JP2007311274A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2007311274A
JP2007311274A JP2006141107A JP2006141107A JP2007311274A JP 2007311274 A JP2007311274 A JP 2007311274A JP 2006141107 A JP2006141107 A JP 2006141107A JP 2006141107 A JP2006141107 A JP 2006141107A JP 2007311274 A JP2007311274 A JP 2007311274A
Authority
JP
Japan
Prior art keywords
core
heat
battery
condition
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006141107A
Other languages
Japanese (ja)
Inventor
Hiroki Harada
宏紀 原田
Koji Kawamoto
浩二 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006141107A priority Critical patent/JP2007311274A/en
Publication of JP2007311274A publication Critical patent/JP2007311274A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery in which heat radiation can be carried out effectively without increasing battery volume. <P>SOLUTION: In the battery 10 provided with an electrode winding body 12 in which a positive electrode plate 12a and a negative electrode plate 12b are laminated and wound round via a separator, at a region out of the winding core 11 where the electrode winding body 12 is installed, a heat absorption part 13 is installed which is composed of organic adhesive such as epoxy resin, phenolic resin, silicone resin, urea resin, or the like which have larger specific heat than that of the winding core 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電池の巻芯、及び缶体の構造によって放熱効果を高めることにより、充放電中の温度上昇を抑え、電池寿命を長くする技術に関する。   The present invention relates to a technique for suppressing a temperature increase during charging / discharging and extending a battery life by enhancing a heat dissipation effect by a structure of a battery core and a can body.

電気自動車やハイブリッド車に搭載される電池は、電池を充電、放電する際に、内部の抵抗によって発熱することが知られている。
特に、自動車に搭載される電池は、加速や減速によって充放電が目まぐるしく切り替わる上に、駆動用のモータに電気を供給するため高電圧で利用されるため発熱しやすい。また、自動車の一般的な連続使用時間は数時間単位となるため、連続的に数時間の充放電に耐える必要がある。
しかし、このように電池が発熱し高温状態が続くことで、寿命が低下したり、所定の出力が取り出せなくなったりするなどの問題があった。
さらに、電池を自動車に搭載可能なペースは限られており、また、自動車ユーザーからはメンテナンスフリーであることが求められる。そのため、自動車に搭載するような電池は、小型で長寿命な電池が理想とされる。
そこで、このような問題を解決するために、後述する特許文献1乃至特許文献3に挙げるような、様々な方法を用いて温度を下げる工夫がなされてきた。
It is known that a battery mounted on an electric vehicle or a hybrid vehicle generates heat due to an internal resistance when the battery is charged or discharged.
In particular, a battery mounted on an automobile is subject to rapid switching between charging and discharging due to acceleration and deceleration, and is also likely to generate heat because it is used at a high voltage to supply electricity to a driving motor. Moreover, since the general continuous use time of a motor vehicle is a unit of several hours, it is necessary to withstand charging / discharging for several hours continuously.
However, since the battery generates heat and continues in a high temperature state as described above, there are problems such as a reduction in lifespan and a failure to extract a predetermined output.
Furthermore, the pace at which batteries can be installed in automobiles is limited, and automobile users are required to be maintenance-free. Therefore, a battery that is mounted on an automobile is ideally a small battery with a long life.
Therefore, in order to solve such a problem, various devices have been devised to lower the temperature using various methods as described in Patent Documents 1 to 3 described later.

特許文献1では、円筒型電池の中心部に軸方向に貫設された巻芯の一端を、直接又は薄い電気絶縁層を介して缶体の底面に当接させることで、巻芯を通って電池の外部を覆う缶体に熱が伝達され、電池が発生する熱を外部に放熱している。
この際、巻芯に熱伝達率の高い、例えば金属のような物質を使用することで、円筒型電池の中心部から巻芯を通して熱を外部に放熱することが可能となり、中心部に熱が溜まりにくくなる。
In Patent Document 1, one end of a winding core extending in the axial direction at the center of a cylindrical battery is brought into contact with the bottom surface of the can body directly or through a thin electric insulating layer, thereby passing through the winding core. Heat is transmitted to the can covering the outside of the battery, and the heat generated by the battery is dissipated to the outside.
At this time, by using a material such as metal having a high heat transfer coefficient for the core, heat can be dissipated to the outside through the core from the center of the cylindrical battery, and heat is transmitted to the center. It becomes difficult to collect.

特許文献2では、円筒型電池の中央部にこれを貫通する空芯部を形成しており、この空芯部に冷却液を流すことで、電池が発生する熱を放熱している。
このように、空芯部を冷却水路として冷却液を循環させるため、熱放出を助ける結果となり、高い冷却効果を得ることができる。
In patent document 2, the air core part which penetrates this is formed in the center part of a cylindrical battery, and the heat | fever which a battery generate | occur | produces is radiated by flowing a cooling fluid through this air core part.
As described above, since the coolant is circulated using the air core portion as a cooling water channel, the result of assisting heat release is obtained, and a high cooling effect can be obtained.

特許文献3では、円筒型電池の中央部に軸方向に貫設された巻芯の一端を缶体から突出させ、その先にフィンを取り付け、電池が発生する熱を放熱している。このように、巻芯の先端にフィンを設けることで、熱放出性が高くなる。
また、巻芯にMMC(metal matrix composite)を用い、フィラーに高熱伝導カーボンファイバー等のマトリックスよりも高い熱伝導性を有する部材を用いることで、巻芯自体の熱伝導率を上げ、放熱効果を高めている。
特開平5−234616号公報 特開平11−329514号公報 特開2000−30975号公報
In Patent Document 3, one end of a winding core extending in the axial direction at the center of a cylindrical battery is protruded from a can body, and a fin is attached to the tip of the core to radiate heat generated by the battery. As described above, by providing the fin at the tip of the core, the heat release property is increased.
In addition, by using MMC (metal matrix composite) for the core and using a member with higher thermal conductivity than the matrix such as high thermal conductivity carbon fiber for the filler, the thermal conductivity of the core itself is increased and the heat dissipation effect is improved. It is increasing.
JP-A-5-234616 JP-A-11-329514 JP 2000-30975 A

しかしながら、従来技術では以下のような問題点があった。
(1)特許文献1に示されるように、熱伝導性の高い巻芯の一端を缶体に接触させ放熱部材とする方式の場合、正負極間の絶縁を確保するために、巻芯と電極巻回体の間、及び巻芯と正極の間に電気絶縁層を必要とする。そして、場合によっては、巻芯と負極の間にも電気絶縁層を設けなければならない。
しかし、この電気絶縁層は、自動車に搭載する電池の場合には高電圧の電気を絶縁するために厚くする必要がある。この結果、この電気絶縁層によって、熱の伝達を阻害されてしまい、効果的に放熱を行えない虞がある。
However, the prior art has the following problems.
(1) As shown in Patent Document 1, in the case of a system in which one end of a highly heat-conductive core is brought into contact with a can body to form a heat radiating member, in order to ensure insulation between positive and negative electrodes, the core and electrode An electrical insulating layer is required between the wound bodies and between the winding core and the positive electrode. In some cases, an electrical insulating layer must also be provided between the core and the negative electrode.
However, in the case of a battery mounted on an automobile, this electric insulation layer needs to be thick in order to insulate high voltage electricity. As a result, heat transfer is hindered by this electrical insulating layer, and there is a possibility that heat cannot be effectively dissipated.

(2)特許文献2に示されるように、円筒型電池の中央部にこれを貫通する空芯部を形成し、冷却液を循環させる場合は、冷却効果は高められるものの、このような電池は小型であり、必然的に空芯部は細くなるため、圧力損失が大きく、冷却液を強制的に循環させるユニットを必要とする。
この結果、電池の体積が大きくなるという問題がある。
(3)特許文献3に示されるように、円筒型電池の巻芯にMMCを用い、延長して、その先端にフィンを付ける場合は、冷却効果は高められるものの、円筒型電池ごとにフィンが必要となるため、電池を配置する位置が制限される上、電池体積が大きくなるという問題がある。
(2) As shown in Patent Document 2, in the case where an air core portion penetrating the cylindrical battery is formed in the central portion of the cylindrical battery and the cooling liquid is circulated, the cooling effect is enhanced. Since it is small and the air core portion inevitably becomes thin, a pressure loss is large and a unit for forcibly circulating the coolant is required.
As a result, there is a problem that the volume of the battery increases.
(3) As shown in Patent Document 3, when an MMC is used as the core of a cylindrical battery and is extended and a fin is attached to the tip thereof, the cooling effect is enhanced, but a fin is provided for each cylindrical battery. Therefore, there is a problem that the position where the battery is arranged is limited and the battery volume is increased.

このように、特許文献1乃至特許文献3の技術では、(1)乃至(3)に挙げたような、電池の放熱が効果的に行えない、あるいは放熱効果を高めるために電池体積が大きくなってしまうという問題があった。電池を自動車に搭載する場合には、限られたスペースに搭載する上に、電池の搭載位置を自由に変更することは難しい。よって、電池体積が大きくなり、取り付け位置が制限されることは大きな制約となる。
また、このような電池の放熱が効果的に行えないという問題のために、自動車に特許文献1乃至特許文献3の電池を搭載した場合には、数時間の連続運転によって電池の内部温度が電池を構成する材質を劣化させるほど上昇し電池の寿命を短くしたり、電池体積が大きくなってしまうために自動車のエンジンルームのスペースを占有してしまいそのために熱が籠もり易くなったりする等の問題も挙げられる。
As described above, in the techniques of Patent Document 1 to Patent Document 3, as described in (1) to (3), heat dissipation of the battery cannot be performed effectively, or the battery volume is increased in order to enhance the heat dissipation effect. There was a problem that. When a battery is mounted on an automobile, it is difficult to freely change the battery mounting position in addition to mounting in a limited space. Therefore, the battery volume is increased and the mounting position is limited.
Further, due to the problem that such heat dissipation of the battery cannot be effectively performed, when the battery of Patent Documents 1 to 3 is mounted on an automobile, the internal temperature of the battery is changed by continuous operation for several hours. As the material that makes up the battery deteriorates, the battery life is shortened, the battery volume increases, and the space in the engine room of the car is occupied, which makes it easy to trap heat. There are also problems.

そこで、本発明は、このような課題を解決するために、電池体積を大きくせず、効果的に放熱することのできる電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a battery that can effectively dissipate heat without increasing the battery volume in order to solve such problems.

前記目的を達成するために、本発明による電池は以下のような特徴を有する。
(1)伝熱体からなる巻芯に、正極板及び負極板を、セパレータを介して積層巻回してなる電極巻回体を備える電池において、前記巻芯のうち、前記電極巻回体が設けられる領域の一部に、前記巻芯よりも比熱の大きな熱吸収部を設けたことを特徴とする。
(2)(1)に記載する電池において、前記熱吸収部は、絶縁性の物質で構成され、前記巻芯は、前記熱吸収部によって軸方向に少なくとも第1巻芯と第2巻芯とに分割されてなることを特徴とする。
In order to achieve the above object, the battery according to the present invention has the following characteristics.
(1) In a battery including an electrode winding body obtained by laminating and winding a positive electrode plate and a negative electrode plate via a separator on a core made of a heat transfer body, the electrode winding body is provided among the cores. A heat absorption part having a larger specific heat than that of the core is provided in a part of the region to be formed.
(2) In the battery described in (1), the heat absorption unit is made of an insulating material, and the core is at least a first core and a second core in the axial direction by the heat absorption unit. It is characterized by being divided into two.

(3)(2)に記載する電池において、前記第1巻芯は、一端が前記熱吸収部と接触し、他端が前記正極板と導通した第1放熱体と接触してなり、前記第2巻芯は、一端が前記熱吸収部と接触し、他端が前記負極板と導通した第2放熱体と接触してなることを特徴とする。
(4)(2)又は(3)に記載する電池において、前記熱吸収部は、前記第1巻芯と前記第2巻芯を接着する接着剤よりなることを特徴とする。
(3) In the battery described in (2), one end of the first core is in contact with the heat absorbing portion, and the other end is in contact with a first radiator that is electrically connected to the positive electrode plate. The two-core is characterized in that one end is in contact with the heat absorbing portion and the other end is in contact with a second heat radiator that is electrically connected to the negative electrode plate.
(4) In the battery described in (2) or (3), the heat absorption part is made of an adhesive that adheres the first core and the second core.

(5)(3)又は(4)に記載する電池において、前記第2放熱体は、前記電極巻回体を覆うように設けられた缶体であり、前記缶体に形成された凹部に、前記第2巻芯が嵌め込まれてなることを特徴とする。 (5) In the battery described in (3) or (4), the second heat radiating body is a can body provided so as to cover the electrode winding body, and in the recess formed in the can body, The second winding core is fitted.

このような特徴を有する本発明による電池により、以下のような作用、効果が得られる。
(1)伝熱体からなる巻芯に、正極板及び負極板を、セパレータを介して積層巻回してなる電極巻回体を備える電池において、巻芯のうち、電極巻回体が設けられる領域の一部に、巻芯よりも比熱の大きな熱吸収部を設けたことを特徴とするので、電池が発熱した際に熱吸収部と巻芯の両方から熱を回収し、放熱することが可能となる。
本発明の電池は、巻芯を伝熱体で構成し、電極巻回体が設けられる領域の少なくとも一部に熱吸収部を備えている。
電池の充放電が行われ、電極巻回体から発熱し始めると、巻芯と熱吸収部に熱が伝達される。巻芯は伝熱体で構成されているため、熱が伝達されて徐々に温度が上昇する。
一方、熱吸収部は、巻芯よりも比熱が大きいため巻芯よりも暖まりにくく冷めにくい。このため、発熱開始時点からしばらくは、熱吸収部は巻芯よりも温度が低く、巻芯からも熱を吸収し、蓄熱することになる。
With the battery according to the present invention having such characteristics, the following actions and effects can be obtained.
(1) In a battery including an electrode winding body in which a positive electrode plate and a negative electrode plate are laminated and wound via a separator on a winding core made of a heat transfer body, an area where the electrode winding body is provided in the winding core. Since the heat absorption part with a larger specific heat than the core is provided in a part of the battery, when the battery generates heat, heat can be recovered from both the heat absorption part and the core and dissipated It becomes.
In the battery of the present invention, the winding core is formed of a heat transfer body, and the heat absorption part is provided in at least a part of the region where the electrode winding body is provided.
When the battery is charged / discharged and starts to generate heat from the electrode winding body, heat is transferred to the winding core and the heat absorbing portion. Since the winding core is composed of a heat transfer body, heat is transferred and the temperature gradually rises.
On the other hand, since the heat absorption part has a specific heat larger than that of the core, it is harder to be warmed and cooled than the core. For this reason, for a while after the start of heat generation, the temperature of the heat absorption unit is lower than that of the core, and heat is also absorbed from the core to store heat.

発熱開始後しばらくすると、巻芯は同様に放熱を続けるが、熱吸収部は熱を蓄えることで巻芯よりも温度が高くなり、今度は熱吸収部から巻芯へ放熱を行うようになる。
このとき、電極巻回体から巻芯が受け取る熱量は、巻芯と電極巻回体との接触部分の面積による。そして、電極巻解体からも熱吸収部との接触部分からも熱を巻芯に伝達可能となり、外部へ放熱できるようになるので、結果的に電池全体からの放熱量が増大することになる。
言い換えれば、本発明の電池は、巻芯の表面積を増やし、熱吸収部の働きによって巻芯の中心部に放熱できるようにすることで、放熱性を高めているのである。
したがって、巻芯の電極巻回体が巻回される領域の一部に、巻芯よりも比熱の大きな熱吸収部を設ける構成とすることで、発熱する部分である電極巻回体と巻芯の接触面積を擬似的に増やすことが可能であり、その結果、一定時間以降の電池の温度上昇を抑える効果がある。
そして、巻芯の一部に熱吸収部を設ける構成とするので、電池体積を大きくせずに温度上昇を抑える効果が得られる。その結果、電池の性能を劣化させず寿命を延ばすことに貢献する。
After a while after the start of heat generation, the core continues to dissipate heat in the same manner, but the heat absorption part accumulates heat so that the temperature becomes higher than that of the core, and this time heat is dissipated from the heat absorption part to the core.
At this time, the amount of heat received by the winding core from the electrode winding body depends on the area of the contact portion between the winding core and the electrode winding body. Then, heat can be transmitted from the electrode unwinding body and the contact portion with the heat absorbing portion to the core, and heat can be radiated to the outside. As a result, the heat radiation amount from the whole battery is increased.
In other words, the battery of the present invention increases heat dissipation by increasing the surface area of the core and allowing heat to be dissipated to the center of the core by the action of the heat absorbing section.
Therefore, the electrode winding body and the core that are heat generating portions are configured by providing a heat absorption part having a specific heat larger than that of the core in a part of a region where the electrode winding body of the core is wound. The contact area can be increased in a pseudo manner, and as a result, there is an effect of suppressing the temperature rise of the battery after a certain time.
And since it is set as the structure which provides a heat absorption part in a part of winding core, the effect which suppresses a temperature rise, without enlarging a battery volume is acquired. As a result, it contributes to extending the life without degrading the performance of the battery.

(2)(1)に記載する電池において、熱吸収部は、絶縁性の物質で構成され、巻芯は、熱吸収部によって軸方向に少なくとも第1巻芯と第2巻芯とに分割されてなることを特徴とする。
電池の巻芯等に設けられる電気を絶縁するための絶縁部は、巻芯によって熱だけを排出するために必ず必要となる。これは、電池の構成上、巻芯が正負極間を短絡してしまうと電池として成り立たないからである。
しかし、絶縁材料は比熱が高く熱伝達率の低いものが多いので、絶縁部が放熱の阻害要因となることが多い。
そこで、巻芯を第1巻芯と第2巻芯に分割し、第1巻芯と第2巻芯の間に絶縁性を持った熱吸収部を挟み込むことで、熱吸収部に絶縁部を兼ねることとした。こうすることで、別途絶縁部を設ける必要がなくなる。
そして、(1)の温度上昇を抑える効果を備えるとともに、電池体積のコンパクト化を図ることができる。
(2) In the battery described in (1), the heat absorption unit is made of an insulating material, and the winding core is divided into at least a first winding core and a second winding core in the axial direction by the heat absorption unit. It is characterized by.
An insulating part for insulating electricity provided on a battery core or the like is necessarily required to discharge only heat by the core. This is because, due to the configuration of the battery, if the core short-circuits between the positive and negative electrodes, the battery cannot be established.
However, since many insulating materials have a high specific heat and a low heat transfer coefficient, the insulating portion often becomes an obstacle to heat dissipation.
Therefore, the winding core is divided into a first winding core and a second winding core, and an insulating portion is sandwiched between the first winding core and the second winding core so that the insulating portion is attached to the heat absorption portion. I decided to double. In this way, it is not necessary to provide a separate insulating part.
And while providing the effect of suppressing the temperature rise of (1), the battery volume can be made compact.

(3)(2)に記載する電池において、第1巻芯は、一端が熱吸収部と接触し、他端が正極板と導通した第1放熱体と接触してなり、第2巻芯は、一端が熱吸収部と接触し、他端が負極板と導通した第2放熱体と接触してなることを特徴とする。
ここで、第1放熱体と接触する第1巻芯と、第2放熱体と接触する第2巻芯は、絶縁機能を持つ熱吸収部を介しているので、(2)に記載した通り、短絡することがない。
故に、第1放熱体と第1巻芯、第2放熱体と第2巻芯を、それぞれ導通するように直接接触させることが可能となる。
前述した通り、絶縁層は薄くても断熱作用があるため、熱伝達を阻害して電池内に熱を蓄積する要因となる。これを、第1放熱体と第1巻芯、第2放熱体と第2巻芯の間に設けずに済むことで、それぞれの部分で熱伝達が良好となり、放熱性を高めることが出来る。
例えば、第1放熱体を正極端子と導通する金具とし、第2放熱体を負極として働く缶体とすれば、正極端子と缶体は直接外気に触れているので、巻芯から正極端子と導通する金具及び缶体に伝えられた熱を、効率的に電池外部に放熱することが可能である。
さらに、第1巻芯と第2巻芯は、片端は熱吸収部に接し、片端は正極端子と導通する金具及び缶体に接することが出来るので、巻芯の両側から熱を効率的に正極端子と導通する金具及び缶体に伝達することが出来て、それらから効率的に放熱することが可能となる。
(3) In the battery described in (2), one end of the first core is in contact with the heat absorbing portion, and the other end is in contact with the first heat radiator that is electrically connected to the positive electrode plate. One end is in contact with the heat absorbing portion, and the other end is in contact with the second heat radiating body which is in conduction with the negative electrode plate.
Here, since the 1st core which contacts the 1st radiator and the 2nd core which contacts the 2nd radiator are via the heat absorption part with an insulating function, as described in (2), There is no short circuit.
Therefore, the first radiator and the first core, and the second radiator and the second core can be brought into direct contact with each other so as to be conductive.
As described above, even if the insulating layer is thin, it has a heat insulating action, and therefore, heat transfer is hindered and heat is accumulated in the battery. By eliminating this need to be provided between the first heat radiating body and the first core, and between the second heat radiating body and the second core, heat transfer is improved in each portion, and heat dissipation can be improved.
For example, if the first radiator is a metal fitting that conducts with the positive electrode terminal and the second radiator is a can body that acts as a negative electrode, the positive electrode terminal and the can body are in direct contact with the outside air. It is possible to efficiently dissipate the heat transferred to the metal fitting and the can body to the outside of the battery.
Furthermore, the first core and the second core have one end in contact with the heat absorbing portion, and the other end can be in contact with the metal fitting and the can that are connected to the positive terminal, so that heat can be efficiently transferred from both sides of the core. It can transmit to the metal fittings and cans which are electrically connected to the terminals, and can efficiently dissipate heat from them.

またこのように、第1巻芯と第2巻芯をそれぞれ第1放熱体及び第2放熱体に接触させ、効果的に放熱することができるので、特許文献2や特許文献3のように、外部に冷却液を循環させるための設備や、フィンなどの電池体積を大きくする設備を設ける必要がない。このため、電池体積を大きくせずに冷却効率を高めることが可能である。   Also, as described above, since the first and second cores can be brought into contact with the first radiator and the second radiator, respectively, and effectively radiated, as in Patent Document 2 and Patent Document 3, There is no need to provide equipment for circulating the coolant outside or equipment for increasing the battery volume, such as fins. For this reason, it is possible to increase the cooling efficiency without increasing the battery volume.

(4)(2)又は(3)に記載する電池において、熱吸収部は、第1巻芯と第2巻芯を接着する接着剤よりなることを特徴とするので、第1巻芯と第2巻芯が熱吸収部によって一体的に接着された後、電極巻回体を巻芯に巻回することとなる。その際に、接着されているために第1巻芯と第2巻芯が分かれてしまうことが無く、(2)又は(3)の効果を得ながらも、加工工程において不良を出しにくい構造とすることができる。
また、熱吸収部が第1巻芯と第2巻芯とを接着する接着剤より成るため、それぞれの接着面に隙間ができにくい。さらに、密着度が高いことで、熱伝達効率を損なわない。その結果、熱吸収部から第1巻芯及び第2巻芯への放熱効果を高めることが可能となる。
(4) In the battery described in (2) or (3), the heat absorption part is made of an adhesive that adheres the first core and the second core. After the two winding cores are integrally bonded by the heat absorbing portion, the electrode winding body is wound around the winding core. At that time, the first core and the second core are not separated because they are bonded, and the structure (2) or (3) is obtained, but the structure is less likely to cause defects in the processing process. can do.
Moreover, since the heat absorption part is made of an adhesive that bonds the first and second cores, it is difficult to form a gap on each bonding surface. Furthermore, heat transfer efficiency is not impaired by the high degree of adhesion. As a result, it is possible to enhance the heat dissipation effect from the heat absorption part to the first core and the second core.

(5)(3)又は(4)に記載する電池において、第2放熱体は、電極巻回体を覆うように設けられた缶体であり、缶体に形成された凹部に、第2巻芯が嵌め込まれてなることを特徴とするので、缶体に電極巻回体が巻回された第1巻芯、第2巻芯、及び熱吸収部からなる巻芯をセットする際に、缶体に対して巻芯の第2巻芯側が位置ズレせず、缶体から巻芯が外れて落ちるようなことが無くなる。この結果、電池の製造工程における施工性を向上させることができる。
また、第2巻芯と缶体の接触面積を増やすことができるので、電池体積を殆ど大きくせずに放熱性を高める効果を奏する。
第2巻芯が回収した熱は、缶体に接触していることで缶体から外部に放出することができる。缶体は金属製であることが多く熱伝達率も高いため、外部をファンなどで冷やされていればより効果的に放熱が可能となる。
そして、熱の移動は温度差によって左右されるため、缶体の温度を下げてやることで、第2巻芯と缶体の温度差を広げ、より早く巻芯から放熱することが可能となり、すなわち巻芯の温度を下げ、電極巻回体が発生する熱を早く外部に放熱することに繋がる。
このようにして、電池の放熱を行うことで、電池の性能の低下を防ぎ寿命を延ばすことに貢献することが可能である。
(5) In the battery described in (3) or (4), the second radiator is a can provided so as to cover the electrode winding body, and the second winding is provided in the recess formed in the can. Since the core is fitted, the can can be set when setting the winding core composed of the first winding core, the second winding core, and the heat absorbing portion around which the electrode winding body is wound. The second core side of the core does not shift relative to the body, and the core does not fall off the can body. As a result, the workability in the battery manufacturing process can be improved.
Moreover, since the contact area of a 2nd core and a can can be increased, there exists an effect which improves heat dissipation, without making a battery volume almost large.
The heat recovered by the second core can be released to the outside from the can body by being in contact with the can body. Since the can body is often made of metal and has a high heat transfer coefficient, heat can be radiated more effectively if the outside is cooled by a fan or the like.
And since the movement of heat depends on the temperature difference, by lowering the temperature of the can body, it becomes possible to widen the temperature difference between the second core and the can body and to dissipate heat from the core faster, That is, the temperature of the winding core is lowered, and the heat generated by the electrode winding body is quickly radiated to the outside.
In this way, by radiating the battery, it is possible to prevent a decrease in the performance of the battery and contribute to extending its life.

(第1実施例)
次に、本発明の第1実施例について、図面を参照しつつ説明する。
図1に、第1実施例の電池の断面図を示す。
電池10は、巻芯11に電極巻回体12が巻回され、缶体16の中に納められ、正極端子15が取り付けられている。
巻芯11は、第1巻芯11a、第2巻芯11b、及び熱吸収部13で構成され、第1巻芯11a及び第2巻芯11bは熱吸収部13によって接合されている。
第1巻芯11a及び第2巻芯11bは放熱棒としての働きを持たせるために、熱伝導性の高い金属、例えば銅やアルミニウム等で作られている。もちろん、その他の金属や、熱伝導性の良い物質を用いても良い。
(First embodiment)
Next, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a cross-sectional view of the battery of the first embodiment.
In the battery 10, an electrode winding body 12 is wound around a winding core 11, is housed in a can body 16, and a positive electrode terminal 15 is attached.
The winding core 11 includes a first winding core 11 a, a second winding core 11 b, and a heat absorption unit 13, and the first winding core 11 a and the second winding core 11 b are joined by the heat absorption unit 13.
The first core 11a and the second core 11b are made of a metal having high thermal conductivity, such as copper or aluminum, in order to function as a heat radiating rod. Of course, other metals or substances having good thermal conductivity may be used.

また、第1巻芯11a及び第2巻芯11bは、図1に示すように細長く楕円柱形状をしている。
これは、電池10自体が板状の電池であるため、巻芯11に電極巻回体12を巻回した状態で平たくなるように、巻芯11もそれに合わせて楕円柱形状である必要があり、必然的に第1巻芯11a及び第2巻芯11bも同様の形状となる。なお、第1巻芯11a及び第2巻芯11bの長さは、熱吸収部13の位置が電極巻回体12の巻回される領域のほぼ中央に来るのが望ましい。
熱吸収部13は、樹脂系の接着剤であり、例えばエポキシ樹脂、フェノール樹脂、メラミン樹脂、シリコン樹脂、及び尿素樹脂等の有機系の接着剤で、ある程度の耐熱性が確保されるものが好ましい。これらの樹脂は、第1巻芯11a及び第2巻芯11bに用いられる銅やアルミニウム等の金属よりも比熱が高い。例えば、熱吸収部13に用いられるエポキシ樹脂と、巻芯11に用いられる銅とでは、比熱は3.5倍強の差がある。
なお、電池は充電又は放電する際に発熱する。この温度が80℃以上になることもあるため、その程度の温度で過熱変形しないことが必要である。もちろん、この温度は電池10の設計によっても異なるため、電池10に必要とされるだけの耐熱性を備えている必要がある。
このような第1巻芯11a及び第2巻芯11bを、熱吸収部13で接合することで、巻芯11は1本の細長い楕円柱形状に形成される。なお、第1巻芯11aと第2巻芯11bの長さは、ほぼ同じであり、熱吸収部13の厚みは数mm程度である。
Further, the first core 11a and the second core 11b are elongated and have an elliptical column shape as shown in FIG.
This is because the battery 10 itself is a plate-like battery, so that the core 11 needs to have an elliptical column shape accordingly so that it becomes flat when the electrode winding body 12 is wound around the core 11. Naturally, the first core 11a and the second core 11b also have the same shape. In addition, as for the length of the 1st winding core 11a and the 2nd winding core 11b, it is desirable for the position of the heat absorption part 13 to come to the approximate center of the area | region where the electrode winding body 12 is wound.
The heat absorbing portion 13 is a resin-based adhesive, and is preferably an organic adhesive such as an epoxy resin, a phenol resin, a melamine resin, a silicon resin, and a urea resin, which ensures a certain degree of heat resistance. . These resins have higher specific heat than metals such as copper and aluminum used for the first core 11a and the second core 11b. For example, the specific heat of the epoxy resin used for the heat absorbing portion 13 and the copper used for the core 11 are slightly different by 3.5 times.
A battery generates heat when it is charged or discharged. Since this temperature may be 80 ° C. or higher, it is necessary not to overheat and deform at that temperature. Of course, since this temperature varies depending on the design of the battery 10, it is necessary to have heat resistance required for the battery 10.
By joining the first core 11a and the second core 11b with the heat absorbing portion 13, the core 11 is formed into a single elongated elliptical column shape. In addition, the length of the 1st winding core 11a and the 2nd winding core 11b is substantially the same, and the thickness of the heat absorption part 13 is about several mm.

なお、熱吸収部13は、巻芯11を切断する位置に配設したり、単純に第1巻芯11aと第2巻芯11bを分ける位置に配設するだけでなく、熱吸収部13に凹部を設け、第1巻芯11a及び第2巻芯11bにそれぞれ凸部を付けて嵌合させることで、更に熱吸収部13と巻芯11の接触面積を増やし放熱性を高めたりすることも有効だと考えられる。
また、熱吸収部13を巻芯11の外周部に部分的に配設することも考えられる。例えば、細い棒状に形成された熱吸収部13を巻芯11の外周部に一定の間隔を空けて埋め込むような状態で設けることで、熱吸収部13と巻芯11の接触面積を増やしても良い。
The heat absorbing unit 13 is not only disposed at a position where the core 11 is cut or simply disposed at a position where the first core 11a and the second core 11b are separated from each other. By providing concave portions and fitting the first and second cores 11a and 11b with convex portions, the contact area between the heat absorbing portion 13 and the core 11 can be further increased to improve heat dissipation. It is considered effective.
It is also conceivable to dispose the heat absorption part 13 partially on the outer peripheral part of the core 11. For example, even if the contact area between the heat absorbing portion 13 and the core 11 is increased by providing the heat absorbing portion 13 formed in a thin rod shape in a state of being embedded in the outer peripheral portion of the core 11 at a predetermined interval. good.

電極巻回体12は、正極板12a及び負極板12bを、図示しないセパレータを介して積層巻回してなっている。そして、一般的なものと同様に、正極板12aは薄い集電基板の両面に正極活物質を塗工することによって制作され、負極板12bも薄い集電基板の両面に負極活物質を塗工することによって制作される。
セパレータは、例えばマイクロポアを有するLiイオン透過性のポリエチレンフィルムを、多孔性のLiイオン透過性のポリプロピレンフィルムで挟んだ三層構造としたようなものが好適に用いられる。
このような正極板12a、負極板12b、及びセパレータを巻芯11に巻回し、楕円形に電極巻回体12が形成されている。
The electrode winding body 12 is formed by laminating and winding a positive electrode plate 12a and a negative electrode plate 12b via a separator (not shown). Similarly to the general case, the positive electrode plate 12a is produced by applying a positive electrode active material on both sides of a thin current collector substrate, and the negative electrode plate 12b is also applied on both sides of a thin current collector substrate. It is produced by doing.
For example, a separator having a three-layer structure in which a Li ion permeable polyethylene film having micropores is sandwiched between porous Li ion permeable polypropylene films is preferably used.
The positive electrode plate 12a, the negative electrode plate 12b, and the separator are wound around the winding core 11, and the electrode winding body 12 is formed in an elliptical shape.

電極巻回体12が巻回された巻芯11は、缶体16に設けられた凸部16aの嵌合穴16bに嵌め込まれる。このとき巻芯11の外周部であって嵌合穴16bに嵌め込まれる負極板12bは、缶体16に直接接する。なお、缶体16と巻芯11を直接接触せず、接着剤等で組み立てられても良いが、その場合は接着剤が硬化した段階で、缶体16と巻芯11の熱伝導が阻害されない必要がある。
そして、電極巻回体12の組み付けられた缶体16には、正極端子15がカバー17で留められ、カバー17の下部には通電金具18が備えられる。
通電金具18は正極端子15に通電可能に備えられ、通電金具18に接触するタブ19は正極板12aに通電可能に接している。
また、缶体16には、負極板12bに繋がれるタブ19が通電可能に接している。
The core 11 around which the electrode winding body 12 is wound is fitted into the fitting hole 16b of the convex portion 16a provided in the can body 16. At this time, the negative electrode plate 12 b which is the outer peripheral portion of the core 11 and is fitted into the fitting hole 16 b is in direct contact with the can body 16. The can body 16 and the core 11 may not be directly contacted and may be assembled with an adhesive or the like, but in that case, the heat conduction between the can body 16 and the core 11 is not hindered when the adhesive is cured. There is a need.
The positive electrode terminal 15 is fastened to the can body 16 to which the electrode winding body 12 is assembled by a cover 17, and a current-carrying metal fitting 18 is provided below the cover 17.
The energizing metal fitting 18 is provided so as to be able to energize the positive electrode terminal 15, and the tab 19 in contact with the energizing metal fitting 18 is in contact with the positive electrode plate 12 a so as to be energized.
Moreover, the tab 19 connected to the negative electrode plate 12b is in contact with the can body 16 so that energization is possible.

第1実施例の電池は上記のように構成され、この作用、効果を調査するために以下のような実験を行い考察した。
図2は、第1実施例の構成の電池10における放熱性について調査したグラフである。
縦軸に電池の表面温度(℃)、横軸に経過時間(s)を示し、又、調査は3種類の電池10について行い、第1条件51、第2条件52、第3条件53として図2に示している。
第1条件51には、第1実施例の電池10をモデル化したものを使用している。この電池10は直径18mmで、長さが65mmの円筒形状をしており、その断面は第1実施例の電池10と同様に、第1巻芯11a及び第2巻芯11bが熱吸収部13にて接合された巻芯11を使用している。巻芯11の太さは直径5mmとし、熱吸収部13の幅は5mmとした。このような電池10の表面の中央部に熱電対を取り付け、電池10に電流を流し続けた場合の表面温度を記録した。
また、第2条件52には、特許文献1に示される構成と同様の電池10を、第1条件51と同じ大きさで作り、同様に電池10の表面温度を熱電対によって測定し、記録している。第1条件51との差異は巻芯11の構成であり、巻芯11の絶縁部を正極端子15に設けており、放熱棒は分割されていない。
また、第3条件53には、特許文献2に示される構成と同様の電池10を、第1条件51と同じ大きさで作り、同様に電池10の表面温度を熱電対によって測定し、記録している。第1条件51との差異は巻芯11が筒状の中空パイプで作られている点であり、熱吸収部13も設けられていない。
The battery according to the first embodiment is configured as described above, and the following experiment was considered in order to investigate this action and effect.
FIG. 2 is a graph investigating the heat dissipation in the battery 10 having the configuration of the first embodiment.
The vertical axis indicates the surface temperature (° C.) of the battery, and the horizontal axis indicates the elapsed time (s). The survey is conducted for three types of batteries 10, and the first condition 51, the second condition 52, and the third condition 53 are illustrated. 2 shows.
As the first condition 51, a model of the battery 10 of the first embodiment is used. The battery 10 has a cylindrical shape with a diameter of 18 mm and a length of 65 mm. The cross section of the battery 10 is the same as that of the battery 10 of the first embodiment, in which the first core 11 a and the second core 11 b are the heat absorbing portion 13. Is used. The thickness of the winding core 11 was 5 mm in diameter, and the width of the heat absorption part 13 was 5 mm. A thermocouple was attached to the center of the surface of the battery 10 as described above, and the surface temperature when current was continuously supplied to the battery 10 was recorded.
Further, in the second condition 52, the battery 10 having the same configuration as that shown in Patent Document 1 is made to have the same size as the first condition 51, and the surface temperature of the battery 10 is measured and recorded by a thermocouple. ing. The difference from the first condition 51 is the configuration of the core 11, the insulating portion of the core 11 is provided in the positive terminal 15, and the heat dissipating rod is not divided.
Further, in the third condition 53, the battery 10 having the same configuration as that shown in Patent Document 2 is made in the same size as the first condition 51, and the surface temperature of the battery 10 is similarly measured and recorded by a thermocouple. ing. The difference from the first condition 51 is that the core 11 is made of a cylindrical hollow pipe, and the heat absorbing portion 13 is not provided.

これら第1条件51、第2条件52、及び第3条件53の電池10に一定電流を連続して通電し、電池10の表面温度を測定して比較した。
この実験は、特許文献1に係る技術に対応した第2条件52と、特許文献2に係る技術に対応した第3条件53と比較して、本発明の電池10に係る第1条件51で、どの程度の効果が現れるかを調査する目的で行われた。
そのため、連続運転時間を1時間と設定し、充放電の繰り返しを再現するために一定電流を流し続けて、電池10の表面温度を測定するという方法を採った。
実際に自動車に電池10を搭載する場合には、複数の電池10が並べて使われるため、電池10を単独で用いた場合に比べて温度は上昇しやすくなるが、ファン等を設けることによって周囲の空気を強制排気させると考えられるため、温度条件的にはあまり変わらないと考えられる。
A constant current was continuously applied to the battery 10 under the first condition 51, the second condition 52, and the third condition 53, and the surface temperature of the battery 10 was measured and compared.
Compared with the second condition 52 corresponding to the technique according to Patent Document 1 and the third condition 53 corresponding to the technique according to Patent Document 2, this experiment is performed under the first condition 51 according to the battery 10 of the present invention. The purpose was to investigate how much effect would appear.
Therefore, the continuous operation time is set to 1 hour, and a method of measuring the surface temperature of the battery 10 by continuously supplying a constant current in order to reproduce the charge / discharge repetition is adopted.
When the battery 10 is actually mounted on an automobile, a plurality of batteries 10 are used side by side, so the temperature is likely to rise as compared with the case where the battery 10 is used alone. It is considered that the air is forcibly exhausted, so that it is considered that the temperature condition does not change much.

その結果、図2に示すように1200秒(20分)経過した段階では第1条件51と第2条件52は同じ変化を示しており、電池10の表面温度は50℃程度まで上昇している。一方、第3条件53は僅かに温度が低く、電池10の表面温度は47℃程度であった。しかし、2400秒(40分)経過した段階では、第1条件51の温度上昇率が低くなっており、第2条件52及び第3条件53に比べて電池10の表面温度は低い。そして、3600秒(1時間)経過した段階では、第1条件51の温度上昇は緩やかになっており、電池10の表面温度は57℃程度であるのに対し、第2条件52と第3条件53の電池10の表面温度は、ほぼ同じ温度である67℃程度にまでなっていることが分かる。   As a result, as shown in FIG. 2, at the stage where 1200 seconds (20 minutes) have elapsed, the first condition 51 and the second condition 52 show the same change, and the surface temperature of the battery 10 has increased to about 50 ° C. . On the other hand, the temperature of the third condition 53 was slightly low, and the surface temperature of the battery 10 was about 47 ° C. However, when 2400 seconds (40 minutes) have passed, the temperature increase rate of the first condition 51 is low, and the surface temperature of the battery 10 is lower than that of the second condition 52 and the third condition 53. Then, at the stage where 3600 seconds (1 hour) has passed, the temperature rise of the first condition 51 is moderate and the surface temperature of the battery 10 is about 57 ° C., whereas the second condition 52 and the third condition It can be seen that the surface temperature of the 53 batteries 10 is about 67 ° C., which is substantially the same temperature.

すなわち、第1実施例の電池10をモデル化した第1条件51が、3600秒(1時間)経過した段階では最も電池10の表面温度が低く保たれており、放熱効果が高かったと考えられる。
実験条件から、電池10に通電した電流は一定であり、発熱要因は電極巻回体12等の電気抵抗によるものであるので、同条件で実験した第1条件51乃至第3条件53の発熱量は同一であると考えられる。したがって、3600秒(1時間)経過後に電池10の表面温度が最も低かった第1条件51は、最も放熱量が多かったと考えるのが妥当である。
That is, it is considered that the first condition 51 that models the battery 10 of the first example has the highest surface temperature of the battery 10 when 3600 seconds (one hour) have passed, and the heat dissipation effect is high.
From the experimental conditions, the current supplied to the battery 10 is constant, and the heat generation factor is due to the electrical resistance of the electrode winding body 12 or the like. Therefore, the amount of heat generated in the first condition 51 to the third condition 53 tested under the same conditions. Are considered identical. Therefore, it is reasonable to consider that the first condition 51 in which the surface temperature of the battery 10 is the lowest after 3600 seconds (one hour) has passed has the largest amount of heat dissipation.

このような実験結果となった理由については、以下のように考えられる。
第1条件51について更に詳しく見ると、図2に示されるように、その温度上昇率は3つの段階に分かれるように思われる。すなわち、開始から1000秒が経過する辺りまでの、第2条件52と温度上昇率がほぼ同じである領域(以下、第1領域とする)と、そこから2000秒が経過する辺りの、第3条件53の曲線と交わるまでに温度上昇率が徐々に緩やかになる領域(以下、第2領域とする)と、それ以降の温度上昇がほとんど無い領域(以下、第3領域とする)である。
このように分けて考えてみると、第1条件51の電池10は、第1領域では15分程度で10℃近くの温度変化があるが、第2領域では20分程度で7℃程度の温度変化である。特に第2領域の前半では4〜5℃の温度変化があるが、第2領域の後半では2〜3℃の変化しかないことが図2に示されており、温度変化率が大きく変わっていることが分かる。さらに、第3領域では25分程度で2〜3℃の温度変化しかない。
第2条件52及び第3条件53の温度変化率は、全域にわたって大きく変化しないのに対して、第1条件51はこのように温度変化率が変化し、3600秒(1時間)経過時点で第2条件52及び第3条件53とは10℃近い差が付いている。
The reason for such an experimental result can be considered as follows.
Looking at the first condition 51 in more detail, as shown in FIG. 2, the temperature increase rate seems to be divided into three stages. That is, the third condition 52 (hereinafter referred to as the first region) in which the rate of temperature increase is approximately the same as the second condition 52 from the start until about 1000 seconds elapses, and the third condition in which 2000 seconds elapse from there. A region in which the rate of temperature increase gradually decreases (hereinafter referred to as a second region) until it intersects with the curve of condition 53, and a region in which there is almost no subsequent temperature increase (hereinafter referred to as a third region).
Considering this separately, the battery 10 under the first condition 51 has a temperature change of about 10 ° C. in about 15 minutes in the first region, but a temperature of about 7 ° C. in about 20 minutes in the second region. It is a change. In particular, the first half of the second region has a temperature change of 4 to 5 ° C., but the second half of the second region has only a change of 2 to 3 ° C. FIG. I understand that. Furthermore, in the third region, there is only a temperature change of 2 to 3 ° C in about 25 minutes.
While the temperature change rates of the second condition 52 and the third condition 53 do not change greatly over the entire area, the temperature change rate of the first condition 51 changes in this way, and when the temperature changes 3600 seconds (1 hour), The difference between the second condition 52 and the third condition 53 is 10 ° C.

詳しく見るためにまず、第1条件51と第2条件52の電池10の構成を比較すると、第1条件51と第2条件52の電池10の発熱量は、前述の通り同一であり、また巻芯11の太さや電池10の表面積も変わらない。異なる点は、巻芯11が両端付けか片端付けかという点と、熱吸収部13を備えている点の2点である。
この巻芯11が両端付けか片端付けかという違いで何が違うかという点を第1相違点とし、熱吸収部13を備えている点を第2相違点とすると、出願人は、後述する理由により、特に第2相違点である熱吸収部13の存在がこのような結果をもたらしている原因であると考えている。以下にその検討内容を説明する。
In order to see in detail, first, when the configurations of the batteries 10 under the first condition 51 and the second condition 52 are compared, the calorific values of the batteries 10 under the first condition 51 and the second condition 52 are the same as described above. The thickness of the core 11 and the surface area of the battery 10 are not changed. The differences are two points, that is, whether the core 11 is attached to both ends or one end, and the heat absorption part 13 is provided.
Assuming that the difference between whether the core 11 is attached at one end or at one end is the first difference, and that the heat absorption portion 13 is provided as the second difference, the applicant will be described later. For the reason, it is considered that the existence of the heat absorption part 13 which is the second difference is the cause of such a result. The contents of the study are described below.

まず、第1相違点について検討する。
第1条件51と第2条件52との電池10の構成のうち、巻芯11が缶体16及び通電金具18とどのように接しているかを比較すると、前述したように、第1条件51の電池10は、第1巻芯11aの片端が缶体16に接触し、第2巻芯11bの片端が正極端子15側の通電金具18に接触し、第1巻芯11a及び第2巻芯11bの他端は熱吸収部13にそれぞれ接合されている。それに対して、第2条件52の電池10は、巻芯11の片端が缶体16に接触し、他端が絶縁層を介して通電金具18に接触している。
つまり、第1条件51と第2条件52では、巻芯11から外部に熱を排出する部位が1カ所か2カ所かという差があることになる。
第2条件52においても、巻芯11は絶縁層を介して通電金具18に接続しているため、熱の排出に寄与しないわけではないが、絶縁層は例えばシリコン樹脂膜等が用いられるので、その物性上断熱作用もある。よって、その放熱効率は第1条件51に比べて劣っている。
First, the first difference will be examined.
Of the configurations of the battery 10 under the first condition 51 and the second condition 52, comparing how the core 11 is in contact with the can body 16 and the current-carrying metal fitting 18, as described above, the first condition 51 In the battery 10, one end of the first winding core 11 a contacts the can body 16, and one end of the second winding core 11 b contacts the current-carrying metal fitting 18 on the positive electrode terminal 15 side, and the first winding core 11 a and the second winding core 11 b. The other end of each is joined to the heat absorption part 13. On the other hand, in the battery 10 under the second condition 52, one end of the core 11 is in contact with the can body 16, and the other end is in contact with the energizing metal fitting 18 through the insulating layer.
That is, in the first condition 51 and the second condition 52, there is a difference in whether there are one or two parts for discharging heat from the core 11 to the outside.
Even in the second condition 52, the winding core 11 is connected to the current-carrying metal fitting 18 through the insulating layer, so it does not contribute to the discharge of heat, but the insulating layer is made of, for example, a silicon resin film. It also has a heat insulation effect on its physical properties. Therefore, the heat dissipation efficiency is inferior to the first condition 51.

第1条件51及び第2条件52の電池10の放熱のメカニズムを考えると、巻芯11から缶体16及び通電金具18に伝えられる熱量が電極巻回体12から発生する熱量に対して小さいことで、放熱できなかった熱が電池10の内部に蓄積する。この結果、第1条件51よりも通電金具18との伝熱効率が低い第2条件52は、徐々に内部に放熱できない熱を溜め込むこととなり、最終的に電池10の表面の温度差が出ると考えられる。
したがって、第1条件51の電池10の第1巻芯11a及び第2巻芯11bの長さは、熱吸収部13の位置が電極巻回体12の巻回される領域のほぼ中央に来ることで、放熱のバランスがとれ、効果的に缶体16及び通電金具18への熱伝達が行え、放熱効果を高めることができると期待できる。
なお、厳密に言えば、缶体16及び通電金具18の接する正極端子15の放熱能力によって、熱吸収部13の位置、すなわち第1巻芯11a及び第2巻芯11bの長さが決定されれば、より高い効果を期待できるだろう。
Considering the heat dissipation mechanism of the battery 10 under the first condition 51 and the second condition 52, the amount of heat transmitted from the winding core 11 to the can body 16 and the current-carrying metal fitting 18 is smaller than the amount of heat generated from the electrode winding body 12. Thus, heat that could not be dissipated accumulates in the battery 10. As a result, the second condition 52, which has a lower heat transfer efficiency with the current-carrying metal fitting 18 than the first condition 51, gradually accumulates heat that cannot be dissipated in the interior, and eventually a temperature difference on the surface of the battery 10 appears. It is done.
Therefore, the lengths of the first core 11a and the second core 11b of the battery 10 under the first condition 51 are such that the position of the heat absorbing portion 13 is approximately at the center of the region where the electrode winding body 12 is wound. Therefore, it can be expected that the heat radiation is balanced, heat can be effectively transferred to the can 16 and the current-carrying metal fitting 18, and the heat radiation effect can be enhanced.
Strictly speaking, the position of the heat absorbing portion 13, that is, the lengths of the first core 11 a and the second core 11 b are determined by the heat dissipation capability of the positive electrode terminal 15 in contact with the can body 16 and the current-carrying metal fitting 18. You can expect a higher effect.

ただし、これだけの作用では、第1領域において第1条件51と第2条件52の温度上昇率が同じであることの説明がつかないと思われる。
巻芯11から缶体16及び通電金具18への伝熱効率の差だけで実験結果が変わったのであれば、伝熱効率の差は実験中に変化することはないので、実験開始直後から第2条件52と第1条件51の温度上昇率が異なり、第1領域においても第1条件51の温度上昇率は第2条件52の温度上昇率よりも低くなると考えられるからである。
However, it seems that such an action cannot explain that the temperature increase rates of the first condition 51 and the second condition 52 are the same in the first region.
If the experimental result is changed only by the difference in heat transfer efficiency from the core 11 to the can 16 and the current-carrying metal fitting 18, the difference in heat transfer efficiency does not change during the experiment. This is because the temperature rise rate of the first condition 51 is considered to be lower than the temperature rise rate of the second condition 52 in the first region.

次に、第2相違点について検討する。
第2相違点は熱吸収部13の存在の有無についてであるが、熱吸収部13は巻芯11に比べて比熱が高いため、温度が上昇しにくいという特性を持っている。したがって、図3(a)に示すような熱の流れが出来ると考えられる。
図3(a)は、第1実施例の電池が備える巻芯における第1領域の熱の流れを示した模式断面図である。
第1条件51の電池10に備える第1巻芯11a及び第2巻芯11bにおける熱の流れは、図3(a)に示されるように、第1領域では、第1巻芯11a、第2巻芯11b及び熱吸収部13は電極巻回体12から熱を吸収する。
第1巻芯11a及び第2巻芯11bが吸収した熱は、第1巻芯11aが接触する缶体16及び第2巻芯11bが接触する通電金具18に放熱される。
一方、熱吸収部13は第1巻芯11a及び第2巻芯11bよりも比熱が高いので、同じエネルギーを与えられても第1巻芯11a及び第2巻芯11bよりも温度が上がりにくく、その結果、熱吸収部13にも第1巻芯11a及び第2巻芯11bが吸収した熱が伝達される。
そして、熱吸収部13が吸収した熱は、熱吸収部13が周囲よりも温度が低いために、そのまま熱吸収部13の内部に蓄えられることになる。
Next, the second difference will be examined.
The second difference is the presence or absence of the heat absorption part 13, but the heat absorption part 13 has a characteristic that the temperature is difficult to rise because the specific heat is higher than that of the core 11. Therefore, it is considered that the heat flow as shown in FIG.
FIG. 3A is a schematic cross-sectional view showing the heat flow in the first region of the core included in the battery of the first embodiment.
As shown in FIG. 3A, the heat flow in the first core 11a and the second core 11b included in the battery 10 under the first condition 51 is the first core 11a, the second core 11b, and the second core 11b. The winding core 11 b and the heat absorption unit 13 absorb heat from the electrode winding body 12.
The heat absorbed by the first core 11a and the second core 11b is dissipated to the can 16 that contacts the first core 11a and the current-carrying fitting 18 that contacts the second core 11b.
On the other hand, since the heat absorption part 13 has higher specific heat than the first core 11a and the second core 11b, even if the same energy is given, the temperature is less likely to rise than the first core 11a and the second core 11b. As a result, the heat absorbed by the first core 11a and the second core 11b is also transmitted to the heat absorbing portion 13.
Then, the heat absorbed by the heat absorbing unit 13 is stored in the heat absorbing unit 13 as it is because the temperature of the heat absorbing unit 13 is lower than that of the surroundings.

しかし、熱吸収部13に十分に熱が蓄えられると、第1巻芯11a及び第2巻芯11bと熱吸収部13との温度差がなくなり、図3(a)の熱の流れは起こりにくくなる。そこで、図3(b)のような熱の流れに変わるのではないかと考えられる。
図3(b)は、第1実施例の電池が備える巻芯における第2領域及び第3領域の熱の流れを示した模式断面図である。
この図3(b)に示されるように、第2領域になると、熱吸収部13から第1巻芯11a及び第2巻芯11bに熱を放熱するようになると考えられる。これは、熱吸収部13に電極巻回体12で発生した熱が十分蓄熱され、第1巻芯11a及び第2巻芯11bよりも部分的に熱くなったために熱の流れが変化すると考えられるからである。
第1巻芯11a及び第2巻芯11bの材料に用いられている銅やアルミニウムなどの金属よりも、熱吸収部13に用いられている樹脂系接着剤は、比熱が高く熱伝導率が低い。その結果、熱しにくく冷めにくい特性を示す。図3(a)で説明した通り、熱吸収部13は第1領域では全体的に暖められると考えられ、徐々に蓄熱を行う。一方、第1巻芯11a及び第2巻芯11bは外周面で熱を受け取り、缶体16及び通電金具18との接触部から放熱を行う。そのため、外周面は熱くなりやすく、中心部は温度が上昇しにくい温度勾配ができているものと考えられる。
However, when heat is sufficiently stored in the heat absorbing portion 13, there is no temperature difference between the first core 11a and the second core 11b and the heat absorbing portion 13, and the heat flow in FIG. Become. Therefore, it is thought that the heat flow as shown in FIG.
FIG. 3B is a schematic cross-sectional view showing the heat flow in the second region and the third region in the core included in the battery of the first embodiment.
As shown in FIG. 3 (b), it is considered that heat is radiated from the heat absorbing portion 13 to the first core 11a and the second core 11b in the second region. It is considered that the heat flow is changed because the heat generated in the electrode winding body 12 is sufficiently stored in the heat absorbing portion 13 and partially heated than the first core 11a and the second core 11b. Because.
The resin adhesive used for the heat absorption part 13 has a higher specific heat and lower thermal conductivity than metals such as copper and aluminum used for the material of the first core 11a and the second core 11b. . As a result, it exhibits a characteristic that it is difficult to heat and cool. As described with reference to FIG. 3A, the heat absorption unit 13 is considered to be entirely warmed in the first region, and gradually stores heat. On the other hand, the first core 11 a and the second core 11 b receive heat at the outer peripheral surface and radiate heat from the contact portion between the can body 16 and the current-carrying metal fitting 18. For this reason, it is considered that the outer peripheral surface tends to be hot, and the central portion has a temperature gradient in which the temperature does not easily rise.

そのバランスが、第2領域で変わることで図3(b)のような流れに変化し、第1巻芯11a及び第2巻芯11bは放熱を続けるが、熱吸収部13は熱吸収の作用と熱放出を同時に行い、熱吸収部13の熱は第1巻芯11a及び第2巻芯11bを介して缶体16及び通電金具18に放熱することになる。そして、熱吸収部13の外周面に対して、第1巻芯11a及び第2巻芯11bとの接触面の面積は少ないため、熱吸収量に対して、放熱量は少なく、以降図3(b)のような熱の流れが続くと考えられる。
最終的には、熱吸収部13よりも第1巻芯11a及び第2巻芯11bの中心部の温度勾配が大きくなると考えられ、第3領域に入り、第1条件51に係る電池10の表面温度の変化はほとんど無くなる。
第1相違点の作用である、巻芯11から缶体16及び通電金具18へ熱伝達可能な面積が増加する点と合わせて、このような作用があることにより、第2領域では、第1巻芯11a及び第2巻芯11bから放熱する他、熱吸収部13からも放熱するため、第1巻芯11a及び第2巻芯11bの熱を受け取る面積が事実上、第1巻芯11a及び第2巻芯11bの外周部の他、熱吸収部13の外周部と、第1巻芯11a及び第2巻芯11bと熱吸収部13の接触面となり、第1巻芯11a及び第2巻芯11bと熱吸収部13の接触面の面積だけ受熱面積が広がることとなり、放熱効果を高めると考えられる。
The balance changes in the second region to change to a flow as shown in FIG. 3B, and the first core 11a and the second core 11b continue to dissipate heat, but the heat absorbing portion 13 acts to absorb heat. The heat of the heat absorption part 13 is dissipated to the can 16 and the current-carrying fitting 18 via the first core 11a and the second core 11b. And since the area of the contact surface with the 1st core 11a and the 2nd core 11b is small with respect to the outer peripheral surface of the heat absorption part 13, there is little heat dissipation with respect to the amount of heat absorption, and FIG. It is considered that the heat flow as in b) continues.
Eventually, it is considered that the temperature gradient of the central portion of the first core 11a and the second core 11b is larger than that of the heat absorbing portion 13, and the surface of the battery 10 according to the first condition 51 enters the third region. There is almost no change in temperature.
In addition to the fact that the area capable of transferring heat from the winding core 11 to the can 16 and the current-carrying metal fitting 18 is the action of the first difference, the above-described action brings the first region into the first region. In addition to radiating heat from the core 11a and the second core 11b, and also radiating heat from the heat absorbing portion 13, the area of receiving heat of the first core 11a and the second core 11b is practically the first core 11a and In addition to the outer periphery of the second core 11b, the outer periphery of the heat absorbing portion 13 and the contact surface of the first core 11a, the second core 11b, and the heat absorbing portion 13, the first core 11a and the second winding. It is considered that the heat receiving area is increased by the area of the contact surface between the core 11b and the heat absorbing portion 13 and the heat dissipation effect is enhanced.

このように考えれば、第1領域では第1条件51と第2条件52の巻芯11は、受熱面積が同一であるが、第2領域及び第3領域では、第1条件51の巻芯11は熱吸収部13の存在によって受熱面積が広くなったものと同じこととなり、その結果、図2に示すような差となって現れることにも説明が付く。
特に、第1条件51及び第2条件52の何れも、巻芯11の外周面は電極巻回体12に温度が近くなるため、巻芯11の外周面からの熱吸収量は少なくなるものと考えられる。このため、第1条件51の電池10は第1巻芯11a及び第2巻芯11bと熱吸収部13の接触面からの放熱が効果的に作用するのだと考えられる。
また、第3領域に遷移し、第1条件51の電池10における、第1巻芯11a及び第2巻芯11bの中心部の温度と熱吸収部13との温度勾配が大きくなれば、熱吸収部13を備えない第2条件52の電池10に比べ、放熱効率の差は顕著に表れることとなると考えられる。
If considered in this way, the core 11 of the first condition 51 and the second condition 52 has the same heat receiving area in the first region, but the core 11 of the first condition 51 in the second region and the third region. It is the same as that in which the heat receiving area is widened by the presence of the heat absorbing portion 13, and as a result, the difference as shown in FIG. 2 appears.
Particularly, in both the first condition 51 and the second condition 52, the outer peripheral surface of the core 11 is close to the temperature of the electrode winding body 12, and therefore the heat absorption amount from the outer peripheral surface of the core 11 is reduced. Conceivable. For this reason, the battery 10 under the first condition 51 is considered to effectively dissipate heat from the contact surfaces of the first core 11a and the second core 11b and the heat absorbing portion 13.
Moreover, if it changes to a 3rd area | region and the temperature gradient of the heat absorption part 13 and the temperature of the center part of the 1st core 11a and the 2nd core 11b in the battery 10 of the 1st condition 51 becomes large, heat absorption will be carried out. Compared with the battery 10 of the second condition 52 that does not include the portion 13, it is considered that the difference in heat dissipation efficiency appears significantly.

次に、第3条件53についても検討してみる。
前述した通り、第3条件53は巻芯11が筒状の中空パイプで作られており、巻芯11の内部に空気が流通する点と、熱吸収部13を備えない点で第1条件51とはその構成が異なる。
そして、図2の結果から、第3条件53については、第2条件52の3600秒(1時間)経過時点の電池10の表面温度はほぼ同じとなっているが、温度変化の仕方が第2条件52よりも直線的である。
これは、第3条件53の電池10に使用する巻芯11が中空であることに起因すると考えられ、巻芯11が内部に備える中空部に熱を排出することで、中空部内の空気が対流を起こして熱を排気するため、放熱初期には効率的に熱を放出することができる。
しかし、中空部の内部温度が高くなるにつれ、熱伝達効率の悪い空気は内部に熱を溜め込み、自然対流だけでは熱の放出が追いつかなくなってくる。その結果、第2領域の終盤では第1条件51よりも放熱効率が悪くなり、第3領域の終盤には第2条件52とほぼ同じ温度になってしまうと考えられる。
Next, the third condition 53 is also examined.
As described above, the third condition 53 is that the core 11 is made of a cylindrical hollow pipe, and the first condition 51 is that the air flows inside the core 11 and the heat absorbing portion 13 is not provided. The configuration is different.
From the results of FIG. 2, the surface temperature of the battery 10 when the third condition 53 is 3600 seconds (one hour) after the second condition 52 is substantially the same, but the method of temperature change is the second. It is more linear than condition 52.
This is considered due to the fact that the core 11 used in the battery 10 under the third condition 53 is hollow, and the air in the hollow portion is convected by discharging heat to the hollow portion provided in the core 11. The heat is exhausted by causing the heat to be efficiently released at the initial stage of heat dissipation.
However, as the internal temperature of the hollow portion increases, air with poor heat transfer efficiency accumulates heat inside, and heat release cannot catch up with natural convection alone. As a result, it is considered that the heat dissipation efficiency is worse than that of the first condition 51 at the end of the second region, and the temperature is almost the same as that of the second condition 52 at the end of the third region.

以上に検討したように第1条件51乃至第3条件53では、それぞれの構成の違いによって熱放出のメカニズムが異なり、第1条件51の電池10のように巻芯11に熱吸収部13を設けることで、熱放出効率が高くなることがわかる。
第1条件51では、電池10の表面温度は3600秒(1時間)経過した段階でも60℃を超えていない。さらに、第3領域以降は殆ど温度上昇が見られず、このまま電池10を使用し続けたとしても、第2条件52や第3条件53に比べて低い温度を維持し続けることが可能であると考えられる。
電池10は内部温度が高温になると、電池10が劣化して性能が落ちたり寿命が短くなったりするという問題が起こり易くなるが、60℃以下を維持できれば、そのような問題は起こりにくくなる。
第1条件51の電池10においても、第3領域で温度上昇の傾きが0になっているわけではないので、その後も徐々に温度は上昇していく。しかし、自動車の連続使用時間は1時間程度が目安であり、一般の使用者はあまり長時間の連続使用を行わないと考えられるので、自動車に電池10を使用した場合でも60℃以下を維持可能だと考えられ、電池10の性能維持及び長寿命化に十分貢献できると考えられる。また、電池10の体積も殆ど増えていないため省スペースで電池10の長寿命化を図ることが出来る。
As discussed above, in the first condition 51 to the third condition 53, the mechanism of heat release differs depending on the configuration, and the heat absorbing portion 13 is provided on the core 11 like the battery 10 in the first condition 51. This shows that the heat release efficiency is increased.
Under the first condition 51, the surface temperature of the battery 10 does not exceed 60 ° C. even when 3600 seconds (one hour) have passed. Furthermore, the temperature rise is hardly observed after the third region, and even if the battery 10 is used as it is, it is possible to keep the temperature lower than the second condition 52 and the third condition 53. Conceivable.
When the internal temperature of the battery 10 becomes high, problems such as deterioration of the battery 10 and a decrease in performance or a shortened life are likely to occur. However, if the temperature can be maintained at 60 ° C. or less, such a problem is unlikely to occur.
Also in the battery 10 under the first condition 51, the temperature increase slope is not zero in the third region, and the temperature gradually increases thereafter. However, continuous use time of automobile is about 1 hour as a guide, and it is considered that general users do not use continuously for a long time, so even when battery 10 is used in automobile, it can be kept below 60 ° C. It is considered that the battery 10 can sufficiently contribute to maintaining the performance and extending the life of the battery 10. Further, since the volume of the battery 10 is hardly increased, the battery 10 can be extended in a space-saving manner.

上述した電池10に備える巻芯11が熱吸収部13を中央に設けることで缶体16や通電金具18と直接接触させることが可能となって放熱効率を上げる他、熱吸収部13の存在により巻芯11の表面積を広くできることから、電池10の性能維持や長寿命化に貢献出来る他に、第1実施例の電池10では以下のような作用、効果も得られる。
第1実施例の発明の構成のうち、第1巻芯11a及び第2巻芯11bの間に熱吸収部13を設けてあり、この熱吸収部13が絶縁性を有するので、他に絶縁部を設けなくても、正極側と負極側を巻芯11によって短絡させるようなことがない。
これによって、電池10の体積の増大を抑えている。
また、第1巻芯11a及び第2巻芯11bを熱吸収部13によって接着していることによって、熱伝達性を向上させると共に組み立て性の維持に貢献している。
第1巻芯11aと第2巻芯11bを熱吸収部13で接着することで、一体の巻芯11としているが、第1巻芯11aと熱吸収部13の接合面、及び第2巻芯11bと熱吸収部13の接合面に於いて、熱伝達率が悪いと、上述した熱吸収部13の効果が発揮されにくくなる。すなわち、第1巻芯11aと熱吸収部13及び第2巻芯11bと熱吸収部13を単に接触させているだけで、その表面に凹凸があると、その間に空気層が出来てしまって断熱効果が働いてしまう虞がある。
第1巻芯11aと熱吸収部13及び第2巻芯11bと熱吸収部13の間に空気層が出来てしまっては、熱吸収部13から第1巻芯11a及び第2巻芯11bへの熱伝達が十分に行えず、図3(a)で示した巻芯11から熱吸収部13への熱伝達による蓄熱も、図3(b)で示した、熱吸収部13から第1巻芯11a及び第2巻芯11bへの放熱も、行われにくくなるからである。
The core 11 provided in the battery 10 described above can be brought into direct contact with the can body 16 and the current-carrying metal fitting 18 by providing the heat absorbing portion 13 in the center, thereby increasing the heat radiation efficiency and the presence of the heat absorbing portion 13. Since the surface area of the core 11 can be increased, in addition to contributing to maintaining the performance and extending the life of the battery 10, the battery 10 of the first embodiment also provides the following functions and effects.
Among the configurations of the invention of the first embodiment, the heat absorbing portion 13 is provided between the first core 11a and the second core 11b, and the heat absorbing portion 13 has an insulating property. Even if not provided, the positive electrode side and the negative electrode side are not short-circuited by the core 11.
Thereby, an increase in the volume of the battery 10 is suppressed.
Further, the first winding core 11a and the second winding core 11b are bonded by the heat absorbing portion 13, thereby improving the heat transfer performance and contributing to the maintenance of the assembly.
The first winding core 11a and the second winding core 11b are bonded together by the heat absorbing portion 13 to form the integrated winding core 11. However, the joint surface of the first winding core 11a and the heat absorbing portion 13 and the second winding core. If the heat transfer coefficient is poor at the joint surface between the heat absorbing portion 11b and the heat absorbing portion 13, the effect of the heat absorbing portion 13 described above is hardly exhibited. That is, if the first core 11a and the heat absorbing portion 13 and the second core 11b and the heat absorbing portion 13 are simply brought into contact with each other and there are irregularities on the surface, an air layer is formed between them to insulate. There is a risk that the effect will work.
If an air layer is formed between the first winding core 11a and the heat absorption section 13, and the second winding core 11b and the heat absorption section 13, the heat absorption section 13 moves to the first winding core 11a and the second winding core 11b. The heat storage by heat transfer from the winding core 11 shown in FIG. 3 (a) to the heat absorption unit 13 is also performed from the heat absorption unit 13 shown in FIG. 3 (b). This is because heat radiation to the core 11a and the second winding core 11b is difficult to be performed.

しかし、第1巻芯11a及び第2巻芯11bと熱吸収部13が接着されていることによって、第1巻芯11a及び第2巻芯11bと、熱吸収部13の接合面の密着度は高くすることが可能であり、これによって、前述のような空気層を作らず、熱伝達を十分に行うことが可能になる。
その結果、巻芯11に温度を溜めにくくなり、電極巻回体12で発生した熱を効果的に電池10の外に排出することで、電池10の内部温度の上昇を抑えることが可能となる。すなわち、性能低下を起こしにくい、長寿妙な電池10を実現することが可能である。
また、第1巻芯11a及び第2巻芯11bと熱吸収部13が接着されることによって一体的な巻芯11となれば、正極板12a、負極板12b及び図示しないセパレータを巻回しやすくなり、組み立て性を維持することが可能となる。
例えば、第1巻芯11aと第2巻芯11bが接着されずに熱吸収部13を単純に挟んでいるだけのような状態であれば、正極板12a及び負極板12bを、セパレータを介して積層巻回する際に、分離してしまう虞があり、更に、缶体16に巻芯11を組み付ける時点でも、落下したり、位置決めに問題が出たりと組み立て性を阻害する要因となりかねないが、熱吸収部13によって第1巻芯11aおよび第2巻芯11bが一体的に接着され、巻芯11を構成することで、その様な問題も解決できる。
However, since the first core 11a and the second core 11b are bonded to the heat absorbing portion 13, the degree of adhesion between the first core 11a and the second core 11b and the joining surface of the heat absorbing portion 13 is as follows. This makes it possible to increase the heat without causing an air layer as described above.
As a result, it becomes difficult to store the temperature in the winding core 11, and the heat generated in the electrode winding body 12 can be effectively discharged out of the battery 10, thereby suppressing an increase in the internal temperature of the battery 10. . That is, it is possible to realize a long-life battery 10 that is unlikely to cause performance degradation.
Further, if the first core 11a, the second core 11b, and the heat absorbing portion 13 are bonded to form an integral core 11, the positive plate 12a, the negative plate 12b, and a separator (not shown) can be easily wound. It becomes possible to maintain the assemblability.
For example, if the first winding core 11a and the second winding core 11b are not bonded and the heat absorption part 13 is simply sandwiched, the positive electrode plate 12a and the negative electrode plate 12b are connected via the separator. There is a risk of separation when the layers are wound, and even when the core 11 is assembled to the can body 16, it may be a factor that hinders assembling if it falls or a problem occurs in positioning. The first core 11a and the second core 11b are integrally bonded to each other by the heat absorbing portion 13 to constitute the core 11, so that such a problem can be solved.

また、第1実施例の発明の構成のうち、缶体16に凸部16a及び嵌合穴16bを設け、嵌合穴16bに第1巻芯11aを嵌め込むように構成することで、組み立て性を向上に貢献している。
巻芯11には、正極板12a、負極板12b及びセパレータを巻回して電極巻回体12を形成する。この電極巻回体12を缶体16に挿入して電池10を形成する際には、電極巻回体12に備えるタブ19が缶体16に確実に接触するようにしなければならない。
この場合に於いて、缶体16に嵌合穴16bが形成された巻芯11を嵌め込むだけで良くなれば、電池10の組み立て性が向上すると共に、缶体16に対する巻芯11の位置決め精度が高くなる。
そして、嵌合穴16bの公差を巻芯11の外径に対して厳しくすれば、巻芯11と缶体16の接触面積を広げることに繋がるので、放熱性の向上に貢献する。
In addition, among the configurations of the invention of the first embodiment, the can body 16 is provided with the convex portion 16a and the fitting hole 16b, and the first winding core 11a is fitted into the fitting hole 16b, thereby assembling. Contribute to improving.
On the winding core 11, a positive electrode plate 12a, a negative electrode plate 12b, and a separator are wound to form an electrode winding body 12. When the electrode winding body 12 is inserted into the can body 16 to form the battery 10, the tab 19 provided on the electrode winding body 12 must be surely brought into contact with the can body 16.
In this case, if only the core 11 having the fitting hole 16b formed in the can body 16 is fitted, the assembly of the battery 10 is improved and the positioning accuracy of the core 11 with respect to the can body 16 is improved. Becomes higher.
And if the tolerance of the fitting hole 16b is made strict with respect to the outer diameter of the core 11, the contact area between the core 11 and the can body 16 is increased, which contributes to improvement in heat dissipation.

また、電池10は巻芯11に熱吸収部13を設け、缶体16に数mm程度突出する凸部16aを設けることで、放熱性を向上させることができるので、放熱性向上のためにフィンを付けたり、冷却パイプを通すことで、冷却パイプの内部を循環させる冷却水を循環させるためのポンプを必要とすることもなく、電池10を必要以上に大きくする必要が無いので、電池10の体積は大きくならずコンパクトになる。
これによって、自動車への取り付けを容易にし、電池10自体の製造コストを上げずに電池10の寿命を延ばすことができる。
Further, since the battery 10 is provided with the heat absorption part 13 on the core 11 and the protrusion 16a protruding about several millimeters on the can body 16, the heat dissipation can be improved. Or by passing a cooling pipe, there is no need for a pump for circulating the cooling water circulating inside the cooling pipe, and there is no need to make the battery 10 larger than necessary. The volume does not increase and becomes compact.
This facilitates attachment to the automobile, and can extend the life of the battery 10 without increasing the manufacturing cost of the battery 10 itself.

(第2実施例)
次に、本発明の第2実施例について、図面を参照しつつ説明する。
第2実施例の電池10は、第1実施例の電池10とほぼ構成は同じであるが、缶体16に設けられた凸部16aが、第1実施例のように缶体16に一体的に形成されるのではなく、電池10組み付け後にシリコン樹脂で形成する部分が異なる。
図4に、第2実施例の電池の構成を示す断面図を示す。
なお、凸部16aはシリコン樹脂でなくとも、80℃程度の熱に耐えうる樹脂で耐薬品性が高いものであっても良い。
このように電池10を構成することで、缶体16に設けられる凸部16aを冷却パン20に冷却液21等で満たした中に漬けて冷却するなどの方法を採り、更に冷却効率を高めることが可能である。
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to the drawings.
The battery 10 of the second embodiment has substantially the same configuration as the battery 10 of the first embodiment, but the convex portion 16a provided on the can body 16 is integrated with the can body 16 as in the first embodiment. The part formed with a silicon resin after the battery 10 is assembled is different.
FIG. 4 is a cross-sectional view showing the configuration of the battery of the second embodiment.
In addition, the convex part 16a may not be a silicon resin but may be a resin that can withstand heat of about 80 ° C. and has high chemical resistance.
By configuring the battery 10 in this way, a method is adopted in which the convex portion 16a provided on the can body 16 is immersed in the cooling pan 20 filled with the cooling liquid 21 or the like and cooled, thereby further improving the cooling efficiency. Is possible.

電池10の備える電極巻回体12から巻芯11は熱を吸収し、缶体16及び通電金具18に熱を伝達して放熱する。
しかし、缶体16の厚みはそれ程厚くないので、熱を伝達する断面積も広くはなく、缶体16の全体を使って放熱するというわけではなく、巻芯11から伝達された熱は缶体16の端面で主に放熱していると考えられる。
したがって、巻芯11の外周部にシリコン樹脂製の凸部16aを設け、冷却液21で直接冷却してやることによって、より放熱効率を高めてやることが可能となる。
このことによって、第1実施例の効果を更に大きくすることが可能となり、効果的に放熱を行えることで、電池10の内部温度を更に低く保ち、性能低下を防ぎ長寿命化に貢献することが出来る。また、凸部16aはシリコン樹脂製なので、冷却液21に漬けたとしても錆びることもない。
The core 11 absorbs heat from the electrode winding body 12 included in the battery 10, transmits heat to the can body 16 and the current-carrying metal fitting 18, and dissipates heat.
However, since the thickness of the can body 16 is not so large, the cross-sectional area for transferring heat is not wide, and the entire can body 16 is not dissipated to dissipate heat. It is considered that heat is mainly dissipated at 16 end faces.
Therefore, by providing the silicon resin convex portion 16a on the outer peripheral portion of the core 11 and directly cooling it with the cooling liquid 21, it is possible to further improve the heat radiation efficiency.
As a result, the effect of the first embodiment can be further increased, and effective heat dissipation can be achieved, thereby keeping the internal temperature of the battery 10 lower, preventing performance degradation and contributing to longer life. I can do it. Moreover, since the convex part 16a is made of silicon resin, it does not rust even if it is immersed in the coolant 21.

(第3実施例)
次に、本発明の第3実施例について、図面を参照しつつ説明する。
第3実施例の電池10は、第1実施例の電池10とほぼ同じ構成であるが、第1巻芯11a、第2巻芯11b、及び熱吸収部13の形状が違う点が第1実施例とは異なる。
図5に、第3実施例の電池の構成を示す断面図を示す。
第3実施例に用いる第1巻芯11a及び第2巻芯11bは、図5に示すように熱吸収部13と接する部分で細くなっており、第1実施例同様に樹脂系の接着剤であり、例えばエポキシ樹脂、フェノール樹脂、メラミン樹脂、シリコン樹脂、及び尿素樹脂等の有機系の接着剤からなる熱吸収部13で接着されている。なお、熱吸収部13は最初から第1巻芯11a及び第2巻芯11bの細くなった部分がはまる形状に成形され、その後、第1巻芯11a及び第2巻芯11bを接着して、一体的な巻芯11を構成しても良い。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to the drawings.
The battery 10 of the third embodiment has substantially the same configuration as the battery 10 of the first embodiment, but the first embodiment is different in the shapes of the first core 11a, the second core 11b, and the heat absorbing portion 13. Different from the example.
FIG. 5 is a cross-sectional view showing the configuration of the battery of the third embodiment.
As shown in FIG. 5, the first core 11a and the second core 11b used in the third embodiment are thin at the portion in contact with the heat absorbing portion 13, and are made of a resin-based adhesive as in the first embodiment. For example, it is bonded by a heat absorbing portion 13 made of an organic adhesive such as epoxy resin, phenol resin, melamine resin, silicon resin, and urea resin. In addition, the heat absorption part 13 is shape | molded from the beginning in the shape where the thin part of the 1st core 11a and the 2nd core 11b fits, Then, the 1st core 11a and the 2nd core 11b are adhere | attached, An integral core 11 may be configured.

このように熱吸収部13と第1巻芯11a及び第2巻芯11bの接触面積が広くなることで、放熱効率が良くなることが期待できる。また、熱吸収部13の電極巻回体12との接触面積が広くなることにより、電極巻回体12から吸収する熱量が多くなり、熱吸収部13自体の温度上昇が早くなって、図2に示したような第1条件51よりも、早く効果が出ることが期待できる。
すなわち、第1実施例の図2に示す第1条件51のグラフの第1領域が、第3実施例に係る発明によれば短縮することが出来ると考えられ、もっと早い時点で第2領域に遷移して温度上昇率の緩和を実現することが期待できる。
Thus, it can be expected that the heat dissipation efficiency is improved by increasing the contact area between the heat absorbing portion 13 and the first and second cores 11a and 11b. Further, since the contact area of the heat absorbing portion 13 with the electrode winding body 12 is increased, the amount of heat absorbed from the electrode winding body 12 is increased, and the temperature rise of the heat absorbing portion 13 itself is accelerated, and FIG. The effect can be expected to be faster than the first condition 51 as shown in FIG.
That is, it is considered that the first region of the graph of the first condition 51 shown in FIG. 2 of the first embodiment can be shortened according to the invention according to the third embodiment. It can be expected that the temperature will rise and relax.

以上において、本発明を第1実施例乃至第3実施例に即して説明したが、本発明は上記第1実施例乃至第3実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、熱吸収部13の形状や大きさは、第1実施例乃至第3実施例の形状に限定されず、設計の範囲内で変更が可能である。熱吸収部13の形状や大きさは、電極巻回体12からの吸熱と巻芯11への放熱のバランスによって決定されるものであり、熱吸収部13の表面積を大きくしたり、熱吸収部13の体積を大きくしたりすることで、その効果は変化する。したがって、電池の設計に合わせてこの形状を変更することを妨げない。
また、第1実施例乃至第3実施例では、渦巻き型の電池について説明しているが、同様の効果は積層型の電池等にも効果があると考えられるため、他の形態の電池に用いることを妨げない。
また、巻芯11に備える熱吸収部13は、巻芯11に用いる材質よりも比熱が高いものであれば良く、樹脂よりも比熱が高く熱容量も大きくなるセラミックスなどを用いることを妨げない。
Although the present invention has been described with reference to the first to third embodiments, the present invention is not limited to the first to third embodiments and does not depart from the gist thereof. Needless to say, the present invention can be applied with appropriate changes.
For example, the shape and size of the heat absorbing portion 13 are not limited to the shapes of the first to third embodiments, and can be changed within the design range. The shape and size of the heat absorption part 13 are determined by the balance between the heat absorption from the electrode winding body 12 and the heat dissipation to the core 11, and the surface area of the heat absorption part 13 is increased or the heat absorption part Increasing the volume of 13 changes its effect. Therefore, it is not prevented to change this shape according to the design of the battery.
In the first to third embodiments, the spiral type battery is described. However, since the same effect is considered to be effective for a stacked type battery or the like, it is used for a battery of another form. I will not prevent it.
Moreover, the heat absorption part 13 with which the core 11 is provided should just have a specific heat higher than the material used for the core 11, and it does not prevent using the ceramic etc. which have a specific heat higher than resin, and become large in a heat capacity.

第1実施例の、電池の断面図を示している。1 shows a cross-sectional view of a battery according to a first embodiment. 第1実施例の、電池における放熱性について調査したグラフを示している。The graph which investigated about the heat dissipation in the battery of 1st Example is shown. (a)第1実施例の、電池が備える巻芯における1200秒経過前の熱の流れを示した模式断面図を示している。(b)第1実施例の、電池が備える巻芯における1200秒経過後の熱の流れを示した模式断面図を示している。(A) The schematic cross section which showed the flow of the heat before 1200 second progress in the core with which the battery of 1st Example is equipped is shown. (B) The schematic sectional drawing which showed the flow of the heat after 1200 second progress in the core with which the battery of 1st Example is equipped is shown. 第2実施例の、電池の構成を示す断面図を示している。Sectional drawing which shows the structure of the battery of 2nd Example is shown. 第3実施例の、電池の構成を示す断面図を示している。Sectional drawing which shows the structure of the battery of 3rd Example is shown.

符号の説明Explanation of symbols

10 電池
11 巻芯
11a 第1巻芯
11b 第2巻芯
12 電極巻回体
12a 正極板
12b 負極板
13 熱吸収部
15 正極端子
16 缶体
16a 凸部
16b 嵌合穴
17 カバー
18 通電金具
19 タブ
51 第1条件
52 第2条件
53 第3条件
DESCRIPTION OF SYMBOLS 10 Battery 11 Winding core 11a 1st winding core 11b 2nd winding core 12 Electrode winding body 12a Positive electrode plate 12b Negative electrode plate 13 Heat absorption part 15 Positive electrode terminal 16 Can body 16a Convex part 16b Fitting hole 17 Cover 18 Current supply metal fitting 19 Tab 51 First condition 52 Second condition 53 Third condition

Claims (5)

伝熱体からなる巻芯に、正極板及び負極板を、セパレータを介して積層巻回してなる電極巻回体を備える電池において、
前記巻芯のうち、前記電極巻回体が設けられる領域の一部に、前記巻芯よりも比熱の大きな熱吸収部を設けたことを特徴とする電池。
In a battery comprising an electrode winding body formed by laminating and winding a positive electrode plate and a negative electrode plate via a separator on a winding core made of a heat transfer body,
A battery characterized in that a heat absorption part having a specific heat larger than that of the core is provided in a part of a region where the electrode winding body is provided in the core.
請求項1に記載する電池において、
前記熱吸収部は、絶縁性の物質で構成され、
前記巻芯は、前記熱吸収部によって軸方向に少なくとも第1巻芯と第2巻芯とに分割されてなることを特徴とする電池。
The battery according to claim 1,
The heat absorption part is made of an insulating material,
The battery, wherein the core is divided into at least a first core and a second core in the axial direction by the heat absorbing portion.
請求項2に記載する電池において、
前記第1巻芯は、一端が前記熱吸収部と接触し、他端が前記正極板と導通した第1放熱体と接触してなり、
前記第2巻芯は、一端が前記熱吸収部と接触し、他端が前記負極板と導通した第2放熱体と接触してなることを特徴とする電池。
The battery according to claim 2,
One end of the first core is in contact with the heat absorbing portion, and the other end is in contact with a first radiator that is electrically connected to the positive electrode plate,
The battery is characterized in that one end of the second core is in contact with the heat absorbing portion and the other end is in contact with a second heat radiator that is electrically connected to the negative electrode plate.
請求項2又は請求項3に記載する電池において、
前記熱吸収部は、前記第1巻芯と前記第2巻芯を接着する接着剤よりなることを特徴とする電池。
The battery according to claim 2 or claim 3,
The battery according to claim 1, wherein the heat absorption part is made of an adhesive that bonds the first core and the second core.
請求項3又は請求項4に記載する電池において、
前記第2放熱体は、前記電極巻回体を覆うように設けられた缶体であり、
前記缶体に形成された凹部に、前記第2巻芯が嵌め込まれてなることを特徴とする電池。

The battery according to claim 3 or claim 4,
The second radiator is a can provided so as to cover the electrode winding body,
The battery, wherein the second core is fitted into a recess formed in the can body.

JP2006141107A 2006-05-22 2006-05-22 Battery Withdrawn JP2007311274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006141107A JP2007311274A (en) 2006-05-22 2006-05-22 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006141107A JP2007311274A (en) 2006-05-22 2006-05-22 Battery

Publications (1)

Publication Number Publication Date
JP2007311274A true JP2007311274A (en) 2007-11-29

Family

ID=38843932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006141107A Withdrawn JP2007311274A (en) 2006-05-22 2006-05-22 Battery

Country Status (1)

Country Link
JP (1) JP2007311274A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519713A (en) * 2007-02-27 2010-06-03 ダイムラー・アクチェンゲゼルシャフト Electrochemical individual cells and batteries for batteries
US20110129706A1 (en) * 2009-11-30 2011-06-02 Hitachi, Ltd. Lithium-Ion Secondary Battery
US20110262783A1 (en) * 2010-04-27 2011-10-27 Tesla Motors, Inc. Battery Cell with Center Pin Comprised of an Intumescent Material
JP2012009499A (en) * 2010-06-22 2012-01-12 Toyota Motor Corp Vehicle capacitor
WO2016174992A1 (en) * 2015-04-28 2016-11-03 日立オートモティブシステムズ株式会社 Secondary battery
CN108232365A (en) * 2018-01-08 2018-06-29 杨彬 A kind of battery cell, the battery pack formed by the battery cell and the automobile for applying the battery pack
JP2018206628A (en) * 2017-06-06 2018-12-27 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2020523753A (en) * 2017-12-01 2020-08-06 エルジー・ケム・リミテッド Secondary battery having a hollow filled with a heat conductive resin
GB2585916A (en) * 2019-07-24 2021-01-27 Jaguar Land Rover Ltd Apparatus and method for a cylindrical cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519713A (en) * 2007-02-27 2010-06-03 ダイムラー・アクチェンゲゼルシャフト Electrochemical individual cells and batteries for batteries
US20110129706A1 (en) * 2009-11-30 2011-06-02 Hitachi, Ltd. Lithium-Ion Secondary Battery
US20110262783A1 (en) * 2010-04-27 2011-10-27 Tesla Motors, Inc. Battery Cell with Center Pin Comprised of an Intumescent Material
JP2012009499A (en) * 2010-06-22 2012-01-12 Toyota Motor Corp Vehicle capacitor
WO2016174992A1 (en) * 2015-04-28 2016-11-03 日立オートモティブシステムズ株式会社 Secondary battery
JPWO2016174992A1 (en) * 2015-04-28 2017-12-28 日立オートモティブシステムズ株式会社 Secondary battery
JP2018206628A (en) * 2017-06-06 2018-12-27 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US11335957B2 (en) 2017-12-01 2022-05-17 Lg Energy Solution, Ltd. Cylindrical secondary battery having hollow portion filled with thermal conductive resin
JP2020523753A (en) * 2017-12-01 2020-08-06 エルジー・ケム・リミテッド Secondary battery having a hollow filled with a heat conductive resin
JP7163317B2 (en) 2017-12-01 2022-10-31 エルジー エナジー ソリューション リミテッド Secondary battery having a hollow filled with thermally conductive resin
CN108232365A (en) * 2018-01-08 2018-06-29 杨彬 A kind of battery cell, the battery pack formed by the battery cell and the automobile for applying the battery pack
GB2585916B (en) * 2019-07-24 2022-02-09 Jaguar Land Rover Ltd Apparatus and method for a cylindrical cell
GB2585916A (en) * 2019-07-24 2021-01-27 Jaguar Land Rover Ltd Apparatus and method for a cylindrical cell

Similar Documents

Publication Publication Date Title
JP2007311274A (en) Battery
JP6694076B2 (en) Battery pack with a direct cooling system applied to the edge of the battery
JP5209036B2 (en) Battery assembly, electric vehicle, and battery housing
JP4164212B2 (en) Battery module and power supply device
JP5018204B2 (en) Power storage unit
JP5018119B2 (en) Power storage unit
US9269500B2 (en) Heat-dissipating device for supplying power to a hybrid or electric motor vehicle
JP2018536273A (en) Power battery pack and electric vehicle having the same
US9366259B2 (en) Electric fluid pump
US10340487B2 (en) Contacting apparatus for contacting an energy storage cell
JP2020502748A (en) Power relay assembly
JP2014511552A (en) Energy storage device, energy storage cell, and heat transfer element
JP5968425B2 (en) Channel member, heat exchanger using the same, and semiconductor device
KR101470072B1 (en) Heat control plate for battery cell module and battery cell module having the same
JP2007150014A (en) Electric storage device
JP2008251306A (en) Power storage device
JP2013505524A (en) Insulating device and method of manufacturing insulating device
JP2012009499A (en) Vehicle capacitor
JP7041796B2 (en) Pouch-shaped battery case including heat dissipation layer
KR20190054300A (en) Battery
KR20180062501A (en) Battery water cooling system
EP2844052B1 (en) Power converter unit of an electric or hybrid vehicle
JP4086491B2 (en) Power supply module and power supply unit incorporating the power supply module
KR101533992B1 (en) Battery Module
JP2008270461A (en) Storage unit

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804