JP2007303149A - Concrete construction repairing structure, vibration control device, and repairing method - Google Patents

Concrete construction repairing structure, vibration control device, and repairing method Download PDF

Info

Publication number
JP2007303149A
JP2007303149A JP2006132492A JP2006132492A JP2007303149A JP 2007303149 A JP2007303149 A JP 2007303149A JP 2006132492 A JP2006132492 A JP 2006132492A JP 2006132492 A JP2006132492 A JP 2006132492A JP 2007303149 A JP2007303149 A JP 2007303149A
Authority
JP
Japan
Prior art keywords
repair
reinforced cement
injection
composite material
cement composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006132492A
Other languages
Japanese (ja)
Other versions
JP4603506B2 (en
Inventor
Seiichiro Ishihara
誠一郎 石原
Kazuhiko Tatematsu
和彦 立松
Koji Mori
浩二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asanuma Corp
Original Assignee
Asanuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asanuma Corp filed Critical Asanuma Corp
Priority to JP2006132492A priority Critical patent/JP4603506B2/en
Publication of JP2007303149A publication Critical patent/JP2007303149A/en
Application granted granted Critical
Publication of JP4603506B2 publication Critical patent/JP4603506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new repairing technique which is applicable to repairing a concrete construction, by using a fiber reinforced cement composite material. <P>SOLUTION: There is provided a concrete construction repairing structure using the fiber reinforced cement composite material. In the repairing structure, injection pipe lines are arranged in a construction portion formed of the fiber reinforced cement composite material, such that one end of each pipe line is opened to the outside of the construction portion for securing an injection port, and therefore a repairing material can be injected into a crack occurring inside the construction portion, from outside. If the plurality of injection pipe lines are arranged in the single construction portion, each injection pipe line is formed of: a rigid plastic porous pipe which has discharge ports radially extending from a center hole, and has depressions formed in a pipe external wall where the discharge ports are opened; and elastic valves which are arranged in the depressions formed in the porous pipe, and elastically deformable depending on injection pressure to open the discharge ports. The repairing structure is applied to a damper portion of the vibration control device. Further, injection of the repairing material is continued until the repairing material leaks out of a surface crack extended from the inner crack. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、繊維補強セメント複合材料を用いたコンクリート構造物の補修技術と該技術を組み込んだ制振装置に関するものである。   The present invention relates to a technique for repairing a concrete structure using a fiber-reinforced cement composite material and a vibration damping device incorporating the technique.

繊維補強セメント複合材料そのものは公知であり、この材料を用いたコンクリート構造物に耐震性を付与する構造についても、複数の技術が公知である。   The fiber-reinforced cement composite itself is known, and a plurality of techniques are also known for a structure that imparts earthquake resistance to a concrete structure using this material.

ここで、特許文献1、2のような繊維補強セメント複合材料とは、セメント系材料に体積比で0.5〜数%の短繊維を混入し補強した材料で、曲げ、引張、圧縮、せん断力などの外力を受けると多数のひび割れ幅0.1mm以下の微細な複数ひび割れを分散して形成し、数%のひずみ能力を有し、高靭性で延性な挙動を示す。従って、従来のセメント系材料の「引張に脆い」という欠点を繊維補強セメント複合材料によって克服することができる。セメント系材料の補強用繊維としては、炭素繊維、アラミド繊維、ポリプロピレン繊維、ポリエチレン繊維、ビニロン繊維などの有機繊維や鋼繊維などの短繊維を例示することができ、それらの繊維を単体あるいは2種類以上を混ぜ合わせて使用する。   Here, the fiber-reinforced cement composite material as in Patent Documents 1 and 2 is a material in which 0.5 to several percent of short fibers are mixed and reinforced in a cement-based material, such as bending, tension, compression, shearing force, etc. When an external force is applied, a large number of fine cracks having a crack width of 0.1 mm or less are dispersed and formed, having a strain capacity of several percent, exhibiting high toughness and ductility. Therefore, the drawback of the conventional cementitious material that is “fragile to tension” can be overcome by the fiber-reinforced cement composite material. Examples of reinforcing fibers for cement-based materials include organic fibers such as carbon fibers, aramid fibers, polypropylene fibers, polyethylene fibers, and vinylon fibers, and short fibers such as steel fibers. These fibers are used alone or in two types. Use a mixture of the above.

このように、繊維補強セメント複合材料を用いることによって、補強用繊維が混入されているため通常の普通コンクリートのように破壊の進展にともなうコンクリートの剥落が生じず、耐力の急激な低下も見られない。さらに内部に鉄筋が配された繊維補強セメント複合材料が曲げ、引張、圧縮、せん断力を受けた場合であっても、普通コンクリートにくらべ、鉄筋のひずみが小さくなり、ひび割れ発生後も繊維補強セメント複合材料が応力を負担し、普通コンクリートで発生するような付着破壊も大幅に抑制される。ところで、繊維補強セメント複合材料は鋼材などと異なって部材にひび割れが発生するが、これ自体は欠点ではあるとしても、逆にその部材に生じたひび割れ状況を構造実験などで観察されたひび割れ発生状況と比較することで、外観から部材の損傷レベルを視覚的に検知が可能となる。以上のように、繊維補強セメント複合材料は高靭性でかつ損傷の程度を視覚的に判断できる材料として好適である。   In this way, the use of fiber reinforced cement composite material does not cause the concrete to peel off with the progress of breakage as in normal ordinary concrete because of the inclusion of reinforcing fibers, and there is also a sharp decline in yield strength. Absent. Furthermore, even when fiber reinforced cement composites with reinforcing bars inside are subjected to bending, tension, compression, and shearing force, the reinforcing bars are less strained than ordinary concrete, and even after cracking, fiber reinforced cement. The composite material bears stress, and adhesion failure that occurs in ordinary concrete is greatly suppressed. By the way, the fiber reinforced cement composite material is cracked in the member unlike the steel material, etc., but even if this is a defect, the crack occurrence state observed in the structural experiment etc. As a result, it is possible to visually detect the damage level of the member from the appearance. As described above, the fiber-reinforced cement composite material is suitable as a material having high toughness and capable of visually judging the degree of damage.

一方、近年、地震や強風に対する構造形式として、建物に入力される地震や強風によるエネルギーを吸収する部材を付加し、建物応答を制御させる制震構造が注目され、様々な研究が行われている(例えば、特許文献3〜5や非特許文献1参照)。そして、鋼材、粘弾性材、オイルなどを用いた種々の優れたエネルギー吸収部材を組込んだ制振装置がすでに存在し、多くの建物で設置されている。   On the other hand, in recent years, as a structural form against earthquakes and strong winds, a vibration control structure that controls the response of buildings by adding members that absorb energy from earthquakes and strong winds input to buildings has been attracting attention, and various studies have been conducted. (For example, refer to Patent Documents 3 to 5 and Non-Patent Document 1). And the damping device incorporating the various outstanding energy absorption members using steel materials, viscoelastic material, oil, etc. already exists, and is installed in many buildings.

特開2001−322859号公報JP 2001-322859 A 特開2000−7395号公報JP 2000-7395 A 特開2000−336813号公報JP 2000-336813 A 特開2004−44207号公報JP 2004-44207 A 特開2004−44197号公報JP 2004-44197 A 石原誠一郎、三橋博三、金子佳生、和地正浩:ハイブリッド型繊維補強セメント系複合材料を用いたエネルギー吸収部材の構造性能に関する実験的研究、コンクリート工学年次論文集、Vol.25、No.2、p.1705-1710、2003Seiichiro Ishihara, Hirozo Mitsuhashi, Yoshio Kaneko, Masahiro Wachi: Experimental research on the structural performance of energy absorbing members using hybrid fiber reinforced cementitious composites, Annual report on concrete engineering, Vol.25, No.2 , P.1705-1710, 2003

上記制振装置のうち、鋼材を用いた制振装置は、低降伏点鋼や鉛が用いられたエネルギー吸収部材の塑性化にともなう履歴エネルギー消散を減衰力として、地震や風によるエネルギーを吸収する。粘弾性材を用いた制振装置は、アクリル系、ジエン系化合物、アスファルト系化合物などを積層ゴムのように薄い粘弾性材を鋼板の間に挟みこみ、そのせん断抵抗力を減衰抵抗力としてエネルギーを吸収する。オイルを用いた制振装置は、管路流れの絞り抵抗で生ずる内圧を減衰抵抗力として、エネルギーを吸収する。粘弾性材、オイルを用いた制振装置は、強風や地震では損傷しないため、制振装置は強風や地震を受けても交換の必要がない。鋼材を用いた制振装置は、強風や中程度までの地震を受けても制振装置に組込まれたエネルギー吸収部材の鋼材が塑性化するため、特に交換の必要はない。ただ、想定外の大地震を受け大きく塑性化した場合には交換の必要があるが、通常ボルトの締め外しで取替えが可能な部材が多い。   Among the above damping devices, damping devices using steel materials absorb energy from earthquakes and winds by using hysteresis energy dissipation due to plasticization of energy absorbing members using low yield point steel or lead as a damping force. . A vibration damping device using a viscoelastic material is made by sandwiching a thin viscoelastic material such as laminated rubber between steel sheets with acrylic, diene, and asphalt compounds, and using the shear resistance as a damping resistance. To absorb. The vibration damping device using oil absorbs energy using the internal pressure generated by the throttle resistance of the pipe flow as a damping resistance. Since the vibration damping device using viscoelastic material and oil is not damaged by a strong wind or an earthquake, the vibration damping device does not need to be replaced even if it receives a strong wind or an earthquake. The damping device using the steel material does not need to be replaced because the steel material of the energy absorbing member incorporated in the damping device is plasticized even under strong winds or moderate earthquakes. However, replacement is necessary when the plastics are greatly plasticized due to an unexpected large earthquake, but there are many members that can be replaced by tightening bolts.

一方、繊維補強セメント複合材料の中に鉄筋を配した部材を組込んだ制振装置を建物の適所に配して、強風や地震時に建物に入力されるエネルギーをその部材で吸収させ、建物の損傷を小さくすることを目指す研究は非特許文献1に示すように以前から行われている。しかし、現在のところ、繊維補強セメント複合材料を用いたエネルギー吸収部材を組込んだ制振装置を建物に適用した例は報告されていない。適用されない原因としては、以下のような理由があると考えられる。   On the other hand, a vibration control device incorporating a member with reinforcing bars in a fiber reinforced cement composite material is placed at the appropriate place in the building, and the energy input to the building during strong winds and earthquakes is absorbed by the member, Research aimed at reducing damage has been conducted for a long time as shown in Non-Patent Document 1. However, at present, no example has been reported in which a vibration damping device incorporating an energy absorbing member using a fiber reinforced cement composite material is applied to a building. There are the following reasons as reasons for not being applied.

まず、繊維補強セメント複合材料を用いた制振装置は、例えば図3に示すように設置される。同図中、1は基礎、2は躯体柱、3は各階梁、4a、4bは各階ごとに設けられたスタブ、5はエネルギー吸収部材(ダンパー部)である。そして、強風や地震などの外力を受けるとエネルギー吸収部材5が微細な複数ひび割れを分散して形成し、当該部材5中に配された鉄筋の塑性化にともなう履歴エネルギー消散を減衰力として、地震や風によるエネルギーを吸収する。しかし、大地震を受けてエネルギー吸収部材5が大きく変形して数%以上のひずみが生じると、分散していたひび割れがいくつかに局所化し、ひび割れ幅が拡大し、変形の程度によっては数ミリ程度にまでひび割れが拡幅してしまう。当該部材5にひび割れが発生し損傷することは、損傷が生じても交換が可能な鋼材、損傷が生じない粘弾性材、オイルなどを用いた制振装置に比べ、明らかに性能が落ちるため使用されない原因となっている。   First, a vibration damping device using a fiber-reinforced cement composite material is installed as shown in FIG. 3, for example. In the figure, 1 is a foundation, 2 is a frame column, 3 is each floor beam, 4a and 4b are stubs provided for each floor, and 5 is an energy absorbing member (damper part). When an external force such as a strong wind or an earthquake is received, the energy absorbing member 5 is formed by dispersing a plurality of fine cracks, and the hysteresis energy dissipation accompanying the plasticization of the reinforcing bars arranged in the member 5 is used as a damping force. Absorbs energy from wind and wind. However, when the energy absorbing member 5 is greatly deformed due to a large earthquake and a strain of several percent or more is generated, the cracks that have been dispersed are localized in several, the crack width is expanded, and depending on the degree of deformation, several millimeters. Cracks will spread to the extent. It is used because the member 5 is cracked and damaged because its performance is clearly lower than that of a vibration-damping device that uses steel that can be replaced even if it is damaged, viscoelastic material that does not cause damage, oil, etc. It is a cause that is not.

次に、繊維補強セメント複合材料を用いた制振装置は、補強用繊維が混入されているため通常のコンクリートのように破壊の進展によるコンクリートの剥落は生じないが、大きなひび割れが生じてエネルギー吸収部材5が損傷する。損傷した制振装置は、前記部材5内に鉄筋が配されており、その上下には上述のスタブ4a、4bも取り付いているため重量が1トン程度と重く、居住者のいる建物内での取替えは非常に困難である。さらに繊維補強セメント複合材料を用いた制振装置は、エネルギー吸収部材5に補強用繊維が混入されているため高靭性であるが、そのため逆に通常のコンクリートのようにブレーカーによる解体も容易でなく、非常に手間がかかるため、解体による取替えも困難である。このように、交換および取替えが難しいことも適用されない原因である。   Next, the vibration control device using fiber reinforced cement composite material does not cause peeling of the concrete due to the progress of fracture unlike normal concrete because the reinforcing fiber is mixed, but it absorbs energy by generating large cracks. The member 5 is damaged. The damaged vibration control device has a reinforcing bar in the member 5, and the above-mentioned stubs 4a and 4b are attached on the upper and lower sides thereof, so the weight is heavy, about 1 ton. Replacement is very difficult. Furthermore, the vibration damping device using the fiber reinforced cement composite material has high toughness because the reinforcing fiber is mixed in the energy absorbing member 5, but conversely, dismantling with a breaker is not easy like ordinary concrete. Since it takes a lot of time and effort, it is difficult to replace it by dismantling. In this way, the difficulty of replacement and replacement is also a cause that does not apply.

なお、繊維補強セメント複合材料を用いた制振装置は、ひび割れが発生し、さらに交換および取替えが難しいなどの問題があることが建物への適用を困難としているが、他の制振装置に比べ安価なため、部材のひび割れにセメントペーストやエポキシ樹脂を注入して補修し再使用することで交換や取り替えの困難さを解決することが考えられる。しかし、繊維補強セメント複合材料は、外力を受けると多数の微細な複数ひび割れを分散して形成し、高靭性な性能をもつことを特徴としているため、繊維補強セメント複合材料で損傷した部材を補修することは考えられてこなかったのが現状である。さらに、補修するにしても外側から補修できるのは一部の局所化した大きなひび割れのみで、繊維補強セメント複合材料の損傷は微細なひび割れが多いために、外側から部材のひび割れにセメントペーストやエポキシ樹脂を注入することは困難で、内部への補修材の充填状況が確認できないなど問題がある。また、外部から補修する場合、注入口以外のひび割れを外側から塞ぎ、セメントペーストやエポキシ樹脂を注入するため、部材の外側がセメントペーストやエポキシ樹脂で汚れてしまい、外観からエネルギー吸収部材の損傷レベルを視覚的に検知することができなくなるなどの問題があった。   In addition, vibration control devices using fiber-reinforced cement composite materials are difficult to apply to buildings due to problems such as cracking and difficulty in replacement and replacement, but compared to other vibration control devices. Since it is inexpensive, it may be possible to solve the difficulty of replacement or replacement by injecting cement paste or epoxy resin into the cracks of the member, repairing it, and reusing it. However, fiber reinforced cement composite material is characterized by having a high toughness performance by dispersing many fine multiple cracks when subjected to external force, and repairing damaged parts with fiber reinforced cement composite material. The current situation has never been considered. Furthermore, even if repairs are made, only some large localized cracks can be repaired from the outside, and damage to the fiber-reinforced cement composite material is often caused by fine cracks. It is difficult to inject the resin, and there is a problem that the filling state of the repairing material cannot be confirmed. Also, when repairing from the outside, the cracks other than the injection port are closed from the outside, and cement paste or epoxy resin is injected, so the outside of the member becomes dirty with cement paste or epoxy resin, and the damage level of the energy absorbing member from the appearance There were problems such as being unable to visually detect.

上述したような繊維補強セメント複合材料を用いた従来の制振装置のもつ問題点を解決するために、本発明では繊維補強セメント複合材料を用いたコンクリート構造物の新たな補修技術を提供することを目的とするものである。   In order to solve the problems of the conventional vibration control device using the fiber reinforced cement composite material as described above, the present invention provides a new repair technique for a concrete structure using the fiber reinforced cement composite material. It is intended.

上述した目的を達成するため、本発明の補修構造は、繊維補強セメント複合材料を使用したコンクリート構造物の補修構造であって、前記繊維補強セメント複合材料の構築部に埋設され、前記構築部内に外部から補修材が注入可能な注入管路を設けることによって構成される。繊維補強セメント複合材料による構築部は、地震や強風などを外力とする振動によってひび割れが生じるもので、本発明では、当該現象を積極的に利用することで振動エネルギーを吸収し、建物の壊滅的被害を防ぐことを前提とするものであるが、さらに繊維補強セメント複合材料による構築部はセメント系材料が混入した短繊維によってつなぎ止められるため、剥離のない状態でひび割れが発生する利点に着目し、予め前記構築部内に注入管路を埋設しておき、外部から注入管路を介して補修材を構築部内に圧送することで、前記ひび割れに補修材を充填し、補修する作用を行う。補修材としては、セメントペーストやエポキシ樹脂を例示することができる。   In order to achieve the above-described object, the repair structure of the present invention is a repair structure of a concrete structure using a fiber reinforced cement composite material, and is embedded in the construction portion of the fiber reinforced cement composite material, It is configured by providing an injection pipe through which a repair material can be injected from the outside. The construction part made of fiber reinforced cement composite material is cracked by vibrations caused by earthquakes, strong winds, etc. In the present invention, the vibration energy is absorbed by actively utilizing the phenomenon, and the building is destroyed. Although it is premised on preventing damage, the construction part made of fiber reinforced cement composite material is connected by short fibers mixed with cementitious materials, so we pay attention to the advantage that cracks occur without peeling. The filling pipe is embedded in the construction part in advance, and the repair material is pumped into the construction part from the outside via the injection pipe, thereby filling the crack with the repair material and repairing. Examples of the repair material include cement paste and epoxy resin.

本発明において注入管路は、少なくとも一端を開口し、この開口端を注入口として外部から構築部内に補修材を圧送できる概念を有するものであるが、具体的には、管壁に複数の孔を設けた多孔パイプ、あるいは、構築部に埋設した管状の発泡スチロールを繊維補強セメント複合材料の硬化後に、酸により溶出して形成される空洞孔、さらに、構築部に埋設した鋼棒を繊維補強セメント複合材料の凝結後で、且つ、完全硬化前に前記構築部から引き抜いて形成される空洞孔によって構成することができる。多孔パイプの場合、管壁の孔から補修材が圧出されてひび割れに補修材を充填する。また、空洞孔の場合、管壁はないが、孔全体が開放されているため、ひび割れと連通して補修材を充填するものである。なお、施工性の面で言えば、注入管路を多孔パイプにより構成した場合、酸による溶出工程や引き抜き工程を必要としない分、有利である。   In the present invention, the injection pipe has a concept that at least one end is opened, and the repair material can be pumped from the outside into the construction portion using the opening end as an injection port. Specifically, a plurality of holes are formed in the pipe wall. Perforated pipes or tubular styrofoam embedded in the construction part after the fiber reinforced cement composite material is hardened and then elution with acid, and steel rods embedded in the construction part are fiber reinforced cement It can be constituted by a hollow hole formed by drawing out from the construction part after the composite material is condensed and before the complete curing. In the case of a perforated pipe, the repair material is pressed out from the hole in the tube wall and the crack is filled with the repair material. Further, in the case of a hollow hole, there is no tube wall, but the entire hole is open, so that the repair material is filled in communication with the crack. In terms of workability, when the injection pipe is formed of a perforated pipe, it is advantageous because an elution step with acid and a drawing step are not required.

また、ひび割れを隈無く補修するには、柱や梁、壁といった構築部ごとに注入管路を複数設けることが有効であるが、この場合、ある注入管路から見れば、他の注入管路が恰もひび割れのように機能して、他の注入管路に補修材が充填されることが想定される。そこで、本発明では、一の構築部に複数の注入管路を設ける場合、当該注入管路は、中心孔から放射状に排出孔を設けると共に、前記排出孔が開口する管外壁に凹陥部を形成した硬質プラスチック製の多孔パイプと、該多孔パイプの前記凹陥部に配され、注入圧により弾性変形して前記排出孔を開く弾性弁とから構成するという手段を用いた。当該手段によれば、自己の注入圧のみによって排出孔が開弁して補修材の注入作業が可能となる一方、弁に対して、構築部内のコンクリート圧、他の注入管路からの注入圧、さらには自己の中心孔内で吸引圧が作用した場合、当該弁は逆止弁として機能するため、他の注入管路から補修材が流れ込むことを防止することができる。   In order to repair cracks without any defects, it is effective to provide multiple injection pipes for each construction part such as columns, beams, and walls. In this case, another injection pipe can be seen from one injection pipe. However, it is assumed that other injection pipes are filled with the repair material functioning like cracks. Therefore, in the present invention, when a plurality of injection pipes are provided in one construction part, the injection pipes are provided with discharge holes radially from the central hole, and a recess is formed in the outer wall of the pipe where the discharge holes are opened. A hard plastic perforated pipe and an elastic valve arranged in the recessed portion of the perforated pipe and elastically deformed by an injection pressure to open the discharge hole were used. According to this means, the discharge hole is opened only by its own injection pressure, and the repair material can be injected. On the other hand, the concrete pressure in the construction part and the injection pressure from other injection pipes are applied to the valve. In addition, when suction pressure acts in the center hole of the self, the valve functions as a check valve, so that the repair material can be prevented from flowing in from other injection pipes.

なお、本発明の補修構造は、繊維補強セメント複合材料を使用した構築部であれば、柱や梁、壁等に適用することができるが、但し、適用される構築部(構造物の部材)はこれらに限定されない。即ち、柱梁架構の上下の梁間に両端を一体化するように挿入設置され、少なくともその一端部側の梁接合部が中央部分よりも平断面積を拡大されたスタブ状に形成され、該中央部分が上下の梁の層間変位に伴い柱梁架構よりも早期に降伏して振動エネルギーを吸収するダンパー部とした制振装置に適用することも可能である。   The repair structure of the present invention can be applied to pillars, beams, walls, etc., as long as it is a construction part using a fiber reinforced cement composite material. However, the construction part (member of structure) to be applied is applicable. Is not limited to these. That is, it is inserted and installed so that both ends are integrated between the upper and lower beams of the column beam frame, and at least one end of the beam joint is formed in a stub shape having a larger plane cross-sectional area than the central portion. The present invention can also be applied to a vibration damping device having a damper portion that absorbs vibration energy by yielding earlier than the column beam frame with the displacement between the upper and lower beams.

さらに、本発明の目的は、繊維補強セメント複合材料を使用した構造物の補修工法であって、前記繊維補強セメント複合材料を打設する際、事前の構造実験や耐震シミュレーション等で想定されるひび割れの発生箇所に、外部から補修材が注入可能な注入管路を埋設し、注入した補修材が前記ひび割れの表出亀裂から外部に漏出するまで補修材を注入するという工法によっても実現することができる。この手段によれば、ひび割れの表出亀裂から補修材が漏出したことをもって、構築部内のひび割れに補修材が充填されたことを視覚的に確認することができる。   Furthermore, an object of the present invention is a method of repairing a structure using a fiber reinforced cement composite material, and when the fiber reinforced cement composite material is placed, a crack assumed in a prior structural experiment or an earthquake resistance simulation is assumed. It can also be realized by a method of burying an injection pipe into which repair material can be injected from the outside at the location where the repair occurs, and injecting the repair material until the injected repair material leaks out from the cracked appearance crack. it can. According to this means, it is possible to visually confirm that the repair material has been filled into the cracks in the construction part when the repair material leaks from the exposed crack of the crack.

上述したように本発明によれば、繊維補強セメント複合材料の構築部内に補修材の注入管路を埋設してなるので、繊維補強セメント複合材料を使用したコンクリート構造物への適用が容易で、また補修も極めて簡単に行うことができる。さらに、それ単独または従来の制振装置と併用することで、繊維補強セメント複合材料による利点を踏襲したまま、さらに制振性および補修性に優れたコンクリート構造物の提供も可能となる。つまり、繊維補強セメント複合材料の利点であり、同時に欠点でもあった、エネルギー吸収のために発生するひび割れを容易に補修することができる。また、本発明によれば、一の構築部に複数の注入管路を設けることで、構築部内のひび割れを隈無く補修することができると共に、注入した補修材がひび割れを流路として他の注入管路に流れ込むこともなく、補修することができる。さらに、本発明では構築部に埋設した注入管路によって、補修材を直接構築部内に注入するものであるため、構築部の外観を汚さず、且つ、ひび割れの視認による損傷の程度を判断することも担保することができる。しかも、構築部の外表面に表出する亀裂から補修材が漏出するのを確認することで、構築部内のひび割れに補修材が行き渡ったことを視覚的に判断できるなど、その実用的効果は高い。   As described above, according to the present invention, since the injection conduit of the repair material is embedded in the construction part of the fiber reinforced cement composite material, it can be easily applied to a concrete structure using the fiber reinforced cement composite material. In addition, the repair can be performed very easily. Furthermore, by using it alone or in combination with a conventional vibration damping device, it is possible to provide a concrete structure that is further excellent in vibration damping and repairability while following the advantages of the fiber-reinforced cement composite material. That is, it is possible to easily repair the cracks generated due to energy absorption, which is an advantage of the fiber-reinforced cement composite material and at the same time a defect. Further, according to the present invention, by providing a plurality of injection pipes in one construction part, it is possible to repair the cracks in the construction part without any defects, and the repair material that has been injected is used as a flow path for other injections. It can be repaired without flowing into the pipeline. Furthermore, in the present invention, since the repair material is directly injected into the construction part by the injection pipe embedded in the construction part, the appearance of the construction part is not contaminated and the degree of damage due to visual recognition of the crack is determined. Can also be secured. Moreover, by confirming that the repair material leaks from the cracks that appear on the outer surface of the construction part, it is possible to visually determine that the repair material has spread over the cracks in the construction part, and its practical effect is high. .

以下、本発明の好ましい実施の形態を添付した図面に従って説明する。図1は、本発明の第一実施形態を示したもので、図3に示した制振装置に本発明構造を適用したものである。即ち、図1において、10は上下の梁の層間変位に伴い柱梁架構よりも早期に鉄筋が降伏して振動エネルギーを吸収することで制振装置のダンパーとして機能するエネルギー吸収部材、11a・11bはエネルギー吸収部材10の上下梁接合部が中央部分よりも平断面積を拡大されたスタブであり、これらは繊維補強セメント複合材料によって構築されると共に、鉄筋12を配筋している。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a first embodiment of the present invention, in which the structure of the present invention is applied to the vibration damping device shown in FIG. That is, in FIG. 1, reference numeral 10 denotes an energy absorbing member that functions as a damper of the vibration control device by absorbing the vibration energy by yielding the reinforcing bars yielding earlier than the column beam frame due to the interlayer displacement of the upper and lower beams. Is a stub in which the upper and lower beam joints of the energy absorbing member 10 have a larger plane cross-sectional area than the central portion, and these are constructed of a fiber-reinforced cement composite material and have reinforcing bars 12 arranged therein.

そして、本発明構造は、繊維補強セメント複合材料を打設する際、鉄筋12を配したエネルギー吸収部材10に、補修材の注入管路としての多孔パイプ13を、前もって行った構造実験などで想定されるひび割れの損傷が集中すると考えられる箇所に埋設して構成されている。多孔パイプ13は、部材10内のひび割れ発生に追随して伸縮する素材からなり、その一端はエネルギー吸収部材10内に埋設され、他端は注入口としてスタブ11a・11b外に開口した状態で制振装置内に埋設されている。なお、多孔パイプ13の両端とも外部に開口することも本発明に含む。   The structure of the present invention is envisaged in a structural experiment or the like in which a porous pipe 13 serving as a repair material injection pipe is provided in advance on an energy absorbing member 10 provided with a reinforcing bar 12 when a fiber-reinforced cement composite material is placed. It is embedded in the place where the damage of the crack to be done is thought to be concentrated. The perforated pipe 13 is made of a material that expands and contracts following the occurrence of cracks in the member 10, and one end of the perforated pipe 13 is embedded in the energy absorbing member 10, and the other end is controlled in a state of opening outside the stubs 11a and 11b as an inlet. It is embedded in the vibration device. In addition, it is included in this invention that both ends of the porous pipe 13 open outside.

また、多孔パイプ13は、この実施形態の場合、一の制振装置に対して上下左右にそれぞれ1本ずつ、合計4本が配されている。このように、一の構築部に複数本の多孔パイプ13を配する場合、注入するパイプ以外のパイプ内にひび割れを介して補修材が流入する恐れがあるため、この実施形態のように複数本の多孔パイプ13を配する場合には、図2に示すように、逆止弁として機能する弾性弁をもつ構成を採用することが好ましい。   In the case of this embodiment, a total of four perforated pipes 13 are arranged, one for each of the top, bottom, left and right with respect to one vibration damping device. Thus, when arranging a plurality of perforated pipes 13 in one construction part, there is a risk that the repair material may flow into the pipes other than the pipes to be injected via cracks. When the perforated pipe 13 is disposed, it is preferable to employ a configuration having an elastic valve that functions as a check valve, as shown in FIG.

即ち、図2に示す多孔パイプ13は、中心孔13aから放射状(本実施形態の場合、十文字)に排出孔13bを形成すると共に、前記排出孔13bが開口する管外壁に凹陥部13cを形成したパイプ本体13dを硬質プラスチックによって成型すると共に、前記凹陥部13cに配され、注入圧により弾性変形して前記排出孔13bを開弁する弾性弁13eをネオプレンゴム等の弾性素材によって成型している。なお、パイプ本体13dはコンクリート圧等によって中心孔13aが閉塞しないことを条件として上記硬質プラスチック以外の素材によっても成型することができる。また、弁13eの素材としてのネオプレンゴムは耐候性や耐薬品性に優れている合成ゴムの代表例であるが、素材として他の合成ゴムを採用することも可能である。   That is, the perforated pipe 13 shown in FIG. 2 has the discharge holes 13b formed radially from the center hole 13a (in the case of the present embodiment, a cross), and the recess 13c is formed on the outer wall of the pipe where the discharge holes 13b are opened. The pipe body 13d is molded from hard plastic, and an elastic valve 13e that is disposed in the recessed portion 13c and elastically deforms by injection pressure to open the discharge hole 13b is molded from an elastic material such as neoprene rubber. The pipe body 13d can be molded from a material other than the hard plastic as long as the center hole 13a is not blocked by concrete pressure or the like. Further, neoprene rubber as a material for the valve 13e is a representative example of a synthetic rubber having excellent weather resistance and chemical resistance, but other synthetic rubbers can be used as a material.

上述した本実施形態の多孔パイプ13によれば、コンクリートの打設圧によって弾性弁13eが排出孔13bに密着し、パイプ内へのコンクリート進入を防止する(図2(a)参照)。コンクリートは硬化後、収縮するため、これに埋設した多孔パイプ13の周囲には収縮間隙14が形成される(図2(b)参照)。そして、その埋設箇所周辺にひび割れ15が発生すれば、多孔パイプ13にセメントペーストやエポキシ樹脂などの補修材を一定値以上の圧力によって圧送して補修材の注入作業を行うのであるが、この注入圧によって弾性弁13eは半径方向外向きに弾性変形して、排出孔13bを開くと共に、排出孔13bから注出される補修材は前記収縮間隙14を介してひび割れ15に充填されるのである(図2(c)参照)。このとき、ひび割れの外表面に表出する亀裂から補修材が漏出するまで行うことによって、内在するひび割れに補修材が完全に充填されたと判断することができる。この間、仮に他の多孔パイプ13からひび割れ15を介して収縮間隙14に補修材が流入してきたとしても、その流入圧によって弾性弁13eは排出孔13bに密着して、当該排出孔13bを閉じるから、他の多孔パイプ13からの補修材が不用意に入り込むことはない。そして、補修材の注入後には、中心孔13aにかかる吸引圧によって弁13eが排出孔13bに密着して閉弁されるから、多孔パイプ13内に残留した補修材のみを吸引することができる(図2(d)参照)。ここで、図2に示すパイプ13の長さ方向に直交するように形成されたひび割れにも、同様のメカニズムで補修材が注入される。   According to the perforated pipe 13 of the present embodiment described above, the elastic valve 13e is brought into close contact with the discharge hole 13b by the concrete placing pressure, thereby preventing the concrete from entering the pipe (see FIG. 2A). Since concrete shrinks after hardening, a shrinkage gap 14 is formed around the perforated pipe 13 embedded in the concrete (see FIG. 2B). If cracks 15 occur around the buried portion, the repair material such as cement paste and epoxy resin is pumped into the perforated pipe 13 with a pressure higher than a certain value, and the repair material is injected. The elastic valve 13e is elastically deformed radially outward by the pressure to open the discharge hole 13b, and the repair material poured out from the discharge hole 13b is filled into the crack 15 through the contraction gap 14 (FIG. 2 (c)). At this time, it can be determined that the repair material is completely filled in the existing crack by carrying out until the repair material leaks from the crack that appears on the outer surface of the crack. During this time, even if the repair material flows into the contraction gap 14 from another porous pipe 13 through the crack 15, the elastic valve 13e is brought into close contact with the discharge hole 13b by the inflow pressure and closes the discharge hole 13b. The repair material from the other perforated pipes 13 will not inadvertently enter. After the repair material is injected, the valve 13e is brought into close contact with the discharge hole 13b by the suction pressure applied to the center hole 13a, so that only the repair material remaining in the perforated pipe 13 can be sucked ( (Refer FIG.2 (d)). Here, the repair material is also injected into the crack formed so as to be orthogonal to the length direction of the pipe 13 shown in FIG. 2 by the same mechanism.

なお、上記実施形態では、補修材の注入管路として弾性弁13eを有する多孔パイプ13を採用したが、このほか、単に管壁に排出孔を形成した有孔パイプを採用することもできる。さらに、パイプ状の発泡スチロールを配して繊維補強セメント複合材料が硬化後に、酸などで溶かし、パイプ状の空洞孔を形成してもよい。また、部材製造時に鋼棒を配し、凝結を始め完全に硬化するまでの間に引き抜き、パイプ状の空洞孔を形成してもよい。   In the above embodiment, the perforated pipe 13 having the elastic valve 13e is used as the repair material injection line. However, a perforated pipe in which a discharge hole is simply formed in the tube wall may be employed. Further, pipe-shaped foamed polystyrene may be provided, and after the fiber-reinforced cement composite material is cured, it may be melted with an acid or the like to form a pipe-shaped cavity hole. Further, a steel rod may be arranged at the time of manufacturing the member, and the pipe-shaped cavity hole may be formed by drawing out during the period from setting to complete hardening.

このように本実施形態によれば、繊維補強セメント複合材料を用いたエネルギー吸収部材が強風や大きな地震により損傷を受けて、ひび割れた場合に、パイプの注入口からセメントペーストやエポキシ樹脂などの補修材を注入し、部材内に埋設されたパイプを通り、そのパイプの孔から出た補修材がひび割れに入り込み、ひび割れ部分が補修材で満たされ、最後にひび割れが部材表面に表出する亀裂から補修材が漏出する。ひび割れの表出亀裂からの漏出により、部材内のひび割れに補修材が確実に充填されていることが確認される。なお、通常のコンクリートでは大きな変形時にはコンクリートが剥落してしまうので、部材内部にパイプを配して補修材を注入しようとしても、剥落したコンクリートはもとにもどらないため、この方法では補修できない。しかし、鉄筋を配した繊維補強セメント複合材料を使用したコンクリート構造物の場合、地震や強風等で大きく変形することによって、ひび割れ等が生じたとしても、繊維補強セメント複合材料は剥落しないため、本発明によって補修が可能である。また、ひび割れ等の損傷によって低下した構造物の耐力も本発明の補修技術によって回復させることができる。さらに、内在させたパイプに補修材を注入することでひび割れの確実な補修が可能となり、さらに外部からの補修ではないので部材表面を汚さないため損傷の程度を視覚的に判断できる性能は維持できる。   As described above, according to the present embodiment, when the energy absorbing member using the fiber reinforced cement composite material is damaged by a strong wind or a large earthquake and cracked, repair of cement paste, epoxy resin, etc. from the inlet of the pipe. Injecting material, passing through the pipe embedded in the member, the repair material coming out of the hole of the pipe enters the crack, the crack part is filled with the repair material, and finally from the crack where the crack appears on the member surface Repair material leaks out. It is confirmed that the repair material is surely filled in the cracks in the member due to leakage from the exposed cracks of the cracks. It should be noted that, since ordinary concrete will be peeled off when it is deformed to a large extent, even if a pipe is placed inside the member and a repair material is poured into it, the peeled concrete will not return to its original state. However, in the case of concrete structures using fiber reinforced cement composites with reinforcing bars, the fiber reinforced cement composite does not peel off even if cracks occur due to large deformation due to earthquakes or strong winds. It can be repaired according to the invention. Moreover, the proof stress of the structure reduced by damage, such as a crack, can also be recovered by the repair technique of the present invention. Furthermore, it is possible to reliably repair cracks by injecting a repair material into the pipe that is in the interior, and since it is not from the outside, the performance of visually judging the degree of damage can be maintained because the surface of the member is not soiled. .

なお、本構造は、繊維補強セメント複合材料を用いたエネルギー吸収部材(制振装置)だけでなく、適用可能な構築部として、繊維補強セメント複合材料を用いた柱、梁、壁などの部材においても、ひび割れの想定される箇所に前もって注入管路を配することで同様なひび割れの補修が可能である。   This structure is applicable not only to energy absorbing members (vibration control devices) using fiber reinforced cement composite materials but also to members such as columns, beams and walls using fiber reinforced cement composite materials as applicable construction parts. However, it is possible to repair the same crack by arranging the injection pipe in advance at the place where the crack is supposed.

本発明の一実施形態に係る補修構造を示した概略図Schematic showing a repair structure according to an embodiment of the present invention 同実施形態における多孔パイプと注入工程を示した説明図Explanatory drawing which showed the perforated pipe and injection | pouring process in the same embodiment 繊維補強セメント複合材料を使用した制振装置の概略説明図Schematic illustration of vibration control device using fiber reinforced cement composite material

符号の説明Explanation of symbols

10 エネルギー吸収部材
11a・11b スタブ
12 鉄筋
13 多孔パイプ
13b 排出孔
13e 弾性弁
14 収縮間隙
15 ひび割れ
DESCRIPTION OF SYMBOLS 10 Energy absorption member 11a * 11b Stub 12 Reinforcing bar 13 Porous pipe 13b Discharge hole 13e Elastic valve 14 Shrinkage gap 15 Crack

Claims (7)

繊維補強セメント複合材料を使用したコンクリート構造物の補修構造であって、前記繊維補強セメント複合材料の構築部に少なくとも一端が該構築部外に開口して注入口を確保した状態で埋設され、外部から前記構築部内で発生したひび割れに補修材が充填可能な注入管路を設けたことを特徴とするコンクリート構造物の補修構造。 A repair structure of a concrete structure using a fiber reinforced cement composite material, wherein at least one end is opened to the outside of the construction portion and an injection port is secured in the construction portion of the fiber reinforced cement composite material. A repair structure for a concrete structure, characterized in that an injection conduit that can be filled with a repair material is provided in a crack generated in the construction part. 注入管路は、管壁に複数の孔を設けた多孔パイプである請求項1記載のコンクリート構造物の補修構造。 The repair structure for a concrete structure according to claim 1, wherein the injection pipe is a perforated pipe having a plurality of holes in the pipe wall. 注入管路は、構築部に埋設した管状の発泡スチロールを繊維補強セメント複合材料の硬化後に、酸により溶出して形成される空洞孔である請求項1記載のコンクリート構造物の補修構造。 The repair structure for a concrete structure according to claim 1, wherein the injection conduit is a hollow hole formed by elution of a tubular foamed polystyrene embedded in a construction part with an acid after the fiber-reinforced cement composite material is cured. 注入管路は、構築部に埋設した鋼棒を繊維補強セメント複合材料の凝結後で、且つ、完全硬化前に前記構築部から引き抜いて形成される空洞孔である請求項1記載のコンクリート構造物の補修構造。 2. The concrete structure according to claim 1, wherein the injection pipe is a hollow hole formed by drawing a steel bar embedded in the construction part from the construction part after setting of the fiber-reinforced cement composite material and before complete hardening. Repair structure. 一の構築部に複数の注入管路を設けるものであって、各注入管路は、中心孔から放射状に排出孔を設けると共に、前記排出孔が開口する管外壁に凹陥部を形成した硬質プラスチック製の多孔パイプと、該多孔パイプの前記凹陥部に配され、注入圧により弾性変形して前記排出孔を開く弾性弁とからなる請求項1記載のコンクリート構造物の補修構造。 A hard plastic in which a plurality of injection pipes are provided in one construction part, each of the injection pipes is provided with a discharge hole radially from a central hole, and a concave portion is formed on the outer wall of the pipe where the discharge hole opens. The repair structure for a concrete structure according to claim 1, comprising a perforated pipe made of metal and an elastic valve disposed in the recessed portion of the perforated pipe and elastically deformed by an injection pressure to open the discharge hole. 柱梁架構の上下の梁間に両端を一体化するように挿入設置され、少なくともその一端部側の梁接合部が中央部分よりも平断面積を拡大されたスタブ状に形成され、該中央部分が上下の梁の層間変位に伴い柱梁架構よりも早期に降伏して振動エネルギーを吸収するダンパー部とした制振装置であって、少なくとも前記ダンパー部を繊維補強セメント複合材料により構築すると共に、請求項1から5の何れかの補修構造を設けたことを特徴とするコンクリート構造物の制振装置。 Inserted and installed so that both ends are integrated between the upper and lower beams of the column beam frame, at least one end of the beam joint is formed in a stub shape having a larger plane cross-sectional area than the central portion, and the central portion is A damping device that is a damper part that yields earlier than the column beam frame and absorbs vibration energy in accordance with the displacement between the upper and lower beams, and at least the damper part is constructed of a fiber-reinforced cement composite material, and is claimed. A vibration damping device for a concrete structure, wherein the repair structure according to any one of items 1 to 5 is provided. 繊維補強セメント複合材料を使用した構造物の補修工法であって、前記繊維補強セメント複合材料を打設する際、予め想定されるひび割れの発生箇所に、少なくとも一端を該ひび割れ想定箇所外に開口して注入口を確保した状態で埋設され、外部からひび割れに補修材が充填可能な注入管路を埋設しておき、ひび割れが生じた場合、該ひび割れの表出亀裂から補充材が漏出するまで補修材の注入を行うことを特徴としたコンクリート構造物の補修工法。 A method of repairing a structure using a fiber-reinforced cement composite material, wherein when the fiber-reinforced cement composite material is placed, at least one end is opened outside the assumed crack location at a location where a crack is expected in advance. An injection pipe that is buried with a filling port and can be filled with a repair material from the outside is buried, and if a crack occurs, repair until the replenishment material leaks from the crack that appears. A concrete structure repair method characterized by injecting materials.
JP2006132492A 2006-05-11 2006-05-11 Repair structure of concrete structure, vibration control device and repair method Active JP4603506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006132492A JP4603506B2 (en) 2006-05-11 2006-05-11 Repair structure of concrete structure, vibration control device and repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006132492A JP4603506B2 (en) 2006-05-11 2006-05-11 Repair structure of concrete structure, vibration control device and repair method

Publications (2)

Publication Number Publication Date
JP2007303149A true JP2007303149A (en) 2007-11-22
JP4603506B2 JP4603506B2 (en) 2010-12-22

Family

ID=38837313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132492A Active JP4603506B2 (en) 2006-05-11 2006-05-11 Repair structure of concrete structure, vibration control device and repair method

Country Status (1)

Country Link
JP (1) JP4603506B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109235384A (en) * 2018-10-31 2019-01-18 蓝色海洋(天津)工程技术有限公司 A kind of power plant's flood discharging tunnel repair apparatus and its repair layer
CN110359456A (en) * 2019-08-16 2019-10-22 中国电建集团成都勘测设计研究院有限公司 Assembling provisions for grouting applied to cooling water pipe peripheral temperature seam
CN113356087A (en) * 2021-06-01 2021-09-07 中铁十九局集团有限公司 Bridge crack repairing method
CN116335267A (en) * 2023-05-31 2023-06-27 德州泽烁建筑工程有限公司 Assembled building structure system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860781A (en) * 1994-08-15 1996-03-05 Shimizu Corp Floor board for building and execution method thereof
JPH11241417A (en) * 1998-02-23 1999-09-07 Hayakawa Rubber Co Ltd Repairing material injection hose and repairing method of concrete structure
JP2002047799A (en) * 2000-08-04 2002-02-15 Taisei Corp Constructing method of concrete structure
JP2005068877A (en) * 2003-08-26 2005-03-17 Kajima Corp Concrete pipe forming method and concrete skeleton
JP2005299187A (en) * 2004-04-09 2005-10-27 Kajima Corp Vibration control damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860781A (en) * 1994-08-15 1996-03-05 Shimizu Corp Floor board for building and execution method thereof
JPH11241417A (en) * 1998-02-23 1999-09-07 Hayakawa Rubber Co Ltd Repairing material injection hose and repairing method of concrete structure
JP2002047799A (en) * 2000-08-04 2002-02-15 Taisei Corp Constructing method of concrete structure
JP2005068877A (en) * 2003-08-26 2005-03-17 Kajima Corp Concrete pipe forming method and concrete skeleton
JP2005299187A (en) * 2004-04-09 2005-10-27 Kajima Corp Vibration control damper

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109235384A (en) * 2018-10-31 2019-01-18 蓝色海洋(天津)工程技术有限公司 A kind of power plant's flood discharging tunnel repair apparatus and its repair layer
CN109235384B (en) * 2018-10-31 2024-04-19 蓝色海洋(天津)工程技术有限公司 Flood discharge hole repair equipment for power plant and repair layer thereof
CN110359456A (en) * 2019-08-16 2019-10-22 中国电建集团成都勘测设计研究院有限公司 Assembling provisions for grouting applied to cooling water pipe peripheral temperature seam
CN113356087A (en) * 2021-06-01 2021-09-07 中铁十九局集团有限公司 Bridge crack repairing method
CN116335267A (en) * 2023-05-31 2023-06-27 德州泽烁建筑工程有限公司 Assembled building structure system
CN116335267B (en) * 2023-05-31 2023-08-29 德州泽烁建筑工程有限公司 Assembled building structure system

Also Published As

Publication number Publication date
JP4603506B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
CN101503881B (en) Method for reinforcing underwater structure by fiber-reinforced composite material grid ribs
CN109083295B (en) Function-restorable coupled shear wall structure with replaceable parts
CN104878948B (en) A kind of reinforcement means of rc-frame-beam hogging moment area
CN104005567A (en) Ultra-high-performance concrete reinforced concrete column with fiber reinforced polymers wound around steel pipe
SG176759A1 (en) Hybrid composite beam and beam system
CN104514572A (en) Rod body connecting device, anchor rod and manufacturing method thereof
KR100743419B1 (en) A reinforced concrete column with internally confined hollow
JP4603506B2 (en) Repair structure of concrete structure, vibration control device and repair method
KR100878180B1 (en) Concrete filled fiber reinforced plastics composite column
KR102219654B1 (en) Reinforcing Method for Column using FRP and CRC board
JP5048516B2 (en) Carbon fiber reinforced plastic structure and housing formed from this carbon fiber reinforced plastic structure
KR100381443B1 (en) Reinforcing structure and a reinforcing method for joints among structural members
KR102218286B1 (en) Reinforcing Method for Column using FRP and CRC board
CN201087507Y (en) Pre-stress fabric plastic rib group anchor
Shioya et al. An innovative hybrid timber structure in Japan: Performance of column and beam
CN110469052A (en) Steel-concrete composite beam connector, steel-concrete composite beam and manufacturing method
Ju et al. Non-compression X-bracing system using CF anchors for seismic strengthening of RC structures
CN114108810A (en) Composite enhanced steel sleeve joint for assembling FRP pipe truss and installation method
Li et al. Cyclic behavior of FRP concrete bridge pier frames
CN1987013A (en) Steel tube binding steel rib high strength concrete pole
KR100794554B1 (en) Member for reinforcing adhesive-power, repairing section of concrete structure, and method for repairing section of it using the same
JP4189292B2 (en) Shear resistance type fixing device
Vaghani et al. Advanced retrofitting techniques for RC building: a state of an art review
CN114775783B (en) Assembled steel reinforced concrete column-PVC-FRP pipe reinforced concrete beam connection node
CN204676776U (en) Damaged replaceable composite column structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4603506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250