JP2007309853A - 横風送風装置および送風方法 - Google Patents

横風送風装置および送風方法 Download PDF

Info

Publication number
JP2007309853A
JP2007309853A JP2006140838A JP2006140838A JP2007309853A JP 2007309853 A JP2007309853 A JP 2007309853A JP 2006140838 A JP2006140838 A JP 2006140838A JP 2006140838 A JP2006140838 A JP 2006140838A JP 2007309853 A JP2007309853 A JP 2007309853A
Authority
JP
Japan
Prior art keywords
blower
impeller
rotational speed
wind
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006140838A
Other languages
English (en)
Other versions
JP4829008B2 (ja
Inventor
Hideyuki Shirogane
英之 白銀
Yuichi Moriguchi
裕一 森口
Takayuki Kawai
孝幸 河合
Toru Okamura
徹 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2006140838A priority Critical patent/JP4829008B2/ja
Publication of JP2007309853A publication Critical patent/JP2007309853A/ja
Application granted granted Critical
Publication of JP4829008B2 publication Critical patent/JP4829008B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract


【課題】 うなり音を低減することができる横風送風装置を提供する。
【解決手段】 制御手段47によって、第2送風機の羽根車の回転数R2を、第1送風機の羽根車の回転数R1に対して、時間経過に伴って変化させる。これによって2つの送風機の回転数差|R2−R1|を時間経過に伴って変化させることができる。回転数差|R2−R1|を時間経過に伴って変化させることで、うなり音の周期を時間経過に伴って変化させることができ、周期が一定のうなり音が継続的に発生することを回避することができる。これによって周辺環境に対する騒音の影響を軽減することができる。また横風安定性試験を行う作業者が感じる不快感を低減して、横風安定性試験が行われる作業環境を改善することができる。
【選択図】 図1

Description

本発明は、車両の横風安定性試験を行うための横風送風装置および送風方法に関する。
図13は、従来技術の横風送風装置1の一部を示す断面図である。横風送風装置1は、走行中の車両3について、横風による安定性の試験を行うための装置である。横風送風装置1は、複数の送風手段2を有する。各送風手段2は、予め定められる並列方向Xに沿ってそれぞれ並び、並列方向Xに延びる試験路4にそれぞれ隣接する。各送風手段2によって送風される送風気体は、前記試験路4に直交して水平な直交方向Yに進む。各送風手段2によってそれぞれ送風される送風気体によって、直交方向Yに進む横風を模擬した試験風を作り出すことができる。横風送風装置は、たとえば非特許文献1に開示される。
各送風手段2は、円筒状の円筒部5内に配置される。円筒部5は、矩形筒状の矩形筒部6に連なる。矩形筒部6は、円筒部5に比べて、並列方向寸法が拡径する。送風手段2毎に設けられる矩形筒部6は、並列方向Xに互いに隣接して配置される。矩形筒部6が設けられることで、送風手段2から送風される送風気体が並列方向Xに広げられる。
たとえば並列方向X寸法が約3mの矩形筒部6が並列方向Xに隣接して6台並べられることで、試験路4に、並列方向X寸法が18mの送風領域9を形成することができる。送風領域9全域では、並列方向Xにわたって直交方向Yに試験風が進む。並列方向Xに車両3を走行させて、試験路4上に形成される送風領域9を通過させることで、車両3の横風による安定性を試験することができる。
また試験体に気体を吹付ける流体実験装置として、回転式風洞、吸込み式風洞および吹出し式風洞などがある。回転式風洞に関する従来技術がたとえば特許文献1に開示される。また吹出し式風洞に関する従来技術がたとえば特許文献2に開示される。このような従来技術の風洞装置は、気体を吹付け可能な領域が小さく、横風安定性試験に用いることができない。従来技術の横風送風装置は、風洞装置とは構成が異なり、気体を吹付け可能な領域を並列方向に大きくするために、並列方向に並ぶ複数の送風機によって実現される。
自動車規格(JASO Z108、2004小改正) 自動車−横風安定性試験方法 特開平7−83789号公報 特開2003−65890号公報
図14は、2つの送風機によって生じるうなり音を説明するための図である。図14(1)は、第1送風機と第2送風機との羽根車の回転数をそれぞれ示すグラフである。図14(2)は、第1送風機で発生する騒音音圧の時間変化を示すグラフである。図14(3)は、第2送風機で発生する騒音音圧の時間変化を示すグラフである。図14(4)は、第1送風機と第2送風機とで発生する2つの騒音音圧を重ね合わせた合成騒音音圧の時間変化を示すグラフである。各送風機は、羽根車の回転数に比例する周波数f1,f2を有する騒音が発生する。羽根車の回転数が一定である場合、各送風機で発生する騒音の周波数f1,f2は、時間変化に拘わらず一定である。
従来技術の横風送風装置は、並列方向Xに一様な速度の試験風を発生させるために、各送風機は、同一の回転数の指令が与えられる。しかしながら全送風機の羽根車の回転数が完全に同一となることは少ない。したがって図14(1)に示すように、第1送風機の羽根車の回転数R1と、第2送風機の羽根車の回転数R2とでは、僅かな回転数差|R2−R1|が生じる。これによって第1送風機で発生する騒音の周波数f1と、第2送風機で発生する騒音の周波数f2とに、僅かな周波数偏差|f2−f1|が生じる。この周波数偏差|f2−f1|は、時間変化にかかわらず一定となる。
この場合、図14(4)に示すように、送風機毎に発生する騒音音圧が合わさることで、周波数偏差|f2−f1|に関係する周期(1/(|f2−f1|))で合成騒音音圧の強度が変化する。この騒音音圧の強度変化に起因して、うなり音が発生する。うなり音は、横風安定性試験を行う作業者に不快感を与えるという問題がある。またうなり音は、周辺環境に対する騒音の影響が大きいという問題がある。
したがって本発明の目的は、うなり音を低減することができる横風送風装置および送風方法を提供することである。
本発明は、車両の横風安定性試験に用いられる横風送風装置であって、
送風気体を送風するための羽根車を有し、回転数を変更可能に羽根車を回転駆動して、予め定める並列方向に並ぶ複数の送風手段と、
少なくとも1つの羽根車の回転数を、他の羽根車の回転数に対して、時間経過に伴って順次変化させる回転変化指令を対応する送風手段に与えて、送風手段を制御する制御手段とを含むことを特徴とする横風送風装置である。
本発明に従えば、並列方向に並ぶ各送風手段がそれぞれ送風気体を送風する。これによって、並列方向に延びる広範囲の領域を通過する試験風を発生させることができる。また試験風を発生した状態において、制御手段によって、少なくとも1つの羽根車の回転数を時間経過に伴って変化させることで、少なくとも1つの羽根車と、他の羽根車との回転数差を時間経過に伴って変化させることができる。
1つの羽根車の回転数が、他の羽根車の回転数に近づくことで、2つの羽根車の回転に起因して発生するうなり音の周期が長くなる。また1つの羽根車の回転数が、他の羽根車の回転数から遠ざかることで、2つの羽根車の回転に起因して発生するうなり音の周期が短くなる。本発明では、2つの羽根車の回転数差を時間経過に伴って変化させることができるので、うなり音の周期を時間経過に伴って変化させることができ、周期が一定のうなり音が継続的に発生することを回避することができる。
また本発明は、制御手段は、横風安定性試験において予め定められる許容流速範囲内に送風気体の流速を発生可能な回転数範囲で、羽根車の回転数の回転変化指令を与えることを特徴とする。
本発明に従えば、制御手段によって、羽根車の回転数を変化させたとしても、発生する送風気体の流速を、許容流速範囲内に収めることができる。これによって横風安定性試験を行うに必要な各送風気体の流速のばらつきを抑えつつ、周期が一定のうなり音が継続的に発生することを回避することができる。
また本発明は、制御手段は、少なくとも1つの羽根車の回転数を、横風安定性試験において予め定められる送風気体の基準流速を発生可能な基準回転数よりも大きい回転数と、基準回転数よりも小さい回転数とに、時間経過に伴って交互に変化させることを特徴とする。
本発明に従えば、基準回転数に対して、羽根車の回転数を大小に交互に変化させることで、羽根車の回転数変化幅を大きくすることができる。これによって時間経過に伴ううなり音の周期の変化を大きくすることができ、周期が一定のうなり音が継続的に発生することをさらに確実に回避することができる。また基準回転数に対して、回転数を大小に変化させることで、横風安定性試験を行うに必要な各送風気体の速度のばらつきを抑えて、横風安定性試験の精度低下を抑えることができる。
また本発明は、制御手段は、少なくとも1つの羽根車の回転数の大きさを変化させる振幅および周期の少なくとも一方を、時間経過に伴って変化させることを特徴とする。
本発明に従えば、振幅および周期のいずれかを変化させることで、時間経過に伴ううなり音の周期をさらに非一様として、周期が一定のうなり音が継続的に発生することをさらに確実に回避することができる。たとえば回転数の大きさを変化させる周期を時間経過に伴ってランダムに変化させてもよい。
また本発明は、制御手段は、少なくとも1つの羽根車の回転数の大きさを連続的に、時間経過に伴って変化させることを特徴とする。
本発明に従えば、時間経過に伴ううなり音の周期の変化を連続的とすることができ、作業者に与える不快感を低減することができる。
また本発明は、制御手段は、複数の羽根車の回転数を時間経過に伴って変化させる回転変化指令を対応する送風手段に与え、羽根車の回転数の大きさを変化させる振幅、周期および位相の少なくとも一方を、羽根車ごとに異ならせることを特徴とする。
本発明に従えば、羽根車の回転数に関して、その大きさを変化させる振幅、周期および位相の少なくとも一方を、羽根車毎にそれぞれ異ならせる。これによって2つの羽根車の回転数を時間経過に伴って変化させる場合であっても、その2つの羽根車の時間経過に伴う回転数差が時間経過に伴って一定となることを防ぐことができ、周期が一定のうなり音が継続的に発生することをさらに確実に回避することができる。
また本発明は、車両の横風安定性試験に用いられる送風気体を送風する送風方法であって、
予め定める並列方向に並んで、羽根車の回転数を変更可能な複数の送風手段に、羽根車を回転させる回転指令をそれぞれ与えるとともに、
少なくとも1つの羽根車の回転数を時間経過に伴って変化させる回転変化指令を、対応する送風手段に与えて、各送風手段によって並列方向に延びる領域に送風気体を送風させる送風方法である。
本発明に従えば、各送風手段に回転指令を与えることで、並列方向に並ぶ各送風手段が送風気体をそれぞれ送風する。これによって並列方向に延びる広範囲の領域に試験風を発生させることができる。また試験風を発生した状態において、少なくとも1つの送風手段に回転変化指令を与えることで、少なくとも1つの羽根車の回転数を時間経過に伴って変化させることができ、少なくとも1つの羽根車と、他の羽根車との回転数差を時間経過に伴って変化させることができる。
1つの羽根車の回転数が、他の羽根車の回転数に近づくことで、2つの羽根車の回転に起因して発生するうなり音の周期が長くなる。また1つの羽根車の回転数が、他の羽根車の回転数から遠ざかることで、2つの羽根車の回転に起因して発生するうなり音の周期が短くなる。本発明では、2つの羽根車の回転数差を時間経過に伴って変化させることができるので、うなり音の周期が時間経過に伴って変化して、周期が一定のうなり音が継続的に発生することを回避することができる。
請求項1記載の本発明によれば、2つの羽根車の回転数差を時間経過に伴って変化させることで、周期一定のうなり音が継続的に発生することを回避することができる。周期一定のうなり音の発生を防ぐことで、不快となる騒音音圧の強度が周期的に変化することを防ぐことができ、周辺環境に対する騒音の影響を軽減することができる。また横風安定性試験を行う作業者が感じる不快感を低減して、横風安定性試験が行われる作業環境を改善することができる。
請求項2記載の本発明によれば、横風安定性試験において、予め定められる許容流速範囲内に送風気体の流速を発生可能な範囲で、羽根車の回転数の回転変化指令を与える。これによって不快となる騒音を低減するとともに、各送風気体の流速のばらつきを抑えて横風安定性試験の精度低下を抑えることができる。
請求項3記載の本発明によれば、基準回転数に対して、羽根車の回転数が大きい状態と、羽根車の回転数が小さい状態とを、交互に変化させることで、羽根車の回転数変化幅を大きくすることができる。これによって時間経過に伴ううなり音の周期の変化を大きくすることができ、不快となる騒音をさらに低減することができる。また基準回転数に対して、回転数を大小に変化させることで、横風安定性試験を行うに必要な各送風気体の速度のばらつきを抑えて、横風安定性試験の精度低下を抑えることができる。
請求項4記載の本発明によれば、羽根車の回転数の大きさを変化させる振幅および周期の少なくとも一方を、時間経過に伴って変化させることで、時間経過に伴ううなり音の周期をさらに非一様として、周期一定のうなり音が継続的に発生することをさらに確実に回避することができる。
請求項5記載の本発明によれば、羽根車の回転数の大きさを連続的に、時間経過に伴って変化させることで、うなり音の周期の時間変化が連続的となり、作業者に与える不快感を低減することができる。
請求項6記載の本発明によれば、2つの羽根車の回転数の大きさを変化させる振幅、周期および位相の少なくとも一方を、羽根車毎にそれぞれ異ならせる。これによって2つの羽根車の回転数を時間経過に伴って変化させる場合であっても、2つの羽根車の回転数差が時間経過に対して一定となることを防ぐことができ、周期一定のうなり音が継続的に発生することをさらに確実に回避することができる。
請求項7記載の本発明によれば、2つの羽根車の回転数差を時間経過に伴って変化させることで、周期が一定のうなり音が継続的に発生することを回避することができる。周期一定のうなり音の発生を防ぐことで、不快となる騒音を低減することができる。これによって周辺環境に対する騒音の影響を軽減することができるとともに、横風安定性試験を行う作業者が感じる不快感を低減して、横風安定性試験が行われる作業環境を改善することができる。
図1は、本発明の第1実施形態である横風送風装置20の一部を示す平面断面図である。図2は、横風送風装置20を示す側面断面図である。図3は、横風送風装置20を示す平面図である。図1は、図2の切断面線I−Iから見た図であり、図2は、図3の切断面線II−IIから見た図である。
横風送風装置20は、横風安定性試験を行うための装置である。図3に示すように、横風安定性試験は、試験路24を走行中の車両25に、横風送風装置20によって横風に相当する試験風26を吹付ける。そして吹付けられる試験風に起因する車両25の横ずれなどの走行挙動を調べる試験である。試験路24は、予め定められる車両走行方向に沿って一直線に延びる。横風送風装置20は、車両走行方向に交差して進む試験風を、試験路24を走行中の車両25に吹付ける。横風送風装置20は、車両走行方向に直交する方向に配置される。横風安定性試験方法は、自動車規格(JASO Z108)に規定される。
横風送風装置20は、複数の送風機21を含む。複数の送風機21は、試験路24に臨んでそれぞれ配置され、予め定められる並列方向Xに沿って一列にそれぞれ並ぶ。並列方向Xは、車両走行方向に対して平行に延びる方向である。本明細書では、並列方向Xのうち車両走行方向上流から下流に向かう方向を並列方向一方X1と称し、並列方向Xのうち車両走行方向下流から上流に向かう方向を並列方向他方X2と称する。したがって並列方向一方X1と車両走行方向とは一致する。また並列方向Xに直交するとともに水平に延びる方向を直交方向Yと称する。横風送風装置20から試験路24に進む方向を直交方向一方Y1と称し、直交方向一方Y1と反対の方向を直交方向他方Y2と称する。したがって直交方向一方Y1は、送風気体の流れ方向上流から下流に向かう方向であって、送風気体の流れ方向となる。また並列方向Xおよび直交方向Yにそれぞれ直交する方向を仕切方向Zと称する。本実施形態では、仕切方向は、鉛直方向に設定される。
本実施形態では、送風機21は、軸流送風機によって実現される。各送風機21は、それぞれ同一の構成を有するので、1つの送風機を説明し、残余の送風機の説明を省略する。図1および図2に示すように、各送風機21は、送風手段22と、ダクト体23とをそれぞれ有する。送風手段22は、気体を送風可能な手段であって、動翼となる羽根車30と、羽根車30を回転軸線L22まわりに回転駆動する回転駆動機31とを含む。回転軸線L22は、送風手段22ごとにそれぞれ設定され、直交方向Yに延びて並列方向Xに間隔をあけて並ぶ。
回転駆動機31は、電動モータによって実現され、さらに具体的には、回転数を無段階可変可能であって、インバータ駆動制御される交流電動モータによって実現される。回転駆動機31によって羽根車30を回転軸線L22まわりに回転させることによって、羽根車30に対して直交方向他方Y2の送風気体が、羽根車30に向けて吸込まれ、羽根車30から直交方向一方Y1に吹出される。このようにして送風手段22は、送風気体を直交方向一方Y1に送風可能となる。
ダクト体23は、筒状に形成されて送風手段22を収容するケーシング体となる。またダクト体23は、送風手段22によって送風される送風気体を吹出すための吹出口形成体となる。ダクト体23は、床面などの予め定める設置体に固定される。ダクト体23は、大略的に筒状に形成され、円筒部32と、連結筒部33と、矩形筒部34とを含んで構成される。ダクト体23は、直交方向一方Y1に進むにつれて、円筒部32、連結筒部33および矩形筒部34の順で並ぶ。
円筒部32は、直交方向両端部32a,32bが開放する筒状に形成されて送風手段22を支持する。円筒部32は、送風手段22に設定される回転軸線L22と同軸の円筒状に形成される。円筒部32の直径は、羽根車30の直径よりもやや大きく形成される。円筒部32の直交方向他方Y2側端部32aは、開放して形成され、送風機21の吸込口35を形成する。
連結筒部33は、直交方向両端部33a,33bが開放する筒状に形成されて、円筒部32と矩形筒部34とを連結する。連結筒部33の直交方向他方Y2側端部33aは、円筒部32の直交方向一方Y1側端部32bに連なり、連結筒部33の直交方向一方Y1側端部33bは、矩形筒部34の直交方向他方Y2側端部34aに連なる。
矩形筒部34は、直交方向両端部34a,34bが開放する筒状に形成されて、試験路24に臨む。矩形筒部34は、4つの側壁16,17,18,19によって四角枠状に形成される。また矩形筒部34は、円筒部32の中心軸線と同軸に形成される。矩形筒部34の直交方向一方側端部34bは、開放して形成され、送風機21の吹出口36を形成する。
矩形筒部34の4つの側壁16〜19は、吹出口36を規定する。4つの壁面16〜19のうち、仕切方向Zに間隔をあけて互いに対向する一対の側壁16,17は、並列方向Xに延びる。この2つの側壁16,17のうち下方に配置される側壁16が下壁16となり、上方に配置される側壁17が上壁となる。また並列方向Xに間隔をあけて互いに対向する他の一対の壁面18,19は、仕切方向Zに延びる。この2つの壁面18,19のうち並列方向一方X1に配置される側壁18が並列方向一方X1側壁18となり、並列方向他方X2に配置される側壁19が並列方向他方X2側壁19となる。
本実施形態では、図1に示すように、矩形筒部34の並列方向Xの開口寸法H2は、円筒部32の内径寸法H1よりも大きく形成される(H2>H1)。また図2に示すように、矩形筒部34の仕切方向の開口寸法H3は、円筒部32の内径寸法H1よりも小さく形成される(H3<H1)。したがって図1に示すように、連結筒部33は、直交方向一方Y1に進むにつれて、開口の並列方向寸法が拡径θ1するとともに、開口の仕切方向寸法が縮径θ2する。
ダクト体23は、円筒部32に形成される吸込口35から、矩形筒部34に形成される吹出口36まで、内部空間37が直交方向Yに気体通過可能に形成される。送風機21は、送風手段22の羽根車30を回転させることで、ダクト体外方の気体を吸込口35から吸込んで、吹出口36から吹出すことができる。
各ダクト体23の矩形筒部34が互いに並列方向Xに接した状態で、並列方向Xに並ぶことで、並列方向Xに広範囲な領域に送風気体を吹出すことができる。具体的には、横風送風装置20は、直交方向Yに垂直な断面が長方形状の送風領域27にわたって送風気体を送風することができる。送風領域27の並列方向寸法は、矩形筒部34の並列方向寸法H2に送風機21の台数(n)を乗算した寸法となる(H2×n)。また送風領域27の仕切方向寸法は、矩形筒部34の仕切方向寸法H3の仕切方向Z寸法となる。このように送風領域27は、直交昇降に垂直な断面形状が矩形状に形成される。
本実施形態では、横風送風装置20は、5台以上の送風機21を有する。この場合、横風送風装置20は、並列方向寸法が約15m(=3×5m)以上で、仕切方向寸法が約2mの矩形形状の送風領域27にわたって、送風気体を直交方向Yに吹出すことができる。このように並列方向Xに広範囲に延びる送風領域24にわたって、送風気体を吹出すことで、横風を模擬した試験風を走行中の車両に吹出すことができる。また横風送風装置20が有する送風機21の数は、複数であればよく、5台以下および5台以上の台数であってもよい。
また各送風機21は、試験風の風向きを変更するための風向変更手段をそれぞれ有する。風向変更手段によって、横風送風装置20は、並列方向Xに交差する方向に送風気体を送風することができる。風向変更手段は、風向変更部材40と、風向変更部材40を角変位駆動する角変位駆動機41とを有する。図2に示すように、風向変更部材40は、ダクト体23よりも直交方向一方Y1に配置される。言い換えると、風向変更部材40は、ダクト体23のうちの矩形筒部34よりも、送風気体の流れ方向下方に配置される。
図4は、風向変更部材40と角変位駆動機41との一部を示す正面図である。図5は、風向変更部材40の一部を示す平面図である。図5には、各風向変更部材40が基準位置に配置された状態を実線で示し、各風向変更部材40が基準位置から角変位した状態を2点鎖線で示す。
風向変更手段は、風向変更部材40を複数有する。各風向変更部材40は、長方形板状に形成され、並列方向Xに間隔をあけて配置される。各風向変更部材40は、その長手方向が仕切方向Zに延びて、ダクト体23の下壁16と上壁17との間にわたって延びる。風向変更部材40は、予め定める角変位軸線L40まわりに角変位可能にダクト体23に支持される。本実施形態では、角変位軸線L40は、風向変更部材40の直交方向他方Y2端部を挿通する。
各風向変更部材40が予め定める基準位置に位置する基準状態では、風向変更部材40の幅方向は、直交方向Yと平行に延びる。また基準位置では、各風向変更部材40は、直交方向他方Y2端部から直交方向一方Y1に進むにつれて、厚み方向寸法、言換えると並列方向寸法が小さくなる先細形状に形成される。各風向変更部材40が基準状態から角変位軸線L40まわりに予め定める傾斜角度α角変位した状態では、風向変更部材40の幅方向は、直交方向Yに対して前記傾斜角度αで傾斜する。本実施形態では、各風向変更部材40は、基準状態から±30度の角度範囲で、角変位軸線L40まわりに角変位可能に構成される。これによって並列方向Xに交差する方向であって任意の方向に沿って送風気体を送風することができる。
ダクト体23から吹出される送風気体は、風向変更部材40に衝突すると、風向変更部材40の表面に沿って進む。したがって風向変更部材40が直交方向Yと平行となる基準状態では、送風気体は、直交方向Yに流れる。これに対して、風向変更部材40が直交方向Yに対して傾斜する状態では、送風気体は、直交方向Yに対して傾斜して流れる。このようにして風向変更部材40は、送風気体を案内する。
本実施形態では、各風向変更部材40は、平行リンク機構によってそれぞれ連結される。平行リンク機構は、各風向変更部材40をそれぞれ個別に連結する複数の第1リンク部材42と、各第1リンク部材42を角変位可能に連結する第2リンク部材43とを含んで構成される。また第1リンク部材42は、角変位軸線L40まわりに回転可能に構成される。第2リンク部材43を変位することで、第1リンク部材42とともに各風向変更部材40が角変位軸線L40まわりに角変位する。
角変位駆動機41は、前記第2リンク部材43を角変位軸線L40に平行な平行軸線L43まわりに角変位駆動することによって、各風向変更部材40がそれぞれ連動して角変位する。本実施形態では、角変位駆動機41は、電動モータによって実現され、モータの出力軸と前記第2リンク部材43とが連結棒44を介して連結される。
角変位駆動機41のモータの出力軸を角変位駆動することで、各風向変更部材40を、それぞれ対応する角変位軸線L40まわりに角変位駆動することができる。また送風機21は、風向変更部材40の基準位置に対する角変位量を検出する角度センサを有する。本実施形態では、角度センサは、角変位駆動機41の出力軸の回転量を検出するエンコーダによって実現される。
図6は、横風送風装置20の電気的構成を示すブロック図である。上述したように各送風機21は、回転駆動機31と、回転駆動機31を駆動するためのインバータ回路45と、角変位駆動機41と、風向変更部材40の角度位置を検出する角度センサ46とをそれぞれ有する。また横風送風装置20は、複数の送風機21のほかに、各送風機21にそれぞれ個別に制御指令を与える制御手段47とを含んで構成される。
制御手段47は、作業者からの指令が入力される入力部を有し、入力部によって作業者から回転指令が入力される。制御手段47は、回転指令が入力されると、各送風機21のインバータ回路45に設定回転数を含む回転指令をそれぞれ与える。インバータ回路45は、制御手段47から与えられる回転指令に応答して、設定回転数に応じた駆動電流を回転駆動機31に与える。回転駆動機31は、インバータ回路45から駆動電流が与えられることで、羽根車30を設定回転数で回転する。横風送風装置20は、インバータ回路45によって回転駆動機31を回転させることで、設定回転数を無段階的に設定可能となる。
また角度センサ46は、風向変更部材40の角度位置を示す角度情報を制御手段47に与える。制御手段47は、角度センサ46から与えられる角度情報に基づいて、角変位駆動機41に駆動指令を与える。角変位駆動機41は、制御手段47から与えられる駆動指令に応答して、各風向変更部材40をそれぞれ角変位駆動することで、各送風機21から吹出される送風気体の風向きを変更させることができる。
制御手段47は、コンピュータによって実現される。制御手段47は、記憶部と、演算処理部と、入力部と、出力部とを含む。記憶部は、予め定める動作プログラムが記憶される。入力部は、作業者、インバータ回路45および角度センサ46から与えられる情報を演算処理部に与える。演算処理部は、記憶部に記憶される動作プログラムを読出し、読出した動作プログラムに従って、入力部から与えられる情報に基づいて、演算結果を出力し、出力した出力結果を出力部に与える。出力部は、演算処理部から与えられた出力結果を制御指令として、インバータ回路45および角変位駆動機41に与える。たとえば記憶部は、RAMおよびROMなどの記憶回路からなり、たとえば演算処理部は、CPUなどの処理回路からなる。入力部および出力部は、入出力インターフェースからなる。
図7は、本実施形態における2つの送風機によって生じるうなり音を説明するための図である。図7(1)は、第1送風機と第2送風機との羽根車の回転数を示すグラフである。図7(2)は、第1送風機で発生する騒音音圧の時間変化を示すグラフである。図7(3)は、第2送風機で発生する騒音音圧の時間変化を示すグラフである。図7(4)は、第1送風機と第2送風機とで発生する2つの騒音を重ね合わせた合成騒音音圧の時間変化を示すグラフである。第1送風機の騒音音圧の周波数f1は、一定に設定される。これに対して、第2送風機の騒音音圧の周波数f2,f2,f2は、時間経過に伴って微小に変化する。図7(3)では、第2送風機の騒音音圧の周波数は、変化が微小なので一定に見えるが、実際には時間経過に伴って微小変化する。
各送風機21は、羽根車の回転数R1,R2に比例する周波数f1,f2の騒音が発生する。具体的には、騒音の周波数f1,f2は、羽根車に形成される翼の数αと、羽根車の1秒当たりの回転回数βとを乗算した乗算値(α×β)となる。一般的には、送風機の騒音は、前記乗算値(α×β)をn倍した周波数(α×β×n)の振幅が卓越する。ここでnは、正の整数である。このような乗算値(α×β)をn倍した周波数(α×β×n)のうちでも、特に、n=1となる一次の周波数の騒音が支配的となる。
本実施形態では、羽根車に形成される翼は10枚である。この場合、羽根車が回転駆動される一分あたりの回転回数である回転数が、730rpm(revolution per minute、回転/分)であると、騒音の周波数は、約121Hz(=(730/60)×10)となる。羽根車の回転数Rが時間変化に拘わらずに一定である場合、送風機で発生する騒音の周波数fもまた、時間変化に拘わらず一定である。以下、回転数は、羽根車の一分あたりの回転回数を意味し、羽根車の回転速度に比例した値とする。
制御手段47は、送風機21毎のインバータ回路45にそれぞれ個別に回転指令を与えることによって、各送風機21を個別に制御可能である。また制御手段47は、時間経過に伴って回転数を変化させる回転数変化指令を与えることができる。回転数変化指令が与えられたインバータ回路45は、対応する羽根車の回転数を、時間経過に伴って順次変化させる。
制御手段37は、複数の送風機21のうちで、第1送風機の羽根車の回転数R1と、第2送風機の羽根車の回転数R2との差|R2−R1|を、時間経過に伴って変化させる。言換えると、第2送風機の羽根車の回転数を、第1送風機の羽根車の回転数に対して、時間経過に伴って順次変化させる回転数変化指令を、第2送風機のインバータ回路に与える。第2送風機は、複数の送風機のうち少なくとも1つの送風機である。また第1送風機は、第2送風機を除く残余の送風機のうち少なくとも1つの送風機である。
制御手段47は、第1送風機の羽根車の回転数R1を基準回転数R0とする。ここで、基準回転数R0は、横風安定性試験において、予め定められる送風気体の基準流速を発生可能な羽根車の回転数である。
一例として本実施形態では、吹出口36から吹出される送風気体の風速である基準流速が20m/sに規定されている。この場合、基準回転数R0は、730rpmとなる。基準回転数R0である730rpmで羽根車を回転させることで、吹出口36から吹出される送風気体の流速を、基準流速となる20m/sとすることができる。ただし、基準流速および基準回転数R0は、上述した値以外であってもよい。
制御手段47は、第1送風機の羽根車の回転数R1が、時間経過にかかわらず一定の基準回転数R0となるように維持する。したがって図7(2)に示すように、第1送風機の羽根車で発生する騒音音圧の周波数f1および周期(1/f1)は、時間経過にかかわらずに一定となる。
また制御手段47は、第2送風機の羽根車の回転数R2を時間経過に伴って順次変化させる。したがって図7(3)に示すように、第2送風機の羽根車で発生する騒音音圧の周波数f2および周期(1/f2)は、時間経過に伴って変化する。
本実施形態では、横風安定性試験において、予め定められる許容流速範囲内で送風気体の流速を維持可能な回転数範囲内の変動幅で、第2送風機の羽根車の回転数R2を変動変化させる。言換えると、制御手段47は、第2送風機の羽根車の回転数を、時間経過に伴って、上限回転数R3と下限回転数R4との間の変動範囲内で順次変化させる。ここで、上限回転数R3は、風速に影響しない範囲内で基準回転数R0よりも可及的に大きい羽根車の回転数である。また下限回転数R4は、風速に影響しない範囲内で基準回転数R0よりも可及的に小さい羽根車の回転数である。制御手段47は、上述した上限回転数R3と下限回転数R4との間で、第2送風機の羽根車の回転数を変化させればよい。したがって第2送風機の羽根車の回転数の変動幅は、上限回転数R3と下限回転数R4との間の幅よりもさらに狭い幅であってもよい。
本実施形態では、制御手段47は、第2送風機の羽根車の回転数R2を、基準回転数R0に対して大きい回転数R5と、基準回転数R0に対して小さい回転数R6とに、時間経過に伴って交互に変化させる。また制御手段47は、第2送風機の羽根車の回転数R2を、時間経過に沿ってランダムに変化させる。言換えると、第2送風機の羽根車の回転数R2を、時間経過に伴って非周期的に上下変化させる。また制御手段47は、第2送風機の羽根車の回転数R2に関して、単位時間ごとの変化量を小さくして、時間経過に伴って滑らかに変化させる。
このように制御手段47は、第2送風機の羽根車の回転数R2を時間経過に伴って僅かに変化させる。したがって2つの送風機の羽根車の回転数差|R2−R1|を時間経過に伴って僅かに変化させることができる。上述したように、羽根車から発生する騒音の周波数f1,f2は、羽根車の回転数R1,R2に比例する。したがって本実施形態では、2つの送風機でそれぞれ発生する騒音の周波数f1,f2の偏差|f2−f1|を、2つの送風機の羽根車の回転数R1,R2の偏差|R2−R1|に比例させて、時間経過に伴って変化させることができる。
第1送風機および第2送風機の回転数差が小さい場合、それぞれの羽根車で発生する騒音を合わせた合成騒音には、うなり音が含まれる。うなり音は、2つの羽根車の騒音の周波数f1,f2の偏差|f2−f1|に関係する周期を有する。うなり音の周期は、2つの羽根車の騒音の周波数f1,f2の偏差|f2−f1|の逆数(1/(|f2−f1|))となる。本実施形態では、周波数f1,f2の偏差|f2−f1|が時間経過とともに変化するので、図7(4)に示すように、うなり音の周期(1/Δf1,1/Δf2,1/Δf3)もまた時間とともに変化する。
具体的には、第2送風機の羽根車の回転数R2が、第1送風機の羽根車の回転数R1に近づくことで、2つの羽根車の回転に起因して発生するうなり音の周期が長くなる。また第2送風機の羽根車の回転数R2が、第1送風機の羽根車の回転数R1から遠ざかることで、2つの羽根車の回転に起因して発生するうなり音の周期が短くなる。本実施形態では、2つの羽根車の回転数差|R2−R1|を時間経過に伴って変化させることで、合成騒音に含まれるうなり音の周期(1/Δf1〜1/Δf3)を時間経過に伴って非周期的に変化させることができる。これによって図14(4)に示すような、周期一定のうなり音が、継続的に発生することを回避することができる。
図8は、制御手段47の送風機の制御動作を示すフローチャートである。まず、複数の送風機21と制御手段47とが電気的に接続され、制御手段47によって全ての送風機21が制御可能な状態に準備される。次に、作業者によって制御手段47が操作されて、起動指令が与えられると、ステップs1に進み、制御手段47は、送風機の制御動作を開始する。
ステップs1では、制御手段47は、各送風機21のインバータ回路45に時間間隔をあけて順番に回転指令を与える。制御手段47は、基準回転数R0で回転するように、回転指令をインバータ回路45に与える。回転開始指令が与えられたインバータ回路45は、対応する回転駆動機31に電流を流し、羽根車を基準回転数R0で回転させ、その回転状態を維持する。制御手段47が、各インバータ回路45に回転指令をそれぞれ与えると、ステップs2に進む。
ステップs2では、うなり音低減指令が予め入力されているか否か判断する。うなり音低減指令は、送風機制御前または送風機制御中に、作業者などによって入力部から入力される。制御手段47は、うなり音低減指令が入力されると、うなり音低減指令が入力されたことを記憶部に記憶する。制御手段47は、記憶部に記憶される情報を読取って、うなり音低減指令が入力されていることを判断すると、ステップs3に進む。またうなり音低減指令が入力されていないことを判断すると、ステップs4に進む。
ステップs3では、制御手段47は、複数の送風機21のうちで、上述したように回転数変化指令を対応する送風機21に与える。回転変化指令は、少なくとも1つの羽根車の回転数を時間経過に伴って順次変化させる指令である。たとえば並列方向一方から数えて偶数台目の送風機21のインバータ回路45に回転変化指令を与える。この場合、並列方向一方から数えて奇数台目の送風機21が、上述する第1送風機となり、並列方向一方から数えて偶数台目の送風機21が、上述する第2送風機となる。
制御手段47は、指令を与えるべき送風機21に対して、単位時間ごとに、羽根車の回転数を変化する回転変化指令を与える。本実施の形態では、制御手段47は、羽根車の回転数の時間変化が、基準回転数R0に対して非周期的に変動するように、時間に対する回転数の変化をランダム変化させる回転変化指令を、対応するインバータ回路45に与える。
回転変化指令が与えられたインバータ回路45は、対応する回転駆動機31に電流を流し、羽根車30を時間毎に指令された回転数で回転させる。このように制御手段47が予め定める単位時間ごとに回転数を変化させる指令を与えることで、インバータ回路45は、羽根車の回転数を予め定める単位時間ごとに変化させる。制御手段47が対応する送風機21に回転変化指令の送信を開始するとステップs4に進む。
ステップs4では、制御手段47は、終了指令が与えられるか否かを判断する。終了指令は、作業者などによって入力部から与えられる。また終了指令が与えられていないと判断すると、ステップs2に戻り、ステップs2〜ステップs4を繰返す。ステップs2〜ステップs4を繰返す間に、試験路24に車両25を走行させて、横風安定性試験が行われる。
またステップs4において、終了指令が与えられるとステップs5に進む。ステップs5では、制御手段47は、送風機の制御動作を終了する。
以上のように本実施形態によれば、並列方向Xに並ぶ各送風機がそれぞれ送風気体を送風する。これによって、並列方向Xに延びる広範囲の領域を通過する試験風を発生させることができる。また試験風を発生した状態において、制御手段47によって、図7(1)に示すように、第1送風機と第2送風機とのそれぞれの羽根車の回転数差|R2−R1|を時間変化に伴って変化させる。言換えると、風速に影響しない程度の微小な回転数変動をランダムあるいは周期的に与える。これによって図7(4)に示すように、2つの送風機によって生じるうなり音の周期(1/(|f2−f1|)を時間経過に伴って非周期的に変化させることができ、周期一定のうなり音が、継続的に発生することを回避することができる。
このように周期一定のうなり音の発生を防ぐことで、不快となる騒音音圧の強度が周期的に変化することを防ぐことができ、周辺環境に対する騒音の影響を軽減することができる。また横風安定性試験を行う作業者が感じる不快感を低減して、横風安定性試験が行われる作業環境を改善することができる。
また本実施形態では、第2送風機の回転数R2を、風速に影響しない変動範囲内で変化させることで、第1送風機で送風する送風気体と、第2送風機で送風する送風気体との流速変動を抑えることができる。実際に走行中の車両に吹付けられる横風は、車両走行方向となる並列方向Xに関する速度分布が一様であることが多い。本実施の形態では、上述したように並列方向Xの各送風気体の流速のばらつきを抑えることができるので、実際に走行中の車両に吹付けられるであろう横風に、試験風を近づけることができ、安定性試験を精度よく行うことができる。
また本実施形態では、第2送風機の回転数R2について、基準回転数R0に対して、回転数を大小に変化させる(R0±ΔR)ことで、基準回転数R0から大きくずれることなく、かつ変動幅(2×ΔR)を大きくすることができる。このように回転数の変動幅を大きくすることで、時間経過に伴ううなり音の周期の変化を大きくすることができ、周期が一定のうなり音が継続的に発生することをさらに確実に回避することができる。また基準回転数R0から大きくずれることを防ぐことで、横風安定性試験を行うに必要な各送風気体の速度のばらつきを抑えて、横風安定性試験の精度低下を抑えることができる。
また本実施形態では、第1送風機の回転数R1を、時間経過にかかわらずに、基準回転数R0とすることで、横風送風装置20から吹出される試験風の流速が、横風安定性試験において、予め定められる基準流速から大きくずれることを防ぐことができ、横風安定性試験を精度よく行うことができる。
さらに並列方向一方から数えて奇数台目の送風機21を第1送風機とし、並列方向一方から数えて偶数台目の送風機21を第2送風機とする。これによって第1送風機と第2送風機とによって吹出された送風気体が互いに混ざることとなり、並列方向Xの送風気体の速度分布が基準流速に対して大きくばらつくことを防ぐことができる。
ここで、並列方向一方から数えて奇数台目の送風機21を第2送風機とし、並列方向一方から数えて偶数台目の送風機21を第1送風機としても、同様の効果を得ることができる。また奇数番目の送風機21を第1送風機にして偶数番目の送風機を第2送風機とする第1状態と、奇数番目の送風機21を第2送風機にして偶数番目の送風機を第1送風機とする第2状態とを、予め定める時間ごとに交互に切換えてもよい。
また本実施形態では、第2送風機の羽根車の回転数R2の時間変化がランダム変化となるように、時間に対する回転数の変化を非周期的に変化させる。このようにして2つの送風機の回転数差|R2−R1|をランダム変化させることで、第1送風機と第2送風機との騒音を重ね合わせたうなり音の低減効果を高めることができる。また第2送風機の羽根車の回転数の大きさを連続的に、時間経過に伴って変化させる。これによって時間経過に伴ううなり音の周期の変化を連続的とすることができ、作業者に与える不快感を低減することができる。また本実施形態では、回転駆動機31が、インバータ駆動制御される交流電動モータによって実現される。これによって回転駆動機31に与える電流の周波数を任意に変更することで、羽根車の回転数を容易に無段階可変可能とすることができる。また基準回転数R0に対して、第2送風機の回転数を僅かな変動幅で変動させることができ、うなり音が周期的となることを防いで、並列方向の流速分布の偏りを防ぐことができる。
また本実施形態では、送風機の制御動作におけるステップs2で、うなり音低減指令が入力されているか否かを判断する。これによってうなり音の周期が一定となることを防ぐ騒音低減優先モードと、全ての送風機の回転数設定指令値を一致させる流速分布一様優先モードとを、作業者が選択することができ、利便性を向上することができる。またステップs1で、時間間隔をあけて順番に回転指令を各送風機にそれぞれ与えることで、同時に回転指令を与える場合に比べて、起動時に必要な電力を抑えることができる。
図9は、本発明の第2実施形態の各送風機の回転数の時間変化を示すグラフである。上述する第1実施形態では、第2送風機の羽根車30の回転数の時間変化がランダム変化となるように、時間に対する回転数の変化を非周期的に変化させた。本発明はこれに限定されず、少なくとも1つの羽根車の回転数を時間経過に伴って変化させればよい。
本発明の第2実施形態では、第2送風機の羽根車の回転数の大きさを、時間経過に伴って周期的に変化させる。本実施形態では、第2送風機の羽根車の回転数R2の時間変化が正弦波変化となるように、時間に対する回転数の変化を周期的に変化させる。このように第2送風機の羽根車の回転数の大きさを周期的に変化させた場合であっても、第1実施形態と同様の効果を得ることができる。また第2実施形態では、第2送風機の羽根車の回転数を周期的に変化させる以外の構成は、第1実施形態と同様である。
図10は、本発明の第3実施形態の各送風機の回転数の時間変化を示すグラフである。本発明の第3実施形態では、第2送風機の羽根車の回転数の大きさを変化させる周期T1,T2,T3,T4を、時間経過に伴って変化させる。たとえば時間経過に伴って第2送風機の羽根車の回転数R2の大きさを変化させる周期を徐々に大きくする波形と、周期を徐々に小さくする波形とを順に繰返す。また回転数の大きさを変化させる周期は、予め定められる規則に従って周期的に変化してもよく、またランダムに変化させてもよい。本発明の第3実施形態では、第2送風機の羽根車の回転数の周期を時間的に変化させる以外の構成は、第1実施形態と同様である。
このように第2送風機の羽根車の回転数の大きさを変化させる周期を、時間経過に伴って変化させることで、時間経過に伴ううなり音の周期をさらに非一様として、周期が一定のうなり音が継続的に発生することをさらに確実に回避することができる。また本実施の形態では、回転数の大きさを変化させる振幅Aについては、第1実施形態と同様である。これによって第2送風機の羽根車の回転数R2が、基準回転数R0に対して大きく変動することを防ぐことができる。
図11は、本発明の第4実施形態の各送風機の回転数の時間変化を示すグラフである。第4実施形態では、第2送風機の羽根車の回転数の大きさを変化させる振幅を、時間経過に伴って変化させる。たとえば時間経過に伴って第2送風機の羽根車の回転数R2の大きさを変化させる振幅をランダムに変化させる。また回転数の大きさを変化させる振幅は、予め定められる規則に従って周期的に変化してもよい。本発明の第4実施形態では、第2送風機の羽根車の回転数の振幅Aを時間的に変化させる以外の構成は、第1実施形態と同様である。
このように第2送風機の羽根車の回転数の大きさを変化させる振幅を、時間経過に伴って変化させることで、時間経過に伴ううなり音の周期をさらに非一様として、周期が一定のうなり音が継続的に発生することをさらに確実に回避することができる。
また第3実施形態と第4実施形態とをあわせて、第2送風機の羽根車の回転数の大きさを変化させる周期と振幅とを時間経過に伴って、ランダムまたは予め定める規則に従って変化させてもよい。これによって時間経過に伴ううなり音の周期をさらに非一様として、周期が一定のうなり音が継続的に発生することをさらに確実に回避することができる。
図12は、本発明の第5実施形態の各送風機の回転数の時間変化を示すグラフである。第4実施形態では、第1送風機と第2送風機との羽根車の回転数の大きさを変化させる振幅および周期を、時間経過に伴って変化させる。また第1送風機と第2送風機との羽根車の回転数の大きさを変化させる振幅および周期を、それぞれ互いに異ならせる。これによって第2送風機の羽根車の回転数を、第1羽根車の回転数に対して、時間経過に伴って順次変化させる。
本実施の形態では、第1送風機の回転数の大きさについても、時間経過とともに変化させる。このように2つの送風機の回転数の大きさを、時間経過とともに変化させるとともに、それらの振幅および周期のいずれか少なくとも一方を異ならせることによって、2つの送風機の回転数差を時間経過に伴って変化させることができ、うなり音の周期が一定となることを回避することができる。
また2つの送風機の回転数変化における振幅および周期のほか、2つの回転数変化の位相を変化させてもよい。したがって2つの羽根車の回転数の大きさを変化させる振幅、周期および位相の少なくとも一方を、羽根車ごとに異ならせてもよい。また2つの羽根車の回転数の大きさを変化させる振幅、周期および位相を全て異ならせることによって、うなり音の周期が一定となることをさらに確実に回避することができる。
また2つの送風機のうち少なくとも一方について、回転数の周期、振幅および位相の少なくとも一方を、時間経過に伴って変化させることによってうなり音の周期が一定となることを、さらに確実に回避することができる。すなわち第2および第3実施形態と、第4実施形態とを合わせてもよい。またたとえばn個のグループに送風機を分けて、周期を一定としてそれぞれ位相を変化させる場合、グループ毎に回転数を360/nで位相をずらして変化させることで、合成した騒音音圧を低下させることができる。
上述した各実施の形態は、本発明の例示に過ぎず発明の範囲内において構成を変更することができる。たとえば本実施の形態では、時間経過に対する送風機の回転数変化は、正弦波波形となるとしたが、これに限定しない。たとえば送風機の回転数変化は、三角波形状、矩形波形状となってもよく、パルス状に回転数を変化させてもよい。また第1〜第3実施形態では、並列方向一方から数えて、偶数台目の送風機が第2送風機となるとしたが、複数の送風機のうちで、少なくとも1つが第2送風機となればよい。また第4実施形態についても、第1送風機と第2送風機とは、複数のうちの任意の送風機であってもよい。
また第4実施形態では、複数の送風機を回転数変化の異なる2つのグループの送風機に分類したが、回転数変化の異なる2つ以上のグループの送風機に分類してもよい。また全ての送風機について、それぞれの羽根車の回転数大きさを変化させる振幅、周期および位相を異ならせてもよい。
また本実施形態では、時間経過に伴って羽根車の回転数を変化させるとしたが、時間経過に伴って羽根車の回転速度を変化させても同様の効果を得ることができる。また本実施形態では、基準回転数R0以外の回転数を基準として、第1または第2送風機の回転数を時間経過に伴って上下に変化させてもよい。また本実施形態では、制御手段47が、回転変化指令を与えるとしたが、これに限定しない。たとえばインバータ回路が回転数変化指令を示すプログラムを予め有していてもよい。この場合、制御手段47から回転指令が与えられると、インバータ回路は、プログラムを実行することで、回転数を変化させるように電流を発生させてもよい。
また上述した回転数を変化する振幅、周期および位相の少なくともいずれかについては、作業者が調整可能に構成されることが好ましい。作業者が、振幅、周期および位相の少なくともいずれかを調整して、各送風機の回転数の振幅、周期および位相を初期設定として決定する。その値を制御手段47に記憶させて、記憶させた初期設定値で回転数を変化させることで、可及的に騒音が小さく、かつ速度変動が少ない横風送風装置を実現することができる。
また上述した横風送風装置の送風方法も本発明に含まれる。具体的には、予め定める並列方向に並んで、羽根車の回転数を変更可能な複数の送風手段に、羽根車を回転させる回転指令をそれぞれ与えるとともに、少なくとも1つの羽根車の回転数を時間経過に伴って変化させる回転変化指令を、対応する送風手段に与えて、各送風手段によって並列方向に延びる領域に送風気体を送風させて、車両の横風安定性試験に用いられる送風気体を送風することも本発明に含まれる。
本発明の第1実施形態である横風送風装置20の一部を示す平面断面図である。 横風送風装置20を示す側面断面図である。 横風送風装置20を示す平面図である。 風向変更部材40と角変位駆動機41との一部を示す正面図である。 風向変更部材40の一部を示す平面図である。 横風送風装置20の電気的構成を示すブロック図である。 本実施形態における2つの送風機によって生じるうなり音を説明するための図である。 制御手段47の送風機の制御動作を示すフローチャートである。 本発明の第2実施形態の各送風機の回転数の時間変化を示すグラフである。 本発明の第3実施形態の各送風機の回転数の時間変化を示すグラフである。 本発明の第4実施形態の各送風機の回転数の時間変化を示すグラフである。 本発明の第5実施形態の各送風機の回転数の時間変化を示すグラフである。 従来技術の横風送風装置1の一部を示す断面図である。 2つの送風機によって生じるうなり音を説明するための図である。
符号の説明
20 横風送風装置
21 送風機
22 送風手段
30 羽根車
47 制御手段
R0 基準回転数
R1 第1送風機の羽根車の回転数
R2 第2送風機の羽根車の回転数
f1 第1送風機の騒音
f2 第2送風機の騒音

Claims (7)

  1. 車両の横風安定性試験に用いられる横風送風装置であって、
    送風気体を送風するための羽根車を有し、回転数を変更可能に羽根車を回転駆動して、予め定める並列方向に並ぶ複数の送風手段と、
    少なくとも1つの羽根車の回転数を、他の羽根車の回転数に対して、時間経過に伴って順次変化させる回転変化指令を対応する送風手段に与えて、送風手段を制御する制御手段とを含むことを特徴とする横風送風装置。
  2. 制御手段は、横風安定性試験において予め定められる許容流速範囲内に送風気体の流速を発生可能な回転数範囲で、羽根車の回転数の回転変化指令を与えることを特徴とする請求項1記載の横風送風装置。
  3. 制御手段は、少なくとも1つの羽根車の回転数を、横風安定性試験において予め定められる送風気体の基準流速を発生可能な基準回転数よりも大きい回転数と、基準回転数よりも小さい回転数とに、時間経過に伴って交互に変化させることを特徴とする請求項1または2記載の横風送風装置。
  4. 制御手段は、少なくとも1つの羽根車の回転数の大きさを変化させる振幅および周期の少なくとも一方を、時間経過に伴って変化させることを特徴とする請求項1〜3のいずれか1つに記載の横風送風装置。
  5. 制御手段は、少なくとも1つの羽根車の回転数の大きさを連続的に、時間経過に伴って変化させることを特徴とする請求項1〜4のいずれか1つに記載の横風送風装置。
  6. 制御手段は、複数の羽根車の回転数を時間経過に伴って変化させる回転変化指令を対応する送風手段に与え、羽根車の回転数の大きさを変化させる振幅、周期および位相の少なくとも一方を、羽根車ごとに異ならせることを特徴とする請求項1〜5のいずれか1つに記載の横風送風装置。
  7. 車両の横風安定性試験に用いられる送風気体を送風する送風方法であって、
    予め定める並列方向に並んで、羽根車の回転数を変更可能な複数の送風手段に、羽根車を回転させる回転指令をそれぞれ与えるとともに、
    少なくとも1つの羽根車の回転数を時間経過に伴って変化させる回転変化指令を、対応する送風手段に与えて、各送風手段によって並列方向に延びる領域に送風気体を送風させる送風方法。
JP2006140838A 2006-05-19 2006-05-19 横風送風装置および送風方法 Expired - Fee Related JP4829008B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006140838A JP4829008B2 (ja) 2006-05-19 2006-05-19 横風送風装置および送風方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006140838A JP4829008B2 (ja) 2006-05-19 2006-05-19 横風送風装置および送風方法

Publications (2)

Publication Number Publication Date
JP2007309853A true JP2007309853A (ja) 2007-11-29
JP4829008B2 JP4829008B2 (ja) 2011-11-30

Family

ID=38842833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006140838A Expired - Fee Related JP4829008B2 (ja) 2006-05-19 2006-05-19 横風送風装置および送風方法

Country Status (1)

Country Link
JP (1) JP4829008B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226900A (ja) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp 誘導加熱調理器
JP2014202121A (ja) * 2013-04-04 2014-10-27 株式会社Ihi 騒音低減装置
WO2016078199A1 (zh) * 2014-11-22 2016-05-26 太原理工大学 一种对旋叶轮通风传动装置
JP2021108259A (ja) * 2019-12-27 2021-07-29 アイリスオーヤマ株式会社 誘導加熱調理器
JP6984064B1 (ja) * 2021-06-17 2021-12-17 功憲 末次 作業管理システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165443A (ja) * 1987-12-22 1989-06-29 Ricoh Co Ltd プリンタ
JPH09264564A (ja) * 1996-03-26 1997-10-07 Mitsubishi Heavy Ind Ltd 熱交換装置
JP2005276591A (ja) * 2004-03-24 2005-10-06 Sanyo Electric Co Ltd 車両用のバッテリーパック

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165443A (ja) * 1987-12-22 1989-06-29 Ricoh Co Ltd プリンタ
JPH09264564A (ja) * 1996-03-26 1997-10-07 Mitsubishi Heavy Ind Ltd 熱交換装置
JP2005276591A (ja) * 2004-03-24 2005-10-06 Sanyo Electric Co Ltd 車両用のバッテリーパック

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226900A (ja) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp 誘導加熱調理器
JP2014202121A (ja) * 2013-04-04 2014-10-27 株式会社Ihi 騒音低減装置
WO2016078199A1 (zh) * 2014-11-22 2016-05-26 太原理工大学 一种对旋叶轮通风传动装置
JP2021108259A (ja) * 2019-12-27 2021-07-29 アイリスオーヤマ株式会社 誘導加熱調理器
JP7373190B2 (ja) 2019-12-27 2023-11-02 アイリスオーヤマ株式会社 誘導加熱調理器
JP6984064B1 (ja) * 2021-06-17 2021-12-17 功憲 末次 作業管理システム
JP2023000064A (ja) * 2021-06-17 2023-01-04 功憲 末次 作業管理システム

Also Published As

Publication number Publication date
JP4829008B2 (ja) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4829008B2 (ja) 横風送風装置および送風方法
EP2966375A1 (en) Blower and air conditioner using same
CN104428595B (zh) 空气调节机的室内机及具有该室内机的空气调节机
CN102341603B (zh) 螺旋桨式风扇
CN104074803B (zh) 贯流风机及具有其的空调器
JP5318220B2 (ja) 吹出し方向を変更自在とするイオン発生手段を装備した小型空気清浄器。
JP5609931B2 (ja) 車両用のブロワユニット
JP6543809B2 (ja) 送風装置
JP2013137008A (ja) 空気調和機
JPH11304178A (ja) 空気調和機用横流ファン送風器
JP2019183691A (ja) 送風装置および送風方法
JP2006009699A (ja) ブレード及び送風機
JP2008082230A (ja) 多翼送風機
JP2017180238A (ja) シロッコファン及び遠心送風機
JP4829002B2 (ja) 横風送風装置
JP2009085536A (ja) 空気調和機
JP2011147685A (ja) 送風装置
US9745998B2 (en) Centrifugal air blower
JP2008138957A (ja) 風向変更装置及びこれを備えた空気調節装置
JPWO2018225145A1 (ja) 送風装置及びエレベータ送風システム
JP6001708B2 (ja) ドレンポンプ
JP5470299B2 (ja) トンネル換気システム
JP2007298419A (ja) 横風送風装置
KR100699135B1 (ko) 지향방향 가변형 제트팬을 이용한 초대형 공장의 기류패턴자동제어시스템
JP2006153453A (ja) 送風機器および送風機器の吹出グリル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4829008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees