JP2007302945A - Carburizing apparatus - Google Patents

Carburizing apparatus Download PDF

Info

Publication number
JP2007302945A
JP2007302945A JP2006132677A JP2006132677A JP2007302945A JP 2007302945 A JP2007302945 A JP 2007302945A JP 2006132677 A JP2006132677 A JP 2006132677A JP 2006132677 A JP2006132677 A JP 2006132677A JP 2007302945 A JP2007302945 A JP 2007302945A
Authority
JP
Japan
Prior art keywords
furnace
dew point
temperature
gas
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006132677A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamaguchi
和嘉 山口
Showa Tachisato
暁華 立里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Thermo Systems Corp
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2006132677A priority Critical patent/JP2007302945A/en
Priority to CN 200610128957 priority patent/CN101070588A/en
Publication of JP2007302945A publication Critical patent/JP2007302945A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carburizing apparatus capable of adequately maintaining the quality of a work by correctly calculating CP (Carbon Potential) of the in-furnace atmosphere having no composition change without any error, and adjusting the feed of an enriched gas by the calculated CP. <P>SOLUTION: A gas cooler 6, a filter 7, a dew point sensor 8 and a control unit 11 are provided on an exhaust pipe 5 of a carburizing device 10. The gas cooler 6 cools the atmosphere gas exhausted in the exhaust pipe 5 from the inside of a furnace 1 to the measurement temperature of about 60°C. The filter 7 removes the dust of the atmosphere gas flowing in the exhaust pipe 5. The dew point sensor 8 measures the dew point temperature of the atmosphere gas with its dust removed after being cooled to the measurement temperature in the exhaust pipe 5. The control unit 11 calculates CP of the atmosphere gas in the furnace 1 based on the dew point temperature of the atmosphere gas measured by the dew point sensor 8 by an operation unit 12, and the temperature of the atmosphere gas in the furnace 1 measured by the temperature sensor 9, and adjusts the feed of the enriched gas based on CP by an adjustment unit 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、機械部品等の鋼部材等の表面を硬化させるための浸炭処理を行う浸炭装置に関する。   The present invention relates to a carburizing apparatus that performs a carburizing process for hardening the surface of a steel member or the like such as a machine part.

鋼部材等の表面に対する浸炭処理では、浸炭炉内の浸炭性雰囲気ガス(以下、炉内雰囲気ともいう。)のカーボンポテンシャル(以下、CPという。)が処理後の被処理品の品質に大きな影響を与える。このため、浸炭装置では、浸炭処理中に炉内雰囲気のCPが制御される。この制御では、炉内雰囲気の酸素濃度、二酸化炭素濃度、水分量又はメタンガス濃度等を測定し、この測定結果から炉内雰囲気のCP値が算出され、算出結果に応じて炉内雰囲気に対するエンリッチガスの供給量が調整される。   In carburizing treatment on the surface of steel members, etc., the carbon potential (hereinafter referred to as CP) of the carburizing atmosphere gas in the carburizing furnace (hereinafter also referred to as furnace atmosphere) has a significant effect on the quality of the processed product after processing. give. For this reason, in the carburizing apparatus, the CP of the furnace atmosphere is controlled during the carburizing process. In this control, the oxygen concentration, carbon dioxide concentration, moisture content, methane gas concentration, etc. of the furnace atmosphere are measured, and the CP value of the furnace atmosphere is calculated from this measurement result, and the enriched gas for the furnace atmosphere is calculated according to the calculation result. The supply amount is adjusted.

従来の浸炭装置では、制御の自動化のために、炉内雰囲気の酸素濃度又は二酸化炭素濃度の測定結果からCP値を算出する方法が主に採用されている(例えば、特許文献1参照。)。炉内雰囲気の酸素濃度を測定する場合には、例えばジルコニアセンサが炉内に挿入される。炉内雰囲気の二酸化炭素濃度を測定する場合には、炉内に連通したサンプリング用のパイプを経由して炉内雰囲気を計器に導く。
特許第2592517号公報
In the conventional carburizing apparatus, a method of calculating the CP value from the measurement result of the oxygen concentration or the carbon dioxide concentration in the furnace atmosphere is mainly employed for control automation (for example, see Patent Document 1). When measuring the oxygen concentration in the furnace atmosphere, for example, a zirconia sensor is inserted into the furnace. When measuring the carbon dioxide concentration in the furnace atmosphere, the furnace atmosphere is guided to a meter via a sampling pipe communicating with the furnace.
Japanese Patent No. 2592517

しかしながら、炉内に挿入したセンサによって炉内雰囲気の酸素濃度を測定する方法では、炉内に挿入されたセンサの電極を構成するプラチナの触媒作用により、センサ近傍では炉内に供給されたエンリッチガスの分解が促進される。このため、センサ内では酸素濃度が炉内の平均酸素濃度よりも低くなり、センサの測定値から算出されたCP値が実際の炉内雰囲気のCP値よりも高くなる問題がある。   However, in the method of measuring the oxygen concentration in the furnace atmosphere with the sensor inserted in the furnace, the enriched gas supplied into the furnace in the vicinity of the sensor due to the catalytic action of platinum constituting the electrode of the sensor inserted in the furnace. Decomposition is promoted. For this reason, there is a problem that the oxygen concentration in the sensor is lower than the average oxygen concentration in the furnace, and the CP value calculated from the measured value of the sensor is higher than the CP value in the actual furnace atmosphere.

また、炉内からサンプリング用のパイプを経由して計器に導かれた炉内雰囲気の二酸化炭素濃度を測定する方法では、炉内雰囲気の変化に対する制御の応答性が悪い。さらに、サンプリング用のパイプを通過する間に炉内雰囲気の温度が徐々に低下し、それに伴って炉内雰囲気の組成が変化する。このため、炉内雰囲気のCP値を正確に測定することができない問題がある。   Further, in the method of measuring the carbon dioxide concentration in the furnace atmosphere guided to the instrument from the furnace via the sampling pipe, the control responsiveness to the change in the furnace atmosphere is poor. Furthermore, the temperature of the furnace atmosphere gradually decreases while passing through the sampling pipe, and the composition of the furnace atmosphere changes accordingly. For this reason, there is a problem that the CP value of the furnace atmosphere cannot be measured accurately.

この発明の目的は、排気管内を排出される炉内雰囲気の冷却後の露点を測定し、測定した露点からCP値を算出することにより、組成が変化していない炉内雰囲気のCP値を誤差を伴うことなく正確に算出することができ、被処理品の適正な品質を確保及び維持することができる浸炭装置を提供することにある。   An object of the present invention is to measure the dew point after cooling of the furnace atmosphere discharged from the exhaust pipe, and calculate the CP value from the measured dew point, thereby obtaining an error in the CP value of the furnace atmosphere whose composition has not changed. It is an object of the present invention to provide a carburizing apparatus that can accurately calculate without being accompanied by, and can ensure and maintain an appropriate quality of a processed product.

上記の課題を解決するために、この発明の浸炭装置は、炉、冷却手段、露点センサ、温度センサ、調節器及び制御手段を備えている。炉は、浸炭性雰囲気中で被処理品を収納して所定の浸炭温度に昇温される。冷却手段は、炉内雰囲気を炉外で所定の測定温度に冷却する。露点センサは、冷却手段によって冷却された炉内雰囲気の露点温度を測定する。温度センサは、炉内の温度を測定する。調節器は、炉内雰囲気に対するエンリッチガスの導入量を調節する。制御手段は、露点センサ及び温度センサの測定結果から炉内雰囲気のCPを算出し、算出したCPに基づいて調節器によるエンリッチガスの導入量を増減させる。   In order to solve the above problems, the carburizing apparatus of the present invention includes a furnace, a cooling means, a dew point sensor, a temperature sensor, a regulator, and a control means. The furnace stores the article to be processed in a carburizing atmosphere and is heated to a predetermined carburizing temperature. The cooling means cools the atmosphere in the furnace to a predetermined measurement temperature outside the furnace. The dew point sensor measures the dew point temperature of the furnace atmosphere cooled by the cooling means. The temperature sensor measures the temperature in the furnace. The adjuster adjusts the amount of enriched gas introduced into the furnace atmosphere. The control means calculates the CP of the furnace atmosphere from the measurement results of the dew point sensor and the temperature sensor, and increases or decreases the amount of rich gas introduced by the regulator based on the calculated CP.

冷却手段及び露点センサは、例えば、炉内雰囲気の排気経路を構成する排気管中に順に配置される。冷却手段及び露点センサは、排気管に設けた分岐管に配置することもできる。   The cooling means and the dew point sensor are sequentially arranged in, for example, an exhaust pipe constituting an exhaust path of the furnace atmosphere. The cooling means and the dew point sensor can be arranged in a branch pipe provided in the exhaust pipe.

また、排気経路中の冷却手段と露点センサとの間には、炉内雰囲気中の塵埃を除去するフィルタがさらに備えられる場合がある。   Further, a filter for removing dust in the furnace atmosphere may be further provided between the cooling means in the exhaust path and the dew point sensor.

この発明の浸炭装置では、炉内で所定の浸炭温度に昇温されて浸炭処理に用いられる炉内雰囲気が、炉外で所定の測定温度に冷却された後に露点センサによる露点温度の測定を受ける。測定された露点温度と炉内温度とから算出された炉内雰囲気のCPに基づいて炉内雰囲気に導入されるエンリッチガスの量が増減される。   In the carburizing apparatus according to the present invention, the temperature inside the furnace is increased to a predetermined carburizing temperature in the furnace and the atmosphere in the furnace used for the carburizing process is cooled to the predetermined measuring temperature outside the furnace, and then the dew point temperature is measured by the dew point sensor. . The amount of enriched gas introduced into the furnace atmosphere is increased or decreased based on the CP of the furnace atmosphere calculated from the measured dew point temperature and the furnace temperature.

したがって、炉内雰囲気は、浸炭温度から測定温度まで急冷されることで反応が凍結し、炉内での組成が保たれたままの状態で露点温度の測定を受ける。浸炭処理に用いられている状態の炉内雰囲気の露点温度が誤差なく測定され、正確なCPが算出される。そして、正確なCPに基づく適正な量のエンリッチガスが炉内に導入される。   Accordingly, the furnace atmosphere is rapidly cooled from the carburizing temperature to the measurement temperature, so that the reaction freezes and the dew point temperature is measured while the composition in the furnace is maintained. The dew point temperature of the atmosphere in the furnace used for carburizing treatment is measured without error, and an accurate CP is calculated. An appropriate amount of enriched gas based on accurate CP is then introduced into the furnace.

冷却手段及び露点センサを排気管の排気経路中に順に配置することで、露点温度を測定するためのサンプリングパイプが不要になる。   By arranging the cooling means and the dew point sensor in order in the exhaust path of the exhaust pipe, a sampling pipe for measuring the dew point temperature becomes unnecessary.

また、フィルタを排気経路中の冷却手段と露点センサとの間に配置することで、炉内雰囲気の露点温度が、塵埃の影響を受けることなく正確に測定される。   Further, by disposing the filter between the cooling means in the exhaust path and the dew point sensor, the dew point temperature of the furnace atmosphere can be accurately measured without being affected by dust.

この発明の浸炭装置によれば、浸炭処理に用いられている炉内雰囲気の露点温度を誤差なく測定することができ、正確なCPに基づく適正な量のエンリッチガスを炉内に導入することができる。これによって、被処理品の適正な品質を確保及び維持することができる。   According to the carburizing apparatus of the present invention, the dew point temperature of the furnace atmosphere used for the carburizing process can be measured without error, and an appropriate amount of enriched gas based on accurate CP can be introduced into the furnace. it can. Thereby, it is possible to ensure and maintain the proper quality of the product to be processed.

また、冷却手段及び露点センサを排気管の排気経路中に順に配置することができ、露点温度を測定するためのサンプリングパイプを別途備える必要がなく、測定の応答性がよくなることに加え、装置の構成を簡略化することができる。   In addition, the cooling means and the dew point sensor can be arranged in order in the exhaust path of the exhaust pipe, and it is not necessary to separately provide a sampling pipe for measuring the dew point temperature. The configuration can be simplified.

さらに、フィルタを排気経路中の冷却手段と露点センサとの間に配置することができ、炉内雰囲気の露点温度をより正確に測定することができる。   Furthermore, the filter can be disposed between the cooling means in the exhaust path and the dew point sensor, and the dew point temperature of the furnace atmosphere can be measured more accurately.

図1は、この発明の実施形態に係る浸炭装置の概略の構成を示す図である。浸炭装置10は、炉1、ヒータ2、ファン3、導入管4、排気管5、ガスクーラ6、フィルタ7、露点センサ8、温度センサ9、制御部11、供給管14、モータバルブ15を備えている。   FIG. 1 is a diagram showing a schematic configuration of a carburizing apparatus according to an embodiment of the present invention. The carburizing apparatus 10 includes a furnace 1, a heater 2, a fan 3, an introduction pipe 4, an exhaust pipe 5, a gas cooler 6, a filter 7, a dew point sensor 8, a temperature sensor 9, a control unit 11, a supply pipe 14, and a motor valve 15. Yes.

炉1は、内部に浸炭処理を施されるべき被処理品20を収納する。ヒータ2は、炉1内の温度を例えば930℃程度の浸炭温度に昇温する。ファン3は、炉1内の雰囲気ガスを撹拌して均一化する。導入管4は、炉1内に浸炭用のキャリアガスにエンリッチガスを混合した浸炭性雰囲気ガスを導入する。キャリアガスとしては、例えば、RXガスが用いられる。エンリッチガスとしては、例えば、メタンガス、ブタンガス又はエタンガス等の炭化水素ガスが用いられる。   The furnace 1 accommodates an article to be processed 20 to be carburized. The heater 2 raises the temperature in the furnace 1 to a carburizing temperature of about 930 ° C., for example. The fan 3 agitates and homogenizes the atmospheric gas in the furnace 1. The introduction pipe 4 introduces a carburizing atmosphere gas obtained by mixing an enriched gas into a carburizing carrier gas into the furnace 1. For example, RX gas is used as the carrier gas. As the enriched gas, for example, hydrocarbon gas such as methane gas, butane gas or ethane gas is used.

排気管5は、炉1内の雰囲気ガスを外部に排出する際の排気経路を構成する。ガスクーラ6、フィルタ7及び露点センサ8は、排気管5が構成する排気経路に沿ってこの順に配置される。ガスクーラ6は、この発明の冷却手段に相当し、炉1内から排気管5内に排出された雰囲気ガスを、雰囲気ガスの露点温度以上で、かつ露点センサ8の耐熱温度(例えば60℃程度)以下の範囲内の温度(以下、測定温度という。)に冷却する。フィルタ7は、排気管5内を流れる雰囲気ガスの塵埃を除去する。露点センサ8は、排気管5内で測定温度に冷却された後に塵埃を除去された雰囲気ガスの露点温度を測定する。   The exhaust pipe 5 constitutes an exhaust path for discharging the atmospheric gas in the furnace 1 to the outside. The gas cooler 6, the filter 7 and the dew point sensor 8 are arranged in this order along the exhaust path formed by the exhaust pipe 5. The gas cooler 6 corresponds to the cooling means of the present invention, and the atmospheric gas discharged from the furnace 1 into the exhaust pipe 5 is equal to or higher than the dew point temperature of the atmospheric gas and the heat resistance temperature of the dew point sensor 8 (for example, about 60 ° C.). Cool to a temperature within the following range (hereinafter referred to as the measured temperature). The filter 7 removes atmospheric gas dust flowing in the exhaust pipe 5. The dew point sensor 8 measures the dew point temperature of the atmospheric gas from which dust has been removed after cooling to the measurement temperature in the exhaust pipe 5.

図2は、この発明の別の実施形態に係る浸炭装置の要部の構成を示す図である。この実施形態の浸炭装置21では、排気管5の一部に排気管5よりも小径の分岐管51を備え、この分岐管51にガスクーラ61、フィルタ71及び露点センサ8をこの順に配置している。分岐管51には、図示しない排気吸引手段が設けられており、排気管5内の雰囲気ガスの一部を分岐管51内に導く。   FIG. 2 is a diagram showing a configuration of a main part of a carburizing apparatus according to another embodiment of the present invention. In the carburizing apparatus 21 of this embodiment, a branch pipe 51 having a smaller diameter than the exhaust pipe 5 is provided in a part of the exhaust pipe 5, and the gas cooler 61, the filter 71, and the dew point sensor 8 are arranged in this order in the branch pipe 51. . The branch pipe 51 is provided with an exhaust suction means (not shown) and guides part of the atmospheric gas in the exhaust pipe 5 into the branch pipe 51.

分岐管51内を流れる雰囲気ガスの流量は排気管5内の流量よりも少ないため、ガスクーラ61及びフィルタ71の容量を小さくすることができ、コストダウンを図ることができる。   Since the flow rate of the atmospheric gas flowing in the branch pipe 51 is smaller than the flow rate in the exhaust pipe 5, the capacities of the gas cooler 61 and the filter 71 can be reduced, and the cost can be reduced.

温度センサ9は、炉1内の雰囲気ガスの温度を測定する。供給管14は、導入管4に接続されている。モータバルブ15は、この発明の調節器に相当し、供給管14及び導入管4を経由して炉1内に供給するエンリッチガスの供給量を調節する。   The temperature sensor 9 measures the temperature of the atmospheric gas in the furnace 1. The supply pipe 14 is connected to the introduction pipe 4. The motor valve 15 corresponds to a regulator of the present invention, and regulates the supply amount of enriched gas supplied into the furnace 1 via the supply pipe 14 and the introduction pipe 4.

制御部11は、演算部12及び調節部13を備えている。演算部12には、露点センサ8及び温度センサ9の測定結果が入力される。演算部12は、露点センサ8が測定した雰囲気ガスの露点温度に基づいて炉1内の雰囲気ガスの水分量を求める。なお、雰囲気ガスの水分量は露点センサ8から直接出力される場合もある。さらに、この水分量と炉1内の雰囲気ガスの温度とに基づいてCPを算出し、算出したCPを調節部13に出力する。   The control unit 11 includes a calculation unit 12 and an adjustment unit 13. Measurement results of the dew point sensor 8 and the temperature sensor 9 are input to the calculation unit 12. The calculation unit 12 obtains the moisture content of the atmospheric gas in the furnace 1 based on the dew point temperature of the atmospheric gas measured by the dew point sensor 8. Note that the moisture content of the atmospheric gas may be directly output from the dew point sensor 8. Furthermore, CP is calculated based on the moisture content and the temperature of the atmospheric gas in the furnace 1, and the calculated CP is output to the adjusting unit 13.

演算部12は、CPを一例として、
CP=As(K3/K1)(PH2・PCO/PH2O )・・・(1)
によって算出する。上記1式において、K1は反応[C+CO2 =2CO]の平衡定数、K3は反応[CO2 +H2 =CO+H2 O]の平衡定数、Asは被処理品20の温度センサ9によって測定された温度におけるオーステナイトの飽和カーボン濃度、PH2及びPCOは雰囲気ガス中の水素と一酸化炭素との分圧、PH2O は雰囲気ガス中の水分量(水蒸気分圧)である。
The calculation unit 12 takes CP as an example.
CP = As (K3 / K1) (P H2 · P CO / P H2O ) (1)
Calculated by In the above equation 1, K1 is the equilibrium constant of the reaction [C + CO 2 = 2CO], K3 is the equilibrium constant of the reaction [CO 2 + H 2 = CO + H 2 O], and As is the temperature measured by the temperature sensor 9 of the workpiece 20. The saturated carbon concentration of austenite, P H2 and P CO are the partial pressures of hydrogen and carbon monoxide in the atmospheric gas, and P H2O is the moisture content (water vapor partial pressure) in the atmospheric gas.

雰囲気ガス中の水素と一酸化炭素との分圧PH2,PCOは、キャリアガスの組成から既知である。炉1内の雰囲気温度におけるオーステナイトの飽和カーボン濃度Asは、既知である。雰囲気ガス中の水分量PH2O は、露点センサ8が測定した露点温度から求められる。平衡定数K1,K3は、温度センサ9が測定した雰囲気ガスの温度から周知の計算式によって求められる。したがって、雰囲気ガスの露点温度を露点センサ8で測定し、炉1内の雰囲気ガスの温度を温度センサ9で測定することで、雰囲気ガスのCPを算出できる。 The partial pressures P H2 and P CO of hydrogen and carbon monoxide in the atmospheric gas are known from the composition of the carrier gas. The saturated carbon concentration As of austenite at the atmospheric temperature in the furnace 1 is known. The amount of moisture P H2O in the atmospheric gas is obtained from the dew point temperature measured by the dew point sensor 8. The equilibrium constants K1 and K3 are obtained by a well-known calculation formula from the temperature of the atmospheric gas measured by the temperature sensor 9. Therefore, by measuring the dew point temperature of the atmospheric gas with the dew point sensor 8 and measuring the temperature of the atmospheric gas in the furnace 1 with the temperature sensor 9, the CP of the atmospheric gas can be calculated.

露点センサ8が露点温度を測定する雰囲気ガスは、炉1内から排気管5内に排出された直後にガスクーラ6によって雰囲気ガスの露点温度以上で、かつ露点センサ8の耐熱温度(例えば60℃程度)以下の測定温度に冷却され、雰囲気ガスの反応が凍結する。このため、炉1内の雰囲気ガスは組成が殆ど変化していない状態で露点センサ8の配置位置に達する。露点センサ8は、炉1内に存在している状態の雰囲気ガスの露点温度を正確に測定することができる。   The atmospheric gas whose dew point sensor 8 measures the dew point temperature is equal to or higher than the dew point temperature of the atmospheric gas by the gas cooler 6 immediately after being discharged from the furnace 1 into the exhaust pipe 5 and the heat resistance temperature of the dew point sensor 8 (for example, about 60 ° C.). ) Cooled to the following measurement temperature, the reaction of the atmospheric gas freezes. For this reason, the atmospheric gas in the furnace 1 reaches the arrangement position of the dew point sensor 8 in a state where the composition hardly changes. The dew point sensor 8 can accurately measure the dew point temperature of the atmospheric gas existing in the furnace 1.

これによって、図3に示すように、酸素濃度又は二酸化炭素濃度の測定結果を用いて算出した場合に比較して、露点センサ8が測定した露点温度に応じた水分量を用いてCPを正確に測定することができる。   As a result, as shown in FIG. 3, compared to the case of calculation using the measurement result of the oxygen concentration or carbon dioxide concentration, the CP is accurately determined using the moisture amount according to the dew point temperature measured by the dew point sensor 8. Can be measured.

調節部13は、演算部12から入力されたCPが、例えば、0.8%である設定値に一致するように、モータバルブ15によるエンリッチガスの供給量を調節する。演算部12から調節部13に入力されるCPは上述のように炉1内の雰囲気ガスのCPを正確に掲出した値であるため、調節部13がエンリッチガスの供給量を調節することによって炉1内の雰囲気ガスのCPを正確に設定値に一致させることができる。   The adjustment unit 13 adjusts the supply amount of the enriched gas by the motor valve 15 so that the CP input from the calculation unit 12 matches a set value that is, for example, 0.8%. Since the CP input from the calculation unit 12 to the adjustment unit 13 is a value that accurately displays the CP of the atmospheric gas in the furnace 1 as described above, the adjustment unit 13 adjusts the supply amount of the enriched gas to adjust the furnace. The CP of the atmospheric gas in 1 can be made to exactly match the set value.

この結果、炉1内で被処理品20に対して適正な浸炭処理を施すことができ、被処理品20の適正な品質を確保及び維持することができる。   As a result, it is possible to perform an appropriate carburizing process on the article to be processed 20 in the furnace 1, and to ensure and maintain an appropriate quality of the article to be processed 20.

上述の実施形態の説明は、すべての点で例示であって制限的なものでないと考えられるべきである。本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。   The above description of the embodiment should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and includes all modifications within the scope and meaning equivalent to the terms of the claims.

この発明の実施形態に係る浸炭装置の概略の構成を示す図である。It is a figure showing the composition of the outline of the carburizing device concerning the embodiment of this invention. この発明の別の実施形態に係る浸炭装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the carburizing apparatus which concerns on another embodiment of this invention. 露点センサ8が測定した露点温度に応じた水分量を用いてCPを測定した結果と酸素濃度及び二酸化炭素濃度の測定結果を用いて算出した場合との比較を示す図である。It is a figure which shows the comparison with the case where it calculates using the measurement result of oxygen concentration and a carbon dioxide concentration, and the result of having measured CP using the moisture content according to the dew point temperature which the dew point sensor 8 measured.

符号の説明Explanation of symbols

1 炉
2 ヒータ
3 ファン
4 導入管
5 排気管
6 ガスクーラ
7 フィルタ
8 露点センサ
9 温度センサ
10 浸炭装置
11 制御部
12 演算部
13 調節部
14 供給管
15 モータバルブ
20 被処理品
51 分岐管
DESCRIPTION OF SYMBOLS 1 Furnace 2 Heater 3 Fan 4 Introductory pipe 5 Exhaust pipe 6 Gas cooler 7 Filter 8 Dew point sensor 9 Temperature sensor 10 Carburizing device 11 Control part 12 Calculation part 13 Control part 14 Supply pipe 15 Motor valve 20 Processed object 51 Branch pipe

Claims (4)

浸炭性雰囲気中で被処理品を収納して所定の浸炭温度に昇温される炉と、前記炉内の雰囲気ガスを前記炉外で所定の測定温度に冷却する冷却手段と、前記冷却手段によって冷却された雰囲気ガスの露点温度を測定する露点センサと、前記炉内の温度を測定する温度センサと、前記炉内の雰囲気ガスに対するエンリッチガスの導入量を調節する調節器と、前記露点センサ及び温度センサの測定結果から前記炉内の雰囲気ガスのカーボンポテンシャルを算出し、算出したカーボンポテンシャルに基づいて前記調節器によるエンリッチガスの導入量を増減させる制御手段と、を備えたことを特徴とする浸炭装置。   A furnace in which the article to be treated is stored in a carburizing atmosphere and heated to a predetermined carburizing temperature; a cooling means for cooling the atmospheric gas in the furnace to a predetermined measurement temperature outside the furnace; and the cooling means A dew point sensor for measuring the dew point temperature of the cooled atmospheric gas, a temperature sensor for measuring the temperature in the furnace, a regulator for adjusting the amount of the enriched gas introduced into the atmospheric gas in the furnace, the dew point sensor, and Control means for calculating the carbon potential of the atmospheric gas in the furnace from the measurement result of the temperature sensor, and increasing or decreasing the amount of the enriched gas introduced by the regulator based on the calculated carbon potential. Carburizing equipment. 前記炉内の雰囲気ガスの排気経路を構成する排気管をさらに備え、前記排気経路中に前記冷却手段及び前記露点センサをこの順に配置したことを特徴とする請求項1に記載の浸炭装置。   2. The carburizing apparatus according to claim 1, further comprising an exhaust pipe constituting an exhaust path for atmospheric gas in the furnace, wherein the cooling means and the dew point sensor are arranged in this order in the exhaust path. 前記排気管は、前記冷却手段及び前記露点センサをこの順に配置した分岐管を有することを特徴とする請求項1に記載の浸炭装置。   The carburizing apparatus according to claim 1, wherein the exhaust pipe includes a branch pipe in which the cooling unit and the dew point sensor are arranged in this order. 前記排気経路又は前記分岐管における前記冷却手段と前記露点センサとの間に、雰囲気ガス中の塵埃を除去するフィルタをさらに備えたことを特徴とする請求項1乃至3のいずれかに記載の浸炭装置。   The carburization according to any one of claims 1 to 3, further comprising a filter for removing dust in an atmospheric gas between the cooling means and the dew point sensor in the exhaust path or the branch pipe. apparatus.
JP2006132677A 2006-05-11 2006-05-11 Carburizing apparatus Pending JP2007302945A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006132677A JP2007302945A (en) 2006-05-11 2006-05-11 Carburizing apparatus
CN 200610128957 CN101070588A (en) 2006-05-11 2006-09-05 Carbon immersing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006132677A JP2007302945A (en) 2006-05-11 2006-05-11 Carburizing apparatus

Publications (1)

Publication Number Publication Date
JP2007302945A true JP2007302945A (en) 2007-11-22

Family

ID=38837121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132677A Pending JP2007302945A (en) 2006-05-11 2006-05-11 Carburizing apparatus

Country Status (2)

Country Link
JP (1) JP2007302945A (en)
CN (1) CN101070588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235451A (en) * 2008-03-26 2009-10-15 Taiyo Nippon Sanso Corp Heat-treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235451A (en) * 2008-03-26 2009-10-15 Taiyo Nippon Sanso Corp Heat-treatment method

Also Published As

Publication number Publication date
CN101070588A (en) 2007-11-14

Similar Documents

Publication Publication Date Title
ATE378438T1 (en) METHOD AND DEVICE FOR CARBURIZING
KR101619919B1 (en) Method for heat treatment and heat treatment apparatus, and heat treatment system
KR101028538B1 (en) A system for controlling atmosphere gas inside furnace
RU2009123209A (en) METHOD AND DEVICE FOR THERMAL PROCESSING OF METAL MATERIALS
KR102655059B1 (en) Surface hardening treatment device and surface hardening treatment method
KR100512187B1 (en) Control method of and Apparatus for atmosphere in heat treatment furnace
JP2007302945A (en) Carburizing apparatus
EP2474641A2 (en) Method and apparatus for heat treating a metal
JP3973795B2 (en) Gas carburizing method
JP6543213B2 (en) Surface hardening method and surface hardening apparatus
KR100522050B1 (en) Control method of and apparatus for atmosphere in heat treatment furnace
WO2021075389A1 (en) Heat treatment furnace, control method for same, information processing device, information processing method, and program
JP2012087384A (en) Method and apparatus for adjusting process gas for heat treatment of metallic material/metallic workpiece in industrial furnace
WO2021070938A1 (en) Surface hardening apparatus and surface hardening method
JP2000074798A (en) Gas analyzer
JP3949059B2 (en) Heat treatment furnace atmosphere control device
JP3938396B2 (en) Zirconia oxygen sensor
JP4092215B2 (en) Heat treatment furnace atmosphere control device
JP2022015386A (en) Carburization apparatus and carburization method
JP2023169507A (en) Gas carburizing apparatus
JPH02195255A (en) Apparatus for measuring carbon potential in furnace atmosphere in reduction atmosphere furnace
JPS6011085B2 (en) Decarburization measurement device in vacuum decarburization furnace
JP2009287071A (en) Method for measuring concentration of remaining ammonia, and apparatus therefor
CN117310086A (en) Method for correcting carbon potential by using three-gas analyzer
JPH03291326A (en) Adjusting method for heat treating environment in heating furnace