JP2007305818A - Rare earth permanent magnet, its manufacturing method, and rotating machine - Google Patents

Rare earth permanent magnet, its manufacturing method, and rotating machine Download PDF

Info

Publication number
JP2007305818A
JP2007305818A JP2006133204A JP2006133204A JP2007305818A JP 2007305818 A JP2007305818 A JP 2007305818A JP 2006133204 A JP2006133204 A JP 2006133204A JP 2006133204 A JP2006133204 A JP 2006133204A JP 2007305818 A JP2007305818 A JP 2007305818A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
slit
permanent magnet
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006133204A
Other languages
Japanese (ja)
Other versions
JP4775566B2 (en
Inventor
Koji Miyata
浩二 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006133204A priority Critical patent/JP4775566B2/en
Publication of JP2007305818A publication Critical patent/JP2007305818A/en
Application granted granted Critical
Publication of JP4775566B2 publication Critical patent/JP4775566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth permanent magnet which can minimize a reduction in the volume of an R-M-B based sintered magnet (R being one, two or more selected from rare earth elements including Y and Sc, M being Fe or a transition metal containing Fe and Co as its main components), and can effectively reduce an eddy current by forming a slit in the magnet, and also to provide a method of manufacturing the permanent magnet and a rotating machine. <P>SOLUTION: The rare earth permanent magnet comprises a sintered joint obtained by integrally joining a plurality of single magnets made of an R<SP>1</SP>-M-B based composition (R<SP>1</SP>being one, two or more selected from rare earth elements including Y and Sc, M being Fe or a transition metal containing Fe and Co as its main components). The sintered joint has a slit passed therethrough from its one surface to another surface. An R<SP>2</SP>oxide layer (R<SP>2</SP>being one, two or more selected from rare earth elements including Y and Sc) is formed on the respective surfaces of the slit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高い磁気特性を有するR−M−B系希土類永久磁石に関し、特に高速回転を行う電気自動車用モータや発電機、FAモータ等の永久磁石回転機に用いた際に発生する渦電流を低減した希土類永久磁石に関する。また、本発明はかかる永久磁石の製造方法及び該永久磁石を用いた回転機に関する。   The present invention relates to an R-MB-based rare earth permanent magnet having high magnetic characteristics, and in particular, an eddy current generated when used in a permanent magnet rotating machine such as an electric vehicle motor, a generator, or an FA motor that rotates at high speed. The present invention relates to a rare earth permanent magnet with reduced content. Moreover, this invention relates to the manufacturing method of this permanent magnet, and the rotary machine using this permanent magnet.

Nd−Fe−B系永久磁石は、その優れた磁気特性のために、ますます用途が広がってきている。近年、モータや発電機などの回転機の分野においても、機器の軽薄短小化、高性能化、省エネルギー化に伴い、Nd−Fe−B系永久磁石を利用した永久磁石回転機が開発されている。Nd−Fe−B系焼結磁石の電気抵抗は100〜200μΩ・cmの導体であり、磁石に生じる渦電流に伴う発熱が、磁石の大きさの2乗で大きくなるために大容量回転機においては大きな問題となっている。渦電流低減のために有効な手段は、鉄心に使われる電磁鋼板のように薄板化して絶縁積層することであるが、細分化したセグメント磁石を接着固化して所要の大きさの磁石とする方法は、磁石の製造工程が増加し、製造コストの増加や磁石重量歩留まりの低下を招く。また、セグメント磁石を接着固化せず小磁石のまま用いることも考えられるが、磁石間の反発力に抗して小磁石をロータに組込み固着することは難しい。   Nd-Fe-B permanent magnets are increasingly used because of their excellent magnetic properties. In recent years, in the field of rotating machines such as motors and generators, permanent magnet rotating machines using Nd-Fe-B permanent magnets have been developed along with the reduction in the size, performance, and energy saving of equipment. . The Nd-Fe-B sintered magnet has a resistance of 100 to 200 μΩ · cm, and the heat generated by the eddy current generated in the magnet increases with the square of the size of the magnet. Has become a big problem. An effective means for reducing eddy currents is to thin and insulate and laminate like a magnetic steel sheet used for iron cores, but a method of bonding and solidifying segmented segment magnets into a magnet of the required size. Increases the manufacturing process of the magnet, leading to an increase in manufacturing cost and a decrease in magnet weight yield. Although it is conceivable to use the segment magnet as it is without bonding and solidifying the segment magnet, it is difficult to incorporate and fix the small magnet into the rotor against the repulsive force between the magnets.

積層磁石の製造工程を簡単にするものとして、特開2000−295804号公報(特許文献1)の磁石表面に内周又は外周切断機やワイヤーソー等で加工して溝切りしてスリットを形成する方法がある。しかし、この方法でのスリット幅は外周切断で0.8mm程度であり、多くのスリットを入れると磁石体積が減少し、磁束量を得ることができない。1個の磁石に10本以上のスリットを入れる場合、スリットにより失われる磁石体積がもとの体積の20%になることもある。なお、ワイヤーソーならスリット幅を0.05mm程度にできるが、加工速度が遅く、量産性に欠ける。   As a means for simplifying the manufacturing process of laminated magnets, slits are formed by machining grooves on the surface of a magnet disclosed in JP 2000-295804 A (Patent Document 1) using an inner or outer peripheral cutting machine or a wire saw. There is a way. However, the slit width in this method is about 0.8 mm when the outer periphery is cut, and if many slits are inserted, the magnet volume decreases and the amount of magnetic flux cannot be obtained. When ten or more slits are put in one magnet, the volume of the magnet lost by the slit may be 20% of the original volume. In the case of a wire saw, the slit width can be reduced to about 0.05 mm, but the processing speed is slow and the mass productivity is lacking.

また、特開2005−198365号公報(特許文献2)には、矩形体の希土類永久磁石にその一側面から対向する側面側へ一定長さの複数のスリットを形成して分割部と前記スリット端で分割された磁石が保持される連通部とを設け、その後、スリット内に非導電性樹脂を充填し、更に分割部と連通部とを分離することで、複数の板状永久磁石を非導電性樹脂を介して積層配置された構成からなるモータ用希土類永久磁石が得られるとある。しかし、この方法でも、加工でスリットを入れるのでスリットの幅は0.5mm以上であり、多くのスリットを入れると磁石体積が減少し、磁束量を得ることができない。   Japanese Patent Laying-Open No. 2005-198365 (Patent Document 2) discloses that a rectangular rare earth permanent magnet is formed with a plurality of slits having a fixed length from one side surface to the opposite side surface side, and a divided portion and the slit end. A plurality of plate-like permanent magnets are made non-conductive by providing a non-conductive resin in the slit and then separating the divided portions and the communication portions. There is a case where a rare earth permanent magnet for a motor having a configuration in which layers are arranged via a conductive resin is obtained. However, even in this method, since slits are formed by processing, the width of the slits is 0.5 mm or more. If many slits are inserted, the magnet volume decreases, and the amount of magnetic flux cannot be obtained.

特開2000−295804号公報JP 2000-295804 A 特開2005−198365号公報JP 2005-198365 A

本発明は、上述した従来の問題点に鑑みなされたもので、R−M−B系焼結磁石(RはY及びScを含む希土類元素から選ばれる1種又は2種以上、MはFe、又はFeとCoを主体とする遷移金属)の磁石にスリットを入れた渦電流低減に有効な磁石において、スリット加工による磁石体積低減を少なくした希土類永久磁石、その製造方法、及び回転機を提供することを目的とするものである。   The present invention has been made in view of the above-described conventional problems. An R-MB-based sintered magnet (R is one or more selected from rare earth elements including Y and Sc, M is Fe, A rare earth permanent magnet with reduced volume reduction by slit machining, a manufacturing method thereof, and a rotating machine in a magnet effective for reducing eddy current by slitting a magnet of a transition metal mainly composed of Fe and Co) It is for the purpose.

本発明者らは、Nd−Fe−B系焼結磁石に代表されるR1−M−B系焼結磁石(R1はY及びScを含む希土類元素から選ばれる1種又は2種以上、MはFe、又はFe及びCoを主体とする遷移金属)において、磁石体に複数のスリットを入れる工程を、焼結体に対し切断刃などを用いた加工で行うのではなく、焼結前の成型体に凹溝及び突条を設けて、突条面が重なるように成型体を複数個積み上げ、これを焼結する工程で得ること、更には、成型体の表面の凹溝にR3の酸化物(R3はY及びScを含む希土類元素から選ばれる1種又は2種以上)を部分的に塗り、酸化物を塗った面に同様の成型体を複数個積み上げ、これを焼結する工程で得ることが有効で、ここで得られたスリットの空隙幅は0〜0.1mmであり、しかも焼結後の加工を行うよりコストがかからない上、焼結工程でスリットを作製すると、スリットに面する焼結磁石体の表面はY及びScを含む希土類元素から選ばれる1種又は2種以上の酸化物の層が形成され、この希土類元素の酸化物の電気抵抗は磁石体に比べ非常に大きいので、酸化物で実質的に絶縁している効果があることを知見し、本発明をなすに至った。 The inventors of the present invention are R 1 -MB sintered magnets represented by Nd-Fe-B sintered magnets (R 1 is one or more selected from rare earth elements including Y and Sc, M is a transition metal mainly composed of Fe or Fe and Co), and the step of making a plurality of slits in the magnet body is not performed by processing using a cutting blade or the like on the sintered body, but before the sintering. Providing concave grooves and ridges in the molded body, stacking a plurality of molded bodies so that the ridge surfaces overlap, and obtaining them by a process of sintering, and further, forming R 3 in the concave grooves on the surface of the molded body Oxide (R 3 is one or more selected from rare earth elements including Y and Sc) is partially coated, and a plurality of similar molded bodies are stacked on the surface coated with oxide, and this is sintered. It is effective to obtain in the process, the gap width of the slit obtained here is 0-0.1mm, and after sintering When the slit is produced in the sintering process, the surface of the sintered magnet body facing the slit is a layer of one or more oxides selected from rare earth elements including Y and Sc. Since the electric resistance of the rare earth element oxide is much larger than that of the magnet body, it was found that there is an effect of being substantially insulated by the oxide, and the present invention has been made.

即ち、本発明は、下記の回転機用として有効な希土類永久磁石及びその製造方法並びに回転機を提供する。
請求項1:
1−M−B系組成(R1はY及びScを含む希土類元素から選ばれる1種又は2種以上、MはFe、又はFe及びCoを主体とする遷移金属)からなる複数個の磁石単体が、一体に接合した焼結接合体からなり、該焼結接合体は一面から他面にかけて貫通するスリットを有しており、上記スリット面には、それぞれR2の酸化物層(R2はY及びScを含む希土類元素から選ばれる1種又は2種以上)が形成されていることを特徴とする希土類永久磁石。
請求項2:
1−M−B系組成(R1はY及びScを含む希土類元素から選ばれる1種又は2種以上、MはFe、又はFe及びCoを主体とする遷移金属)からなる複数個の単体成型体の表面にそれぞれ凹溝を形成し、これによって突条部を形成すると共に、該突条部を介して上記複数個の単体成型体を積層し、次いで焼結して、上記突条部において上記単体成型体を互いに接合すると共に、上記各突条部の側方に一面から他面にかけて貫通し、表面に上記R1の酸化物層を有するスリットを上記凹溝によって形成した焼結接合体からなる希土類永久磁石を得ることを特徴とする希土類永久磁石の製造方法。
請求項3:
上記単体成型体の凹溝にR3の酸化物(R3はY及びScを含む希土類元素から選ばれる1種又は2種以上)を塗布して該単体成型体を焼結することにより、スリット内にR3の酸化物層を形成した請求項2記載の希土類永久磁石の製造方法。
請求項4:
請求項1記載の希土類永久磁石を用いた回転機。
That is, the present invention provides a rare earth permanent magnet effective for the following rotating machines, a method for producing the same, and a rotating machine.
Claim 1:
A plurality of magnets having an R 1 -MB system composition (R 1 is one or more selected from rare earth elements including Y and Sc, and M is a transition metal mainly composed of Fe or Fe and Co). The single body is composed of a sintered joined body integrally joined, and the sintered joined body has slits penetrating from one surface to the other surface, and each of the slit surfaces has an R 2 oxide layer (R 2). 1 or 2 or more selected from rare earth elements including Y and Sc).
Claim 2:
A plurality of simple substances having an R 1 -MB system composition (R 1 is one or more selected from rare earth elements including Y and Sc, M is a transition metal mainly composed of Fe or Fe and Co) A concave groove is formed on the surface of the molded body, thereby forming a ridge, and the plurality of unit molded bodies are laminated through the ridge, then sintered, and the ridge is formed. In addition, the single molded body is bonded to each other, and a sintered joint is formed by forming the slit having the R 1 oxide layer on the surface by the concave groove penetrating from one side to the other side of each protruding portion. A method for producing a rare earth permanent magnet comprising obtaining a rare earth permanent magnet comprising a body.
Claim 3:
Oxides of R 3 into the groove and the single molded body (R 3 is at least one element selected from rare earth elements inclusive of Y and Sc) by sintering said single body molded by applying a slit The method for producing a rare earth permanent magnet according to claim 2, wherein an R 3 oxide layer is formed therein.
Claim 4:
A rotating machine using the rare earth permanent magnet according to claim 1.

本発明により、磁石にスリットを入れた渦電流低減に有効な希土類永久磁石において、スリット加工による方法より磁石体積低減を少なくした磁石を提供することができる。これにより大型・高回転モータなどの磁石に発生する渦電流問題を解決すると同時に、渦電流低減による磁束量の低下(トルク低下)がほとんど生じないので、産業上、その利用価値は極めて高い。   According to the present invention, in a rare earth permanent magnet effective for reducing eddy current by slitting a magnet, it is possible to provide a magnet with a reduced volume of magnet compared to a method by slit machining. This solves the problem of eddy currents generated in magnets such as large and high-rotation motors, and at the same time, almost no decrease in the amount of magnetic flux (torque reduction) due to eddy current reduction occurs.

本発明に係る希土類永久磁石は、R1−M−B系組成(R1はY及びScを含む希土類元素から選ばれる1種又は2種以上、MはFe、又はFe及びCoを主体とする遷移金属)からなる複数個の焼結磁石単体が、一面から他面にかけて貫通するスリットを有して一体に接合してなり、上記スリット面には、それぞれR2の酸化物層(R2はY及びScを含む希土類元素から選ばれる1種又は2種以上)が形成されているものである。 The rare earth permanent magnet according to the present invention has an R 1 -MB system composition (R 1 is one or more selected from rare earth elements including Y and Sc, M is mainly Fe, or Fe and Co). A plurality of sintered magnets made of transition metal are integrally joined with a slit penetrating from one surface to the other surface, and each of the R 2 oxide layers (R 2 is 1 type or 2 types or more selected from rare earth elements including Y and Sc) are formed.

なお、本発明において、R及びR1並びにR2はいずれもY及びScを含む希土類元素から選ばれるものであるが、Rは主に得られた磁石体に関して使用し、R1は主に出発原料に関して用いる。更に、R2は主にスリットに形成された酸化物層である。
この場合、R2の酸化物層は、後述する本発明の製造方法によれば、R1−M−B系組成のR1の酸化により形成されるか、又はR3の酸化物の塗布に基づくものである。
In the present invention, R, R 1 and R 2 are all selected from rare earth elements including Y and Sc. R is mainly used for the obtained magnet body, and R 1 is mainly used as a starting material. Used for raw materials. Further, R 2 is an oxide layer mainly formed in the slit.
In this case, according to the manufacturing method of the present invention described later, the R 2 oxide layer is formed by the oxidation of R 1 having the R 1 -MB system composition, or the coating of the R 3 oxide. Is based.

磁石合金は、R1、Fe、Bを含有する。R1はY及びScを含む希土類元素から選ばれる1種又は2種以上で、具体的にはY、Sc、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuが挙げられ、好ましくはNd、Pr、Dyを主体とする。これらY及びScを含む希土類元素は合金全体の10〜15原子%、特に12〜15原子%であることが好ましく、更に好ましくはR1中にNdとPrあるいはそのいずれか1種を10原子%以上、特に50原子%以上含有することが好適である。Bは3〜15原子%、特に4〜8原子%含有することが好ましい。その他、Al、Cu、Zn、In、Si、P、S、Ti、V、Cr、Mn、Ni、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta、Wの中から選ばれる1種又は2種以上を0〜11原子%、特に0.1〜5原子%含有してもよい。残部はFe及びC、N、O等の不可避的な不純物であるが、Feは50原子%以上、特に65原子%以上含有することが好ましい。また、Feの一部、例えばFeの0〜40原子%、特に0〜15原子%をCoで置換しても差し支えない。 The magnet alloy contains R 1 , Fe, and B. R 1 is one or more selected from rare earth elements including Y and Sc, specifically, Y, Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er , Yb, and Lu, preferably Nd, Pr, and Dy. These rare earth elements including Y and Sc are preferably 10 to 15 atomic%, particularly 12 to 15 atomic% of the whole alloy, more preferably 10% by atom of Nd and Pr or any one of them in R 1. As mentioned above, it is suitable to contain especially 50 atomic% or more. B is preferably contained in an amount of 3 to 15 atomic%, particularly 4 to 8 atomic%. In addition, Al, Cu, Zn, In, Si, P, S, Ti, V, Cr, Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, One or two or more kinds selected from W may be contained in an amount of 0 to 11 atomic%, particularly 0.1 to 5 atomic%. The balance is inevitable impurities such as Fe and C, N, and O. Fe is preferably contained in an amount of 50 atomic% or more, particularly 65 atomic% or more. Further, a part of Fe, for example, 0 to 40 atomic%, particularly 0 to 15 atomic% of Fe may be substituted with Co.

本発明の希土類永久磁石を製造する場合は、常法に従い、磁石合金を粗粉砕、微粉砕、成形、焼結させることにより得ることができる。この場合、磁石合金は、原料金属あるいは合金を真空あるいは不活性ガス、好ましくはAr雰囲気中で溶解した後、平型に鋳込む、あるいはストリップキャストにより鋳造することで得られる。上記合金は、通常0.05〜3mmに粗粉砕される。粗粉砕工程にはブラウンミルあるいは水素粉砕が用いられる。粗粉は、例えば高圧窒素を用いたジェットミルにより通常0.2〜30μmに微粉砕される。
微粉末は磁界中、圧縮成型機に挿入され、成型機中のパンチにより微粉末を成型することができる。
When the rare earth permanent magnet of the present invention is produced, it can be obtained by roughly pulverizing, finely pulverizing, forming and sintering the magnet alloy according to a conventional method. In this case, the magnet alloy can be obtained by melting the raw metal or alloy in a vacuum or an inert gas, preferably in an Ar atmosphere, and then casting it into a flat mold or casting it by strip casting. The alloy is usually coarsely pulverized to 0.05 to 3 mm. Brown mill or hydrogen pulverization is used for the coarse pulverization process. The coarse powder is usually finely pulverized to 0.2 to 30 μm by, for example, a jet mill using high-pressure nitrogen.
The fine powder is inserted into a compression molding machine in a magnetic field, and the fine powder can be molded by a punch in the molding machine.

ここで、本発明の希土類永久磁石を得るには、
第一の方法として、上記のようにして複数個の単体成型体を作製し、これら単体成型体の表面に凹溝を形成すると共に、これによって突条部を形成し、このように形成された突条部を介して上記複数個の単体成型体を積層し、次いで焼結して、上記凹溝において一面から他面にかけて貫通し、スリットが形成された状態で上記突条部において上記単体成型体が焼結することによってR2の酸化物層が形成された焼結磁石単体が接合することで希土類永久磁石を得る方法、更には、
第二の方法として、上記のように複数個の単体成型体を作製後、これらの単体成型体の表面の凹溝にR3の酸化物層を部分的に形成し、このR3の酸化物層が互いに重なり合うように上記複数個の単体成型体を積層し、次いで焼結して上記R3の酸化物層非形成部分において上記単体成型体が焼結することによって形成された焼結磁石単体が接合することで希土類永久磁石を得る方法
が好適に採用される。
Here, in order to obtain the rare earth permanent magnet of the present invention,
As a first method, a plurality of unit molded bodies were produced as described above, and a concave groove was formed on the surface of these unit molded bodies, thereby forming a protrusion, and thus formed. The plurality of single-piece molded bodies are laminated through the ridge, then sintered, penetrated from one surface to the other in the concave groove, and the single-piece molding is performed in the ridge with the slit formed. A method of obtaining a rare earth permanent magnet by bonding a sintered magnet alone in which an R 2 oxide layer is formed by sintering the body,
As a second method, after producing a plurality of unit molded bodies as described above, an R 3 oxide layer is partially formed in the concave grooves on the surfaces of these unit molded bodies, and this R 3 oxide is formed. A sintered magnet unit formed by laminating the plurality of unit molded bodies so that the layers overlap each other, then sintering and sintering the unit molded body in the R 3 oxide layer non-forming portion A method of obtaining a rare earth permanent magnet by joining is suitably employed.

上記第一の方法について更に詳述すると、単体成型体に凹溝及びこれにより突条を形成する方法としては、図8に示すように磁石合金の微粉末をパンチにより圧縮成型する場合、パンチの先端面に突条及び凹溝を形成し、このパンチによって圧縮成型する際に圧縮成型体(単体成型体)の成形と同時に凹溝及び突条を形成する方法が挙げられる。図3は、このような凹溝及び突条が形成された単体成型体の一例を示すもので、10が単体成型体、11が凹溝、12が突条であり、本発明においては凹溝11の一側部は側壁がなく、一側方に開放された状態を含む。なお、この例においては、凹溝11、突条12の長さ方向が磁化方向と一致する。また、パンチ材料は特に限定されるものではなく、磁場中成形できるものであればよく、上述したように予めパンチに所望の形状になるように凹凸が設けられている。突条の高さHは0.1mm以下であり、より好ましくは1〜100μm、特に20〜80μmであることが好ましい。図3は突条の数が3個であるが、3個に限定されない。また、突条の幅の合計(W1+W2+W3)は磁石幅Wの10〜50%、特に20〜40%の割合で選ばれる。この比率が10%未満では接合面積が小さく、磁石体の強度が弱くなってしまい、50%を超えると、スリットによる渦電流低減効果が少なくなってしまう場合がある。   The above-mentioned first method will be described in more detail. As a method of forming the concave grooves and the protrusions in the single molded body, as shown in FIG. There is a method of forming a ridge and a groove on the front end surface and forming the groove and ridge simultaneously with the molding of the compression molded body (single molded body) when compression molding with this punch. FIG. 3 shows an example of a single molded body in which such concave grooves and ridges are formed. 10 is a single molded body, 11 is a concave groove, and 12 is a ridge. 11 includes a state in which one side portion has no side wall and is open to one side. In this example, the length direction of the groove 11 and the ridge 12 coincides with the magnetization direction. The punch material is not particularly limited as long as it can be molded in a magnetic field. As described above, the punch is provided with irregularities so as to have a desired shape. The height H of the protrusion is 0.1 mm or less, more preferably 1 to 100 μm, and particularly preferably 20 to 80 μm. In FIG. 3, the number of protrusions is three, but the number is not limited to three. Further, the total width of the protrusions (W1 + W2 + W3) is selected at a rate of 10 to 50%, particularly 20 to 40% of the magnet width W. If this ratio is less than 10%, the bonding area is small and the strength of the magnet body becomes weak. If it exceeds 50%, the effect of reducing the eddy current by the slit may be reduced.

これらの成型体を複数個積み上げ、焼結炉に投入するが、この場合、本発明においては上記突条部を介して(即ち、一の単体成型体の表面に形成された突条面が他の単体成型体面と当接した状態で)単体成型体を積層する。焼結は真空あるいは不活性ガス雰囲気中、通常900〜1,200℃で行われる。この焼結により、上記各単体成型体は焼結されて、焼結磁石単体がそれぞれ形成されると共に、この際、上記突条部において一の単体成型体(焼結磁石単体)と他の単体成型体(焼結磁石単体)とが接合、一体化される一方、上記凹溝部分が磁石体の一面から他面(対向面)にかけて貫通するスリットとなる図1に示すような磁石体(希土類永久磁石)1が焼結接合体として得られる。なお、2は焼結磁石単体、3は上記突条部に由来する焼結磁石単体相互の接合連結部、4は上記凹溝に由来するスリットである。ここで、各スリットは、そのスリット面に上記焼結時に形成された上記R1の酸化に基づくR2の酸化物層5が形成される。このR2の酸化物層5は、焼結時に磁石合金のR1が焼結雰囲気中の微量の酸素により酸化されて形成されるもので、この第一の方法においてR2≒R1である。なお、この酸化物層は、EPMA(電子線マイクロプローグ分析装置)やXPS(X線電子分光分析装置)等で酸化物の層であることを確認できる。酸化物の層厚は通常50μm以下、特に0.5〜50μmが好ましい。また、上記スリットの空隙幅SWは100μm以下、より好ましくは1〜100μm、特に20〜80μmが好ましい。 A plurality of these molded bodies are stacked and put into a sintering furnace. In this case, in the present invention, the ridge surface formed on the surface of one single molded body is the other through the above-mentioned ridge portion. The single molded body is laminated (in a state where it is in contact with the single molded body surface). Sintering is usually performed at 900 to 1,200 ° C. in a vacuum or an inert gas atmosphere. By this sintering, each of the single molded bodies is sintered to form a sintered magnet single body. At this time, one single molded body (sintered magnet single body) and another single body are formed at the protruding portion. The molded body (sintered magnet alone) is joined and integrated, while the concave groove portion is a slit that penetrates from one surface of the magnet body to the other surface (opposed surface) (magnet body as shown in FIG. 1 (rare earth). Permanent magnet) 1 is obtained as a sintered joined body. In addition, 2 is a sintered magnet simple substance, 3 is a joining connection part of the sintered magnet simple substance originating in the said protrusion part, 4 is a slit originating in the said concave groove. Here, in each slit, an oxide layer 5 of R 2 based on the oxidation of R 1 formed at the time of sintering is formed on the slit surface. The oxide layer 5 of R 2 is formed by oxidizing R 1 of the magnet alloy with a small amount of oxygen in the sintering atmosphere during sintering, and R 2 ≈R 1 in this first method. . The oxide layer can be confirmed to be an oxide layer by EPMA (electron beam microprog analyzer), XPS (X ray electron spectrometer), or the like. The oxide layer thickness is usually 50 μm or less, and particularly preferably 0.5 to 50 μm. The gap width SW of the slit is 100 μm or less, more preferably 1 to 100 μm, and particularly preferably 20 to 80 μm.

次に、第二の方法について説明すると、この方法は、上記した方法で得られた単体成型体の凹溝にR3の酸化物層を必要により部分的に形成する。図4はこれを示すもので、10は単体成型体、11は凹溝、12は突条部、13はR3の酸化物層である。なお、この第二の方法において、R3はR1と同じ元素であってもよく、異なる元素であってもよい。上記R3の酸化物層を形成する方法としては、R3の酸化物粉末をそのまま又はそのスラリーを単体成型体の凹溝表面に必要により部分的に塗布し、乾燥する方法が好適である。なお、R3は、上述したようにY及びScを含む希土類元素から選ばれ、具体的にはY、Sc、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuが挙げられ、好ましくはYを主体(50質量%以上)とする。酸化物粉末の平均粒子径は100μm以下、好ましくは10μm以下が望ましい。その下限は特に制限されないが、1nm以上が好ましい。酸化物粉末を成型体に塗布する方法として、粉末の状態でつける方法と有機溶剤や水に分散させ、このスラリー状のものを刷毛塗りやスプレイ塗布した後に風や真空により乾燥させる、あるいは自然乾燥させる方法が挙げられる。この場合、R3の酸化物層13の厚さは、上記突条部12の高さと一致するか又はこれより低いことが必要で、塗布の厚さは好ましくは0.05mm以下、より好ましくは0.01〜0.05mmである。なお、図4は塗布部の数が4個であるが、4個に限定されなく、所望の形状になるように塗布すればよい。また、突条の幅の合計(W1+W2+W3)は磁石幅Wの10〜50%、特に20〜40%の割合で選ばれる。この比率が10%未満では、接合面積が小さく磁石体の強度が弱くなってしまい、50%を超えると、スリットによる渦電流低減効果が少なくなってしまう場合がある。なお、この例では上記R3の酸化物層13の長さ方向は、磁化方向と一致している。 Next, the second method will be described. In this method, an R 3 oxide layer is partially formed as necessary in the concave groove of the unit molded body obtained by the above method. FIG. 4 shows this, wherein 10 is a single molded body, 11 is a groove, 12 is a protrusion, and 13 is an R 3 oxide layer. In this second method, R 3 may be the same element as R 1 or a different element. As a method for forming the R 3 oxide layer, a method in which the R 3 oxide powder is applied as it is or a slurry thereof is partially applied to the concave groove surface of the single molded body and dried is preferable. R 3 is selected from rare earth elements including Y and Sc as described above, and specifically, Y, Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er , Yb, and Lu, and preferably Y is the main component (50% by mass or more). The average particle diameter of the oxide powder is 100 μm or less, preferably 10 μm or less. The lower limit is not particularly limited, but is preferably 1 nm or more. As a method of applying the oxide powder to the molded body, it is applied in a powder state and dispersed in an organic solvent or water, and the slurry is applied by brushing or spraying and then dried by wind or vacuum, or naturally dried. The method of letting it be mentioned. In this case, the thickness of the oxide layer 13 of R 3 needs to be equal to or lower than the height of the protrusion 12, and the thickness of the coating is preferably 0.05 mm or less, more preferably 0.01 to 0.05 mm. In FIG. 4, the number of application portions is four, but the number is not limited to four, and the application portions may be applied in a desired shape. Further, the total width of the protrusions (W1 + W2 + W3) is selected at a rate of 10 to 50%, particularly 20 to 40% of the magnet width W. If this ratio is less than 10%, the bonding area is small and the strength of the magnet body becomes weak. If it exceeds 50%, the effect of reducing the eddy current by the slit may be reduced. In this example, the length direction of the R 3 oxide layer 13 coincides with the magnetization direction.

これらのR3の酸化物層が凹溝に帯状に必要により部分的に形成された成型体を複数個積み上げ、焼結炉に投入する。焼結は真空あるいは不活性ガス雰囲気中、通常900〜1,200℃で行われる。この焼結により上記各単体成型体は焼結されて、焼結磁石単体がそれぞれ形成されると共に、この際突条部において一の単体成型体(焼結磁石単体)と他の単体成型体(焼結磁石単体)とが接合、一体化される一方、上記R3の酸化物形成部分がそのまま磁石体の一面から他面(対向面)にかけて帯状に残る図2に示すような磁石体(希土類永久磁石)1が焼結接合体として得られる。なお、2は焼結磁石単体、6は突条部に由来する焼結磁石単体相互の接合連結部である。この場合、図2の焼結接合体においては、凹溝内に突条部と同一高さになるようにR3の酸化物層を形成したため、スリット内がR3の酸化物層で充満されているが、これに限られるものではなく、R3の酸化物層を突条部より低く形成して、スリット内に空隙を与えるようにしてもよい。 A plurality of molded bodies in which these R 3 oxide layers are partially formed in a groove shape if necessary in a groove shape are stacked and put into a sintering furnace. Sintering is usually performed at 900 to 1,200 ° C. in a vacuum or an inert gas atmosphere. By this sintering, each of the single molded bodies is sintered to form a single sintered magnet, and at this time, one single molded body (sintered magnet single body) and another single molded body ( A sintered magnet (single magnet) is joined and integrated, while the R 3 oxide forming portion remains in a belt shape from one surface of the magnet body to the other surface (opposite surface) as shown in FIG. Permanent magnet) 1 is obtained as a sintered joined body. In addition, 2 is a sintered magnet single-piece | unit, 6 is a joining connection part of the sintered magnet single-piece | unit derived from a protrusion part. In this case, in the sintered joined body of FIG. 2, since the R 3 oxide layer is formed in the groove so as to be the same height as the protrusion, the slit is filled with the R 3 oxide layer. However, the present invention is not limited to this, and the oxide layer of R 3 may be formed lower than the protruding portion to give a gap in the slit.

本発明によれば、上述した従来の問題点を解決することができ、R−M−B系焼結磁石にスリットを入れた渦電流低減に有効な磁石において、スリット加工による磁石体積低減を少なくした磁石を提供することができる。本発明の希土類永久磁石は、R1−M−B系組成からなる焼結前の成型体に突条を設けてこの面が重なるように複数個積み上げ、これを焼結するものと、成型体の凹溝にR3の酸化物を必要により部分的に塗り、同様に成型体を突条を介して複数個積み上げて焼結する工程で得るといったものがあるが、上記した本発明の第一及び第二の方法で得られた希土類永久磁石におけるスリットの空隙幅あるいは希土類酸化物の厚みは0.1mm以下であり、スリットによる磁石体積の減少は、従来の加工でスリットを付けるものの1/10程度になる。しかも加工を行うよりコストがかからない。 According to the present invention, the above-mentioned conventional problems can be solved, and in the magnet effective for reducing the eddy current obtained by slitting the R-MB-based sintered magnet, the volume reduction of the magnet due to the slit processing is reduced. Magnets can be provided. The rare earth permanent magnet of the present invention includes a sintered body formed of an R 1 -MB system composition, provided with protrusions, stacked so that the surfaces overlap, and sintered. In some cases, R 3 oxide is partially applied to the concave grooves of the substrate, and a plurality of molded bodies are similarly stacked and sintered through protrusions. In the rare earth permanent magnet obtained by the second method, the gap width of the slit or the thickness of the rare earth oxide is 0.1 mm or less, and the reduction of the magnet volume due to the slit is 1/10 of that in which the slit is formed by the conventional processing. It will be about. Moreover, it is less expensive than processing.

また、焼結工程でスリットを作製すると、スリットに面する焼結磁石体の表面は希土類元素の酸化物が形成されており、希土類元素の酸化物の電気抵抗は磁石体に比べ非常に大きいので、スリット面で酸化物層が接触していて空隙がなくても実質的に絶縁している効果がある。
なお、本発明で得られた希土類永久磁石におけるスリットは、磁石表面に形成される溝、磁石内部に形成される空隙をも含むものである。
このようにして得られた絶縁効果のある磁石は、着磁され、回転機等に用いることができる。
In addition, when a slit is produced in the sintering process, rare earth element oxide is formed on the surface of the sintered magnet body facing the slit, and the electric resistance of the rare earth element oxide is much larger than that of the magnet body. Even if the oxide layer is in contact with the slit surface and there is no gap, there is an effect of substantially insulating.
In addition, the slit in the rare earth permanent magnet obtained by the present invention includes a groove formed on the magnet surface and a void formed inside the magnet.
The magnet having an insulating effect thus obtained is magnetized and can be used for a rotating machine or the like.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1−1〜3、比較例1,2]
Nd−Fe−B系焼結磁石(信越化学工業(株)製/N42SH)において、単体成型体寸法が10mm×60mm×14.5mmの60mm×14.5mmの面にパンチにより0.1mmの突条部を形成した。得られた突条部を有する単体成型体6枚を重ねて、不活性ガス雰囲気中、1,050℃で焼結した。これにより、密度が上がって、50mm×50mm×10mmの焼結体が得られた。磁化方向は10mm方向である。突条の位置は次の3種類で、突条の幅の合計は磁石幅の40%にあわせている。実施例1−1は図5のようにスリットがほぼ等しい間隔になるよう3箇所で接合されている。実施例1−2は図6のように両端と中央の3箇所で接合されている。実施例1−3は図7のように中央の1箇所で接合されている。実施例1−1、実施例1−2、実施例1−3ではスリットの幅は0.08mmであった。焼結工程で磁石体の表面には合金に含有される希土類元素の酸化物が形成されるので、スリットに面する焼結磁石体の表面にも希土類酸化物層が形成されている。本実施例では厚さ約15μmのNdの酸化物が形成される(EPMA)。酸化物の電気抵抗は合金に比べて大きいので、スリット面の酸化物層が接触し、隙間がゼロの状態でも渦電流は流れ難い。
[Examples 1-1 to 3, Comparative Examples 1 and 2]
In a Nd-Fe-B sintered magnet (manufactured by Shin-Etsu Chemical Co., Ltd./N42SH), a single molded body size of 10 mm × 60 mm × 14.5 mm, 60 mm × 14.5 mm surface is punched by 0.1 mm A streak was formed. Six obtained single molded bodies having the protrusions were stacked and sintered at 1,050 ° C. in an inert gas atmosphere. Thereby, the density increased and a sintered body of 50 mm × 50 mm × 10 mm was obtained. The magnetization direction is 10 mm. The positions of the ridges are the following three types, and the total width of the ridges is adjusted to 40% of the magnet width. In Example 1-1, as shown in FIG. 5, the slits are joined at three locations so that the slits are at substantially equal intervals. Example 1-2 is joined at three places at both ends and the center as shown in FIG. Example 1-3 is joined at one central position as shown in FIG. In Example 1-1, Example 1-2, and Example 1-3, the width of the slit was 0.08 mm. Since the rare earth element oxide contained in the alloy is formed on the surface of the magnet body in the sintering process, a rare earth oxide layer is also formed on the surface of the sintered magnet body facing the slit. In this embodiment, an oxide of Nd having a thickness of about 15 μm is formed (EPMA). Since the electrical resistance of the oxide is larger than that of the alloy, the eddy current hardly flows even when the oxide layer on the slit surface is in contact and the gap is zero.

この磁石に磁場強度±0.015テスラ、周波数2,000Hzの交番磁場を印加し、発生する渦電流損失を測定した。なお、比較例1としてスリットを設けていない50mm×50mm×10mm(信越化学工業(株)製/N42SH)の焼結体、比較例2として加工にてスリットを実施例1−3と同様に施した焼結体を用意した。なお、加工は切断刃によるものでスリット幅は0.8mmであった。結果を表1にまとめた。比較例1の渦電流損失を基準値としたものも示した。   An alternating magnetic field having a magnetic field strength of ± 0.015 Tesla and a frequency of 2,000 Hz was applied to the magnet, and the generated eddy current loss was measured. As Comparative Example 1, a sintered body of 50 mm × 50 mm × 10 mm (manufactured by Shin-Etsu Chemical Co., Ltd./N42SH) without slits, and as Comparative Example 2, slits were applied in the same manner as in Example 1-3. A sintered body was prepared. The processing was performed with a cutting blade, and the slit width was 0.8 mm. The results are summarized in Table 1. Also shown is the reference value of the eddy current loss of Comparative Example 1.

実施例のようにスリットを入れることで、比較例1のスリットのないものより33〜74%の損失にできた。スリットの入れ方によって損失の低減度合いが変化する。実施例1−3と比較例2は同形状のスリットであるので渦電流低減は同じであった。但し、スリット幅を比較すると本発明は比較例2の1/10であり、磁石体積が減らないので比較例2より大きな磁束を得ることができる。   By inserting a slit as in the example, a loss of 33 to 74% was achieved compared to the comparative example 1 without a slit. The degree of loss reduction varies depending on how the slits are inserted. Since Example 1-3 and Comparative Example 2 are slits having the same shape, eddy current reduction was the same. However, when the slit width is compared, the present invention is 1/10 of Comparative Example 2, and the magnet volume is not reduced, so that a larger magnetic flux than Comparative Example 2 can be obtained.

Figure 2007305818
Figure 2007305818

[実施例2]
実施例1−1の磁石成形体の凹溝に平均粒子径10μmのY(イットリウム)酸化物微粉末を有機溶剤に分散させ、このスラリー状のものを刷毛塗りした後に自然乾燥させた。塗布の厚さは0.03mmである。塗布された成形体6枚を重ねて不活性ガス雰囲気中、1,050℃で焼結すると、密度が上がって50mm×50mm×10mmの焼結体が得られた。磁化方向は10mm方向である。酸化物が塗布されていない突条部分は焼結過程で接合した。スリット面に酸化イットリウム(EPMA)が形成されていた。接合部の位置と面積が実施例1−1と同じになるような試料を作製し、実施例1と同様に交番磁場中の渦電流損失を測定した。結果は17Wであった。
[Example 2]
Y (yttrium) oxide fine powder having an average particle diameter of 10 μm was dispersed in an organic solvent in the concave groove of the magnet molded body of Example 1-1, and this slurry was brush-coated and then naturally dried. The coating thickness is 0.03 mm. When six coated compacts were stacked and sintered at 1,050 ° C. in an inert gas atmosphere, the density increased and a sintered body of 50 mm × 50 mm × 10 mm was obtained. The magnetization direction is 10 mm. The protrusions not coated with oxide were joined during the sintering process. Yttrium oxide (EPMA) was formed on the slit surface. A sample was prepared so that the position and area of the joint were the same as in Example 1-1, and eddy current loss in an alternating magnetic field was measured in the same manner as in Example 1. The result was 17W.

本発明の一実施例に係る希土類永久磁石の断面図である。It is sectional drawing of the rare earth permanent magnet which concerns on one Example of this invention. 本発明の他の実施例によって得られた希土類永久磁石の断面図である。It is sectional drawing of the rare earth permanent magnet obtained by the other Example of this invention. 単体成型体の一例を示す斜視図である。It is a perspective view which shows an example of a single-piece molded object. 単体成型体の他の例を示す斜視図である。It is a perspective view which shows the other example of a single-piece molded object. 実施例1−1による希土類永久磁石の断面図である。It is sectional drawing of the rare earth permanent magnet by Example 1-1. 実施例1−2による希土類永久磁石の断面図である。It is sectional drawing of the rare earth permanent magnet by Example 1-2. 実施例1−3による希土類永久磁石の断面図である。It is sectional drawing of the rare earth permanent magnet by Example 1-3. 本発明に用いるパンチ形状である。The punch shape used in the present invention.

符号の説明Explanation of symbols

1 磁石体
2 焼結磁石単体
3 接合連結部
4 スリット
5 R2の酸化物層
6 接合連結部
10 単体成型体
11 凹溝
12 突条
13 R3の酸化物層
H 突条の高さ
SW スリットの空隙幅
W 磁石幅
W1,W2,W3 突条の幅
1 height SW slit oxide layer H projection of the magnet body 2 sintered magnet alone 3 junction connection portion 4 slit 5 oxide of R 2 layer 6 bonding connecting portion 10 alone molded body 11 groove 12 rib 13 R 3 Gap width W magnet width W1, W2, W3 ridge width

Claims (4)

1−M−B系組成(R1はY及びScを含む希土類元素から選ばれる1種又は2種以上、MはFe、又はFe及びCoを主体とする遷移金属)からなる複数個の磁石単体が、一体に接合した焼結接合体からなり、該焼結接合体は一面から他面にかけて貫通するスリットを有しており、上記スリット面には、それぞれR2の酸化物層(R2はY及びScを含む希土類元素から選ばれる1種又は2種以上)が形成されていることを特徴とする希土類永久磁石。 A plurality of magnets having an R 1 -MB system composition (R 1 is one or more selected from rare earth elements including Y and Sc, and M is a transition metal mainly composed of Fe or Fe and Co). The single body is composed of a sintered joined body integrally joined, and the sintered joined body has slits penetrating from one surface to the other surface, and each of the slit surfaces has an R 2 oxide layer (R 2). 1 or 2 or more selected from rare earth elements including Y and Sc). 1−M−B系組成(R1はY及びScを含む希土類元素から選ばれる1種又は2種以上、MはFe、又はFe及びCoを主体とする遷移金属)からなる複数個の単体成型体の表面にそれぞれ凹溝を形成し、これによって突条部を形成すると共に、該突条部を介して上記複数個の単体成型体を積層し、次いで焼結して、上記突条部において上記単体成型体を互いに接合すると共に、上記各突条部の側方に一面から他面にかけて貫通し、表面に上記R1の酸化物層を有するスリットを上記凹溝によって形成した焼結接合体からなる希土類永久磁石を得ることを特徴とする希土類永久磁石の製造方法。 A plurality of simple substances having an R 1 -MB system composition (R 1 is one or more selected from rare earth elements including Y and Sc, M is a transition metal mainly composed of Fe or Fe and Co) A concave groove is formed on the surface of the molded body, thereby forming a ridge, and the plurality of unit molded bodies are laminated through the ridge, then sintered, and the ridge is formed. In addition, the single molded body is bonded to each other, and a sintered joint is formed by forming the slit having the R 1 oxide layer on the surface by the concave groove penetrating from one side to the other side of each protruding portion. A method for producing a rare earth permanent magnet comprising obtaining a rare earth permanent magnet comprising a body. 上記単体成型体の凹溝にR3の酸化物(R3はY及びScを含む希土類元素から選ばれる1種又は2種以上)を塗布して該単体成型体を焼結することにより、スリット内にR3の酸化物層を形成した請求項2記載の希土類永久磁石の製造方法。 Oxides of R 3 into the groove and the single molded body (R 3 is at least one element selected from rare earth elements inclusive of Y and Sc) by sintering said single body molded by applying a slit The method for producing a rare earth permanent magnet according to claim 2, wherein an R 3 oxide layer is formed therein. 請求項1記載の希土類永久磁石を用いた回転機。
A rotating machine using the rare earth permanent magnet according to claim 1.
JP2006133204A 2006-05-12 2006-05-12 Rare earth permanent magnet, method of manufacturing the same, and rotating machine Active JP4775566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133204A JP4775566B2 (en) 2006-05-12 2006-05-12 Rare earth permanent magnet, method of manufacturing the same, and rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006133204A JP4775566B2 (en) 2006-05-12 2006-05-12 Rare earth permanent magnet, method of manufacturing the same, and rotating machine

Publications (2)

Publication Number Publication Date
JP2007305818A true JP2007305818A (en) 2007-11-22
JP4775566B2 JP4775566B2 (en) 2011-09-21

Family

ID=38839488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133204A Active JP4775566B2 (en) 2006-05-12 2006-05-12 Rare earth permanent magnet, method of manufacturing the same, and rotating machine

Country Status (1)

Country Link
JP (1) JP4775566B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116540A1 (en) * 2008-03-18 2009-09-24 日東電工株式会社 Permanent magnet for motor, and method for manufacturing the permanent magnet for motor
JP2012050329A (en) * 2011-11-24 2012-03-08 Nitto Denko Corp Permanent magnet for motor and manufacturing method of permanent magnet for motor
JP5690141B2 (en) * 2008-11-06 2015-03-25 インターメタリックス株式会社 Rare earth sintered magnet manufacturing method and powder filled container for manufacturing rare earth sintered magnet
JP2017022977A (en) * 2015-07-14 2017-01-26 株式会社東芝 Rotary electric machine and vehicle
US10017871B2 (en) 2014-02-19 2018-07-10 Shin-Etsu Chemical Co., Ltd. Electrodepositing apparatus and preparation of rare earth permanent magnet
US10138564B2 (en) 2012-08-31 2018-11-27 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
US10181377B2 (en) 2012-08-31 2019-01-15 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
US10179955B2 (en) 2012-08-31 2019-01-15 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
US10526715B2 (en) 2014-02-19 2020-01-07 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet
CN114400126A (en) * 2022-01-26 2022-04-26 上海盘毂动力科技股份有限公司 Magnetic element and manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228838A (en) * 1998-12-01 2000-08-15 Toyota Motor Corp Permanent magnet motor
JP2000245085A (en) * 1998-12-25 2000-09-08 Matsushita Electric Ind Co Ltd Motor
JP2001025189A (en) * 1999-07-09 2001-01-26 Toyota Motor Corp Permanent magnet of permanent magnet rotor
JP2005198365A (en) * 2003-12-26 2005-07-21 Neomax Co Ltd Rare earth permanent magnet for motor, and its manufacturing method
JP2005268386A (en) * 2004-03-17 2005-09-29 Mitsubishi Electric Corp Ring type sintered magnet and manufacturing method thereof
JP2006136130A (en) * 2004-11-05 2006-05-25 Toyota Motor Corp Permanent-magnet type rotating electric machine, manufacturing method for permanent magnet for use therein, and manufacturing method therefor using the method for permanent magnet
JP2006238565A (en) * 2005-02-23 2006-09-07 Toyota Motor Corp Permanent-magnet rotary electric machine, manufacturing method for permanent magnet used in the same, and manufacturing method for the permanent-magnet rotary electric machine using the manufacturing method
JP2006303197A (en) * 2005-04-20 2006-11-02 Neomax Co Ltd Method for manufacturing r-t-b system sintered magnet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228838A (en) * 1998-12-01 2000-08-15 Toyota Motor Corp Permanent magnet motor
JP2000245085A (en) * 1998-12-25 2000-09-08 Matsushita Electric Ind Co Ltd Motor
JP2001025189A (en) * 1999-07-09 2001-01-26 Toyota Motor Corp Permanent magnet of permanent magnet rotor
JP2005198365A (en) * 2003-12-26 2005-07-21 Neomax Co Ltd Rare earth permanent magnet for motor, and its manufacturing method
JP2005268386A (en) * 2004-03-17 2005-09-29 Mitsubishi Electric Corp Ring type sintered magnet and manufacturing method thereof
JP2006136130A (en) * 2004-11-05 2006-05-25 Toyota Motor Corp Permanent-magnet type rotating electric machine, manufacturing method for permanent magnet for use therein, and manufacturing method therefor using the method for permanent magnet
JP2006238565A (en) * 2005-02-23 2006-09-07 Toyota Motor Corp Permanent-magnet rotary electric machine, manufacturing method for permanent magnet used in the same, and manufacturing method for the permanent-magnet rotary electric machine using the manufacturing method
JP2006303197A (en) * 2005-04-20 2006-11-02 Neomax Co Ltd Method for manufacturing r-t-b system sintered magnet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093218B2 (en) 2008-03-18 2015-07-28 Nitto Denko Corporation Permanent magnet for motor, and method for manufacturing the permanent magnet for motor
JP2009225608A (en) * 2008-03-18 2009-10-01 Nitto Denko Corp Permanent magnet for motor and method of manufacturing the permanent magnet for motor
CN101978577A (en) * 2008-03-18 2011-02-16 日东电工株式会社 Permanent magnet for motor, and method for manufacturing the permanent magnet for motor
WO2009116540A1 (en) * 2008-03-18 2009-09-24 日東電工株式会社 Permanent magnet for motor, and method for manufacturing the permanent magnet for motor
CN103762762A (en) * 2008-03-18 2014-04-30 日东电工株式会社 Permanent magnet for motor, and method for manufacturing the permanent magnet for motor
JP5690141B2 (en) * 2008-11-06 2015-03-25 インターメタリックス株式会社 Rare earth sintered magnet manufacturing method and powder filled container for manufacturing rare earth sintered magnet
JP2012050329A (en) * 2011-11-24 2012-03-08 Nitto Denko Corp Permanent magnet for motor and manufacturing method of permanent magnet for motor
US10138564B2 (en) 2012-08-31 2018-11-27 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
US10181377B2 (en) 2012-08-31 2019-01-15 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
US10179955B2 (en) 2012-08-31 2019-01-15 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
US10017871B2 (en) 2014-02-19 2018-07-10 Shin-Etsu Chemical Co., Ltd. Electrodepositing apparatus and preparation of rare earth permanent magnet
US10526715B2 (en) 2014-02-19 2020-01-07 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet
JP2017022977A (en) * 2015-07-14 2017-01-26 株式会社東芝 Rotary electric machine and vehicle
CN114400126A (en) * 2022-01-26 2022-04-26 上海盘毂动力科技股份有限公司 Magnetic element and manufacturing method

Also Published As

Publication number Publication date
JP4775566B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4775566B2 (en) Rare earth permanent magnet, method of manufacturing the same, and rotating machine
JP4656325B2 (en) Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine
KR101245465B1 (en) Rare-earth permanent magnet, process for preparing the same and permanent magnet rotating machine
US9953750B2 (en) Nd based sintered magnet
JP4737431B2 (en) Permanent magnet rotating machine
KR101672055B1 (en) Rotor for permanent magnetic rotating machine
US8823235B2 (en) Rotor for axial gap-type permanent magnetic rotating machine
JP5493663B2 (en) Assembling method of rotor for IPM type permanent magnet rotating machine
JP5251219B2 (en) Rotor for permanent magnet rotating machine
US9064625B2 (en) Methods for sequentially laminating rare earth permanent magnets with suflide-based dielectric layer
JP2006303197A (en) Method for manufacturing r-t-b system sintered magnet
JP4919109B2 (en) Permanent magnet rotating machine and method for manufacturing permanent magnet segment for permanent magnet rotating machine
WO2011030409A1 (en) Rotor for permanent magnet type rotary machine
JP5911358B2 (en) Rare earth permanent magnet, method of manufacturing rare earth permanent magnet, and motor
WO2013022934A1 (en) Sequentially laminated, rare earth, permanent magnets with sulfide-based dielectric layers and reinforced by diffusion reaction layers
JP2000184628A (en) Stator for motor
JP2000295804A (en) Rare earth sintered magnet and permanent magnet type synchronous motor
JP4150983B2 (en) Permanent magnet having gradient function of electrical resistivity and manufacturing method thereof
JP2011019401A (en) Method of manufacturing permanent magnet segment for permanent magnet rotating machine
US20210316365A1 (en) Method for producing a magnetic powder
JP2019096868A (en) Magnet and motor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R150 Certificate of patent or registration of utility model

Ref document number: 4775566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3