No.18は、溶融めっき後の冷却雰囲気を還元性(窒素に5体積%の水素を混入した混合ガスを使用)とした比較例であり、Mn含有酸化物の個数が不足するため、満足のいく耐白錆性が得られていない。なおNo.17では、表面に少数のMn含有酸化物が生成しているが、これは、めっき後の冷却速度が遅いため、めっき鋼板表面に僅かに存在している空気によって酸化が起こったためと思われる。しかし、不足気味ながら所定サイズの酸化物が生成しているため、それなりの耐白錆性を示している。   No. No. 18 is a comparative example in which the cooling atmosphere after hot dipping is reduced (using a mixed gas in which 5% by volume of hydrogen is mixed in nitrogen), and since the number of Mn-containing oxides is insufficient, satisfactory resistance is achieved. White rust is not obtained. No. In No. 17, a small number of Mn-containing oxides were formed on the surface. This is probably because the cooling rate after plating was slow, and oxidation was caused by air that was slightly present on the surface of the plated steel sheet. However, since oxides of a predetermined size are generated although they seem to be deficient, they show appropriate white rust resistance.

これらに対し、本発明の前記規定要件を全て満足するNo.2〜5,7〜10,13,14は、めっき性が良好でドロスの発生による問題も起こさず、しかも優れた耐白錆性が得られている。   On the other hand, No. 1 satisfying all the above-mentioned prescribed requirements of the present invention. Nos. 2 to 5, 7 to 10, 13, and 14 have good plating properties, do not cause problems due to the generation of dross, and have excellent white rust resistance.

また表3では、ノンクロメート被覆の厚さとシリカ含量を変えたときの耐白錆性に与える影響を確認することができ、ノンクロメート皮膜厚さが薄過ぎると耐白錆性が不足気味となり(No.18)、またノンクロメート被覆中に適量のシリカを含有させると、耐白錆性が明らかに向上することを確認できる。   Table 3 also shows the effect on white rust resistance when the thickness of the non-chromate coating and the silica content are changed. If the non-chromate film thickness is too thin, the white rust resistance tends to be insufficient ( No. 18) In addition, when an appropriate amount of silica is contained in the non-chromate coating, it can be confirmed that the white rust resistance is clearly improved.

なお図2、図3は、上記表1〜3に示した実験データを含めて、めっき層中のMn含量と溶融亜鉛めっき後の徐冷時における雰囲気ガスの種類(酸化性ガス;酸素を100ppm含む窒素ガス、または還元性ガス;水素を5体積%含む窒素ガス)を変えたときの、耐白錆性に与える影響を整理して示したグラフである。この実験では、めっき後の徐冷時の雰囲気ガスを変えた以外は下記の条件で統一した。
めっき付着量:約100g/m
ノンクロメート被覆:エチレン−アクリル系(東邦化学社製の商品名「ハイテックS−3121)、付着量1.0g/m
試験条件:
温度25℃×湿度60%の大気雰囲気
2 and 3 include the experimental data shown in Tables 1 to 3 above, including the Mn content in the plating layer and the type of atmospheric gas at the time of slow cooling after hot dip galvanization (oxidizing gas; oxygen at 100 ppm). It is the graph which arranged and showed the influence which it has on white rust resistance when changing nitrogen gas containing or reducing gas (nitrogen gas containing 5 volume% of hydrogen). In this experiment, the following conditions were standardized except that the atmosphere gas during slow cooling after plating was changed.
Plating adhesion amount: about 100 g / m 2
Non-chromate coating: ethylene-acrylic (trade name “HITECH S-3121” manufactured by Toho Chemical Co., Ltd.), adhesion amount 1.0 g / m 2
Test conditions:
Air atmosphere with temperature of 25 ° C and humidity of 60%

図2からも明らかな様に、めっき層中に適量のMnを含有させ、めっき後の徐冷雰囲気を酸化性としてめっき層表面にMn系酸化物を生成させたもの(図2のうち、Mn含量が10ppm、30ppm、50ppmのもの)は、めっき層中にMnが含まれていない比較材(Mn含量が0ppm)に比べて、明らかに優れた耐白錆性を有していることが分かる。   As is apparent from FIG. 2, a proper amount of Mn is contained in the plating layer, and the Mn-based oxide is generated on the surface of the plating layer by making the slow cooling atmosphere after plating oxidizing (see FIG. It can be seen that those having a content of 10 ppm, 30 ppm, and 50 ppm have clearly superior white rust resistance compared to a comparative material (Mn content is 0 ppm) that does not contain Mn in the plating layer. .

また図2では、めっき後の冷却雰囲気を還元性としてMn系酸化物の生成を抑えた例であるが、めっき層中にMnが含まれていない場合は勿論のこと、適量のMnが含まれている場合でも、耐白錆性は十分でない。   FIG. 2 shows an example in which the cooling atmosphere after plating is made reducible to suppress the formation of Mn-based oxides. However, when the plating layer does not contain Mn, an appropriate amount of Mn is contained. Even if it is, the white rust resistance is not sufficient.

実験で得ためっき鋼板(ノンクロメート被覆前)表面のEPMA観察結果を示す写真である。It is a photograph which shows the EPMA observation result of the plated steel plate (before non-chromate coating) surface obtained by experiment. 溶融亜鉛めっき後の徐冷時における雰囲気ガスを酸化性ガスとし、めっき層中のMn含量が耐白錆性に与える影響を整理して示したグラフである。It is the graph which arranged and showed the influence which the atmosphere gas at the time of slow cooling after hot dip galvanization made oxidizing gas, and the Mn content in a plating layer has on white rust resistance. 溶融亜鉛めっき後の徐冷時における雰囲気ガスを還元性ガスとし、めっき層中のMn含量が耐白錆性に与える影響を整理して示したグラフである。It is the graph which arranged and showed the influence which the atmosphere gas at the time of slow cooling after hot dip galvanization made reducing gas, and the Mn content in a plating layer gives to white rust resistance.

Claims (4)

ノンクロメート皮膜で被覆された溶融亜鉛めっき鋼板であって、溶融亜鉛めっき層は、Al:0.08〜0.70質量%とMn:0.0010〜0.008質量%を含み、残部はZnと不可避不純物からなり、該溶融亜鉛めっき層の表面にはMnを含む酸化物が存在すると共に、その表面は、厚さ0.2〜3.0μmのノンクロメート皮膜で被覆されていることを特徴とする、耐白錆性に優れたノンクロメート被覆溶融亜鉛めっき鋼板。   A hot-dip galvanized steel sheet coated with a non-chromate film, the hot-dip galvanized layer containing Al: 0.08-0.70 mass% and Mn: 0.0010-0.008 mass%, with the balance being Zn In addition to the inevitable impurities, an oxide containing Mn exists on the surface of the hot dip galvanized layer, and the surface is coated with a non-chromate film having a thickness of 0.2 to 3.0 μm. Non-chromate coated hot-dip galvanized steel sheet with excellent white rust resistance. 前記Mnを含む酸化物は、めっき層表面に、MnとAlおよび/またはFeとの複合酸化物として存在する請求項1に記載のノンクロメート被覆溶融亜鉛めっき鋼板。   The non-chromate-coated hot-dip galvanized steel sheet according to claim 1, wherein the oxide containing Mn exists as a composite oxide of Mn and Al and / or Fe on the surface of the plating layer. 前記Mnを含む酸化物は、めっき層表面に、平均直径が1.0μm以上の異相として、めっき層表面の1片が100μmの正方形領域内に平均で20個以上分散している請求項1または2に記載のノンクロメート被覆溶融亜鉛めっき鋼板。   The oxide containing Mn is dispersed on the surface of the plating layer as a heterogeneous phase having an average diameter of 1.0 µm or more, and 20 pieces on the surface of the plating layer are dispersed in an average of 100 µm in a square region. 2. The non-chromate-coated hot-dip galvanized steel sheet according to 2. 前記ノンクロメート被覆中には、1〜30質量%のシリカ微粒子が含まれている請求項1〜3のいずれかに記載のノンクロメート被覆溶融亜鉛めっき鋼板。   The nonchromate-coated hot-dip galvanized steel sheet according to any one of claims 1 to 3, wherein the nonchromate coating contains 1 to 30% by mass of silica fine particles.
JP2006144596A 2006-05-24 2006-05-24 Non-chromate coated hot-dip galvanized steel sheet with excellent white rust resistance Expired - Fee Related JP4704956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144596A JP4704956B2 (en) 2006-05-24 2006-05-24 Non-chromate coated hot-dip galvanized steel sheet with excellent white rust resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144596A JP4704956B2 (en) 2006-05-24 2006-05-24 Non-chromate coated hot-dip galvanized steel sheet with excellent white rust resistance

Publications (2)

Publication Number Publication Date
JP2007314831A true JP2007314831A (en) 2007-12-06
JP4704956B2 JP4704956B2 (en) 2011-06-22

Family

ID=38848964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144596A Expired - Fee Related JP4704956B2 (en) 2006-05-24 2006-05-24 Non-chromate coated hot-dip galvanized steel sheet with excellent white rust resistance

Country Status (1)

Country Link
JP (1) JP4704956B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101970706A (en) * 2008-03-27 2011-02-09 株式会社神户制钢所 Chromate-free film-covered hot-dip galvanized steel sheet possessing high corrosion resistance
CN109642303A (en) * 2016-08-22 2019-04-16 Posco公司 Wearability, mouldability and the excellent hot-dip galvanized steel sheet and its manufacturing method of sealer adhesion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108845A (en) * 1980-01-29 1981-08-28 Mitsubishi Metal Corp Zinc alloy for hot dipping
JPS59104433A (en) * 1982-12-06 1984-06-16 Nippon Steel Corp Preparation of zinc plated steel plate excellent in weldability
JP2000178761A (en) * 1998-12-14 2000-06-27 Kawasaki Steel Corp Surface treating agent for galvanized steel sheet, and surface treated galvanized steel sheet
JP2001158973A (en) * 1999-11-30 2001-06-12 Kobe Steel Ltd Surface treatment film for galvanized steel sheet and surface treated steel sheet
JP2002167657A (en) * 2000-09-21 2002-06-11 Sumitomo Metal Ind Ltd HOT DIP Zn-Al BASED ALLOY PLATED STEEL SHEET AND ITS PRODUCTION METHOD
JP2004263252A (en) * 2003-03-03 2004-09-24 Jfe Steel Kk Chromium-free chemically treated steel sheet excellent in resistance to white rust
JP2006124824A (en) * 2004-09-28 2006-05-18 Nippon Steel Corp HIGHLY CORROSION RESISTANT Zn ALLOY PLATED STEEL MATERIAL HAVING HAIRLINE APPEARANCE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108845A (en) * 1980-01-29 1981-08-28 Mitsubishi Metal Corp Zinc alloy for hot dipping
JPS59104433A (en) * 1982-12-06 1984-06-16 Nippon Steel Corp Preparation of zinc plated steel plate excellent in weldability
JP2000178761A (en) * 1998-12-14 2000-06-27 Kawasaki Steel Corp Surface treating agent for galvanized steel sheet, and surface treated galvanized steel sheet
JP2001158973A (en) * 1999-11-30 2001-06-12 Kobe Steel Ltd Surface treatment film for galvanized steel sheet and surface treated steel sheet
JP2002167657A (en) * 2000-09-21 2002-06-11 Sumitomo Metal Ind Ltd HOT DIP Zn-Al BASED ALLOY PLATED STEEL SHEET AND ITS PRODUCTION METHOD
JP2004263252A (en) * 2003-03-03 2004-09-24 Jfe Steel Kk Chromium-free chemically treated steel sheet excellent in resistance to white rust
JP2006124824A (en) * 2004-09-28 2006-05-18 Nippon Steel Corp HIGHLY CORROSION RESISTANT Zn ALLOY PLATED STEEL MATERIAL HAVING HAIRLINE APPEARANCE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101970706A (en) * 2008-03-27 2011-02-09 株式会社神户制钢所 Chromate-free film-covered hot-dip galvanized steel sheet possessing high corrosion resistance
CN109642303A (en) * 2016-08-22 2019-04-16 Posco公司 Wearability, mouldability and the excellent hot-dip galvanized steel sheet and its manufacturing method of sealer adhesion
US10982309B2 (en) 2016-08-22 2021-04-20 Posco Hot-rolled galvanized steel sheet having excellent galling resistance, formability and sealer-adhesion property and method for manufacturing same
CN109642303B (en) * 2016-08-22 2021-04-27 Posco公司 Hot-dip galvanized steel sheet having excellent wear resistance, formability, and sealant adhesiveness, and method for producing same

Also Published As

Publication number Publication date
JP4704956B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
EP1315846B1 (en) Hexavalent chromium-free surface-treating agent for sn- or al-based coated steel sheet, and surface treated steel sheet
WO2008029953A1 (en) AQUEOUS TREATMENT LIQUID FOR Sn-PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND COATING ADHESION, AND METHOD FOR PRODUCING SURFACE-TREATED STEEL SHEET
CN114502673B (en) Surface treatment solution composition, ternary hot-dip galvanized alloy steel sheet surface-treated with the same, and method for producing the same
KR101249583B1 (en) Chromate-free film-covered hot-dip galvanized steel sheet possessing high corrosion resistance
JP5640312B2 (en) Zinc-based alloy-plated steel with excellent corrosion resistance and weldability and painted steel with excellent corrosion resistance
JP4637978B2 (en) Corrosion-resistant paint and corrosion-resistant steel material coated with the same
JP3927167B2 (en) Molten Mg-containing zinc alloy plated steel sheet with excellent corrosion resistance and blackening resistance
JP4090780B2 (en) Metal anticorrosive film forming agent and forming method
JP4704956B2 (en) Non-chromate coated hot-dip galvanized steel sheet with excellent white rust resistance
JP2015098625A (en) Sn-BASED PLATED STEEL SHEET, AND AQUEOUS PROCESSING SOLUTION
KR101621631B1 (en) Galvannealed steel sheet having high corrosion resistance after painting
JP2007023309A (en) Hot-dip zinc alloy plated steel sheet having excellent corrosion resistance
JP2001355051A (en) HOT DIP Zn-Sn PLATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE
WO1998000579A1 (en) Process for producing lead-containing hot-galvanised and chromated steel sheet excellent in resistances to blackening and formation of white rust
JP2006022364A (en) Treatment agent for forming protective film on metal, and forming method
JP3543194B2 (en) Chrome-free surface treatment agent for metal materials and surface-treated metal materials
WO2017115846A1 (en) Hot-dipped galvanized steel sheet and method for producing same
JP2002173756A (en) High strength galvannealed steel sheet having excellent plating adhesion and corrosion resistance, and method of manufacturing the same
JP7356075B1 (en) Hot-dipped steel plate
US8802190B2 (en) Weldable corrosion resistant coating for steel and method of manufacture
JP4757367B2 (en) Rust prevention treatment method and rust prevention treatment metal material
EP3901296A1 (en) Surface-treated steel sheet
JP2006336088A (en) Surface-treated steel material
JPH03219950A (en) Organic composite coated steel plate
KR20240056181A (en) Coating agent containing zirconium and metal surface pretreatment method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R150 Certificate of patent or registration of utility model

Ref document number: 4704956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees